JP2010060544A - Method and device for measuring viscosity and particle size distribution using brown particle - Google Patents

Method and device for measuring viscosity and particle size distribution using brown particle Download PDF

Info

Publication number
JP2010060544A
JP2010060544A JP2008256844A JP2008256844A JP2010060544A JP 2010060544 A JP2010060544 A JP 2010060544A JP 2008256844 A JP2008256844 A JP 2008256844A JP 2008256844 A JP2008256844 A JP 2008256844A JP 2010060544 A JP2010060544 A JP 2010060544A
Authority
JP
Japan
Prior art keywords
fluid
particle
fluid shear
particle group
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008256844A
Other languages
Japanese (ja)
Inventor
Keisuke Fukui
啓介 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008256844A priority Critical patent/JP2010060544A/en
Publication of JP2010060544A publication Critical patent/JP2010060544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for measuring viscosity and particle size distribution using a particle group performing brown movement in non-contact and without a movable section. <P>SOLUTION: In this method and device for measuring the viscosity and particle size distribution using brown particles, particle groups whose particle sizes distribution are known are dispersed in a viscous fluid to be measured, the particle groups are brown-moved in the viscous fluid, the brown movement is detected by a detecting means, a data processing means calculates the fluid shearing stress and fluid shearing speed of the viscous fluid on particle surfaces of the particle groups, and determines the relationship between the fluid shearing stress and the fluid shearing speed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、粘性流体中に粒径分布が既知なる粒子群を分散させ該粒子群のブラウン運動による該粒子群の粒子表面における流体せん断場において、該粒子表面での流体せん断応力と流体せん断速度との関係を求めることを特徴とする粘度測定方法と、流体せん断応力と流体せん断速度との前記関係が成立するように粒径が未知なる粒子の粒子径分布を求めることを特徴とする粘度および粒径分布測定方法に関する。  The present invention disperses particles having a known particle size distribution in a viscous fluid, and in a fluid shear field on the particle surface of the particle group due to Brownian motion of the particle group, the fluid shear stress and fluid shear rate on the particle surface And a viscosity measuring method characterized in that the relationship between the viscosity and the fluid shear stress and the fluid shear rate is determined, and the particle size distribution of particles whose particle size is unknown is determined so that the above relationship is established. The present invention relates to a particle size distribution measuring method.

粘性流体の粘度を精度良く測定するには、流体に力を与え変形させ、流体のせん断応力とせん断速度を測定する必要がある。この流体せん断応力と流体せん断速度の関係から流体の粘度を求める方法が従来の粘度測定装置である。  In order to accurately measure the viscosity of a viscous fluid, it is necessary to apply a force to the fluid to deform it and measure the shear stress and shear rate of the fluid. A conventional method for measuring the viscosity of a fluid from the relationship between the fluid shear stress and the fluid shear rate is a conventional viscosity measuring apparatus.

流体のせん断応力とせん断速度との関係の代表的なものを図1に示す。流体のせん断応力とせん断速度との関係が原点を通り直線的な比例関係にある場合、その流体をニュートン流体と称し、その比例係数を粘性係数、粘度又は絶対粘度と呼ばれている。一方、流体のせん断応力とせん断速度の間に線形的な比例関係が成立しない流体が非ニュートン流体である。また、図1に、非ニュートン流体の代表例として、ビンガム流体、擬塑性流体およびダイラタント流体の流体のせん断応力とせん断速度の関係を示している。  A typical relationship between the shear stress and the shear rate of the fluid is shown in FIG. When the relationship between the shear stress and the shear rate of the fluid is linearly proportional through the origin, the fluid is called a Newtonian fluid, and the proportionality factor is called a viscosity coefficient, viscosity, or absolute viscosity. On the other hand, a fluid in which a linear proportional relationship is not established between the shear stress and the shear rate of the fluid is a non-Newtonian fluid. FIG. 1 shows the relationship between shear stress and shear rate of Bingham fluid, pseudoplastic fluid, and dilatant fluid as typical examples of non-Newtonian fluids.

例えば流体の粘度の測定方法としての基本原理の1つとして、円管内に層流状態で流体を流し、円管の両端の圧力差と流量から求めることを基本とする方法である。その代表がオストワルド粘度計である。その他の方法として、流体中に円盤や円筒を設置し、円盤や円筒を回転させ、そのときの必要トルクと回転速度から粘度を求める方法として回転粘度計がある。また、流体中に形状の決まった固体を落下させ、その落下速度より求める落下粘度計などがある。このような原理に基づき、液体の粘度計は日本工業規格(非特許文献1)により、毛細管粘度計、落球粘度計、回転粘度計の3種類に分類されている。また、液体中に振動子及び振動センサーを浸漬させ、流体を振動させ、その振動子及び振動センサーの位相差から粘度を測定する方法又は装置(例えば、特許文献2、特許文献3)が提案されている。  For example, as one of the basic principles as a method for measuring the viscosity of a fluid, the fluid is flowed in a laminar state in a circular tube, and the method is based on obtaining the pressure difference and the flow rate at both ends of the circular tube. The representative is Ostwald viscometer. As another method, there is a rotational viscometer as a method of setting a disk or cylinder in the fluid, rotating the disk or cylinder, and obtaining the viscosity from the required torque and rotational speed at that time. In addition, there is a drop viscometer or the like obtained by dropping a solid having a predetermined shape into a fluid and determining the drop speed. Based on this principle, liquid viscometers are classified into three types: capillary viscometers, falling ball viscometers, and rotational viscometers according to Japanese Industrial Standards (Non-Patent Document 1). Further, a method or an apparatus (for example, Patent Document 2 and Patent Document 3) is proposed in which a vibrator and a vibration sensor are immersed in a liquid, a fluid is vibrated, and a viscosity is measured from a phase difference between the vibrator and the vibration sensor. ing.

このように、従来の流体粘度の測定には、被測定粘性流体中で可動する固体物体を必要とし、非接触測定ができない。また、従来の粘度測定方法又は装置では、粘度の測定するたびに、その測定試料を粘度計又は粘度測定装置内に流体試料を注入する必要があり、さらに粘度測定後、粘度計又は装置を洗浄する必要があり、粘度を測定したい流体試料が多数ある場合、測定時間が長くなるとともに、連続的、遠隔的、自動的に測定することが困難である。  Thus, the conventional measurement of fluid viscosity requires a solid object that can move in the fluid to be measured and cannot perform non-contact measurement. Further, in the conventional viscosity measuring method or apparatus, each time the viscosity is measured, it is necessary to inject the fluid sample into the viscometer or the viscosity measuring apparatus, and after the viscosity measurement, the viscometer or apparatus is washed. When there are a large number of fluid samples whose viscosity is to be measured, the measurement time becomes long and it is difficult to measure continuously, remotely and automatically.

一方、粒子にレーザトラップ力やレーザ光圧により粒子を運動させ、該粒子に作用する粘性抵抗力と変位速度を測定し粘度を測定する方法が知られている(例えば、特許文献4、特許文献5)。レーザ光のエネルギーにより、外部から粒子に力を与えていることと、粒子の変位変化を精度良く測定する必要があり、測定精度と装置構築費用に問題がある。  On the other hand, a method is known in which a particle is moved by a laser trapping force or laser light pressure, and the viscosity is measured by measuring a viscous resistance force and a displacement speed acting on the particle (for example, Patent Document 4, Patent Document). 5). It is necessary to apply a force to the particle from the outside by the energy of the laser beam and to measure the displacement change of the particle with high accuracy, and there is a problem in measurement accuracy and apparatus construction cost.

