JP2007198804A - Viscosity measuring instrument using particle - Google Patents

Viscosity measuring instrument using particle Download PDF

Info

Publication number
JP2007198804A
JP2007198804A JP2006015626A JP2006015626A JP2007198804A JP 2007198804 A JP2007198804 A JP 2007198804A JP 2006015626 A JP2006015626 A JP 2006015626A JP 2006015626 A JP2006015626 A JP 2006015626A JP 2007198804 A JP2007198804 A JP 2007198804A
Authority
JP
Japan
Prior art keywords
container
liquid
viscosity
particle
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006015626A
Other languages
Japanese (ja)
Other versions
JP4513982B2 (en
Inventor
Yukihisa Wada
幸久 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006015626A priority Critical patent/JP4513982B2/en
Publication of JP2007198804A publication Critical patent/JP2007198804A/en
Application granted granted Critical
Publication of JP4513982B2 publication Critical patent/JP4513982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a viscometer for measuring the viscosity of a liquid under measurement even if the amount of the liquid is small as compared with a conventional viscometer, and accurately measuring the viscosity of the liquid in such a narrow domain that it flows within a factor of MEMS including a μ-TAS. <P>SOLUTION: An electrode pair 2 is provided in a container 1 for holding a suspension made by diffusing a particle group with their particle diameters known in a liquid under measurement, the electrode pair 2 capable of generating electric field distribution regularly arranged in the container by impressing a voltage from a power supply 3. By controlling the voltage impression on the electrode pair 2, a diffraction grating is generated owing to density distribution of the particle group caused by migration force acting on the particles in the suspension in the container 1, and thereafter, the diffraction grating is vanished. Diffracted light obtained by applying light to the container 1 is detected to find a diffusion coefficient of the particle group from a temporal change of the diffracted light in the process of vanishment while the viscosity of the liquid is calculated from the diffusion coefficient and particle diameters. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粒子を用いて各種液体の粘度を測定する新しい原理に基づく粘度測定装置に関し、特に微細な流路における液体の粘度を正確に測定することのできる粘度測定装置に関する。   The present invention relates to a viscosity measuring device based on a new principle of measuring the viscosity of various liquids using particles, and more particularly to a viscosity measuring device capable of accurately measuring the viscosity of a liquid in a fine flow path.

各種液体等の粘度を測定する粘度計として、従来、細管式粘度計、回転粘度計、超音波を用いた振動式粘度計などが知られている。   Conventionally, as a viscometer for measuring the viscosity of various liquids, a capillary viscometer, a rotational viscometer, a vibration viscometer using ultrasonic waves, and the like are known.

細管式粘度計は、溶融物等の被測定液が細管を通過するときの粘性抵抗を測定するものであり、シリンダ内に収容した被測定液をピストンで押圧することによって細管を通して流出させ、そのときのピストンの流出速度やピストンに作用させた荷重等から、被測定液の粘度を求める(例えば特許文献1参照)。   The capillary tube viscometer measures the viscous resistance when a liquid to be measured such as a melt passes through the thin tube, and the liquid to be measured contained in the cylinder is caused to flow through the thin tube by being pressed by a piston. The viscosity of the liquid to be measured is determined from the flow rate of the piston at the time, the load applied to the piston, and the like (see, for example, Patent Document 1).

また、回転粘度計は、被測定液中にロータを浸した状態で回転させ、被測定液の粘性によりロータに作用する制動力を検出し、その検出結果を粘度に換算する(例えば特許文献2参照)。   The rotational viscometer rotates with the rotor immersed in the liquid to be measured, detects the braking force acting on the rotor due to the viscosity of the liquid to be measured, and converts the detection result into viscosity (for example, Patent Document 2). reference).

更に、超音波を用いた振動式粘度計は、振動子と振動センサを取り付けた振動体を被測定液中に浸漬し、振動子に交流電圧を印加して振動体に振動を与え、そのときの振動子と振動センサとの位相差を検出し、あらかじめ求めておいた液体の粘度と位相差の関係から被測定液の粘度を求めるものなどが知られている(例えば特許文献3参照)。
特開平9−329539号公報 特開2002−340768号公報 特開平11−173967号公報
Furthermore, a vibration type viscometer using ultrasonic waves immerses a vibrating body equipped with a vibrator and a vibration sensor in a liquid to be measured, and applies an alternating voltage to the vibrator to give vibration to the vibrating body. A method is known in which the phase difference between the vibrator and the vibration sensor is detected, and the viscosity of the liquid to be measured is obtained from the relationship between the liquid viscosity and the phase difference obtained in advance (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 9-329539 Japanese Patent Laid-Open No. 2002-340768 Japanese Patent Laid-Open No. 11-173967

ところで、微細加工技術を利用してガラス等の基板上に液が流れる微小な溝のネットワークを形成し、生化学等の各種操作や検出を1枚のチップ上に集積化したμ−TAS(マイクロ総合分析システム)をはじめとするMEMS技術を利用したシステムや要素において、例えば数十μm程度の幅の微細な流路内で化学反応や生物反応を生起させる際に、流路が狭すぎると理論値よりも反応速度が遅くなることがある。このことから、液体の粘度が微細流路内で高くなるのではないかと疑われている。   By the way, a micro-groove technology is used to form a network of minute grooves through which a liquid flows on a substrate such as glass, and various operations and detection such as biochemistry are integrated on a single chip. In systems and elements that use MEMS technology (including comprehensive analysis systems), for example, when a chemical reaction or biological reaction occurs in a fine flow channel with a width of about several tens of μm, the flow channel is too narrow. The reaction rate may be slower than the value. From this, it is suspected that the viscosity of the liquid may increase in the fine channel.

