JP2006349386A - Optical measuring instrument - Google Patents

Optical measuring instrument Download PDF

Info

Publication number
JP2006349386A
JP2006349386A JP2005172865A JP2005172865A JP2006349386A JP 2006349386 A JP2006349386 A JP 2006349386A JP 2005172865 A JP2005172865 A JP 2005172865A JP 2005172865 A JP2005172865 A JP 2005172865A JP 2006349386 A JP2006349386 A JP 2006349386A
Authority
JP
Japan
Prior art keywords
light
diffraction
diffraction grating
cell
diffracted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005172865A
Other languages
Japanese (ja)
Inventor
Yukihisa Wada
幸久 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005172865A priority Critical patent/JP2006349386A/en
Publication of JP2006349386A publication Critical patent/JP2006349386A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized optical measuring instrument, capable of simultaneously measuring pieces of information as to particles in a plurality of fluid samples. <P>SOLUTION: This optical measuring instrument is provided with a light source 16, an electric power source 15, cells 10a, 10b, electrodes 11a, 11b serving as diffraction gratings, formed in positions near to the fluid samples in the cells and for generating a plurality of basic diffraction light patterns, arrayed along the directions different each other, when irradiated with light from the light source, and a two-dimensional photodetector 25 for detecting the basic diffraction light patterns, generated by respective diffraction gratings. The two-dimensional photodetector 25 detects the basic diffraction light patterns, generated with simultaneous emission of the light onto the electrodes serving as the diffraction gratings, and detects derived diffraction light patterns generated derivedly, by irradiating with light, density diffraction gratings M generated by impressing voltages to change density distributions periodically of the particles existing in the vicinity of the respective electrodes serving as the diffraction gratings. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体またはゲル体のような流動体中の粒子に関する情報を、光学的に計測する光学的測定装置に関し、さらに詳細には、粒子の拡散・移動による密度変化から、流動体中に含まれる粒子に関する情報を光学的に測定する光学的測定装置に関する。本発明は、例えば流動体中に存在する粒子の有無の確認、拡散係数、粒子濃度、粒径等の測定に適用することができる。   The present invention relates to an optical measuring device that optically measures information related to particles in a fluid such as a liquid or a gel body, and more specifically, from a density change due to diffusion and movement of particles, into the fluid. The present invention relates to an optical measuring device that optically measures information about contained particles. The present invention can be applied to, for example, confirmation of the presence or absence of particles present in a fluid, and measurement of diffusion coefficient, particle concentration, particle size, and the like.

粒子含有の流動体と接する位置に電極対を形成し、これに交流電圧を印加して誘電泳動現象を生じさせたり(非電解質液の場合)、直流電圧を印加して電気泳動現象を生じさせたり(電解質液の場合)して、流動体中の粒子を移動することにより、粒子密度の濃淡を形成し、屈折率分布を形成することができる。
誘電泳動現象を利用して溶液中の粒子を集中させ、集中させた領域の屈折率の変化を測定することが開示されている(特許文献1参照)。この特許文献によれば、誘電泳動により粒子が集中する領域に、予め表面プラズモン共鳴を起こすための金属電極を形成しておき、金属電極に励起光を照射して表面プラズモン共鳴の測定を行うことで、金属電極表面面近傍の屈折率を測定する。
特開2003−65947号公報
An electrode pair is formed at a position in contact with a fluid containing particles, and an AC voltage is applied to the electrode pair to cause a dielectrophoresis phenomenon (in the case of a non-electrolyte liquid), or a DC voltage is applied to cause an electrophoretic phenomenon. (In the case of an electrolyte solution), by moving the particles in the fluid, the density of the particle density can be formed, and the refractive index distribution can be formed.
It is disclosed that particles in a solution are concentrated using a dielectrophoresis phenomenon, and a change in the refractive index of the concentrated region is measured (see Patent Document 1). According to this patent document, a metal electrode for causing surface plasmon resonance is previously formed in a region where particles are concentrated by dielectrophoresis, and the surface plasmon resonance is measured by irradiating the metal electrode with excitation light. Then, the refractive index near the surface of the metal electrode is measured.
JP 2003-65947 A

上述した特許文献1に開示されている表面プラズモン共鳴を用いた屈折率測定方法は、表面プラズモン共鳴が生じる金属表面近傍に検出感度を有するが、検出感度を有する範囲は静電泳動により粒子を凝集させた領域のうち金属表面近傍のかなり狭い局在領域に限られている。   The refractive index measurement method using surface plasmon resonance disclosed in Patent Document 1 described above has detection sensitivity in the vicinity of the metal surface where surface plasmon resonance occurs. Of these regions, the region is limited to a very narrow localized region near the metal surface.

これに対し、出願人は先行特許出願において、回折格子を形成しておき、回折格子に誘電泳動を引き起こすための電極としての機能を兼用させ、この回折格子兼電極に電圧を印加して誘電泳動により粒子移動を引き起こし、粒子移動前後の回折光パターンの変化を、光検出器で検出することを提案している(特願2004−241907号)。これによれば、表面プラズモン共鳴よりも広範囲の領域から平均的な屈折率変化の検出が可能となる。   On the other hand, in the prior patent application, the applicant formed a diffraction grating, made the diffraction grating also function as an electrode for causing dielectrophoresis, and applied a voltage to the diffraction grating and electrode to perform dielectrophoresis. Proposed to detect the change of the diffracted light pattern before and after the particle movement by a photodetector (Japanese Patent Application No. 2004-241907). According to this, it is possible to detect an average refractive index change from a wider range than the surface plasmon resonance.

図11は、上記先行特許出願において、出願人が提案している誘電泳動現象および回折現象を利用して粒子移動による屈折率変化を測定する光学的測定の動作原理を説明する図である。
流動体試料を保持するセル10の壁面を構成するガラス基板12上に、2本の平行な直線状電極片13a、13bの対と、同じく2本の平行な直線状電極片14a、14bの対とを交互に配列することにより、回折格子兼電極11が構成される。回折格子兼電極11に交流電源15から交流電圧を印加する。電極13a、13bに対して、電極14a、14bが反対極となるようにして、交流電圧を印加することにより、電気力線が集中する13a−14b間、および14a−13b間に、誘電泳動によって粒子が凝集する。粒子が凝集する領域Pは、回折格子兼電極11の格子間隔(d)に対し、その2倍の周期(2d)で一定間隔ごとに形成される。粒子が凝集する領域Pは、他の領域より粒子密度が高く、屈折率が異なることから、格子間隔2dの回折格子(以後、密度回折格子という)が形成されることになる。
FIG. 11 is a diagram for explaining the operating principle of optical measurement for measuring the refractive index change due to particle movement using the dielectrophoresis phenomenon and diffraction phenomenon proposed by the applicant in the above-mentioned prior patent application.
A pair of two parallel linear electrode pieces 13a and 13b and a pair of two parallel linear electrode pieces 14a and 14b on the glass substrate 12 constituting the wall of the cell 10 holding the fluid sample. Are alternately arranged to form the diffraction grating electrode 11. An AC voltage is applied from the AC power supply 15 to the diffraction grating electrode 11. By applying an alternating voltage to the electrodes 13a and 13b so that the electrodes 14a and 14b are opposite to each other, by the dielectrophoresis, between the lines 13a and 14b where the lines of electric force are concentrated and between the lines 14a and 13b. Particles aggregate. The regions P in which the particles are aggregated are formed at regular intervals with a period (2d) twice that of the grating interval (d) of the diffraction grating electrode 11. The region P in which the particles are aggregated has a higher particle density and a different refractive index than the other regions, so that a diffraction grating having a grating interval 2d (hereinafter referred to as a density diffraction grating) is formed.