さらに、分散媒又は流体中でブラウン運動する粒子群にレーザ光を照射し、粒子群からの散乱光強度の時間的自己相関関数の測定結果から、粒子径を測定する方法として、日本工業規格(非特許文献6)がある。  Furthermore, as a method of measuring the particle diameter from the measurement result of the temporal autocorrelation function of the scattered light intensity from the particle group by irradiating the particle group that performs Brownian motion in the dispersion medium or fluid, the Japanese Industrial Standard ( Non-patent document 6).

この方法は、散乱光の自己相関関数の測定結果から粒子の拡散係数Dを求め、式(1)で与えられるストークス・アインシュタインの式より粒子群の粒子半径rを求める方法である。ただし、kはボルツマン定数、Tは流体の絶対温度、ηは流体の粘度とする。
r=kT/(6πηD) (1)
式(1)は、流体がニュートン流体であり、かつ、ストークスの関係式が成立する場合のみに適用できる式である。
In this method, the particle diffusion coefficient D is obtained from the measurement result of the autocorrelation function of the scattered light, and the particle radius r of the particle group is obtained from the Stokes-Einstein equation given by the equation (1). Where k is the Boltzmann constant, T is the absolute temperature of the fluid, and η is the viscosity of the fluid.
r = kT / (6πηD) (1)
Expression (1) is an expression that can be applied only when the fluid is a Newtonian fluid and the Stokes relational expression is satisfied.

流体せん断応力をτ、流体せん断速度をdu/dyとすると、図1に示すように、ニュートン流体は、流体せん断応力とせん断速度との関係が線形関係であり、式(2)が成立する流体である。
τ=ηdu/dy (2)
Assuming that the fluid shear stress is τ and the fluid shear rate is du / dy, as shown in FIG. 1, in the Newtonian fluid, the relationship between the fluid shear stress and the shear rate is a linear relationship, and the fluid that satisfies the equation (2) It is.
τ = ηdu / dy (2)

粒子径と拡散係数が既知である場合、逆に、式(1)より粘度を求めることができる。  On the contrary, when the particle diameter and the diffusion coefficient are known, the viscosity can be obtained from the equation (1).

例えば、流体中に分散した粒子径が既知である粒子群に電圧を印加し、該粒子に泳動力を与え、該粒子群の拡散係数から式(1)により流体粘度を測定する方法などがある(特許文献7)。  For example, there is a method in which a voltage is applied to a particle group having a known particle size dispersed in a fluid, a migration force is applied to the particle group, and the fluid viscosity is measured by equation (1) from the diffusion coefficient of the particle group. (Patent Document 7).

しかし、式(1)が成立するには、粒子を分散する流体がニュートン流体であり、粘度ηが流体せん断速度の関数でなく、かつ、該粒子形状が球形であることが必須条件である。  However, in order to establish equation (1), it is essential that the fluid in which the particles are dispersed is a Newtonian fluid, the viscosity η is not a function of the fluid shear rate, and the particle shape is spherical.

さらに、式(1)は前記ブラウン運動に係るブラウン粒子の揺らぎ速度を使用することを避けた式である(非特許文献8)ため、式(1)により流体のせん断応力、または/かつ、流体のせん断速度に係る情報を得ることはできない。
日本工業規格 JIS Z8803 液体の粘度−測定法。 特開平11−173967号公報 特開平10−160661号公報 特開2004−85242号公報 特開2004−108793号公報 日本工業規格 JIS Z8826 粒子径解析−光子相関法 特開2007−198804号公報 米沢登美子著‘ブラウン運動’(9版(2007)共立出版)
Furthermore, since Equation (1) is an equation that avoids using the fluctuation speed of Brownian particles related to the Brownian motion (Non-Patent Document 8), the shear stress of fluid or / and fluid It is not possible to obtain information on the shear rate.
Japanese Industrial Standard JIS Z8803 Viscosity of liquid -Measurement method. Japanese Patent Laid-Open No. 11-173967 JP-A-10-160661 JP 2004-85242 A JP 2004-108793 A Japanese Industrial Standards JIS Z8826 Particle Size Analysis-Photon Correlation Method JP 2007-198804 A Tomiko Yonezawa 'Brown Movement' (9th edition (2007) Kyoritsu Publishing)

このように、流体中でブラウン運動するブラウン粒子に係わる前記ストークス・アインシュタインの式は、該ブラウン運動に係わるブラウン粒子の揺らぎ速度を使用することを避けた式であるため、式(1)により、粘性流体の流体せん断応力と流体せん断速度を求めることはできないという問題点がある。
さらに、式(1)と式(2)に基づく粒径解析には、粘性流体がニュートン流体で、かつ、粒子形状が球形であることが必須条件であるため、粘性流体がニュートン流体であるか不明である場合、該粒径解析方法の信頼性が乏しくなる。また、粘性流体がニュートン流体である場合でも、粒子形状が非球形で、例えば、該形状が板状、針状、鎖状構造した高分子などの粒径または大きさを測定することは、その測定精度および測定結果の信頼性に課題がある。このように、前記ストークス・アインシュタインの式を用いた粘度または粒径分布測定法に重要な課題があった。
また、分散させる流体をニュートン流体と仮定し、粒子径が既知の単分散系の粒子を用いて、その流体の粘度を式(1)により算出することは可能であるが、測定精度に問題がある。複数の異なる流体せん断応力と流体せん断速度を測定し、該流体せん断応力と流体せん断速度の関係から粘度を測定することにより、粘度の測定精度を向上させることが重要な研究課題であった。
さらに、流体が非ニュートン流体の場合、式(1)と式(2)が成立しないため、前記ストークス・アインシュタインの式を適用できないことから、ブラウン粒子を用いた新規の粘度または粒径分布の測定法を開発することが重要な研究課題であった。
Thus, since the Stokes-Einstein equation relating to the Brownian particles moving in the fluid is an equation that avoids using the fluctuation speed of the Brownian particles relating to the Brownian motion, the equation (1) There is a problem that the fluid shear stress and fluid shear rate of a viscous fluid cannot be obtained.
Further, in the particle size analysis based on the equations (1) and (2), it is essential that the viscous fluid is a Newtonian fluid and the particle shape is spherical. When it is unknown, the reliability of the particle size analysis method becomes poor. Further, even when the viscous fluid is a Newtonian fluid, the particle shape is non-spherical, for example, measuring the particle size or size of a polymer having a plate-like, needle-like, or chain-like shape is There are problems in measurement accuracy and reliability of measurement results. As described above, there is an important problem in the viscosity or particle size distribution measuring method using the Stokes-Einstein equation.
Also, assuming that the fluid to be dispersed is a Newtonian fluid and using monodisperse particles with a known particle size, the viscosity of the fluid can be calculated by equation (1), but there is a problem in measurement accuracy. is there. It was an important research subject to improve viscosity measurement accuracy by measuring a plurality of different fluid shear stresses and fluid shear rates and measuring the viscosity from the relationship between the fluid shear stress and the fluid shear rate.
Furthermore, when the fluid is a non-Newtonian fluid, since the equations (1) and (2) are not satisfied, the Stokes-Einstein equation cannot be applied. Therefore, a new viscosity or particle size distribution measurement using Brownian particles is performed. Developing the law was an important research topic.

そこで、発明者は、このような従来技術の有する問題点に鑑みて、統計力学と流体力学を基盤として学術研究を行ってきた。そして、前記ブラウン粒子の揺らぎ速度を測定または算出することにより、従来技術の有する問題点を解決し、本発明をするに至った。  Therefore, the inventor has conducted academic research on the basis of statistical mechanics and fluid mechanics in view of such problems of the prior art. Then, by measuring or calculating the fluctuation speed of the brown particles, the problems of the prior art were solved and the present invention was achieved.