しかしながら、前記したものをはじめとする従来の粘度計では、以上のような狭い領域における液体の粘度を計測することができず、上記の疑いを実証する手段がないのが実情である。   However, conventional viscometers such as those described above cannot measure the viscosity of the liquid in the narrow region as described above, and there is no means to prove the above suspicion.

また、従来の粘度計においては、粘度を計測するために必要な被測定液は、一般に数十ccのオーダーで必要であり、被測定液量が少ない場合にはその粘度を測定することができないという問題もある。   Further, in the conventional viscometer, the liquid to be measured necessary for measuring the viscosity is generally required on the order of several tens of cc, and the viscosity cannot be measured when the amount of the liquid to be measured is small. There is also a problem.

本発明はこのような実情に鑑みてなされたもので、従来の粘度計に比して被測定液の量が少なくてもその粘度を計測することができ、かつ、μ−TASをはじめとするMEMSの要素内で流動するような狭い領域における液の粘度を正確に計測することのできる、粒子を用いた粘度計の提供をその課題としている。   The present invention has been made in view of such circumstances, and can measure the viscosity even when the amount of the liquid to be measured is small as compared with the conventional viscometer, and includes μ-TAS. An object of the present invention is to provide a particle-based viscometer that can accurately measure the viscosity of a liquid in a narrow region that flows in a MEMS element.

上記の課題を解決するため、本発明の粒子を用いた粘度計は、被測定液中に粒子径が既知の粒子群を拡散させてなる懸濁液を保持する容器と、直流,周波数変調、電圧変調を含む所定のパターンもしくは任意に設定できるパターンの電圧を発生する電源と、上記容器に設けられ、上記電源からの電圧を印加することにより容器内に規則的に並ぶ電界分布を発生させる電極対と、その電極対への電源からの電圧の印加の制御により、上記容器内の懸濁液中の粒子に作用する泳動力により生じる粒子群の密度分布に起因する回折格子の生成と、その消滅を制御する制御手段と、容器内の上記回折格子の生成部位に向けて光を照射する光源と、その光の上記回折格子による回折光を検出する光検出器と、その光検出器により検出される回折光強度の時間的変化から上記粒子群の拡散の速度に係る情報を求めるとともに、その結果と上記粒子群の粒子径とから、被測定液の粘度を求める解析・演算手段を備えていることによって特徴づけられる(請求項1)。   In order to solve the above problems, a viscometer using the particles of the present invention includes a container for holding a suspension obtained by diffusing particles having a known particle diameter in a liquid to be measured, direct current, frequency modulation, A power source that generates a voltage of a predetermined pattern including voltage modulation or a pattern that can be arbitrarily set, and an electrode that is provided in the container and generates an electric field distribution regularly arranged in the container by applying a voltage from the power source By controlling the application of voltage from the power source to the pair and the electrode pair, generation of a diffraction grating due to the density distribution of the particle group caused by the migration force acting on the particles in the suspension in the container, and Control means for controlling the extinction, a light source for irradiating light toward the generation site of the diffraction grating in the container, a photodetector for detecting the diffracted light of the light by the diffraction grating, and detection by the photodetector Of diffracted light intensity It is characterized by having an analysis / calculation means for obtaining the viscosity of the liquid to be measured from the result and the particle diameter of the particle group from the result and the particle diameter of the particle group, while obtaining information on the diffusion speed of the particle group from the interim change. (Claim 1).

ここで、本発明においては、上記粒子群の拡散の速度に係る情報が拡散係数であり、上記解析・演算手段は、その拡散係数と上記粒子群の粒子径を用いてアインシュタイン・ストークスの式から被測定液の粘度を算出する構成(請求項2)を好適に採用することができる。   Here, in the present invention, the information relating to the diffusion speed of the particle group is a diffusion coefficient, and the analysis / calculation means uses the diffusion coefficient and the particle diameter of the particle group to calculate from the Einstein-Stokes equation. A configuration for calculating the viscosity of the liquid to be measured (Claim 2) can be suitably employed.

本発明は、液体中における粒子は誘電泳動もしくは電気泳動により移動すること、および、液体中における粒子の拡散のしやすさが、温度が一定であれば液の粘度と粒子径に依存することを利用し、被測定液に粒子径既知の粒子群を拡散させて懸濁液の状態として容器内に収容し、その懸濁液に対して電極対を通じて空間周期的な電界分布を作用させることで粒子群による回折格子を生成させ、その回折格子に対して光を照射して得られる回折光の強度を検出し、電界分布を変化させたときの回折光の経時的変化から、被測定液の粘度を求めるものである。   The present invention states that particles in a liquid move by dielectrophoresis or electrophoresis, and that the ease of particle diffusion in a liquid depends on the viscosity and particle diameter of the liquid if the temperature is constant. By diffusing particles with a known particle size into the liquid to be measured and storing it in a container as a suspension, and applying a spatial periodic electric field distribution to the suspension through the electrode pair Generate a diffraction grating by particle groups, detect the intensity of the diffracted light obtained by irradiating the diffraction grating with light, and change the diffracted light over time when the electric field distribution is changed. Viscosity is obtained.