光源16、光源光を集束するレンズ光学系17を用いて、回折格子兼電極11に向けて光を照射すると、回折格子兼電極11により生じる本来の回折光パターンが発生するとともに、密度回折格子による派生回折光パターンが重畳して発生するので、光検出器18を新しく生じた派生回折光パターンの一次光、二次光、・・・が検出できる位置に合わせることで、派生回折光強度の変化から屈折率の変化を検出することができる。なお、本来の回折光パターンと派生回折光パターンとを明確に区別するために、以後の説明では回折格子兼電極による回折光パターンのことを、基本回折光パターンとも呼ぶこととする。
また、電圧印加後に電圧印加を停止すると、粒子が領域Pから拡散することにより、派生回折光が時間経過とともに消失するので、その変化を測定することにより屈折率変化や濃度変化、を求めることができ、さらには濃度変化から拡散方程式に基づいて拡散係数を求めることができる。
When light is irradiated toward the diffraction grating electrode 11 using the light source 16 and the lens optical system 17 that focuses the light source light, an original diffracted light pattern generated by the diffraction grating electrode 11 is generated and the density diffraction grating is used. Since the derived diffracted light pattern is generated in a superimposed manner, a change in the derived diffracted light intensity can be achieved by aligning the photodetector 18 with a position where the primary light, the secondary light,. From this, it is possible to detect a change in refractive index. In order to clearly distinguish the original diffracted light pattern from the derived diffracted light pattern, in the following description, the diffracted light pattern formed by the diffraction grating and electrode is also referred to as a basic diffracted light pattern.
Further, when the voltage application is stopped after the voltage application, the particles diffuse from the region P, and the derived diffracted light disappears with time. Therefore, the change in the refractive index and the change in the concentration can be obtained by measuring the change. Further, the diffusion coefficient can be obtained from the concentration change based on the diffusion equation.

図12は、図11の動作原理に基づいて屈折率を測定する光学的測定装置の構成を示す概略ブロック図である。光源16とレンズ光学系17は、セル10の回折格子兼電極11に測定光を照射するようにしてある。なお、この図の実施例では、セル10の回折格子兼電極11に垂直入射させているが、図11で示したように斜入射させてもよい。   FIG. 12 is a schematic block diagram showing the configuration of an optical measuring device that measures the refractive index based on the operating principle of FIG. The light source 16 and the lens optical system 17 irradiate the diffraction grating electrode 11 of the cell 10 with measurement light. In the embodiment shown in this figure, the light is incident perpendicularly to the diffraction grating electrode 11 of the cell 10, but may be incident obliquely as shown in FIG.

回折格子兼電極11を透過した光は、複数の回折光スポットが間隔を隔てて現れる基本回折光パターンA(図中太線で示す)と、密度回折格子を透過することによる派生回折光パターンB(図中細線で示す)とを発生するが、このうち派生回折光パターンBのいずれかの派生回折光が単独で発生する角度に合わせて、光検出器18の位置が図示しない角度調整機構により調整してある。この光検出器18には、光電子増倍管やフォトダイオードが用いられている。   The light transmitted through the diffraction grating electrode 11 includes a basic diffracted light pattern A (indicated by a thick line in the figure) in which a plurality of diffracted light spots appear at intervals, and a derived diffracted light pattern B (transmitted through the density diffraction grating) The position of the photodetector 18 is adjusted by an angle adjusting mechanism (not shown) according to the angle at which any one of the derived diffracted light patterns B is generated alone. It is. The photodetector 18 is a photomultiplier tube or a photodiode.

さらに、上述した光学的測定装置の制御系として、装置全体の制御を行う制御部20および制御部20により制御される信号解析部21、電圧印加部22、液輸送・回収部23を備えている。これら制御系はCPU、ROM、RAMからなるコンピュータシステムにより構成される。信号解析部21は、光検出器18で検出した派生回折光の検出信号を取り込んで、印加電圧停止前後における変化量等の演算処理を行う。電力印加部22は、交流電源15からの出力電圧を電極へ印加するときの電圧の周波数、電圧値、オンオフのタイミング等の制御を行う。液輸送・回収部23は、セル10に取り付けられている図示しない流動体供給弁、排出弁を制御して流動体のセル10への注入、排出を行う。   Further, as a control system of the above-described optical measuring apparatus, a control unit 20 that controls the entire apparatus, a signal analysis unit 21 that is controlled by the control unit 20, a voltage application unit 22, and a liquid transport / recovery unit 23 are provided. . These control systems are constituted by a computer system including a CPU, a ROM, and a RAM. The signal analysis unit 21 takes in the detection signal of the derived diffracted light detected by the photodetector 18 and performs arithmetic processing such as the amount of change before and after the applied voltage is stopped. The power application unit 22 controls the frequency, voltage value, on / off timing, and the like of the voltage when the output voltage from the AC power supply 15 is applied to the electrodes. The liquid transport / recovery unit 23 controls the fluid supply valve and the discharge valve (not shown) attached to the cell 10 to inject and discharge the fluid into the cell 10.

この光学的測定装置によれば、粒子移動に伴う密度回折格子の変化を、派生回折光の変化として検出することができ、派生回折光の変化として検出した密度回折格子の情報から流動体中の粒子の有無、屈折率、拡散係数等を測定することができる。   According to this optical measuring apparatus, a change in the density diffraction grating accompanying the particle movement can be detected as a change in the derived diffraction light, and information on the density diffraction grating detected as the change in the derived diffraction light can be used to detect the change in the fluid. The presence / absence of particles, refractive index, diffusion coefficient, and the like can be measured.