本発明の目的は、粘性流体中でブラウン運動するブラウン粒子の粒子表面における粘性流体の流体せん断応力と流体せん断速度を測定または算出し、該流体せん断応力と流体せん断速度との関係を求めることを特徴とするブラウン粒子を用いた粘度および粒子径分布の測定方法を提供することである。  An object of the present invention is to measure or calculate the fluid shear stress and the fluid shear rate of a viscous fluid on the particle surface of Brownian particles that perform Brownian motion in the viscous fluid, and to obtain the relationship between the fluid shear stress and the fluid shear rate. The object is to provide a method for measuring viscosity and particle size distribution using the characteristic brown particles.

前記目的を達成するために、請求項1に係わる発明のブラウン粒子を用いた粘度の測定方法は、粒子径分布が既知である粒子群を被測定粘性流体中に分散しブラウン運動させ、該粒子群にレーザ照射手段によりレーザを照射し、該粒子群からの散乱光を光検出手段により検出し、該粒子群のブラウン運動を測定し、データ処理手段により、該粒子群の易動度と揺らぎ速度を求め、該粒子群の粒子に作用する力を算出し、該粒子の表面での該粘性流体の流体せん断応力と流体せん断速度を算出し、該流体せん断応力と該流体せん断速度との関係を求めることを特徴とする。  In order to achieve the above object, the viscosity measuring method using the brown particles according to the first aspect of the present invention includes a method in which particles having a known particle size distribution are dispersed in a viscous fluid to be measured and subjected to Brownian motion. The group is irradiated with laser by means of laser irradiation, the scattered light from the particle group is detected by light detection means, the Brownian motion of the particle group is measured, and the mobility and fluctuation of the particle group are measured by the data processing means. Calculating the velocity acting on the particles of the particle group, calculating the fluid shear stress and fluid shear rate of the viscous fluid on the surface of the particles, and the relationship between the fluid shear stress and the fluid shear rate It is characterized by calculating | requiring.

ブラウン運動する粒子をブラウン粒子と称する。前記粒子群のブラウン粒子の揺らぎ速度をuとし、該ブラウン粒子周りの前記粘性流体の分子運動による該ブラウン粒子に作用する力をFとすると、前記易動度μは次式で定義される。
μ=u/F (3)
Particles that move in brown are called brown particles. The mobility μ is defined by the following equation, where u is the fluctuation velocity of the brown particles in the particle group and F is the force acting on the brown particles due to the molecular motion of the viscous fluid around the brown particles.
μ = u / F (3)

式(3)から下記の式が得られる。
F=u/μ (4)
The following formula is obtained from the formula (3).
F = u / μ (4)

ブラウン粒子の易動度μと揺らぎ速度uを測定する、または、求めることにより、式(4)により前記ブラウン粒子に作用する力を算出することができる。  By measuring or obtaining the mobility μ and the fluctuation speed u of the brown particles, the force acting on the brown particles can be calculated by the equation (4).

前記ブラウン粒子の表面での前記粘性流体の流体せん断応力τは、下記の式で算出できる。
τ=F/(α) (5)
ここで、αは前記ブラウン粒子の粒子形状で定まる面積形状係数、rは該ブラウン粒子の球相当半径である。
The fluid shear stress τ of the viscous fluid on the surface of the brown particles can be calculated by the following equation.
τ = F / (α 1 r 2 ) (5)
Here, α 1 is an area shape factor determined by the particle shape of the brown particles, and r is a sphere-equivalent radius of the brown particles.

前記ブラウン粒子の表面での前記粘性流体の流体せん断速度du/dyは下記の式で算出できる。
du/dy=u/(αr) (6)
ここで、αは前記ブラウン粒子の粒子形状で定まる流体せん断相当係数、yは前記ブラウン粒子の粒子表面から法線方向への距離である。
The fluid shear rate du / dy of the viscous fluid on the surface of the brown particles can be calculated by the following equation.
du / dy = u / (α 2 r) (6)
Here, α 2 is a fluid shear equivalent coefficient determined by the particle shape of the brown particles, and y is a distance in a normal direction from the particle surface of the brown particles.

このように前記被測定粘性流体の粘度は、該粘性流体中で粒子径分布が既知である粒子群が分散しブラウン運動している該粒子群のブラウン粒子の易動度と揺らぎ速度を求め、該ブラウン粒子に作用する力を算出し、該ブラウン粒子の表面での該粘性流体の流体せん断応力および流体せん断速度を算出し、さらに、該流体せん断応力と流体せん断速度との関係を求めることができる。  Thus, the viscosity of the viscosity fluid to be measured is the mobility and fluctuation speed of the brown particles of the particle group in which the particle group having a known particle size distribution is dispersed and moving in the viscous fluid, Calculating a force acting on the brown particles, calculating a fluid shear stress and a fluid shear rate of the viscous fluid on the surface of the brown particles, and further obtaining a relationship between the fluid shear stress and the fluid shear rate. it can.

さらに、前記流体せん断応力と流体せん断速度との関係を直接求めることにより、粘度の測定精度は向上する。  Further, the viscosity measurement accuracy is improved by directly obtaining the relationship between the fluid shear stress and the fluid shear rate.

請求項2に係わる発明のブラウン粒子を用いた粘度および粒子径分布の測定方法は、
粒子径分布が既知である粒子群を被測定粘性流体中に分散しブラウン運動させ、該粒子群にレーザ照射手段によりレーザを照射し、該粒子群からの散乱光を光検出手段により検出し、該粒子群のブラウン運動を測定し、データ処理手段により、該粒子群の易動度と揺らぎ速度を求め、該粒子群の粒子に作用する力を算出し、該粒子の表面での該粘性流体の流体せん断応力と流体せん断速度を算出し、該流体せん断応力と該流体せん断速度との関係を求め、さらに、該粘性流体中で粒子径分布が未知である被測定粒子をブラウン運動させ、前記方法と同じ方法で算出される該被測定粒子の粒子表面における流体せん断応力と流体せん断速度が前記関係を満足するように該被測定粒子の粒径分布を求めることを特徴とする。
A method for measuring viscosity and particle size distribution using the brown particles of the invention according to claim 2 is as follows:
Disperse a particle group having a known particle size distribution in a viscous fluid to be measured and perform Brownian motion, irradiate the particle group with a laser by a laser irradiation unit, detect scattered light from the particle group by a light detection unit, The Brownian motion of the particle group is measured, the mobility and fluctuation speed of the particle group are obtained by data processing means, the force acting on the particles of the particle group is calculated, and the viscous fluid on the surface of the particle group is calculated. The fluid shear stress and the fluid shear rate are calculated, the relationship between the fluid shear stress and the fluid shear rate is determined, and the measured particle whose particle size distribution is unknown in the viscous fluid is subjected to Brownian motion, The particle size distribution of the particles to be measured is determined so that the fluid shear stress and the fluid shear rate on the particle surface of the particles to be measured calculated by the same method as those satisfy the above relationship.

前記式(3)から式(5)に基づくことを特徴としたブラウン粒子を用いた粘度および粒子径分布の測定方法である。  This is a method for measuring viscosity and particle size distribution using brown particles, which is based on the formulas (3) to (5).