すなわち、被測定液に対して粒子径が既知の粒子群を混入・拡散させた懸濁液の状態で容器内に収容し、その容器に設けた電極対に電圧を印加することによって容器内部に規則的に並ぶ電界分布を発生させると、粒子に泳動力が作用して粒子群による回折格子が生成される。この粒子群による回折格子は、電極対に対する電圧印加の停止ないしは周波数変調あるいは電圧変調により消滅する。その粒子群による回折格子の生成部位に向けて光を照射し、回折格子により回折した光を検出し、回折格子の消滅過程における回折光強度の時間的変化を計測すると、その時間的変化は、被測定液中での粒子群の拡散に関する情報となる。粒子径は既知であるため、測定時における温度とから、被測定液の粘度を算出することができる。   In other words, the particles are stored in a container in the state of a suspension in which a group of particles having a known particle diameter is mixed and diffused with respect to the liquid to be measured, and a voltage is applied to the electrode pair provided in the container to bring it into the container. When a regularly arranged electric field distribution is generated, a migration force acts on the particles to generate a diffraction grating composed of particles. The diffraction grating formed of the particle group disappears by stopping the voltage application to the electrode pair or by frequency modulation or voltage modulation. When irradiating light toward the generation site of the diffraction grating by the particle group, detecting the light diffracted by the diffraction grating, and measuring the temporal change of the diffracted light intensity in the annihilation process of the diffraction grating, the temporal change is This is information on the diffusion of the particle group in the liquid to be measured. Since the particle diameter is known, the viscosity of the liquid to be measured can be calculated from the temperature at the time of measurement.

具体的には、請求項2に係る発明のように、回折光強度の時間的変化から被測定液中での粒子の拡散係数を求め、アインシュタイン・ストークスの式から被測定液の粘度を算出することができる。   Specifically, as in the invention according to claim 2, the particle diffusion coefficient in the liquid to be measured is obtained from the temporal change in the diffracted light intensity, and the viscosity of the liquid to be measured is calculated from the Einstein-Stokes equation. be able to.

以上の構成において、被測定液中での粒子群の泳動による回折格子の生成とその消滅は、極めて狭い領域で生じさせることができ、容器の厚さを数100μm以下程度に設定することにより、μ−TAS等で用いられる溝内部と同等の領域における被測定液の粘度を計測することができる。また、微細領域中での被測定液の粘度以外の、通常領域での被測定液の粘度を測定する場合においても、容器厚さを例えば数mm程度とすることで、粘度計測に要する被測定液量を少なくすることが可能となる。   In the above configuration, the generation and extinction of the diffraction grating by the migration of the particle group in the liquid to be measured can be generated in a very narrow region, and by setting the thickness of the container to about several hundred μm or less, It is possible to measure the viscosity of the liquid to be measured in a region equivalent to the inside of the groove used in μ-TAS or the like. In addition, when measuring the viscosity of the liquid to be measured in the normal region other than the viscosity of the liquid to be measured in the fine region, the measurement to be performed for viscosity measurement is performed by setting the container thickness to, for example, about several mm. The amount of liquid can be reduced.

以上のように、本発明によれば、被測定液中に粒子径が既知の粒子群を拡散させた状態で容器内に収容し、その容器内部に規則的に並ぶ電界を発生させて粒子群による回折格子を生成させるとともに、その回折格子の消滅過程における回折光強度の時間的変化から、被測定液中における粒子の拡散に係る情報を得て、その拡散に係る情報と粒子径とから、被測定液の粘度を算出するので、容器の幅をμ−TASをはじめとするMEMSにおける要素中での流路と同等の狭い領域での粘度を計測することができ、この種の分野における液の挙動の解明に有用であると期待される。   As described above, according to the present invention, a group of particles having a known particle diameter is diffused in a liquid to be measured and stored in a container, and an electric field regularly arranged in the container is generated to generate the group of particles. From the temporal change of the diffracted light intensity in the annihilation process of the diffraction grating, the information related to the diffusion of the particles in the liquid to be measured is obtained from the information related to the diffusion and the particle diameter. Since the viscosity of the liquid to be measured is calculated, it is possible to measure the viscosity of the container in a narrow region equivalent to the flow path in the element in the MEMS such as μ-TAS. It is expected to be useful for elucidating the behavior of

また、狭い領域での粘度に限らず、通常の粘度の計測に際しても、数mm以下程度の小さな容器を用いて被測定液の粘度を計測することが可能となることから、従来の各種方式に基づく粘度計に比して、被測定液の所要量を大幅に少なくすることができる。   In addition to the viscosity in a narrow area, it is possible to measure the viscosity of the liquid to be measured using a small container of several mm or less when measuring normal viscosity. Compared with the viscometer based, the required amount of the liquid to be measured can be greatly reduced.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図であり、光学的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。また、図2は図1における容器1の模式的断面図と、電極対21,22に対する電圧印加のための回路図とを併記して示す図であり、図3は図1における容器1中に設けられている電極対のパターンの例を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing an optical configuration and a block diagram showing an electrical configuration. 2 is a diagram showing both a schematic cross-sectional view of the container 1 in FIG. 1 and a circuit diagram for applying a voltage to the electrode pairs 21 and 22, and FIG. 3 shows the container 1 in FIG. It is a figure which shows the example of the pattern of the electrode pair provided.

装置は、粘度の被測定液中に粒子径が既知の粒子群を分散させてなるサンプル懸濁液Lが充填される容器1と、その容器1内に設けられている電極対2と、その電極対2に対して電圧を印加する電源3と、容器1に対して光を照射する照射光学系4と、電極対2への電圧の印加により容器内1で生じる粒子群の密度分布による回折格子からの回折光を測定する検出光学系5と、容器1内に前記したサンプル懸濁液Lを供給するサンプル輸送部6、容器1内部の温度を計測する温度計測部7、および装置全体を制御するとともに、検出光学系5および温度計測部7からの出力を取り込んでデータ処理を施す制御・データ収集・解析部8を主体として構成されている。   The apparatus includes a container 1 filled with a sample suspension L in which particles having a known particle diameter are dispersed in a liquid to be measured for viscosity, an electrode pair 2 provided in the container 1, A power source 3 for applying a voltage to the electrode pair 2, an irradiation optical system 4 for irradiating light to the container 1, and a diffraction due to a density distribution of particle groups generated in the container 1 by applying a voltage to the electrode pair 2. A detection optical system 5 that measures the diffracted light from the grating, a sample transport unit 6 that supplies the sample suspension L into the container 1, a temperature measurement unit 7 that measures the temperature inside the container 1, and the entire apparatus. The control / data collection / analysis unit 8 is mainly configured to control the data and process the data by taking in the outputs from the detection optical system 5 and the temperature measurement unit 7.