ところで、流動体中の粒子の有無や、粒子濃度、屈折率等を測定する際に、数多くの流動体試料を効率よく短時間で測定したい場合がある。また、1つの試料について、異なる条件での測定を効率よく短時間で測定したい場合がある。また、複数の流動体試料の屈折率等が化学変化等で経時的に変化する場合には、複数の流動体試料を同時に測定して経時変化を比較したい場合がある。   By the way, when measuring the presence / absence of particles in the fluid, the particle concentration, the refractive index, and the like, there are cases where it is desired to measure many fluid samples efficiently and in a short time. In addition, there is a case where it is desired to efficiently perform measurement under different conditions for one sample in a short time. In addition, when the refractive index or the like of a plurality of fluid samples changes with time due to a chemical change or the like, it may be desired to measure a plurality of fluid samples at the same time and compare changes over time.

このような場合、従来は、例えば、図13や図14に示すように、複数のセル10とそれぞれのセル10ごとの入射光学系、検出光学系を別々に用意し、同時に計測することが行われていた。具体的に説明すると、セル10への入射光は複数の光源16を用いるか(図14)、ハーフミラー16aでひとつの光源16から出射される光を分割して(図13)、各セル10に導くようにしていた。また、各セル10を透過した回折光(検出光)の検出は、それぞれ独立に設けた光検出器18に導いて検出する(図13)か、あるいは、多数の光検出素子がアレイ状に配列されそれぞれの光検出素子が独立して光を検出するCCD等を検出器18とし、各セル10からの回折光(検出光)をレンズ18a等によって異なる光検出素子に導いてほぼ同時に検出するようにしていた。または、図13と図14に示す入射光光学系と検出光光学系とを入れ替えた組み合わせの光学系を用いていた。   In such a case, conventionally, for example, as shown in FIGS. 13 and 14, a plurality of cells 10 and an incident optical system and a detection optical system for each cell 10 are separately prepared and measured simultaneously. It was broken. More specifically, the incident light to the cell 10 uses a plurality of light sources 16 (FIG. 14), or the light emitted from one light source 16 is divided by the half mirror 16a (FIG. 13). I was trying to lead to. Further, the detection of the diffracted light (detection light) transmitted through each cell 10 is guided to the photodetector 18 provided independently (FIG. 13), or a large number of light detection elements are arranged in an array. A CCD 18 or the like in which each light detection element independently detects light is used as the detector 18, and diffracted light (detection light) from each cell 10 is guided to a different light detection element by a lens 18 a or the like so as to be detected almost simultaneously. I was doing. Or the optical system of the combination which replaced the incident light optical system shown in FIG. 13 and FIG. 14 with the detection light optical system was used.

しかしながら、上述したような従来の計測方法では、光源や検出器や光学部品を多数使用するため、さらには、隣接するセルの入射光学系、検出光学系どうしの入射光や回折光(検出光)を分離するための遮光手段(例えば遮光壁)が必要であるため、装置が大型化してしまう。   However, since the conventional measurement method as described above uses a large number of light sources, detectors, and optical components, the incident optical system of adjacent cells, the incident light between the detection optical systems, and the diffracted light (detection light) Since a light shielding means (for example, a light shielding wall) for separating the two is necessary, the apparatus becomes large.

そこで、本発明は、光源や検出器や光学部品や遮光手段の使用部品数を、できる限り少なくして装置を小型化しつつ、しかも複数の試料の回折光を同時に計測する光学的測定装置を提供することを目的とする。
また、本発明は、1つの試料について、複数の異なる条件での回折光(検出光)の検出を同時に行うことができる光学的測定装置を提供することを目的とする。
Therefore, the present invention provides an optical measuring device that simultaneously measures the diffracted light of a plurality of samples while miniaturizing the device by minimizing the number of components used for light sources, detectors, optical components, and light shielding means. The purpose is to do.
It is another object of the present invention to provide an optical measuring apparatus that can simultaneously detect diffracted light (detected light) under a plurality of different conditions for one sample.

上記課題を解決するためになされた本発明の光学的測定装置は、光源と、電源と、粒子を含有する流動体試料を保持する少なくとも1つのセルと、セル内の流動体試料と近接する位置に形成され、光源から光が照射されたときに互いに異なる方向に沿って並ぶ複数本の基本回折光パターンを発生する複数の回折格子と、各回折格子の少なくとも一部を構成するとともに電源から電圧が印加される電極と、各回折格子がそれぞれ発生する基本回折光パターンを検出する二次元光検出器とを備え、二次元検出器は、複数の回折格子に光源からの光を同時照射して発生させた複数本の基本回折光パターンを検出するとともに、電極に電圧を印加して各回折格子近傍に存在する粒子の密度分布を周期的に変化させることにより発生した密度回折格子に光が照射されることにより派生的に生じる派生回折光パターンを検出するようにしている。   The optical measuring device of the present invention made to solve the above problems includes a light source, a power source, at least one cell holding a fluid sample containing particles, and a position in proximity to the fluid sample in the cell. A plurality of diffraction gratings that generate a plurality of basic diffracted light patterns arranged in different directions when irradiated with light from a light source, and at least part of each diffraction grating and voltage from a power source And a two-dimensional photodetector that detects a basic diffraction light pattern generated by each diffraction grating. The two-dimensional detector simultaneously irradiates a plurality of diffraction gratings with light from a light source. In addition to detecting a plurality of generated basic diffraction light patterns, a voltage is applied to the electrodes to periodically change the density distribution of particles existing in the vicinity of each diffraction grating. There has been to detect the derivative diffracted light pattern consequentially caused by being irradiated.

ここで、セルは、複数のセルが隣接するように形成され、各セルには回折格子がそれぞれのセル内の流動体試料に近接する位置に形成されるようにしてもよい。
また、セルは、1つのセルに対し、格子間隔が異なる複数の回折格子がセル内の流動体試料に近接する位置に形成されるようにしてもよい。
Here, the cells may be formed such that a plurality of cells are adjacent to each other, and a diffraction grating may be formed in each cell at a position close to the fluid sample in each cell.
In addition, the cell may be formed such that a plurality of diffraction gratings having different lattice intervals are close to the fluid sample in the cell with respect to one cell.

この発明によれば、測定しようとする粒子が含まれる流動体試料を保持するためのセルが用いられる。1つの流動体試料に対して異なる回折条件で同時測定する場合は、1つのセルが形成されたものが用いられる。複数の流動体試料を同時に測定したい場合は、複数のセルが形成されたものが用いられる。セルには、セル内に流動体試料が入れられた状態で、流動体試料と近接する位置に複数の回折格子が形成してある。複数の回折格子は、光源から光が照射されると、それぞれの回折格子が、独立に基本回折光パターンを発生するが、これらの基本回折光パターンが互いに異なる方向に並ぶ複数本の基本回折光パターンとなるように、各回折格子の回折方向(回折格子の遮光部分と透光部分とが交互に並ぶ方向)は、すべて異なる方向に向けてある。さらに、これら複数の回折格子は、それぞれが少なくとも一部が電源に接続されており、回折格子兼電極となっている。
セル内に粒子含有の流動体試料を入れた状態で、回折格子兼電極に向けて光源から光を照射する。このとき、回折格子兼電極によって光が回折され、異なる方向に並んだ複数本の基本回折光パターンを生じる。続いて、電源から回折格子兼電極に電圧を印加して流動体試料中の粒子を移動する。誘電泳動を利用して粒子を移動する場合は、電極に交流電圧を印加するようにし、電気泳動(または静電泳動)を利用して粒子を移動する場合は、電極に直流電圧を印加する。粒子が移動することにより、流動体試料の粒子密度に周期的な濃淡が生じ、回折格子の近傍で周期的に変化する屈折率分布が発生する。流動体試料の屈折率分布が周期的に変化すると、基本回折光パターンを発生する回折格子とは異なる派生的な回折格子(密度回折格子という)が、新たに発生する。密度回折格子の周期(格子間隔)は、回折格子兼電極への電圧の印加パターンを変えることにより任意に設定することができるが、回折格子兼電極の周期(格子間隔)とは異なるようにするのが、粒子密度変化を感度よく検出する上でより好ましい。例えば誘電泳動を用いる場合は、従来例で示した図11と同様の電圧印加パターンをとることにより、回折格子兼電極の2倍の周期(格子間隔)で密度回折格子を形成することができる。
According to the present invention, a cell for holding a fluid sample containing particles to be measured is used. When a single fluid sample is measured simultaneously under different diffraction conditions, a sample in which one cell is formed is used. When it is desired to measure a plurality of fluid samples at the same time, a sample in which a plurality of cells are formed is used. In the cell, a plurality of diffraction gratings are formed at positions close to the fluid sample in a state where the fluid sample is placed in the cell. When a plurality of diffraction gratings are irradiated with light from a light source, each of the diffraction gratings independently generates a basic diffraction light pattern, but the basic diffraction light patterns are arranged in different directions. The diffraction directions of the diffraction gratings (directions in which the light shielding portions and the light transmission portions of the diffraction grating are alternately arranged) are all directed in different directions so as to form a pattern. Further, each of the plurality of diffraction gratings is at least partially connected to a power source, and serves as a diffraction grating electrode.
In a state where a particle-containing fluid sample is placed in the cell, light is irradiated from the light source toward the diffraction grating electrode. At this time, the light is diffracted by the diffraction grating and electrode to generate a plurality of basic diffracted light patterns arranged in different directions. Subsequently, a voltage is applied to the diffraction grating electrode from the power source to move the particles in the fluid sample. When particles are moved using dielectrophoresis, an AC voltage is applied to the electrodes, and when particles are moved using electrophoresis (or electrostatic electrophoresis), a DC voltage is applied to the electrodes. As the particles move, the density of particles in the fluid sample is periodically varied, and a refractive index distribution that periodically changes in the vicinity of the diffraction grating is generated. When the refractive index distribution of the fluid sample periodically changes, a derivative diffraction grating (referred to as a density diffraction grating) that is different from the diffraction grating that generates the basic diffraction light pattern is newly generated. The period (grating interval) of the density diffraction grating can be arbitrarily set by changing the voltage application pattern to the diffraction grating / electrode, but is different from the period (grating interval) of the diffraction grating / electrode. Is more preferable for detecting a change in particle density with high sensitivity. For example, when dielectrophoresis is used, a density diffraction grating can be formed with a period (grating interval) twice that of the diffraction grating electrode by taking the same voltage application pattern as in FIG. 11 shown in the conventional example.

この密度回折格子によって、新たに派生回折光が発生し、その結果、基本回折光パターンに新たな派生回折光パターンが重畳して発生する。発生する派生回折光パターンは、その密度回折格子に対応する回折格子が形成した基本回折光パターンと同じ方向に並ぶ。
回折方向が異なる複数の回折格子は、電極印加により、それぞれが回折方向の異なる密度回折格子を形成するので、方向が異なる複数本の派生回折光パターンが発生することになり、二次元検出器は、基本回折光パターンとともに、これら複数本の派生回折光パターンも検出する。
したがって、電圧印加前(あるいは電圧停止後)の基本回折光パターンのみの検出データと、電圧印加後の派生回折光パターンが重畳した検出データとに基づいて、密度回折格子による変化、ひいては密度回折格子を形成する粒子の移動に伴う粒子に関する情報を得ることができる。
Due to this density diffraction grating, new derivative diffracted light is generated, and as a result, a new derivative diffracted light pattern is superimposed on the basic diffracted light pattern. The derived diffracted light patterns generated are arranged in the same direction as the basic diffracted light pattern formed by the diffraction grating corresponding to the density diffraction grating.
A plurality of diffraction gratings having different diffraction directions form density diffraction gratings having different diffraction directions by applying an electrode, so that a plurality of derived diffraction light patterns having different directions are generated. In addition to the basic diffracted light pattern, the plurality of derived diffracted light patterns are also detected.
Therefore, based on the detection data of only the basic diffracted light pattern before the voltage application (or after the voltage is stopped) and the detection data on which the derived diffracted light pattern after the voltage application is superimposed, the change due to the density diffraction grating, and hence the density diffraction grating. It is possible to obtain information on particles accompanying the movement of the particles forming the.

本発明によれば、光源や検出器や光学部品や遮光手段の使用部品数をできる限り少なくした小型の光学的測定装置にすることができるとともに、複数試料、あるいは1試料の複数回折条件についての基本回折光パターンおよび派生回折光パターンを同時に計測することができ、短時間で効率的に試料を測定することができる光学的測定装置とすることができる。   According to the present invention, it is possible to provide a compact optical measuring device with a reduced number of components such as a light source, a detector, an optical component, and a light shielding means, and a plurality of samples or a plurality of diffraction conditions for one sample. The basic diffracted light pattern and the derived diffracted light pattern can be measured at the same time, and an optical measuring apparatus capable of measuring a sample efficiently in a short time can be obtained.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

図1は、本発明の一実施形態である光学的測定装置の全体構成を示す概略ブロック図である。図において、図12で説明した構造と同じものについては、同符号を付すことにより、説明を一部省略する。
光学的測定装置1は、複合セル8と、交流電源15、光源16、レンズ光学系17、CCD25(二次元光検出器)、制御部20、信号解析部21、電圧印加部22、液輸送・回収部23から構成される。
FIG. 1 is a schematic block diagram showing the overall configuration of an optical measuring apparatus according to an embodiment of the present invention. In the figure, parts that are the same as those described in FIG.
The optical measuring apparatus 1 includes a composite cell 8, an AC power source 15, a light source 16, a lens optical system 17, a CCD 25 (two-dimensional photodetector), a control unit 20, a signal analysis unit 21, a voltage application unit 22, a liquid transport / The collection unit 23 is configured.

複合セル8は、図2の斜視図に示すように、セル10aと、セル10bと、回折格子兼電極11a、11bが形成された基板9とが張り合わされている。セル10aおよびセル10bにはそれぞれ流動体供給流路6a、6b、排出流路7a、7bが設けてあり、液輸送・回収部23により各セルに独立して流動体試料が注入・排出できるようにしてある。   As shown in the perspective view of FIG. 2, the composite cell 8 includes a cell 10a, a cell 10b, and a substrate 9 on which diffraction grating electrodes 11a and 11b are formed. The fluid supply channels 6a and 6b and the discharge channels 7a and 7b are provided in the cell 10a and the cell 10b, respectively, so that the fluid sample can be injected and discharged independently from each cell by the liquid transport / recovery unit 23. It is.

2つの回折格子兼電極11a、11bは、基板9上にパターニング法により一体形成され、図3の平面図に示すように、回折格子の溝の並ぶ方向が互いに90度異なっており、基本回折光パターンの発生する方向(回折方向)が、90度の角度をなすようにしてある。なお、2つの基本回折光パターンの交角は、互いのパターンが識別できる角度であれば必ずしも90度でならなくてもよい。また、本実施形態では、2つの回折格子兼電極11a、11bの電極どうしは基板9上で接続してあり、各回折格子兼電極11a、11bに印加する電圧が同期するようにしてある。なお、必ずしも印加電圧を同期させる必要がない測定を行う場合は、これらを分離し、別々の電圧を印加するようにしてもよい。   The two diffraction grating electrodes 11a and 11b are integrally formed on the substrate 9 by a patterning method. As shown in the plan view of FIG. 3, the direction in which the grooves of the diffraction grating are arranged is 90 degrees different from each other. The direction in which the pattern is generated (diffraction direction) forms an angle of 90 degrees. Note that the angle of intersection between the two basic diffracted light patterns does not necessarily have to be 90 degrees as long as the patterns can be distinguished from each other. In this embodiment, the electrodes of the two diffraction grating electrodes 11a and 11b are connected to each other on the substrate 9, and the voltages applied to the diffraction grating electrodes 11a and 11b are synchronized. In addition, when performing the measurement which does not necessarily need to synchronize an applied voltage, these may be isolate | separated and you may make it apply a separate voltage.

また、回折格子兼電極11a、11bは、交流電源15から交流電圧が印加されたときに、回折格子の2倍周期で電気力線の集中する領域(すなわち誘電泳動により粒子が集中する領域)が繰り返されるパターンを形成してあり(図11を参照)、これにより、図4に示すように、回折格子兼電極11a、11bの2倍周期の密度回折格子Mが発生するようにして、密度回折格子が基本回折光パターンとは異なる周期の派生回折光パターンを生じるようにしてある。なお、派生回折光パターンが、回折格子兼電極11a、11bの周期の3倍周期あるいはそれ以上の周期となるように、電極パターンを繰り返してもよく、また、一部の回折格子が電源に接続されない浮遊電極となるようにしてもよく、要するに、基本回折光パターンと区別できる派生回折光パターンが得られる周期構造の回折格子兼電極のパターンを形成してあればよい。 Further, the diffraction grating electrode 11a, 11b has a region where electric lines of force concentrate (that is, a region where particles concentrate due to dielectrophoresis) at a period twice that of the diffraction grating when an AC voltage is applied from the AC power supply 15. A repeated pattern is formed (see FIG. 11). As a result, as shown in FIG. 4, a density diffraction grating M having a period twice that of the diffraction grating electrode 11a, 11b is generated. The grating produces a derived diffracted light pattern having a period different from that of the basic diffracted light pattern. Note that the electrode pattern may be repeated so that the derived diffracted light pattern has a period that is three times or more than the period of the diffraction grating electrodes 11a and 11b, and some diffraction gratings are connected to the power source. In other words, a diffraction grating and electrode pattern having a periodic structure capable of obtaining a derived diffracted light pattern that can be distinguished from the basic diffracted light pattern may be formed.

光源16とレンズ光学系17は、図1に示すように、セル10a、10bの回折格子兼電極11a、11bに同時に測定光を照射するようにしてある。交流電源15は、交流周波数、電圧値が可変であり、電圧印加部22の制御により、所望の交流電圧が印加されるようにしてある。
回折格子兼電極11a、11bを通過した透過回折光を検出する光検出器には、二次元光検出器であるCCD25を用いるようにしている。CCD25は、回折格子兼電極11a、11bによる基本回折光パターンA1、A2(図1では太線で示す)と、密度回折格子による派生回折光パターンB1、B2(図1では細線で示す)とを同時に検出することができる。
As shown in FIG. 1, the light source 16 and the lens optical system 17 simultaneously irradiate the diffraction grating / electrodes 11a and 11b of the cells 10a and 10b with measurement light. The AC power supply 15 has a variable AC frequency and voltage value, and a desired AC voltage is applied under the control of the voltage application unit 22.
A CCD 25, which is a two-dimensional photodetector, is used as a photodetector that detects transmitted diffraction light that has passed through the diffraction grating electrodes 11a and 11b. The CCD 25 simultaneously displays basic diffracted light patterns A1 and A2 (shown by thick lines in FIG. 1) by the diffraction grating electrodes 11a and 11b and derived diffracted light patterns B1 and B2 (shown by thin lines in FIG. 1) by the density diffraction grating. Can be detected.

制御系として、装置全体の制御を行う制御部20および制御20により制御される信号解析部21、電圧印加部22、液輸送・回収部23を備えている。これら制御系はCPU、ROM、RAMからなるコンピュータシステムにより構成される。信号解析部21は、CCD25で検出した基本回折光パターンおよび派生回折光パターンの検出信号を取り込んで、印加電圧停止前後あるいは印加電圧変調前後における変化量等の演算処理を行う。電力印加部22は、交流電源15からの出力電圧を電極へ印加するときの電圧の周波数、電圧値、オンオフのタイミング等の制御を行う。液輸送・回収部23は、セル10a、10bへの流路上に取り付けられている供給弁、排出弁を制御して流動体試料のセル10a、10bへの注入、排出を行う。   As a control system, a control unit 20 that controls the entire apparatus, a signal analysis unit 21 that is controlled by the control 20, a voltage application unit 22, and a liquid transport / recovery unit 23 are provided. These control systems are constituted by a computer system including a CPU, a ROM, and a RAM. The signal analysis unit 21 takes in the detection signals of the basic diffracted light pattern and the derived diffracted light pattern detected by the CCD 25 and performs arithmetic processing such as the amount of change before and after stopping the applied voltage or before and after applying voltage modulation. The power application unit 22 controls the frequency, voltage value, on / off timing, and the like of the voltage when the output voltage from the AC power supply 15 is applied to the electrodes. The liquid transport / recovery unit 23 controls the supply valve and the discharge valve attached on the flow path to the cells 10a and 10b to inject and discharge the fluid sample to and from the cells 10a and 10b.

次に、光学的測定装置1による測定動作について説明する。
まず、液輸送・回収部23により、2種類の流動体を2つのセル10a、10b内に注入し、電圧印加を行わない状態で、CCD25により回折光を検出する。このときCCD25により検出される検出信号は、図5(a)に示すように、回折格子兼電極11a、11bによる2本の直交する基本回折光パターンの信号U1、U2のみである。2つの基本回折光パターンはU1、U2は、0次の基本回折光が生成する中央の回折スポットで重なるが、それ以外の回折スポットは重ならない。
Next, the measurement operation by the optical measurement apparatus 1 will be described.
First, two types of fluids are injected into the two cells 10a and 10b by the liquid transport / recovery unit 23, and the diffracted light is detected by the CCD 25 without applying a voltage. The detection signals detected by the CCD 25 at this time are only signals U1 and U2 of two orthogonal basic diffracted light patterns by the diffraction grating and electrodes 11a and 11b as shown in FIG. In the two basic diffracted light patterns, U1 and U2 overlap at the central diffraction spot generated by the 0th-order basic diffracted light, but the other diffraction spots do not overlap.

続いて、電圧印加部22により電圧印加を行い、流動体中に密度回折格子を発生させた状態でCCD25により回折光を検出する。このときのCCD25により検出される検出信号は、図5(b)に示すように、回折格子兼電極11による2本の基本回折光パターンの検出信号U1、U2に、さらに密度回折格子による2本の派生回折光パターンの検出信号V1、V2を重畳した信号である。
2本の派生回折光パターンは、それぞれ対応する基本回折光パターンと同じ直線上に発生し、しかも、一部は重なるが一部は基本回折光パターンに見られる回折スポット間に新たに回折スポットが発生する。したがって、派生回折光パターンにより、新たに発生した回折スポットについての検出信号をCCD25により測定することにより、密度回折格子に関する情報、引いては流動体中の粒子に関する情報を検出することができる。
Subsequently, voltage application is performed by the voltage application unit 22, and diffracted light is detected by the CCD 25 in a state where a density diffraction grating is generated in the fluid. As shown in FIG. 5B, the detection signals detected by the CCD 25 at this time are two detection signals U1 and U2 of the two basic diffraction light patterns by the diffraction grating electrode 11 and two further by the density diffraction grating. This is a signal in which the detection signals V1 and V2 of the derived diffracted light pattern are superimposed.
The two derived diffracted light patterns are generated on the same straight line as the corresponding basic diffracted light patterns, and a part of the diffracted spot is overlapped but a part of the diffracted spot is found in the basic diffracted light pattern. appear. Accordingly, by measuring the detection signal for the newly generated diffraction spot by the CCD 25 using the derived diffracted light pattern, it is possible to detect the information regarding the density diffraction grating, and hence the information regarding the particles in the fluid.

図6は、本発明の他の一実施形態である光学的測定装置に用いる複合セル8aの概略斜視図である。本実施形態では、図1における複合セル8を、複合セル8aに置き換えた点以外は同じであるので、複合セル8a以外の部分の説明を省略する。
複合セル8aは、セル40aと、セル40bと、セル40cと、セル40dと、回折格子兼電極41a〜41dが形成された基板42とが張り合わされている。各セル40a〜40dには、それぞれ流動体供給流路43a〜43d、排出流路44a〜44dが設けてある。
FIG. 6 is a schematic perspective view of a composite cell 8a used in an optical measurement apparatus according to another embodiment of the present invention. In this embodiment, since the composite cell 8 in FIG. 1 is the same except that it is replaced with the composite cell 8a, description of portions other than the composite cell 8a is omitted.
In the composite cell 8a, a cell 40a, a cell 40b, a cell 40c, a cell 40d, and a substrate 42 on which diffraction grating electrodes 41a to 41d are formed are attached to each other. The cells 40a to 40d are provided with fluid supply channels 43a to 43d and discharge channels 44a to 44d, respectively.

回折格子兼電極41a〜41dは、回折格子の溝の並ぶ方向が互いに45度ずつ異なっており、基本回折光パターンの発生する方向(回折方向)が、45度の角度をなすようにしてある。なお、4つの基本回折光パターンの交角は、互いのパターンが識別できる角度であれば必ずしも45度にならなくてもよい。また、本実施形態では、4つの回折格子兼電極41a〜41dの電極どうしは基板42上で接続してあり、回折格子兼電極各41a〜41dに印加する電圧が同期するようにてある。   In the diffraction grating electrodes 41a to 41d, the direction in which the grooves of the diffraction grating are arranged differs from each other by 45 degrees, and the direction in which the basic diffracted light pattern is generated (diffraction direction) forms an angle of 45 degrees. Note that the intersection angle of the four basic diffracted light patterns may not necessarily be 45 degrees as long as the patterns can be distinguished from each other. In this embodiment, the electrodes of the four diffraction grating electrodes 41a to 41d are connected on the substrate 42, and the voltages applied to the diffraction grating electrodes 41a to 41d seem to be synchronized.

測定動作については、図1の場合と同様である。このときCCD25により検出される検出信号を、図7を用いて説明する。図7(a)は、電圧を印加していないときに得られる基本回折光パターンである。45度ずつ異なる方向に直線状に並んだ4本の基本回折光パターンが発生する。4本の基本回折光パターンは、0次の基本回折光が生成する中央の回折スポットで重なるが、それ以外の回折スポットは重ならない。
図7(b)は、電圧を印加したときに発生する密度回折格子によって、新たに出現する4本の派生回折光パターンを示す図である。すなわち、電圧印加後は、図7(a)のパターンと図7(b)のパターンとが重ね合わされたパターンがCCD25により検出される。このときの4本の基本回折光パターンと派生回折光パターンとは、それぞれ同じ直線上に発生し、しかも、基本回折光パターンを形成する回折スポットの間に新たに回折スポットの一部が発生する。したがって、派生回折光パターンにより、新たに発生した回折スポットについての検出信号をCCD25により測定することにより、密度回折格子に関する情報、引いては流動体中の粒子に関する情報を検出することができる。
The measurement operation is the same as in FIG. A detection signal detected by the CCD 25 at this time will be described with reference to FIG. FIG. 7A shows a basic diffracted light pattern obtained when no voltage is applied. Four basic diffracted light patterns are generated that are linearly arranged in different directions by 45 degrees. The four basic diffracted light patterns overlap at the central diffraction spot generated by the zeroth-order basic diffracted light, but the other diffraction spots do not overlap.
FIG. 7B is a diagram showing four derivative diffracted light patterns that newly appear due to the density diffraction grating generated when a voltage is applied. That is, after voltage application, the CCD 25 detects a pattern in which the pattern of FIG. 7A and the pattern of FIG. At this time, the four basic diffracted light patterns and the derived diffracted light patterns are generated on the same straight line, and a part of the diffraction spot is newly generated between the diffraction spots forming the basic diffracted light pattern. . Accordingly, by measuring the detection signal for the newly generated diffraction spot by the CCD 25 using the derived diffracted light pattern, it is possible to detect the information regarding the density diffraction grating, and hence the information regarding the particles in the fluid.

図8は、本発明の他の一実施形態である光学的測定装置に用いる複合セル8bの概略斜視図である。本実施形態でも、図1における複合セル8を、複合セル8bに置き換えた点以外は同じであるので、複合セル8b以外の部分の説明を省略する。
複合セル8aは、1つのセル50と、回折格子兼電極51a、51bが形成された基板52とが張り合わされている。セル50にはそれぞれ流動体供給流路53a、排出流路54aが設けられてある。
FIG. 8 is a schematic perspective view of a composite cell 8b used in an optical measurement apparatus according to another embodiment of the present invention. Also in this embodiment, since the composite cell 8 in FIG. 1 is the same except that it is replaced with the composite cell 8b, description of portions other than the composite cell 8b is omitted.
In the composite cell 8a, one cell 50 and a substrate 52 on which diffraction grating electrodes 51a and 51b are formed are bonded together. Each cell 50 is provided with a fluid supply channel 53a and a discharge channel 54a.

回折格子兼電極51a、51bは、回折格子の溝の並ぶ方向が互いに90度異なっており、基本回折光パターンの発生する方向(回折方向)が、90度の角度をなすようにしてある。なお、2つの基本回折光パターンの交角は、互いのパターンが識別できる角度であれば必ずしも90度にならなくてもよい。また、回折格子兼電極51a、51bの格子間隔は、図9に示すように51aが狭く、51bはそれより広くして、異なる格子間隔にしてある。   The diffraction grating electrodes 51a and 51b are different from each other in the direction in which the grooves of the diffraction grating are arranged by 90 degrees, and the direction in which the basic diffracted light pattern is generated (diffraction direction) forms an angle of 90 degrees. Note that the angle of intersection between the two basic diffracted light patterns does not necessarily have to be 90 degrees as long as the patterns can be distinguished from each other. Further, as shown in FIG. 9, the grating interval between the diffraction grating electrode 51a and 51b is narrower 51a, wider than 51b, and different grating intervals.

この場合、電圧を印加すると、図5のときと同様の回折光パターンが得られるが、2つの回折格子兼電極の電極間隔が異なるので、電極付近での電界勾配が、回折格子兼電極51a、51bそれぞれで異なるようになる。その結果、図10に示すように、誘電泳動によって集中する粒子分布が異なるため、粒径の分散に関する情報を計測することができる。   In this case, when a voltage is applied, a diffracted light pattern similar to that in FIG. 5 is obtained. However, since the electrode spacing between the two diffraction grating electrodes is different, the electric field gradient in the vicinity of the electrodes is different from the diffraction grating electrode 51a, It becomes different in each 51b. As a result, as shown in FIG. 10, since the particle distribution concentrated by dielectrophoresis is different, information on the dispersion of the particle diameter can be measured.

また、図1〜図4で説明したような同じ回折格子兼電極11a、11bが形成された複合セル8であっても、両者への印加交流電圧の大きさや周波数を異ならせることによっても、粒子分布を異ならせることができる。
以上の説明では、誘電泳動を利用して密度回折格子を形成することとしたが、流動体が電解質液の場合は、直流電源により直流電圧を印加するようにして、電気泳動現象により、粒子を移動するようにしてもよい。この場合も、粒子の泳動が誘電泳動に代えて、電気泳動となるだけで、基本的に同様である。
Moreover, even if it is the composite cell 8 in which the same diffraction grating electrode 11a, 11b as FIG. 1-4 demonstrated was formed, the magnitude | size and frequency of the alternating voltage applied to both differ also by particle | grains. The distribution can be different.
In the above description, the density diffraction grating is formed by using dielectrophoresis. However, in the case where the fluid is an electrolyte solution, a DC voltage is applied by a DC power source, and particles are separated by an electrophoresis phenomenon. You may make it move. In this case as well, basically the same is performed except that the migration of particles is replaced by electrophoresis instead of dielectrophoresis.

本発明は、流動体中の粒子に関する情報の測定、例えば拡散係数、粒径、粒子分布等を光学的行う光学的測定装置に利用することができる。   The present invention can be used in an optical measurement apparatus that optically measures information related to particles in a fluid, for example, diffusion coefficient, particle size, particle distribution, and the like.

本発明の一実施形態である光学的測定装置の全体構成を示す概略構成図。1 is a schematic configuration diagram showing an overall configuration of an optical measuring device according to an embodiment of the present invention. 図1の装置に使用する複合セルの構成を示す斜視図。The perspective view which shows the structure of the composite cell used for the apparatus of FIG. 図2に示した複合セルの回折格子兼電極の構成を示す平面図。The top view which shows the structure of the diffraction grating and electrode of the composite cell shown in FIG. 図2に示した複合せルに電圧を印加したときに発生する密度回折格子を説明する図。The figure explaining the density diffraction grating which generate | occur | produces when a voltage is applied to the composite shield shown in FIG. 図1の光学測定装置による回折光パターンを説明する図。The figure explaining the diffracted light pattern by the optical measuring device of FIG. 本発明の他の一実施形態である光学的測定装置で用いる複合セルの構成を示す斜視図。The perspective view which shows the structure of the composite cell used with the optical measuring device which is other one Embodiment of this invention. 図6の複合セルによる回折光パターンを説明する図。The figure explaining the diffracted light pattern by the composite cell of FIG. 本発明の他の一実施形態である光学的測定装置で用いる複合セルの構成を示す斜視図。The perspective view which shows the structure of the composite cell used with the optical measuring device which is other one Embodiment of this invention. 図8の複合セルに形成される回折格子兼電極の電極間隔を説明する図。FIG. 9 is a diagram for explaining an electrode interval between diffraction grating electrodes formed in the composite cell of FIG. 8. 図8の複合セルにおいて電圧を印加したときの粒子分布を説明する図。The figure explaining particle distribution when a voltage is applied in the composite cell of FIG. 図1で示した光学的測定装置における回折格子兼電極と密度回折格子との関係を説明する図。The figure explaining the relationship between the diffraction grating electrode and the density diffraction grating in the optical measuring apparatus shown in FIG. 従来の光学測定装置の全体構成を示す図。The figure which shows the whole structure of the conventional optical measuring device. 従来の光学的測定装置の構成を示す図。The figure which shows the structure of the conventional optical measuring device. 従来の光学的測定装置の構成を示す図。The figure which shows the structure of the conventional optical measuring device.

符号の説明Explanation of symbols

1: 光学的測定装置
8: 複合セル
9: 基板
10、10a、10b: セル
11、11a、11b: 回折格子兼電極
15: 交流電源
16: 光源
17: レンズ光学系
20: 制御部
21: 信号解析部
22: 電圧印加部
23: 液輸送・回収部
25: CCD(二次元光検出器)
M: 密度回折格子
1: Optical measuring device 8: Composite cell 9: Substrate 10, 10a, 10b: Cell 11, 11a, 11b: Diffraction grating electrode 15: AC power supply 16: Light source 17: Lens optical system 20: Control unit 21: Signal analysis Unit 22: Voltage application unit 23: Liquid transport / recovery unit 25: CCD (two-dimensional photodetector)
M: Density diffraction grating

Claims (3)

光源と、電源と、粒子を含有する流動体試料を保持する少なくとも1つのセルと、セル内の流動体試料と近接する位置に形成され、光源から光が照射されたときに互いに異なる方向に沿って並ぶ複数本の基本回折光パターンを発生する複数の回折格子と、各回折格子の少なくとも一部を構成するとともに電源から電圧が印加される電極と、各回折格子がそれぞれ発生する基本回折光パターンを検出する二次元光検出器とを備え、
二次元光検出器は、複数の回折格子に光源からの光を同時照射して発生させた複数の基本回折光パターンを検出するとともに、電極に電圧を印加して各回折格子近傍に存在する粒子の密度分布を周期的に変化させることにより発生した密度回折格子に光が照射されることにより派生的に生じる派生回折光パターンを検出することを特徴とする光学的測定装置。
A light source, a power source, at least one cell holding a fluid sample containing particles, and a position close to the fluid sample in the cell are formed in different directions when irradiated with light from the light source. A plurality of diffraction gratings that generate a plurality of basic diffraction light patterns arranged in parallel, electrodes that form at least a part of each diffraction grating and to which a voltage is applied from a power source, and basic diffraction light patterns that each diffraction grating generates. And a two-dimensional photodetector for detecting
The two-dimensional photodetector detects a plurality of basic diffracted light patterns generated by simultaneously irradiating light from a light source to a plurality of diffraction gratings, and applies a voltage to the electrodes to present particles in the vicinity of each diffraction grating. An optical measurement apparatus for detecting a derivative diffracted light pattern that is derived by irradiating light onto a density diffraction grating generated by periodically changing the density distribution of the light.
複数のセルが隣接するように形成され、各セルには回折格子がそれぞれのセル内の流動体試料に近接する位置に形成されることを特徴とする請求項1に記載の光学的測定装置。 The optical measurement apparatus according to claim 1, wherein a plurality of cells are formed adjacent to each other, and a diffraction grating is formed in each cell at a position close to a fluid sample in each cell. 1つのセルに対し、格子間隔が異なる複数の回折格子がセル内の流動体試料に近接する位置に形成されることを特徴とする請求項1に記載の光学的測定装置。 The optical measurement apparatus according to claim 1, wherein a plurality of diffraction gratings having different grating intervals are formed at a position close to the fluid sample in the cell for one cell.
JP2005172865A 2005-06-13 2005-06-13 Optical measuring instrument Withdrawn JP2006349386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172865A JP2006349386A (en) 2005-06-13 2005-06-13 Optical measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172865A JP2006349386A (en) 2005-06-13 2005-06-13 Optical measuring instrument

Publications (1)

Publication Number Publication Date
JP2006349386A true JP2006349386A (en) 2006-12-28

Family

ID=37645410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172865A Withdrawn JP2006349386A (en) 2005-06-13 2005-06-13 Optical measuring instrument

Country Status (1)

Country Link
JP (1) JP2006349386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215882A (en) * 2007-02-28 2008-09-18 Shimadzu Corp Particle measuring instrument
CN102519963A (en) * 2011-12-13 2012-06-27 上海化工研究院 Remote image transmission and shooting system for form comparison of powdery chemical
CN103792207A (en) * 2014-02-28 2014-05-14 陕西师范大学 Device and method for performing noncontact measurement on liquid physical parameters by utilizing wall optical characteristics
ES2489965A1 (en) * 2013-02-27 2014-09-02 Fundació Institut De Ciències Fotòniques Compact optical measurement system with discretized plate (Machine-translation by Google Translate, not legally binding)
CN107747911A (en) * 2017-09-30 2018-03-02 中兴仪器(深圳)有限公司 A kind of Atmospheric particulates special appearance identification device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215882A (en) * 2007-02-28 2008-09-18 Shimadzu Corp Particle measuring instrument
CN102519963A (en) * 2011-12-13 2012-06-27 上海化工研究院 Remote image transmission and shooting system for form comparison of powdery chemical
ES2489965A1 (en) * 2013-02-27 2014-09-02 Fundació Institut De Ciències Fotòniques Compact optical measurement system with discretized plate (Machine-translation by Google Translate, not legally binding)
CN103792207A (en) * 2014-02-28 2014-05-14 陕西师范大学 Device and method for performing noncontact measurement on liquid physical parameters by utilizing wall optical characteristics
CN107747911A (en) * 2017-09-30 2018-03-02 中兴仪器(深圳)有限公司 A kind of Atmospheric particulates special appearance identification device

Similar Documents

Publication Publication Date Title
JP4868190B2 (en) Nano particle measuring device
JP4640621B2 (en) Optical measuring device
JP4375576B2 (en) Optical measuring apparatus and method, and nanoparticle measuring method and apparatus
KR100416245B1 (en) Device for the optical inspection of a fluid, esqecially for hematological analyses
JP2010286341A (en) Optical measuring instrument, flow cytometer, and optical measuring method
JP2006349386A (en) Optical measuring instrument
JP5831059B2 (en) Optical measuring apparatus, flow cytometer, and optical measuring method
JP2007057338A (en) Optical measuring instrument
WO2000062050A1 (en) Electrophoresis method and apparatus with time- or space-modulated sample injection
JP4517980B2 (en) Particle measuring device
JP4973728B2 (en) Optical measuring method and apparatus
JP2008051606A (en) Particle size measuring method and measuring instrument
JP4513982B2 (en) Viscosity measuring device using particles
JP5360391B2 (en) Particle measuring method and apparatus
JP2006084207A (en) Nano-particle measuring method and device
JP4270070B2 (en) Optical measuring device
US20210129147A1 (en) Velocimetry-based identification of single proteins and other particles
JP2010249607A (en) Particle detector
US8164749B2 (en) Optical measurement apparatus and electrode pair thereof
JPWO2008136101A1 (en) Nanoparticle measurement method and apparatus
JP2006162332A (en) Optical measuring instrument
US9596417B2 (en) Event correlation using data having different time resolutions
JP2005070031A (en) Component analyzer using microchip
JP4315083B2 (en) Optical measuring apparatus and optical measuring method
JP4830909B2 (en) Particle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090918