したがって、前記粘性流体の粘度、または、流体せん断応力と流体せん断速度の関係と、粒子径分布が未知である粒子群の粒径分布とを求めることができる。流体粘度の測定が不要であり、別途粘度計が不要となり、測定精度が向上し、測定方法が簡素化され、自動測定、遠隔測定などが可能になる。  Therefore, the viscosity of the viscous fluid or the relationship between the fluid shear stress and the fluid shear rate and the particle size distribution of the particle group whose particle size distribution is unknown can be obtained. Measurement of fluid viscosity is not required, no additional viscometer is required, measurement accuracy is improved, measurement methods are simplified, automatic measurement, remote measurement, and the like are possible.

請求項3に係わる発明は、請求項1または請求項2に記載の粒子群または粒子の粒子形状は非球形であるものとする。  In the invention according to claim 3, the particle group or the particle shape of the particle according to claim 1 or claim 2 is non-spherical.

前記ブラウン粒子の粒子形状で定まる面積形状係数と流体せん断相当係数を求めることにより、前記粘度または流体せん断応力と流体せん断速度の関係と粒径分布の測定精度が向上する。  By determining the area shape factor and the fluid shear equivalent coefficient determined by the particle shape of the brown particles, the relationship between the viscosity or fluid shear stress and the fluid shear rate and the measurement accuracy of the particle size distribution are improved.

前記面積形状係数と流体せん断相当係数は、前記粒子群の形状画像から求めることができるが、流体せん断応力と流体せん断速度の関係が既知である粘性流体を使用することにより算出することが好ましい。  The area shape coefficient and the fluid shear equivalent coefficient can be obtained from the shape image of the particle group, but are preferably calculated by using a viscous fluid whose relationship between the fluid shear stress and the fluid shear rate is known.

請求項4に係わる発明は、請求項1から請求項3のいずれかに記載の前記粒子径分布が既知である粒子群は粒径の異なる粒子を含む粒子群であるものとする。  In the invention according to claim 4, the particle group having a known particle size distribution according to any one of claims 1 to 3 is a particle group including particles having different particle sizes.

前記粒子群に異なる粒径のブラン粒子が含むことにより、短時間で効率よく、流体せん断応力と流体せん断速度との関係を求めることができる。  By including the bran particles having different particle sizes in the particle group, the relationship between the fluid shear stress and the fluid shear rate can be obtained efficiently in a short time.

請求項5に係わる発明は、請求項1から請求項4のいずれかに記載の前記粘性流体は、ニュートン流体であるのか非ニュートン流体であるのかが未知である粘性流体であるものとする。  According to a fifth aspect of the present invention, the viscous fluid according to any one of the first to fourth aspects is a viscous fluid in which it is unknown whether it is a Newtonian fluid or a non-Newtonian fluid.

前記粘性流体が、ニュートン流体であるのか非ニュートン流体であるのかを判定し、前記流体せん断応力と流体せん断速度との関係を自動的に算出できる。  It is possible to determine whether the viscous fluid is a Newtonian fluid or a non-Newtonian fluid, and to automatically calculate the relationship between the fluid shear stress and the fluid shear rate.

請求項6に係わる発明は、請求項1から請求項5のいずれかに記載の前記粘性流体は、非ニュートン流体であるものとする。  In the invention according to claim 6, the viscous fluid according to any one of claims 1 to 5 is a non-Newtonian fluid.

前記粘性流体の流体せん断応力と流体せん断速度との関係が線形関係でない非ニュートン流体の粘度または該流体中での前記ブラウン粒子の粒径分布が求められる。  The viscosity of the non-Newtonian fluid in which the relationship between the fluid shear stress and the fluid shear rate of the viscous fluid is not a linear relationship or the particle size distribution of the Brown particles in the fluid is obtained.

請求項7に係わる発明は、請求項2から請求項6のいずれかに記載の前記関係をありふれた粘度計で求めるものとする。  In the invention according to claim 7, the relationship according to any one of claims 2 to 6 is obtained by a common viscometer.

前記粘性流体の流体せん断応力と流体せん断速度の関係をありふれた従来の粘度計で測定し、粒子径分布が未知である粒子群の粒子表面における前記流体せん断応力と流体せん断速度が該関係を満足するように該粒子群の粒径分布を求めることができる。  The relationship between the fluid shear stress and the fluid shear rate of the viscous fluid is measured with a conventional viscometer, and the fluid shear stress and the fluid shear rate at the particle surface of a particle group whose particle size distribution is unknown satisfy the relationship. Thus, the particle size distribution of the particle group can be obtained.

請求項8に係わる発明は、請求項1から請求項7のいずれかに記載の前記データ処理手段は、前記粒子群または粒子の拡散係数を算出する手段と、ネルンスト・アインシュタインの式とエネルギー等配の法則から前記流体せん断応力と流体せん断速度を求める手段と、該流体せん断応力と流体せん断速度との関係を解析する手段を有するものとする。  According to an eighth aspect of the present invention, the data processing means according to any one of the first to seventh aspects includes a means for calculating a diffusion coefficient of the particle group or particles, a Nernst-Einstein equation, and an energy equidistribution. It is assumed that there are means for obtaining the fluid shear stress and the fluid shear rate from the above law, and means for analyzing the relationship between the fluid shear stress and the fluid shear rate.

統計力学におけるエネルギー等配の法則は、質量mのブラウン粒子に対して、下記の式で与えられる。
mu/2=kT/2 (7)
The law of energy equality in statistical mechanics is given by the following equation for a brown particle of mass m.
mu 2/2 = kT / 2 (7)

該ブラウン粒子の揺らぎ速度は、式(7)より導出される下記の式により算出できる。
u=(kT/m)1/2 (8)
このように前記粘性流体の温度を測定することにより、該揺らぎ速度が算出できる。
The fluctuation speed of the brown particles can be calculated by the following formula derived from the formula (7).
u = (kT / m) 1/2 (8)
Thus, the fluctuation speed can be calculated by measuring the temperature of the viscous fluid.

前記拡散係数をDとすると、前記ネルンスト・アインシュタインの式は、下記の式で与えられる。
D=kTμ (9)
When the diffusion coefficient is D, the Nernst Einstein equation is given by the following equation.
D = kTμ (9)

式(9)より、前記易動度は下記の式で算出できる。
μ=D/(kT) (10)
From the equation (9), the mobility can be calculated by the following equation.
μ = D / (kT) (10)

このように、ネルンスト・アインシュタインの式とエネルギー等配の法則により前記揺らぎ速度と前記易動度を求めることができ、前記載のように、前記流体せん断応力と流体せん断速度を算出し、さらに、該流体せん断応力と流体せん断速度との関係を解析することができる。  In this way, the fluctuation speed and the mobility can be obtained by the Nernst-Einstein equation and the law of energy equality, as described above, the fluid shear stress and the fluid shear rate are calculated, The relationship between the fluid shear stress and the fluid shear rate can be analyzed.

請求項9に係わる発明は、請求項1から請求項7のいずれかに記載の前記データ処理手段が、前記粒子群または粒子の拡散係数を算出する手段と、ネルンスト・アインシュタインの式とエネルギー等配の法則から前記流体せん断応力と流体せん断速度を求める手段と、該流体せん断応力と流体せん断速度との関係を解析する手段を有することを特徴とするブラウン粒子を用いた粘度の測定装置、および/または、粘度および粒子径分布の測定装置。  According to a ninth aspect of the present invention, the data processing means according to any one of the first to seventh aspects includes a means for calculating a diffusion coefficient of the particle group or particle, a Nernst-Einstein equation, and an energy equidistribution. A viscosity measuring device using brown particles, characterized in that it has means for obtaining the fluid shear stress and fluid shear rate from the law of the above, and means for analyzing the relationship between the fluid shear stress and fluid shear rate, and / or Alternatively, a measurement device for viscosity and particle size distribution.