容器1は、図2に示すように、互いに平行で、かつ、透明材料からなる壁体11,12を含む全体として直方体形状を有しており、壁体12の内側の表面に電極対2が形成されている。そして、この例において、容器1は、壁体11,12間の間隔が数100μm以下とされており、これらの壁体11,12を含めて、容器1の材質は例えば石英ガラスであって、MEMS技術の応用により容易に製作することができる。   As shown in FIG. 2, the container 1 has a rectangular parallelepiped shape as a whole including walls 11 and 12 made of a transparent material and parallel to each other, and the electrode pair 2 is formed on the inner surface of the wall 12. Is formed. In this example, the container 1 has an interval between the wall bodies 11 and 12 of several hundred μm or less, and the material of the container 1 including these wall bodies 11 and 12 is, for example, quartz glass, It can be easily manufactured by applying MEMS technology.

電極対2は、図3に例示するように、それぞれが略櫛形をした電極21,22からなり、各電極21,22はそれぞれ、互いに平行な複数の直線状の電極片21a・・21a,22a・・22aと、これらの各電極片21a・・21a,22a・・22aを接続する接続部21b,22bによって構成されている。各電極21,22において、各電極片21a・・21a並びに22a・・22aは、2本の電極片21a,21aまたは22a,22aが互いに隣接配置された電極片偏在領域と、電極片が存在しない電極不存在領域を交互に形成した形状とされ、一方の電極の電極片偏在領域の2本の電極片21a,21aまたは22a,22aが、他方の電極の電極片不存在領域に入り込んだ状態となっている。これにより、全体として電極片21aと22aが一定の間隔を開けて平行に2本ずつ交互に、かつ、相互に絶縁を保ち配置された状態となっている。なお、各電極片21a,22aの幅は10μm程度である。   As illustrated in FIG. 3, the electrode pair 2 includes substantially comb-shaped electrodes 21 and 22, and each of the electrodes 21 and 22 includes a plurality of linear electrode pieces 21 a, 21 a, and 22 a that are parallel to each other. .. 22a and connecting portions 21b and 22b connecting these electrode pieces 21a, 21a, 22a,. In each electrode 21, 22, each electrode piece 21 a, 21 a and 22 a, 22 a has two electrode pieces 21 a, 21 a or 22 a, 22 a adjacent to each other, and no electrode piece exists The electrode non-existing regions are alternately formed, and the two electrode pieces 21a, 21a or 22a, 22a of the electrode piece unevenly-distributing region of one electrode are in the electrode piece non-existing region of the other electrode; It has become. Thereby, as a whole, the electrode pieces 21a and 22a are alternately arranged in parallel with each other at a predetermined interval, and the electrode pieces 21a and 22a are arranged while being insulated from each other. The width of each electrode piece 21a, 22a is about 10 μm.

以上の電極対2には、図2に示すような結線のもとに電極電源3からの電圧が印加され、この電圧の印加により容器1に収容されている懸濁液L内に電界分布が発生し、その電界分布により、後述するように試料懸濁液L中の粒子群が泳動し、粒子群の密度分布による回折格子が生成される。電極電源3の出力電圧、換言すれば電極対2に対する印加電圧は、制御・データ収集・解析部8により後述するように制御される。   A voltage from the electrode power source 3 is applied to the above electrode pair 2 under the connection as shown in FIG. 2, and an electric field distribution is generated in the suspension L accommodated in the container 1 by the application of this voltage. Due to the electric field distribution, the particle group in the sample suspension L migrates as described later, and a diffraction grating is generated by the density distribution of the particle group. The output voltage of the electrode power source 3, in other words, the voltage applied to the electrode pair 2 is controlled by the control / data collection / analysis unit 8 as described later.

照射光学系4は、ほぼ単色化された光を概略平行光束に成形した状態で出力し、その出力光は容器1の電極対2の形成面に向けて照射される。照射光学系4の光源としては、レーザやLED等の単色光のみを放射するものを好適に用いることができるが、連続波長光源をバンドパスフィルタや分光器などで疑似単色化した光を用いてもよい。
検出光学系5は、照射光学系4からの光のうち、後述する容器1内の粒子群の密度分布による回折格子で回折した例えば1次の回折光が出射される方位に配置される。この検出光学系5は、例えばアパーチャ5aと光検出器5bによって構成されている。この検出光学系5によって、容器1内の粒子群の密度分布による回折格子が作る回折光の強度の変化が時系列に計測される。
The irradiation optical system 4 outputs substantially monochromatic light in a state of being formed into a substantially parallel light beam, and the output light is irradiated toward the formation surface of the electrode pair 2 of the container 1. As the light source of the irradiation optical system 4, a light source that emits only monochromatic light such as a laser or an LED can be preferably used. However, a continuous wavelength light source that is pseudo-monochromatic with a bandpass filter or a spectroscope is used. Also good.
The detection optical system 5 is arranged in the direction in which, for example, the first-order diffracted light diffracted by the diffraction grating based on the density distribution of the particle group in the container 1 to be described later out of the light from the irradiation optical system 4 is emitted. The detection optical system 5 includes, for example, an aperture 5a and a photodetector 5b. By this detection optical system 5, the change in the intensity of the diffracted light produced by the diffraction grating due to the density distribution of the particles in the container 1 is measured in time series.

以上の構成において、被測定液中に、粒子径が既知の粒子、好ましくは単分散で粒子径が揃っている粒子、粒子径の一例としては10〜100nm程度、を分散させた状態で容器1内に導入した状態で、電極対2を構成する各電極21,22間に、電極電源3から交流電圧を印加すると、その電極パターンに応じた電界の分布が容器1内のサンプル懸濁液L中に形成され、その電界の分布に基づく誘電泳動により、粒子群の高密度領域Pが形成される。図2に示す電極パターンにおいては、一方の電極21の電極片21aと他方の電極22の電極片22aとが隣接している部分に、粒子群の高密度領域Pが形成される。この粒子群の高密度領域Pは、従って、電極片21a,22aのピッチの2倍のピッチで互いに平行に形成されることになり、その複数の粒子群の高密度領域Pにより回折格子が生成される。このような回折格子の生成状態において、電極対に対する電圧の印加を例えば停止することにより、粒子群は拡散を開始し、サンプル懸濁液L中の粒子群の空間密度は均一化していき、粒子群の密度分布による回折格子はやがて消滅する。   In the above configuration, the container 1 in a state in which particles having a known particle size, preferably monodispersed and uniform particle size, and about 10 to 100 nm as an example of the particle size are dispersed in the liquid to be measured. When an AC voltage is applied from the electrode power source 3 between the electrodes 21 and 22 constituting the electrode pair 2 in the state introduced into the electrode pair 2, the distribution of the electric field corresponding to the electrode pattern becomes the sample suspension L in the container 1. The high-density region P of the particle group is formed by dielectrophoresis based on the electric field distribution. In the electrode pattern shown in FIG. 2, a high density region P of particle groups is formed in a portion where the electrode piece 21 a of one electrode 21 and the electrode piece 22 a of the other electrode 22 are adjacent to each other. Accordingly, the high density region P of the particle group is formed in parallel with each other at a pitch twice the pitch of the electrode pieces 21a and 22a, and a diffraction grating is generated by the high density region P of the plurality of particle groups. Is done. In such a diffraction grating generation state, for example, by stopping the application of voltage to the electrode pair, the particle group starts to diffuse, and the spatial density of the particle group in the sample suspension L becomes uniform. The diffraction grating due to the density distribution of the group will eventually disappear.

粒子群の密度分布による回折格子に対して照射光学系4からの光を照射することにより、その光は回折格子によって回折を受け、その回折光の強度は回折格子の消滅過程で次第に弱くなっていく。図4に電極対2に対して印加される電圧波形と、粒子群の密度分布が作る回折格子による回折光の強度の時間的変化の例をグラフで示す。この例では、一定の電圧V0 の正弦波様の交流電圧を電極対2に印加し、粒子に誘電泳動を作用させて回折格子を生成させ、その電圧の印加を停止することにより誘電泳動力の作用を停止させた例を示している。 By irradiating light from the irradiation optical system 4 to the diffraction grating due to the density distribution of the particle group, the light is diffracted by the diffraction grating, and the intensity of the diffracted light gradually becomes weaker in the process of extinction of the diffraction grating. Go. FIG. 4 is a graph showing an example of a voltage waveform applied to the electrode pair 2 and a temporal change in the intensity of diffracted light by the diffraction grating created by the density distribution of the particle group. In this example, a sine wave-like AC voltage having a constant voltage V 0 is applied to the electrode pair 2, a dielectrophoresis is caused to act on the particles, a diffraction grating is generated, and the application of the voltage is stopped to stop the dielectrophoretic force. The example which stopped the effect | action of is shown.

この粒子群の密度分布による回折格子の消滅過程における回折光強度の時間的変化は、被測定液中での粒子の拡散のしやすさに依存する。すなわち、回折光強度の時間tに対する変化を計測することにより、粒子群の拡散係数を求めることができる。例えば、1次回折光の時間的変化I(t)は、拡散係数Dと以下の関係がある。
I(t)∝exp[−2・q2 ・D・t] ・・・(1)
ここでqは、粒子の密度分布による回折格子のピッチ(グレーティング周期)をΛとしたとき、
q=2π/Λ ・・・(2)
である。
The temporal change in the diffracted light intensity during the annihilation process of the diffraction grating due to the density distribution of the particle group depends on the ease of diffusion of the particles in the liquid to be measured. That is, the diffusion coefficient of the particle group can be obtained by measuring the change of the diffracted light intensity with respect to time t. For example, the temporal change I (t) of the first-order diffracted light has the following relationship with the diffusion coefficient D.
I (t) ∝exp [-2 · q 2 · D · t] (1)
Where q is the pitch (grating period) of the diffraction grating due to the density distribution of the particles as Λ,
q = 2π / Λ (2)
It is.

一方、液体中の粒子の拡散係数Dは、液体の粘度をη、粒子の粒子径をd、絶対温度をTとすると、ボルツマン定数kを用いて下記のアインシュタイン・ストークスの式が成り立つことが知られていてる。
D=kT/3πηd ・・・(4)
On the other hand, the diffusion coefficient D of the particles in the liquid is known to satisfy the following Einstein-Stokes equation using the Boltzmann constant k, where η is the viscosity of the liquid, d is the particle diameter of the particles, and T is the absolute temperature. It has been.
D = kT / 3πηd (4)

制御・データ収集・解析部8では、検出光学系5の出力に基づく1次回折光の時間的変化I(t)から、(1)式を用いてサンプル懸濁液中の粒子の拡散係数Dを算出するとともに、その拡散係数Dと、温度計測部7からの温度検出値T、および、既知の粒子径dを用いて、被測定液の粘度ηを算出する。   In the control / data collection / analysis unit 8, the diffusion coefficient D of the particles in the sample suspension is calculated from the temporal change I (t) of the first-order diffracted light based on the output of the detection optical system 5 using the equation (1). While calculating, the viscosity η of the liquid to be measured is calculated using the diffusion coefficient D, the temperature detection value T from the temperature measurement unit 7, and the known particle diameter d.