前記ブラウン粒子の揺らぎ速度または拡散係数を測定する方法として、動的光散乱法のほか、レーザードップラー法、動画像解析法、回折光度法などがあげられるが、測定装置の簡素化、低価格化、測定時間の短縮化などの点から、動的光散乱法が好ましい。  As a method for measuring the fluctuation speed or diffusion coefficient of the brown particles, in addition to the dynamic light scattering method, there are a laser Doppler method, a moving image analysis method, a diffraction photometry method, etc., but the measurement device is simplified and the cost is reduced. From the viewpoint of shortening the measurement time, the dynamic light scattering method is preferable.

また、前記粒子群の粒子は、該粒子同士の凝集、反応などを避けるため、電気化学的に中立なものが好ましい。  The particles of the particle group are preferably electrochemically neutral in order to avoid aggregation and reaction between the particles.

上述したように、本発明のブラウン粒子を用いた粘度および粒子径の測定方法によれば、前記のようにブラウン運動する粒子群の粒子表面での該粘性流体の流体せん断応力および流体せん断速度を算出し、かつ、該流体せん断応力と流体せん断速度との関係を求めることができることにより、以下のような優れた効果を奏することができる。  As described above, according to the viscosity and particle diameter measuring method using the brown particles of the present invention, the fluid shear stress and fluid shear rate of the viscous fluid on the particle surface of the particle group moving as described above are determined. By calculating and determining the relationship between the fluid shear stress and the fluid shear rate, the following excellent effects can be obtained.

被測定粘性流体がニュートン流体または非ニュートン流体である該粘性流体中の前記ブラウン粒子の粒子表面での流体せん断応力と流体せん断速度との関係を非接触で求めることができる。  The relationship between the fluid shear stress and the fluid shear rate on the particle surface of the Brownian particle in the viscous fluid whose viscosity fluid to be measured is a Newtonian fluid or a non-Newtonian fluid can be obtained in a non-contact manner.

被測定粘性流体がニュートン流体から非ニュートン流体である該粘性流体中にブラウン運動する粒径分布が未知な粒子群の粒径分布を流体せん断応力と流体せん断速度との関係を満足するように、信頼性のある粒子径分布を求められる。  In order to satisfy the relationship between the fluid shear stress and the fluid shear rate, the particle size distribution of a particle group having an unknown particle size distribution that undergoes Brownian motion from the Newtonian fluid to the non-Newtonian fluid is measured. A reliable particle size distribution is required.

ブラウン運動するブラウン粒子を用いることにより、外部から粒子に力を作用させる必要がなく、それに係わる付帯設備は不要となる。  By using Brownian particles that perform Brownian motion, it is not necessary to apply a force to the particles from the outside, and the associated equipment is not necessary.

多数の被測定粘性流体の粘度、被測定粒子の粒径分布を連続的、自動的に測定できる。  The viscosity of a large number of fluids to be measured and the particle size distribution of the particles to be measured can be continuously and automatically measured.

前記ブラウン粒子が非球形である場合にも、精度良く粘度および粒子径が測定できる。  Even when the brown particles are non-spherical, the viscosity and particle diameter can be measured with high accuracy.

粘性流体流体の粘度または/かつ粒径分布が非接触で瞬時的に精度よく、かつ、再現性よく計測できる。  The viscosity or / and particle size distribution of the viscous fluid fluid can be measured instantaneously with high accuracy and reproducibility without contact.

粘度が未知でも、同一の装置を用い、粘度を求め、または/かつ、粒径を求めることができる。  Even if the viscosity is unknown, the viscosity can be obtained and / or the particle diameter can be obtained using the same apparatus.

粘度または/かつ粒径の自動測定、遠隔測定などができる。  Automatic measurement of viscosity or / and particle size, remote measurement, etc. can be performed.

流体に力を加えて変形させる必要がないので、ごく僅かの試料で流体粘度の計測ができる。  Since there is no need to apply a force to the fluid to deform it, the fluid viscosity can be measured with very few samples.

可動部を有しないので、非接触測定ができるため、低圧低温から高圧高温までの流体の粘度および粒径が計測できる。  Since there is no moving part, non-contact measurement can be performed, so that the viscosity and particle size of the fluid from low pressure and low temperature to high pressure and high temperature can be measured.

可動部を有しないので、装置の校正がほとんど不要であり、装置のメンテナンス費用を最小とすることができる。  Since there is no moving part, calibration of the apparatus is almost unnecessary, and the maintenance cost of the apparatus can be minimized.

操作および計測結果のやりとりが、リソース・外部インタエース部を介して、遠隔化、自動化でできる。  Operation and measurement results can be exchanged remotely and automatically via the resource / external interface.

光学系に光ファイバーを用いることにより装置のコンパクト化、ハンディ化ができる。  By using an optical fiber in the optical system, the apparatus can be made compact and handy.

以下、本発明を具体化した実施例を説明する。
まず、ありふれた動的光散乱法により、前記粘性流体の流体せん断応力および流体せん断速度を算出し、該流体せん断応力と流体せん断速度と関係を求める実施例を説明する。
Embodiments embodying the present invention will be described below.
First, an embodiment will be described in which the fluid shear stress and the fluid shear rate of the viscous fluid are calculated by a common dynamic light scattering method, and the relationship between the fluid shear stress and the fluid shear rate is obtained.

装置の構成は、1ccのサンプル容器に被測定粘性流体と粒径分布が既知である粒子群を入れ、サンプル容器内で静止させ、該粒子群をブラウン運動する状態にし、該容器にHe−Neレーザ光を照射し、粒子群からの散乱光を集光レンズにより集光し光ファイバーに導入し、光ファイバーからの散乱光を光電子倍増管により電気信号に変換し、カウンターにより光子数の時間的変化を測定し、コンピュータによりデータ処理を行い、該光子数の自己相関関数を求め、自己相関関数の減衰率を求め、粒子の拡散係数を算出し、式(3)から式(10)により前記粘性流体の流体せん断応力と流体せん断速度との関係を求める。使用するレーザ光は単色、かつ、可干渉なレーザ光であれば、他の波長のレーザ光でもよい。  The configuration of the apparatus is as follows: a viscous fluid to be measured and a particle group whose particle size distribution is known are placed in a 1 cc sample container, are stationary in the sample container, the particle group is in a state of Brownian motion, and He-Ne is placed in the container. Laser light is irradiated, scattered light from the particle group is collected by a condensing lens and introduced into an optical fiber, scattered light from the optical fiber is converted into an electrical signal by a photomultiplier tube, and the temporal change in the number of photons is detected by a counter. Measurement, data processing by a computer, obtaining an autocorrelation function of the number of photons, obtaining an attenuation factor of the autocorrelation function, calculating a diffusion coefficient of the particles, and calculating the viscous fluid according to equations (3) to (10) The relationship between fluid shear stress and fluid shear rate is obtained. The laser light to be used may be laser light of other wavelengths as long as it is monochromatic and coherent.

前記被測定粘性流体の流体せん断応力および流体せん断速度が線形関係であるニュートン流体の流体せん断応力および流体せん断速度の求め、該流体せん断応力と流体せん断速度関係を求める形態を説明する。  A mode for obtaining the fluid shear stress and the fluid shear rate of the Newtonian fluid, in which the fluid shear stress and the fluid shear rate of the viscous fluid to be measured are linear, and for obtaining the relationship between the fluid shear stress and the fluid shear rate will be described.

前記被測定粘性流体として蒸留水を使用し、該蒸留水中に前記粒子径分布が既知である粒子群として粒子形状が球形の21nm、49nm、97nmのポリスチレン粒子を分散させ、前記サンプル容器に入れ静置し、該粒子をブラウン運動させる。サンプル容器は20℃である。ここで使用する該粒子群の粒子形状は、特に限定されていないが形状が既知であることが好ましく、また、球形が好ましい。球形粒子ではα=4π、α=2/3が好ましい。Distilled water is used as the viscous fluid to be measured, and polystyrene particles having a spherical particle shape of 21 nm, 49 nm, and 97 nm are dispersed in the distilled water as a group of particles having a known particle size distribution, and placed in the sample container. And move the particles brown. The sample container is 20 ° C. The particle shape of the particle group used here is not particularly limited, but the shape is preferably known, and a spherical shape is preferable. For spherical particles, α 1 = 4π and α 2 = 2/3 are preferred.

前記被測定粘性流体として蒸留水とし、前記粒子群の粒子表面での流体せん断応力および流体せん断速度を求めたものを両対数で点描したものを図2に示す。最小自乗法で求めた該流体せん断応力と流体せん断速度との関係を直線で示すとともに、該関係式を示す。  Distilled water is used as the viscosity fluid to be measured, and the fluid shear stress and fluid shear rate obtained from the particle surface of the particle group are plotted in double logarithm as shown in FIG. The relationship between the fluid shear stress and the fluid shear rate determined by the method of least squares is shown by a straight line and the relational expression is shown.

前記流体せん断応力と流体せん断速度との関係における直線の勾配が、ニュートン流体である被測定粘性流体の粘度であり、正確に求められる。  The gradient of the straight line in the relationship between the fluid shear stress and the fluid shear rate is the viscosity of the viscous fluid to be measured which is a Newtonian fluid, and is accurately obtained.

高圧での前記被測定粘性流体の粘度を測定することは、高性能の潤滑油を開発するにおいて、高圧での粘度は最も重要な物性値であり、該粘度の測定方法の開発が強く望まれている。可動部が有するありふれた粘度計を使用することは、該粘度計自体を高圧の条件下に設置する必要となる。さらに、高圧下での流体粘度の測定値が数少ないことは、高圧下での流体粘度の測定方法が確立されていないことが1つの原因である。  Measuring the viscosity of the fluid to be measured at high pressure is the most important physical property value in developing a high-performance lubricating oil, and development of a method for measuring the viscosity is strongly desired. ing. To use a common viscometer that the movable part has, it is necessary to install the viscometer itself under high pressure conditions. Furthermore, the fact that there are few measured values of fluid viscosity under high pressure is due to the lack of established methods for measuring fluid viscosity under high pressure.

高圧下において、前記被測定粘性流体の流体せん断応力および流体せん断速度が線形関係であるニュートン流体の流体せん断応力および流体せん断速度の求め、該流体せん断応力と流体せん断速度関係をもとめる形態を説明する。  The fluid shear stress and fluid shear rate of a Newtonian fluid in which the fluid shear stress and fluid shear rate of the measured viscous fluid are linearly related under high pressure are obtained, and the mode for determining the fluid shear stress and fluid shear rate relationship is described. .

サファイアガラスでできた4つの透明な窓を有する高圧可能な高圧容器内に、前記粒子群を分散させたサンプル容器を挿入する。透明な4つの窓の1つにHe−Nレーザ光を投光し、サンプル容器にレーザ光を照射し、他の1つの該窓からの粒子群からの散乱光を集光レンズにより集光し光ファイバーに導入し、光ファイバーからの散乱光を光電子倍増管により電気信号に変換し、カウンターにより光子数の時間的変化を測定し、コンピュータによりデータ処理を行い、該光子数の自己相関関数を求め、自己相関関数の減衰率を求め、粒子の拡散係数を算出し、前記粘性流体の流体せん断応力と流体せん断速度との関係を求める。  A sample container in which the particles are dispersed is inserted into a high-pressure container capable of high pressure having four transparent windows made of sapphire glass. He-N laser light is projected onto one of the four transparent windows, the sample container is irradiated with the laser light, and the scattered light from the particle group from the other one of the windows is condensed by the condenser lens. Introduced into an optical fiber, the scattered light from the optical fiber is converted into an electrical signal by a photomultiplier tube, the temporal change in the number of photons is measured by a counter, data processing is performed by a computer, and an autocorrelation function of the number of photons is obtained. The decay rate of the autocorrelation function is obtained, the particle diffusion coefficient is calculated, and the relationship between the fluid shear stress and the fluid shear rate of the viscous fluid is obtained.

前記被測定粘性流体として蒸留水および20mol%のエタノール水溶液を使用し、該粘性流体中に前記粒子径分布が既知である粒子群として粒子形状が球形の21nm、49nm、97nmのポリスチレン粒子を分散させ、前記高圧容器に前記サンプル容器に入れ静置し、該粒子をブラウン運動させる。サンプル容器は10℃、または25℃である。  Distilled water and a 20 mol% ethanol aqueous solution are used as the viscosity fluid to be measured, and 21 nm, 49 nm, and 97 nm polystyrene particles having a spherical particle shape are dispersed in the viscous fluid as particle groups having a known particle size distribution. Then, the sample container is allowed to stand in the high-pressure container, and the particles are subjected to Brownian motion. Sample containers are at 10 ° C or 25 ° C.

前記被測定粘性流体である蒸留水は、圧力4000気圧までほとんど変化せず、粘度の圧力依存性が小さいが、20mol%のエタノール水溶液の粘度は常圧での粘度に比して、4000気圧では、10℃で2.1倍、25℃で2.7倍になり、該粘度は圧力と線形関係であった。このように、本発明により、高圧下での流体粘度が測定できる。  Distilled water, which is the viscosity fluid to be measured, hardly changes up to a pressure of 4000 atmospheres and the pressure dependency of the viscosity is small. However, the viscosity of a 20 mol% ethanol aqueous solution is 4000 atmospheres compared to the viscosity at normal pressure. The viscosity was 2.1 times at 10 ° C. and 2.7 times at 25 ° C., and the viscosity was linearly related to the pressure. Thus, according to the present invention, the fluid viscosity under high pressure can be measured.

したがって、低温低圧から高温高圧での流体粘度の測定は、前記高圧器の耐熱化により、測定が可能になる。  Therefore, the measurement of the fluid viscosity from the low temperature and low pressure to the high temperature and high pressure becomes possible by the heat resistance of the high pressure device.

前記被測定粘性流体の流体せん断応力および流体せん断速度が非線形関係である非ニュートン流体の流体せん断応力および流体せん断速度の求め、該流体せん断応力と流体せん断速度関係をもとめる形態を説明する。  A description will be given of how to obtain the fluid shear stress and the fluid shear rate of a non-Newtonian fluid in which the fluid shear stress and the fluid shear rate of the viscous fluid to be measured are nonlinear, and to obtain the relationship between the fluid shear stress and the fluid shear rate.

前記被測定粘性流体として図1に示す擬塑性流体であるカルボキシメチルセルロースナトリウムの1wt%の水溶液を使用し、該水溶液中に前記粒子径分布が既知である粒子群として粒子形状が球形の21nm、49nm、97nmのポリスチレン粒子を分散させ、前記サンプル容器に入れ静置し、該粒子をブラウン運動させる。圧力は大気圧で、サンプル容器は20℃である。  A 1 wt% aqueous solution of sodium carboxymethylcellulose, which is a pseudoplastic fluid shown in FIG. 1, is used as the viscosity fluid to be measured, and the particle shape of the particle group having a known particle size distribution in the aqueous solution is 21 nm, 49 nm. , 97 nm polystyrene particles are dispersed, placed in the sample container and allowed to stand, and the particles are subjected to Brownian motion. The pressure is atmospheric pressure and the sample container is 20 ° C.

前記被測定粘性流体が擬塑性流体であるので、前記流体の流体せん断応力と流体せん断速度との関係は、下記式(11)の指数法則でよく表現できる。
τ=K(du/dy) (11)
ここで、Kは比例定数で、みかけ粘度ηは、下記式(12)で求められる。
η=K(du/dy)n−1 (12)
Since the viscosity fluid to be measured is a pseudoplastic fluid, the relationship between the fluid shear stress and the fluid shear rate of the fluid can be well expressed by the power law of the following equation (11).
τ = K (du / dy) n (11)
Here, K is a proportionality constant, and the apparent viscosity η is obtained by the following formula (12).
η = K (du / dy) n−1 (12)

前記被測定粘性流体中の前記粒子群の粒子表面での流体せん断応力および流体せん断速度を求めたものを両対数で点描したものを図3に示す。最小自乗法で求めた該流体せん断応力と流体せん断速度との関係を直線で示すとともに、該関係式を示す。  FIG. 3 shows a logarithmic plot of the fluid shear stress and fluid shear rate obtained on the particle surface of the particle group in the measured viscous fluid. The relationship between the fluid shear stress and the fluid shear rate determined by the method of least squares is shown by a straight line and the relational expression is shown.

図3より、直線の勾配よりnを求め、切片よりKを求めることができ、式(11)で与えられる前記擬塑性流体の流体せん断応力と流体せん断速度との関係を求めることができる。  From FIG. 3, n can be obtained from the slope of the straight line, K can be obtained from the intercept, and the relationship between the fluid shear stress and the fluid shear rate of the pseudoplastic fluid given by equation (11) can be obtained.

前記擬塑性流体中に、粒径が未知である粒子があるとき、前記の手順で求めた式(11)の関係式である前記流体せん断応力と流体せん断速度との関係を満足するように、粒径が未知である粒子の粒径分布を求めることができる。  When there is a particle whose particle size is unknown in the pseudoplastic fluid, so as to satisfy the relationship between the fluid shear stress and the fluid shear rate, which is the relational expression of the equation (11) obtained by the above procedure, The particle size distribution of particles whose particle size is unknown can be obtained.

さらに、ありふれた別の粘度計で前記せん断応力と流体せん断速度との関係を別途測定し、粒径が未知である粒子を分散させる。該粒子の粒径分布は、別途求めた該関係を満足するように未知なる前記粒径を求めることができる。  Further, the relationship between the shear stress and the fluid shear rate is separately measured by another common viscometer, and particles having an unknown particle size are dispersed. The particle size distribution of the particles can determine the unknown particle size so as to satisfy the relationship separately determined.

また、前記被測定粘性流体がニュートン流体、または、非ニュートン流体において、該粘性流体の流体せん断応力と流体せん断速度との関係が既知のものであれば、該粘性流体中に分散した粒径分布が未知の粒子群の粒径分布を精度よく求めることができる。  In addition, when the viscous fluid to be measured is a Newtonian fluid or a non-Newtonian fluid and the relationship between the fluid shear stress and the fluid shear rate of the viscous fluid is known, the particle size distribution dispersed in the viscous fluid Can be obtained with high accuracy.

また、前記粒子径分布が既知である粒子群として、複数の粒径が異なる粒子群を用い、異なる流体せん断応力と流体せん断速度を複数個求めることにより、粘度および粒子径の測定精度、再現性および信頼性が向上する。  Further, as a particle group having a known particle size distribution, a plurality of particle groups having different particle diameters are used, and by obtaining a plurality of different fluid shear stresses and fluid shear rates, measurement accuracy and reproducibility of viscosity and particle size are obtained. And improved reliability.

各種流体の流体せん断応力τ(Pa)と流体せん断速度du/dy(s−1)との関係を示すグラフである。It is a graph which shows the relationship between fluid shear stress (tau) (Pa) of various fluids, and fluid shear rate du / dy (s < -1 >). ニュートン流体の流体せん断応力τ(Pa)と流体せん断速度du/dy(s−1)との関係を示すグラフである。It is a graph which shows the relationship between fluid shear stress (tau) (Pa) of a Newtonian fluid, and fluid shear rate du / dy (s < -1 >). 非ニュートン流体(擬塑性流体)の流体せん断応力τ(Pa)と流体せん断速度du/dy(s−1)との関係を示すグラフである。It is a graph which shows the relationship between the fluid shear stress (tau) (Pa) of a non-Newtonian fluid (pseudoplastic fluid), and the fluid shear rate du / dy (s < -1 >).

Claims (9)