ここで、容器1は前記したように壁体11,12間の間隔が数100μm以下と狭小であり、従って、以上の計算により求められる粘度ηは、狭小領域における被測定液の粘度を表す値となる。現実に、容器1の壁体11,12間の間隔を十分に広くした場合、拡散係数はその間隔を変化させても一定の値をとるが、その間隔を上記のように数100μm以下と狭くすると拡散係数は小さくなる。これは、液体が狭小領域においては、広い領域での粘度と異なる値をとることにほかならず、μ−TAS等における液体の挙動を確かめることが可能となった。   Here, as described above, the interval between the walls 11 and 12 is as narrow as several hundreds μm or less, and the viscosity η obtained by the above calculation is a value representing the viscosity of the liquid to be measured in the narrow region. It becomes. Actually, when the interval between the wall bodies 11 and 12 of the container 1 is sufficiently wide, the diffusion coefficient takes a constant value even when the interval is changed, but the interval is as narrow as several hundred μm or less as described above. Then, the diffusion coefficient becomes small. This means that when the liquid is in a narrow area, the liquid has a value different from the viscosity in a wide area, and the behavior of the liquid in μ-TAS or the like can be confirmed.

なの、以上の実施の形態においては、容器1を狭小なものとして、狭小領域における被測定液の粘度を算出したが、本発明の粘度計は、このような狭小領域における粘度のみならず、容器1の壁体11,12間の間隔を十分に広くして、上記と同様の測定を行うこともできる。この場合において、例えば壁体11,12間の間隔を数mm程度とすることにより、従来の既存の各種粘度計に比して、測定のためのサンプルの所要量を大幅に少なくすることができる。   In the above embodiment, the container 1 is narrow, and the viscosity of the liquid to be measured in the narrow region is calculated. However, the viscometer of the present invention is not limited to the viscosity in such a narrow region. It is also possible to perform the same measurement as described above by sufficiently widening the interval between one wall body 11 and 12. In this case, for example, by setting the interval between the wall bodies 11 and 12 to about several millimeters, the required amount of the sample for measurement can be greatly reduced as compared with various existing viscometers. .

また、以上の実施の形態においては、電極対2に対して交流電圧を印加して粒子に誘電泳動力を生じさせて粒子の密度分布による回折格子を生成させた後、その印加を停止することによって粒子を拡散させたが、誘電泳動力が生じやすい周波数の交流電圧を印加して回折格子を生成した後、誘電泳動力が生じにくい周波数に変調してもよく、また、交流電圧の振幅を変化させてもよい。なお、交流電圧の波形は正弦波様やパルス様など、任意である。誘電泳動により電解密度の高い電極対2の近傍へ粒子が移動する正の力が働く場合と、粒子が電極から遠ざかる負の力が働く場合があるが、いずれでもよい。更に、電極対2に対して直流電圧を印加し、粒子に電気泳動力を作用させて捕集してもよい。   In the above embodiment, an alternating voltage is applied to the electrode pair 2 to generate a dielectrophoretic force on the particles to generate a diffraction grating based on the density distribution of the particles, and then the application is stopped. The particles may be diffused by applying an AC voltage with a frequency at which dielectrophoretic force is likely to be generated to generate a diffraction grating, and then modulating the frequency to a frequency at which dielectrophoretic force is less likely to occur. It may be changed. The waveform of the AC voltage is arbitrary such as a sine wave or pulse. There may be a case where a positive force for moving the particles to the vicinity of the electrode pair 2 having a high electrolytic density due to dielectrophoresis and a case where a negative force for moving the particles away from the electrode may be applied. Further, a direct current voltage may be applied to the electrode pair 2 to collect the particles by applying an electrophoretic force to the particles.

また、以上の実施の形態においては、電極対2として、電極21と22の電極片21a,22aを2本ずつ交互に配置した。これにより、電極片21a,22aが作る回折格子と粒子群の密度分布による回折格子のグレーティング周期を異なるものとし、粒子群の密度分布による回折格子からのm+1次の回折光が電極片21a,22aによる回折光とは異なる方位に現れ、これにより、粒子群の密度分布による回折格子からの回折光のみを検出することが可能となる。しかしながら、本発明はこれに限定されることなく、電極片21aと22aを1本ずつ交互に配置した電極構成を採用することもでき、この場合、回折光は粒子群の密度分布による回折格子からの回折光と電極片21a,22aからの回折光とを同時に検出することになるが、回折光の時間的変化は粒子群の密度分布による回折光のみに生じるため、その変化を抽出することにより、上記と同等の作用効果を奏することができる。電極片21a,22aの幅は10μmに限定されているものではなく、1μm〜10μm程度でもよい。粒子の密度分布による回折格子のピッチ(グレーティング周期)Λも1μm〜100μm程度でもよい。   Moreover, in the above embodiment, as the electrode pair 2, the electrode pieces 21 a and 22 a of the electrodes 21 and 22 are alternately arranged two by two. Thus, the grating periods of the diffraction grating formed by the electrode pieces 21a and 22a and the diffraction grating due to the density distribution of the particle group are different, and the m + 1 order diffracted light from the diffraction grating due to the density distribution of the particle group is changed to the electrode pieces 21a and 22a. Therefore, only the diffracted light from the diffraction grating due to the density distribution of the particle group can be detected. However, the present invention is not limited to this, and it is also possible to adopt an electrode configuration in which the electrode pieces 21a and 22a are alternately arranged one by one. In this case, the diffracted light is emitted from the diffraction grating due to the density distribution of the particle group. Diffracted light and the diffracted light from the electrode pieces 21a and 22a are detected at the same time, but the temporal change of the diffracted light occurs only in the diffracted light due to the density distribution of the particle group. The same effects as those described above can be achieved. The width of the electrode pieces 21a and 22a is not limited to 10 μm, and may be about 1 μm to 10 μm. The pitch (grating period) Λ of the diffraction grating due to the density distribution of the particles may be about 1 μm to 100 μm.

更にまた、以上の実施の形態においては、被測定液に粒子群を分散させたサンプル懸濁液Lを容器1に対して導入するためのサンプル液輸送部6を設けたが、装置外で容器1に対してサンプル懸濁液を充填し、その容器1を装置内の規定部位に位置決めするように構成し得ることは言うまでもない。   Furthermore, in the above embodiment, the sample liquid transporting part 6 for introducing the sample suspension L in which the particle group is dispersed in the liquid to be measured into the container 1 is provided. Needless to say, the sample suspension 1 can be filled with the sample suspension, and the container 1 can be positioned at a defined site in the apparatus.

本発明の実施の形態の構成図であり、光学的構成を表す模式図と電気的構成を表すブロック図とを併記して示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of embodiment of this invention, and is the figure which writes together and shows the schematic diagram showing an optical structure, and the block diagram showing an electric structure. 図1における容器1の模式的断面図と、電極対21,22に対する電圧印加のための回路図とを併記して示す図である。FIG. 2 is a diagram illustrating a schematic cross-sectional view of the container 1 in FIG. 1 and a circuit diagram for applying a voltage to electrode pairs 21 and 22. 図1における容器1中に設けられている電極対のパターンの例を示す図である。It is a figure which shows the example of the pattern of the electrode pair provided in the container 1 in FIG. 本発明の実施の形態の電極対2に対して印加される電圧波形と、粒子群の密度分布が作る回折格子による回折光強度の時間的変化の例を示すグラフである。It is a graph which shows the example of the time change of the diffracted light intensity by the voltage waveform applied with respect to the electrode pair 2 of embodiment of this invention, and the diffraction grating which the density distribution of a particle group produces.

符号の説明Explanation of symbols

1 容器
2 電極対
21,22 電極
21a,22a 電極片
21b,22b 接続部
3 電極電源
4 照射光学系
5 検出光学系
6 サンプル液輸送部
7 温度計測部
8 制御・データ収集・解析部
P 粒子の高密度領域
DESCRIPTION OF SYMBOLS 1 Container 2 Electrode pair 21, 22 Electrode 21a, 22a Electrode piece 21b, 22b Connection part 3 Electrode power supply 4 Irradiation optical system 5 Detection optical system 6 Sample liquid transport part 7 Temperature measurement part 8 Control / data collection / analysis part P High density area

Claims (2)

被測定液中に粒子径が既知の粒子群を拡散させてなる懸濁液を保持する容器と、直流,周波数変調、電圧変調を含む所定のパターンもしくは任意に設定できるパターンの電圧を発生する電源と、上記容器に設けられ、上記電源からの電圧を印加することにより容器内に規則的に並ぶ電界分布を発生させる電極対と、その電極対への電源からの電圧の印加の制御により、上記容器内の懸濁液中の粒子に作用する泳動力により生じる粒子群の密度分布に起因する回折格子の生成と、その消滅を制御する制御手段と、容器内の上記回折格子の生成部位に向けて光を照射する光源と、その光の上記回折格子による回折光を検出する光検出器と、その光検出器により検出される回折光強度の時間的変化から上記粒子群の拡散の速度に係る情報を求めるとともに、その結果と上記粒子群の粒子径とから、被測定液の粘度を求める解析・演算手段を備えていることを特徴とする粒子を用いた粘度測定装置。   A container for holding a suspension obtained by diffusing particles having a known particle size in a liquid to be measured, and a power source for generating a voltage of a predetermined pattern including DC, frequency modulation, voltage modulation or a pattern that can be arbitrarily set And an electrode pair that is provided in the container and generates a distribution of electric fields regularly arranged in the container by applying a voltage from the power source, and by controlling the application of the voltage from the power source to the electrode pair, Generation of diffraction grating due to density distribution of particle groups caused by migration force acting on particles in suspension in container, control means for controlling disappearance thereof, and direction of generation of diffraction grating in container A light source for irradiating light, a photodetector for detecting diffracted light of the light by the diffraction grating, and a diffusion rate of the particle group from a temporal change in diffracted light intensity detected by the light detector. When you ask for information Moni, the result and from the particle diameter of the particle group, the viscosity measuring apparatus using the particles characterized in that it comprises an analysis and calculation means for calculating the viscosity of the test liquid. 上記粒子群の拡散に係る情報が拡散係数であり、上記解析・演算手段は、その拡散係数と上記粒子群の粒子径を用いてアインシュタイン・ストークスの式から被測定液の粘度を算出することを特徴とする請求項1に記載の粒子を用いた粘度測定装置。   The information related to the diffusion of the particle group is a diffusion coefficient, and the analysis / calculation means calculates the viscosity of the liquid to be measured from the Einstein-Stokes equation using the diffusion coefficient and the particle diameter of the particle group. A viscosity measuring device using the particles according to claim 1.
JP2006015626A 2006-01-24 2006-01-24 Viscosity measuring device using particles Expired - Fee Related JP4513982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006015626A JP4513982B2 (en) 2006-01-24 2006-01-24 Viscosity measuring device using particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006015626A JP4513982B2 (en) 2006-01-24 2006-01-24 Viscosity measuring device using particles