粒子径分布が既知である粒子群を被測定粘性流体中に分散しブラウン運動させ、該粒子群にレーザ照射手段によりレーザを照射し、該粒子群からの散乱光を光検出手段により検出し、該粒子群のブラウン運動を測定し、データ処理手段により、該粒子群の易動度と揺らぎ速度を求め、該粒子群の粒子に作用する力を算出し、該粒子の表面での該粘性流体の流体せん断応力と流体せん断速度を算出し、該流体せん断応力と該流体せん断速度との関係を求めることを特徴とするブラウン粒子を用いた粘度の測定方法。  Disperse a particle group having a known particle size distribution in a viscous fluid to be measured and perform Brownian motion, irradiate the particle group with a laser by a laser irradiation unit, detect scattered light from the particle group by a light detection unit, The Brownian motion of the particle group is measured, the mobility and fluctuation speed of the particle group are obtained by data processing means, the force acting on the particles of the particle group is calculated, and the viscous fluid on the surface of the particle group is calculated. A method for measuring viscosity using Brownian particles, wherein a fluid shear stress and a fluid shear rate are calculated, and a relationship between the fluid shear stress and the fluid shear rate is obtained. 粒子径分布が既知である粒子群を被測定粘性流体中に分散しブラウン運動させ、該粒子群にレーザ照射手段によりレーザを照射し、該粒子群からの散乱光を光検出手段により検出し、該粒子群のブラウン運動を測定し、データ処理手段により、該粒子群の易動度と揺らぎ速度を求め、該粒子群の粒子に作用する力を算出し、該粒子の表面での該粘性流体の流体せん断応力と流体せん断速度を算出し、該流体せん断応力と該流体せん断速度との関係を求め、さらに、該粘性流体中で粒子径分布が未知である被測定粒子をブラウン運動させ、前記方法と同じ方法で算出される該被測定粒子の粒子表面における流体せん断応力と流体せん断速度が前記関係を満足するように該被測定粒子の粒径分布を求めることを特徴とするブラウン粒子を用いた粘度および粒子径分布の測定方法。  Disperse a particle group having a known particle size distribution in a viscous fluid to be measured and perform Brownian motion, irradiate the particle group with a laser by a laser irradiation unit, detect scattered light from the particle group by a light detection unit, The Brownian motion of the particle group is measured, the mobility and fluctuation speed of the particle group are obtained by data processing means, the force acting on the particles of the particle group is calculated, and the viscous fluid on the surface of the particle group is calculated. The fluid shear stress and the fluid shear rate are calculated, the relationship between the fluid shear stress and the fluid shear rate is determined, and the measured particle whose particle size distribution is unknown in the viscous fluid is subjected to Brownian motion, A brown particle is used, wherein the particle size distribution of the particle to be measured is calculated so that the fluid shear stress and the fluid shear rate on the particle surface of the particle to be measured calculated by the same method as the method satisfy the above relationship. Sticky And the method of measuring the particle size distribution. 請求項1または請求項2に記載の粒子群または粒子の粒子形状は、非球形である。  The particle group or the particle shape of the particles according to claim 1 or 2 is non-spherical. 請求項1から請求項3のいずれかに記載の前記粒子径分布が既知である粒子群は、粒径の異なる粒子を含む粒子群である。  The particle group having a known particle size distribution according to any one of claims 1 to 3 is a particle group including particles having different particle diameters. 請求項1から請求項4のいずれかに記載の前記粘性流体は、ニュートン流体であるのか非ニュートン流体であるのかが未知である粘性流体である。  The viscous fluid according to any one of claims 1 to 4 is a viscous fluid whose unknown whether it is a Newtonian fluid or a non-Newtonian fluid. 請求項1から請求項5のいずれかに記載の前記粘性流体は、非ニュートン流体である。  The viscous fluid according to any one of claims 1 to 5 is a non-Newtonian fluid. 請求項2から請求項6のいずれかに記載の前記関係をありふれた粘度計で求める。  The relationship according to any one of claims 2 to 6 is obtained by a common viscometer. 請求項1から請求項7のいずれかに記載の前記データ処理手段は、前記粒子群または粒子の拡散係数を算出する手段と、ネルンスト・アインシュタインの式とエネルギー等配の法則から前記流体せん断応力と流体せん断速度を求める手段と、該流体せん断応力と流体せん断速度との関係を解析する手段を有する。  The data processing means according to any one of claims 1 to 7, the means for calculating a diffusion coefficient of the particle group or particles, the fluid shear stress from the Nernst-Einstein equation and the law of energy equivalence Means for obtaining a fluid shear rate and means for analyzing the relationship between the fluid shear stress and the fluid shear rate. 請求項1から請求項7のいずれかに記載の前記データ処理手段が、前記粒子群または粒子の拡散係数を算出する手段と、ネルンスト・アインシュタインの式とエネルギー等配の法則から前記流体せん断応力と流体せん断速度を求める手段と、該流体せん断応力と流体せん断速度との関係を解析する手段を有することを特徴とするブラウン粒子を用いた粘度の測定装置、および/または、粘度および粒子径分布の測定装置。  The data processing means according to any one of claims 1 to 7, wherein the data processing means calculates the diffusion coefficient of the particle group or particles, and the fluid shear stress from the Nernst-Einstein equation and the law of energy equality. Viscosity measuring apparatus using Brownian particles, and / or viscosity and particle size distribution, characterized by having means for determining fluid shear rate and means for analyzing relationship between fluid shear stress and fluid shear rate measuring device.
JP2008256844A 2008-09-02 2008-09-02 Method and device for measuring viscosity and particle size distribution using brown particle Pending JP2010060544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256844A JP2010060544A (en) 2008-09-02 2008-09-02 Method and device for measuring viscosity and particle size distribution using brown particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256844A JP2010060544A (en) 2008-09-02 2008-09-02 Method and device for measuring viscosity and particle size distribution using brown particle

Publications (1)

Publication Number Publication Date
JP2010060544A true JP2010060544A (en) 2010-03-18

Family

ID=42187473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256844A Pending JP2010060544A (en) 2008-09-02 2008-09-02 Method and device for measuring viscosity and particle size distribution using brown particle

Country Status (1)

Country Link
JP (1) JP2010060544A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410484B1 (en) 2013-01-16 2014-06-23 국립대학법인 울산과학기술대학교 산학협력단 Rheometer for simultaneaously measuring viscosity and particle size
CN104246473A (en) * 2013-02-28 2014-12-24 株式会社爱安德 Method for finding shear rate of fluid, and program and device for same
JP2015526724A (en) * 2012-08-15 2015-09-10 アスペクト・エーアイ・リミテッド Measurement of fluid properties using MRI
JP2017020188A (en) * 2015-07-07 2017-01-26 清水建設株式会社 Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure balanced shield method, and earth pressure balanced shield excavator
US10234370B2 (en) 2015-03-30 2019-03-19 National Institute Of Advanced Industrial Science And Technology Particle size measuring method and device
CN112697658A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Memory, electron microscope particle geometric property determination method, device and apparatus
CN113324875A (en) * 2021-05-14 2021-08-31 大连海事大学 Photoresist type liquid viscosity measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526724A (en) * 2012-08-15 2015-09-10 アスペクト・エーアイ・リミテッド Measurement of fluid properties using MRI
KR101410484B1 (en) 2013-01-16 2014-06-23 국립대학법인 울산과학기술대학교 산학협력단 Rheometer for simultaneaously measuring viscosity and particle size
CN104246473A (en) * 2013-02-28 2014-12-24 株式会社爱安德 Method for finding shear rate of fluid, and program and device for same
US10234370B2 (en) 2015-03-30 2019-03-19 National Institute Of Advanced Industrial Science And Technology Particle size measuring method and device
JP2017020188A (en) * 2015-07-07 2017-01-26 清水建設株式会社 Method and apparatus for evaluating plastic fluidity of excavated soil in chamber in earth pressure balanced shield method, and earth pressure balanced shield excavator
CN112697658A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Memory, electron microscope particle geometric property determination method, device and apparatus
CN113324875A (en) * 2021-05-14 2021-08-31 大连海事大学 Photoresist type liquid viscosity measuring device
CN113324875B (en) * 2021-05-14 2023-02-28 大连海事大学 Photoresist type liquid viscosity measuring device

Similar Documents

Publication Publication Date Title
Maguire et al. Characterisation of particles in solution–a perspective on light scattering and comparative technologies
JP2010060544A (en) Method and device for measuring viscosity and particle size distribution using brown particle
Oppong et al. Microrheology and structure of a yield-stress polymer gel
Maaß et al. Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions
Myant et al. Laser-induced fluorescence for film thickness mapping in pure sliding lubricated, compliant, contacts
CN104374676B (en) Particle diameter detection method based on optical trapping
JP2014521967A (en) Optical detection and analysis of particles
Shaw Dynamic Light Scattering Training
Ponjavic et al. In situ viscosity measurement of confined liquids
Daneshi et al. Characterising wall-slip behaviour of Carbopol gels in a fully-developed Poiseuille flow
Liu et al. Temperature-dependent gelation process in colloidal dispersions by diffusing wave spectroscopy
Pesce et al. Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements
JP2013205145A (en) Dynamic light scattering measuring method and dynamic light scattering measuring device employing low coherence light source
Cipelletti et al. Polydispersity analysis of Taylor dispersion data: the cumulant method
Xu et al. Fast nanoparticle sizing by image dynamic light scattering
Camas-Anzueto et al. Measurement of the viscosity of biodiesel by using an optical viscometer
Okesanya et al. Generalized models for predicting the drag coefficient and settling velocity of rigid spheres in viscoelastic and viscoinelastic power-law fluids
JP5669843B2 (en) Dynamic light scattering microrheology of complex fluids with improved single scattering mode detection
Saetear et al. Taylor dispersion analysis of polysaccharides using backscattering interferometry
Sie et al. A micro-volume viscosity measurement technique based on μPIV diffusometry
EP1408322A1 (en) Measurement of size distribution of centrifugally separated particles
Altman et al. Holographic characterization and tracking of colloidal dimers in the effective-sphere approximation
RU2610942C1 (en) Method for optical measurement of calculating concentration of dispersed particles in liquid environments and device for its implementation
CN100437059C (en) A method for measuring liquid phase micro-area temperature
Khatibi Experimental study on droplet size of dispersed oil-water flow