Publications (2)

Publication Number Publication Date
JP2007198804A true JP2007198804A (en) 2007-08-09
JP4513982B2 JP4513982B2 (en) 2010-07-28

Family

ID=38453560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006015626A Expired - Fee Related JP4513982B2 (en) 2006-01-24 2006-01-24 Viscosity measuring device using particles

Country Status (1)

Country Link
JP (1) JP4513982B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142762A1 (en) * 2007-05-18 2008-11-27 Shimadzu Corporation Optical measurement method and device
JP2009262107A (en) * 2008-04-28 2009-11-12 Fujimori Kogyo Co Ltd Dielectrophoretic electrode, dielectrophoretic cell and collector for dielectric fine particle using the same
WO2013077137A1 (en) * 2011-11-24 2013-05-30 国立大学法人東京農工大学 Measurement device and measurement method
CN106501128A (en) * 2016-10-31 2017-03-15 西南交通大学 A kind of viscometer based on ultrasonic coupling inclined optical fiber grating
JP2018524591A (en) * 2015-07-02 2018-08-30 ケンブリッジ・エンタープライズ・リミテッド Viscosity measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329539A (en) * 1996-06-07 1997-12-22 Toyo Seiki Seisakusho:Kk Capillary viscometer
JPH11173967A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring viscosity of liquid
JP2001264294A (en) * 2000-01-28 2001-09-26 Research Lab Of Australia Pty Ltd Toner characteristic analyzer
JP2002340768A (en) * 2001-05-15 2002-11-27 Rion Co Ltd Rotary viscometer
JP2005164560A (en) * 2003-11-28 2005-06-23 Hironari Kikura Dark-field particle measurement device and method therefor
JP2005345402A (en) * 2004-06-07 2005-12-15 Shimadzu Corp Measuring device using surface plasmon resonance, and analyzer using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329539A (en) * 1996-06-07 1997-12-22 Toyo Seiki Seisakusho:Kk Capillary viscometer
JPH11173967A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring viscosity of liquid
JP2001264294A (en) * 2000-01-28 2001-09-26 Research Lab Of Australia Pty Ltd Toner characteristic analyzer
JP2002340768A (en) * 2001-05-15 2002-11-27 Rion Co Ltd Rotary viscometer
JP2005164560A (en) * 2003-11-28 2005-06-23 Hironari Kikura Dark-field particle measurement device and method therefor
JP2005345402A (en) * 2004-06-07 2005-12-15 Shimadzu Corp Measuring device using surface plasmon resonance, and analyzer using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142762A1 (en) * 2007-05-18 2008-11-27 Shimadzu Corporation Optical measurement method and device
JPWO2008142762A1 (en) * 2007-05-18 2010-08-05 株式会社島津製作所 Optical measuring method and apparatus
JP2009262107A (en) * 2008-04-28 2009-11-12 Fujimori Kogyo Co Ltd Dielectrophoretic electrode, dielectrophoretic cell and collector for dielectric fine particle using the same
WO2013077137A1 (en) * 2011-11-24 2013-05-30 国立大学法人東京農工大学 Measurement device and measurement method
JPWO2013077137A1 (en) * 2011-11-24 2015-04-27 国立大学法人東京農工大学 Measuring apparatus and measuring method
JP2018524591A (en) * 2015-07-02 2018-08-30 ケンブリッジ・エンタープライズ・リミテッド Viscosity measurement
CN106501128A (en) * 2016-10-31 2017-03-15 西南交通大学 A kind of viscometer based on ultrasonic coupling inclined optical fiber grating
CN106501128B (en) * 2016-10-31 2019-04-30 西南交通大学 A kind of viscosimeter based on ultrasonic coupling inclined optical fiber grating

Also Published As

Publication number Publication date
JP4513982B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
Laohakunakorn et al. Electroosmotic flow reversal outside glass nanopores
EP1990627B1 (en) Method of analysis in optical measurements
JP4513982B2 (en) Viscosity measuring device using particles
WO2006025158A1 (en) Optical measuring device and method, nanoparticle measuring method and device
JPWO2007010639A1 (en) Optical measuring device
JP4873202B2 (en) Analysis method of optical measurement
JP4868190B2 (en) Nano particle measuring device
US8313628B2 (en) Method and apparatus for evaluating dielectrophoretic intensity of microparticle
JP2008051606A (en) Particle size measuring method and measuring instrument
JP4325519B2 (en) Nanoparticle measuring method and apparatus
JP5360391B2 (en) Particle measuring method and apparatus
JP4826780B2 (en) Method and apparatus for measuring nanoparticles
JP2006349386A (en) Optical measuring instrument
JP4650277B2 (en) Particle size measuring device
JPWO2008136101A1 (en) Nanoparticle measurement method and apparatus
JP4888673B2 (en) Optical measuring device and its electrode pair
JP2007057293A (en) Particle measuring instrument
JP2010249607A (en) Particle detector
JP5104643B2 (en) Particle size measuring apparatus and particle size measuring method
JP2011080819A (en) Particle-size measuring instrument
JP5109988B2 (en) Particle size measuring apparatus and particle size measuring method
JP4830909B2 (en) Particle measuring device
JP2011007605A (en) Particle size measurement apparatus and particle size measurement method
JP5720504B2 (en) Particle size measuring device
JP2010101657A (en) Particle size measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4513982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees