JP2009008584A - Analysis method of particulate in steel - Google Patents

Analysis method of particulate in steel Download PDF

Info

Publication number
JP2009008584A
JP2009008584A JP2007171706A JP2007171706A JP2009008584A JP 2009008584 A JP2009008584 A JP 2009008584A JP 2007171706 A JP2007171706 A JP 2007171706A JP 2007171706 A JP2007171706 A JP 2007171706A JP 2009008584 A JP2009008584 A JP 2009008584A
Authority
JP
Japan
Prior art keywords
electrolysis
fine particles
solution
steel
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171706A
Other languages
Japanese (ja)
Other versions
JP4972784B2 (en
Inventor
Tomoharu Ishida
智治 石田
Yoshihisa Kajima
能久 賀嶋
Naoshi Yoshida
直志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007171706A priority Critical patent/JP4972784B2/en
Publication of JP2009008584A publication Critical patent/JP2009008584A/en
Application granted granted Critical
Publication of JP4972784B2 publication Critical patent/JP4972784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of extracting particulates (mainly, an average particle size is 1 μm or less) existing in steel without aggregation, performing analysis after the extraction, especially accurately analyzing the particle size distribution. <P>SOLUTION: For example, a steel sample is electrolyzed, then the electrolyzed steel sample is dipped in a solution that is different from the electrolyte used for the electrolysis and has dispersibility, and the particulates in the steel sample are extracted. Then, the extracted particulates are analyzed by a dynamic light scattering method. In this analysis method, after the extraction of the particulates, a magnetic separation operation and a classification operation by ultrasonic wave are performed. This analysis method is effective when particulate analysis of a material of much carbon content is performed or when particulates other than analyzing objects are mixed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微粒子(介在物、析出物等を含む)の分析方法であり、特に、微細な粒子の粒径分布を、正確かつ迅速に測定するための前処理方法に関する。   The present invention relates to a method for analyzing fine particles (including inclusions, precipitates, etc.), and more particularly to a pretreatment method for accurately and quickly measuring the particle size distribution of fine particles.

鉄鋼の製造プロセスにおいて生成する析出物もしくは介在物は、鋼の特性に影響を与える事が知られており、古くから様々な研究が行なわれてきた。近年では、特に、時効析出などを利用して鋼中に微粒子(特に平均粒径が1μm以下の析出物もしくは介在物)を分散させる方法により金属材料を強化する手法が知られてきたため、これを利用した新たな鋼の開発が盛んに行なわれている。材料の強化機構としては、微粒子が結晶粒の成長を効果的に抑制する現象(ピン止め効果)が支配的であり、この微粒子の粒径や密度、粒子間距離を調査することが高機能鋼板を開発する上で重要である。   It is known that precipitates or inclusions generated in the steel manufacturing process affect the properties of steel, and various studies have been conducted for a long time. In recent years, a technique for strengthening metallic materials by dispersing fine particles (especially precipitates or inclusions having an average particle diameter of 1 μm or less) in steel using aging precipitation has been known. The development of new steels that are used has been actively conducted. As a material strengthening mechanism, the phenomenon that fine particles effectively suppress the growth of crystal grains (pinning effect) is dominant, and investigating the particle size, density, and inter-particle distance of these fine particles is a highly functional steel plate. Is important in developing.

鋼中の微粒子を分析する、代表性と迅速性に優れた手法としては、鉄を溶解して鋼中の微粒子を捕集した後に、当該微粒子の特性を分析する手法がある。例えば、非特許文献1には、介在物粒径分布の測定例として、試料を酸(例えば、硝酸と硫酸の混酸)で分解し、残渣をレーザ回折式粒径分布計で測定する方法が開示されている。また、特許文献1には、鋼中の介在物を、溶解性溶液(例えば、硫酸第一鉄アンモニウム水溶液)に浸して電解を行なうことで、当該溶解性溶液中に介在物を抽出し捕集する方法が開示されている。
特開昭54−110896号公報 千野淳、石橋耀一、郡司直樹、岩田英夫著、「極低炭素鋼中の微細介在物の粒度分布測定法」材料とプロセス、4巻、1991、p.387
As a technique that analyzes fine particles in steel and is excellent in representativeness and quickness, there is a technique of analyzing the characteristics of the fine particles after iron is dissolved and the fine particles in the steel are collected. For example, Non-Patent Document 1 discloses a method in which a sample is decomposed with an acid (for example, a mixed acid of nitric acid and sulfuric acid) and the residue is measured with a laser diffraction particle size distribution meter as an example of measurement of inclusion particle size distribution. Has been. Patent Document 1 discloses that inclusions in steel are extracted and collected by dissolving the inclusions in steel in a soluble solution (for example, ferrous ammonium sulfate aqueous solution) and performing electrolysis. A method is disclosed.
Japanese Patent Laid-Open No. 54-110896 S. Chino, S. Ishibashi, Naoki Gunji, and Hideo Iwata, “Measuring Method for Particle Size Distribution of Fine Inclusions in Extremely Low Carbon Steel” Materials and Processes, Vol. 4, 1991, p. 387

しかしながら非特許文献1に示される方法では、炭素含有率が高い鉄鋼試料については、残渣中にセメンタイトの分解生成物を多く含むため、対象粒子のみの粒径分布測定は困難である。   However, in the method shown in Non-Patent Document 1, it is difficult to measure the particle size distribution of only the target particles because the steel sample having a high carbon content contains a large amount of decomposition products of cementite in the residue.

一方、特許文献1に示される方法では、基本的に溶解性溶液中に微粒子は抽出および捕集されるため、粒子の種類や粒径によっては液中で凝集が起こる。特許文献1が対象としている平均粒径50μmから1000μmの介在物の場合は、特に問題とならないが、本発明において対象としている平均粒径1μm以下の微粒子の場合は、溶解性溶液中で容易に凝集してしまう場合がほとんどであり、実用に適さない。また、特許文献1においては、ふるいの孔径で粒径を大きさ別に分別(分級)しているが、nmオーダーの孔径のふるいは存在しないため、この点でも、同技術を鋼中微粒子へ転用するのは困難である。   On the other hand, in the method disclosed in Patent Document 1, basically, fine particles are extracted and collected in a soluble solution, and therefore aggregation occurs in the liquid depending on the type and particle size of the particles. In the case of inclusions having an average particle size of 50 μm to 1000 μm, which is the subject of Patent Document 1, there is no particular problem. In most cases, they aggregate and are not suitable for practical use. In Patent Document 1, the particle size is classified (classified) according to the pore size of the sieve. However, since there is no sieve with a pore size on the order of nm, this technique is also transferred to fine particles in steel. It is difficult to do.

本発明は、上記の問題を解決し、鋼中に存在する微粒子(主として平均粒径1μm以下)を凝集させること無く抽出し、抽出後の分析、特に粒径分布を精度良く分析する方法を提供する。   The present invention solves the above problems and provides a method for extracting fine particles (mainly an average particle size of 1 μm or less) existing in steel without agglomerating and analyzing the post-extraction analysis, particularly the particle size distribution with high accuracy. To do.

溶解性溶液を用いて鋼を溶解することにより鋼中微粒子を抽出する手法は、当該鋼中微粒子を鋼より取り出すのに非常に優れた方法である。そこで、本発明者らは、まず、この手法を発明を完成させるためのベースとした。そして、上記課題を解決するために鋭意研究を行った結果、上記手法を用いる際に、問題となっている抽出した溶液中での微粒子の凝集に対しては、溶解性溶液とは別に微粒子を抽出するための溶液を用いること、さらには当該抽出用の溶液として、微粒子に対し分散性を有する溶液(以下、分散性溶液と称することもある)を選択することで解決され、効果的であることを見出した。すなわち、本発明は、上記抽出用の溶液使用を本発明の主たる要件とし、一連の操作を検討し規定することで完成するに至ったものである。   The technique of extracting fine particles in steel by dissolving steel using a soluble solution is a very excellent method for extracting fine particles in steel from steel. Therefore, the present inventors first set this method as a base for completing the invention. As a result of intensive studies to solve the above problems, when using the above method, the fine particles are separated from the soluble solution for the aggregation of the fine particles in the extracted solution. The solution is effective by using a solution for extraction, and further by selecting a solution having dispersibility with respect to the fine particles (hereinafter also referred to as a dispersible solution) as the extraction solution. I found out. That is, the present invention has been completed by considering the use of the above-described extraction solution as a main requirement of the present invention and examining and defining a series of operations.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]鋼試料を電解する電解操作と、該電解後の鋼試料の残部を、前記電解に用いた電解液とは異なりかつ分散性を有する溶液に浸漬し、前記鋼試料中の微粒子を抽出する抽出操作と、該抽出操作後の前記溶液中に抽出された微粒子を動的光散乱法にて分析する分析操作とを有することを特徴とする鋼中微粒子の分析方法。
[2]前記[1]において、前記分散性を有する溶液が、ヘキサメタリン酸ナトリウム水溶液であることを特徴とする鋼中微粒子の分析方法。
[3]前記[1]または[2]において、前記分析操作では、平均粒径が1μm以下の大きさの微粒子を分析することを特徴とする鋼中微粒子の分析方法。
[4]前記[1]〜[3]のいずれかにおいて、前記分析操作では、前記鋼試料に付着した微粒子のみを分析することを特徴とする鋼中微粒子の分析方法。
[5]前記[1]〜[4]のいずれかにおいて、前記溶液中に抽出された微粒子をろ過し、分析対象となる小径側の微粒子を含んだろ液を得るろ過操作と、該ろ過操作にて得られた微粒子を含んだろ液を動的光散乱法にて分析する分析操作とを有することを特徴とする鋼中微粒子の分析方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Electrolytic operation for electrolyzing a steel sample, and the rest of the steel sample after the electrolysis is immersed in a solution that is different from the electrolytic solution used for the electrolysis and has dispersibility, and extracts fine particles in the steel sample And an analysis operation for analyzing the fine particles extracted in the solution after the extraction operation by a dynamic light scattering method.
[2] The method for analyzing fine particles in steel according to [1], wherein the dispersible solution is a sodium hexametaphosphate aqueous solution.
[3] The method for analyzing fine particles in steel according to [1] or [2], wherein in the analysis operation, fine particles having an average particle diameter of 1 μm or less are analyzed.
[4] The method for analyzing fine particles in steel according to any one of [1] to [3], wherein, in the analysis operation, only fine particles adhering to the steel sample are analyzed.
[5] In any one of the above [1] to [4], a filtration operation for filtering the fine particles extracted in the solution to obtain a filtrate containing fine particles on the small diameter side to be analyzed; And an analytical operation for analyzing the filtrate containing the fine particles obtained by dynamic light scattering.

本発明によれば、鋼中微粒子(特に、平均粒径1μm以下のもの)に対して分散性を有する溶液中に当該微粒子を抽出することから、抽出した溶液中での微粒子の凝集を防ぎ、微粒子を鋼中そのままの大きさで抽出することができる。また、溶解性溶液とは異なる抽出用の分散性溶液を任意に選択することができるので、微粒子に適した分散性溶液を用いることができる。これらにより、抽出後の分析、特に粒径分布を精度良く分析することが可能となり、得られた測定結果をもとに鋼材の諸性質に関する知見が得られ、不良品発生の原因解明や新材料の開発に有益な情報が得られる。   According to the present invention, since the fine particles are extracted in a solution having dispersibility with respect to fine particles in steel (especially those having an average particle size of 1 μm or less), aggregation of the fine particles in the extracted solution is prevented, Fine particles can be extracted as they are in steel. In addition, since a dispersible solution for extraction different from the soluble solution can be arbitrarily selected, a dispersible solution suitable for fine particles can be used. As a result, analysis after extraction, especially particle size distribution, can be analyzed with high accuracy, and knowledge on various properties of steel materials can be obtained based on the obtained measurement results. Useful information for development.

本発明は、様々な種類の鋼中微粒子(析出物や介在物を含む)の分析に適用することができ、特に、平均粒径が1μm以下の微粒子を多く含んだ鉄鋼材料に対して好適に適用することができる。   The present invention can be applied to the analysis of various types of fine particles in steel (including precipitates and inclusions), and is particularly suitable for steel materials containing many fine particles having an average particle size of 1 μm or less. Can be applied.

以下、本発明について、電解液(本発明の溶解性溶液に当たる)を用いた電解法により鋼中微粒子を抽出し、かつ当該鋼中微粒子の粒径分布を測定した場合を例に、詳細に説明する。操作の順番は、(1)から(7)の順とする。また、分析フローを図1に示す。   Hereinafter, the present invention will be described in detail by taking as an example a case where fine particles in steel are extracted by an electrolytic method using an electrolytic solution (corresponding to the soluble solution of the present invention) and the particle size distribution of the fine particles in steel is measured. To do. The order of operations is the order from (1) to (7). The analysis flow is shown in FIG.

(1)初めに、鋼材を適当な大きさに加工して、電解用試料(鋼試料と称することもある)とする。   (1) First, a steel material is processed into an appropriate size to obtain a sample for electrolysis (sometimes referred to as a steel sample).

(2)一方、鋼中微粒子抽出用溶液として、電解に用いる電解液とは異なり分散性を有する溶液を、電解液とは別に準備する(準備操作100)。   (2) On the other hand, as a solution for extracting fine particles in steel, a solution having dispersibility is prepared separately from the electrolytic solution used for electrolysis (preparation operation 100).

ここで、電解用試料の表面に露出した微粒子を分散性溶液中に分散させるには、電解液の半分以下の液量で充分である。なお、分散性溶液の種類と濃度については、微粒子の組成や粒径、液中の粒子密度との間に明確な相関は得られていない。例えば、ヘキサメタリン酸ナトリウム水溶液は、多くの無機微粒子に対して分散性改善の効果が報告されており、分酸性溶液として好適である。また、その濃度は一般的には2000mg/l前後が目安とされている。過剰な添加は、かえって分散効果の妨げになる。すなわち、粒子の性状や密度に応じて分散液の種類や濃度を最適化する必要がある。特に分散溶液の溶媒が水の場合には、粒子の表面電荷と分散性には密接な相関があるため、ゼータ電位計などを利用して粒子表面の電荷状態を把握し、最適な分散溶液の条件を確定することが好ましい。   Here, in order to disperse the fine particles exposed on the surface of the sample for electrolysis in the dispersible solution, the amount of liquid less than half of the electrolytic solution is sufficient. In addition, about the kind and density | concentration of a dispersible solution, the clear correlation is not acquired between the composition and particle size of microparticles | fine-particles, and the particle density in a liquid. For example, an aqueous solution of sodium hexametaphosphate has been reported to have an effect of improving dispersibility with respect to many inorganic fine particles, and is suitable as an acidic solution. The concentration is generally around 2000 mg / l. Excessive addition rather hinders the dispersion effect. That is, it is necessary to optimize the type and concentration of the dispersion according to the properties and density of the particles. In particular, when the solvent of the dispersion solution is water, there is a close correlation between the surface charge and dispersibility of the particles. It is preferable to establish the conditions.

分散性溶液の種類としては、現状では、ヘキサメタリン酸ナトリウム水溶液以外に、液中の微粒子間の斥力がメタノールの場合よりも強く働くことが期待できる純水についても、効果が確認できている(純水における効果は、図10に示した、分散性溶液として純水(本発明例)またはメタノール(比較例)を用いた場合の鋼中微粒子の粒径分布を参照のこと。なお、鋼中微粒子の抽出方法と粒径分布の測定方法は、図1に示した分析フローに準ずる。)。   As for the type of dispersible solution, in addition to the aqueous solution of sodium hexametaphosphate, the effect has been confirmed even for pure water that can be expected to work stronger than the repulsive force between the fine particles in the liquid than methanol. For the effect in water, refer to the particle size distribution of fine particles in steel when pure water (invention example) or methanol (comparative example) is used as a dispersible solution, as shown in Fig. 10. The extraction method and the particle size distribution measurement method are based on the analysis flow shown in FIG.

(3)そして、上記(1)の電解用試料に対し、図2に模式的に示した装置構成にて、電解を行なう(電解操作101)。なお、電解用試料の洗浄具合や分析精度に応じて、表層の汚染を除去するための捨て電解を、電解操作101の直前に行なっても良い。   (3) Then, the electrolysis sample of (1) is electrolyzed with the apparatus configuration schematically shown in FIG. 2 (electrolysis operation 101). It should be noted that the waste electrolysis for removing the contamination of the surface layer may be performed immediately before the electrolysis operation 101 in accordance with the degree of cleaning of the electrolysis sample and the analysis accuracy.

図2は、電解法にて用いられる電解装置の一例である。電解装置7は、電解用試料の固定用治具2、電極3、電解液6、電解液6を入れる為のビーカー4、および電流を供給する定電流電解装置5を備えている。固定用治具2は定電流電解装置の陽極に、電極3は直流定電流源の陰極に接続されている。電解用試料1は、固定用治具2に接続されて電解液6中に保持される。電極3は、電解液6に浸漬されると共に、電解用試料の表面(主として電解液6に浸漬している部分)を覆うように配置される。固定用治具2には、永久磁石を用いるのが、最も簡便である。但し、そのままでは電解液6に接触して溶解してしまうので、電解液6と接触しやすい箇所、図2の場合は電解用試料1との間にある2a、に白金板を使用しても良い。電極3も同様に、電解液6による溶解を防ぐために、白金板を用いる。   FIG. 2 is an example of an electrolysis apparatus used in the electrolysis method. The electrolysis apparatus 7 includes an electrolysis sample fixing jig 2, an electrode 3, an electrolytic solution 6, a beaker 4 for containing the electrolytic solution 6, and a constant current electrolysis device 5 for supplying current. The fixing jig 2 is connected to the anode of the constant current electrolysis apparatus, and the electrode 3 is connected to the cathode of the DC constant current source. The electrolytic sample 1 is connected to the fixing jig 2 and held in the electrolytic solution 6. The electrode 3 is immersed in the electrolytic solution 6 and disposed so as to cover the surface of the sample for electrolysis (mainly the portion immersed in the electrolytic solution 6). It is most convenient to use a permanent magnet for the fixing jig 2. However, since it dissolves in contact with the electrolytic solution 6 as it is, even if a platinum plate is used in a portion that is easily in contact with the electrolytic solution 6, 2a between the sample 1 for electrolysis in the case of FIG. good. Similarly, the electrode 3 uses a platinum plate in order to prevent dissolution by the electrolytic solution 6.

電解用試料1の電解は、定電流電解装置5より電極3へ電荷を供給することで行う。鋼の電解量はこの電荷量に比例するので、電流量を決めれば、電解量は時間で決定できる。   Electrolysis of the sample 1 for electrolysis is performed by supplying a charge from the constant current electrolysis apparatus 5 to the electrode 3. Since the amount of electrolysis of steel is proportional to the amount of charge, the amount of electrolysis can be determined by time if the amount of current is determined.

ここで、電解の際の電流密度は、10mA/cm2以下とするのが好ましく、より好ましくは2mA/cm2以下とする。通常、電解法における電流密度条件は、20mA/cm2以上とすることが多いが、この通常条件より小さい電流密度で電解を行なうことで、電解用試料表面の位置に対する電解の均一性が改善され、電解中の粒子の凝集を抑制するに対し、一層の効果がある。また、特に微細な微粒子が溶解する可能性も低くでき、より正確な微粒子の抽出が期待できる。 Here, the current density during electrolysis is preferably 10 mA / cm 2 or less, more preferably 2 mA / cm 2 or less. Usually, the current density condition in the electrolysis method is 20 mA / cm 2 or more in many cases, but by performing electrolysis at a current density smaller than this normal condition, the uniformity of the electrolysis with respect to the position of the sample surface for electrolysis is improved. There is a further effect on suppressing the aggregation of particles during electrolysis. In addition, the possibility of dissolving particularly fine particles can be reduced, and more accurate extraction of fine particles can be expected.

さらに、電解操作101における電解量は、電解用試料1の厚み換算で、事前に求めておいた電解用試料1の中の微粒子のおよその平均粒径の1倍以上、50倍以下とするのが、好ましい。より好ましくは、1倍以上、10倍以下とする。この電解量は、抽出した微粒子の粒径分布を測定するような場合に、特に好適である。何故なら、普通鋼の場合、通常、抽出したい微粒子周辺の鉄母相が溶解されても、微粒子のほとんどは電解液6の液中に直ちに落下するのでは無く、電解用試料1の表面に付着している。この為、さらに鋼の電解が進み、電解用試料1の表面に付着した微粒子が、次に出現した別の微粒子と接触すると、電解用試料1の表面で凝集してしまう可能性がある。上述した範囲の電解量とすることで、電解中の試料表面における凝集を回避できるものと考えられる。   Further, the amount of electrolysis in the electrolysis operation 101 is set to be not less than 1 and not more than 50 times the approximate average particle diameter of the fine particles in the electrolysis sample 1 obtained in advance in terms of the thickness of the electrolysis sample 1. Is preferred. More preferably, it is 1 to 10 times. This amount of electrolysis is particularly suitable when measuring the particle size distribution of the extracted fine particles. This is because in the case of ordinary steel, even if the iron matrix around the fine particles to be extracted is dissolved, most of the fine particles do not immediately fall into the electrolyte 6 solution, but adhere to the surface of the sample 1 for electrolysis. is doing. For this reason, when the electrolysis of steel further progresses and the fine particles adhering to the surface of the electrolysis sample 1 come into contact with another microparticle that appears next, there is a possibility that the surface of the electrolysis sample 1 is aggregated. By setting the amount of electrolysis in the above-described range, it is considered that aggregation on the sample surface during electrolysis can be avoided.

また、電解量の目安となる、事前に求めておいた電解用試料1の中の微粒子のおよその平均粒径は、電解操作101の前に、電解用試料1と同じ試料を用いて、以下に説明する手順で求めることができる。この場合の分析フローの例を、図3に示す。前述した電解操作101の前に、鋼中微粒子のおよその平均粒径の事前分析ステップS3061と電解量の算出ステップS3062とからなる、およその平均粒径事前算出操作306を設ける。平均粒径の事前分析ステップS3061において、鋼中微粒子の平均粒径を事前に求める為の分析手法は、同一の鋼材から当該電解用試料1とは別に採取した試料に対し、微小領域を高倍率で観察と分析ができる方法を選択するのが望ましい。例えば、走査型電子顕微鏡、透過型電子顕微鏡、電子線マイクロプローブ分析装置、オージェ分析装置、X線電子分光装置および2次イオン質量分光装置といった装置を用いて分析する方法が利用できる。   In addition, the approximate average particle diameter of the fine particles in the electrolysis sample 1 obtained in advance, which is a measure of the amount of electrolysis, is the following using the same sample as the electrolysis sample 1 before the electrolysis operation 101: It can be obtained by the procedure described in 1. An example of the analysis flow in this case is shown in FIG. Before the electrolysis operation 101 described above, an approximate average particle size pre-calculation operation 306 is provided, which includes a pre-analysis step S3061 of an approximate average particle size of fine particles in steel and an electrolysis amount calculation step S3062. In the mean particle size pre-analysis step S3061, the analysis method for obtaining the average particle size of the fine particles in steel in advance is a high-magnification ratio of a small region of a sample collected from the same steel material separately from the sample 1 for electrolysis. It is desirable to select a method that allows observation and analysis in For example, a method of analyzing using a scanning electron microscope, a transmission electron microscope, an electron beam microprobe analyzer, an Auger analyzer, an X-ray electron spectrometer, and a secondary ion mass spectrometer can be used.

(4)電解用試料を所定量だけ電解したら、電解(溶解)されずに残った電解用試料片を電解装置から取り外し、分散性溶液中に浸漬して、鋼中微粒子を当該分散性溶液中に抽出する(抽出操作102)。抽出操作102は、洗浄ステップS1021、抽出ステップS1022および判定ステップS1023を備えている。   (4) When a predetermined amount of the electrolysis sample is electrolyzed, the electrolysis sample piece that has not been electrolyzed (dissolved) is removed from the electrolyzer and immersed in a dispersible solution, so that fine particles in steel are contained in the dispersible solution (Extraction operation 102). The extraction operation 102 includes a cleaning step S1021, an extraction step S1022, and a determination step S1023.

先ず、電解装置から取り外した電解用試料片を、メタノール中に静かに浸漬してから取り出す(洗浄ステップS1021)。   First, the sample piece for electrolysis removed from the electrolyzer is gently immersed in methanol and then removed (cleaning step S1021).

次に、取り出した電解用試料片を、今度は上記(2)の準備操作100で準備した分散性溶液中に浸漬する。   Next, the taken sample piece for electrolysis is immersed in the dispersible solution prepared in the preparation operation 100 of (2) above.

そして、当該分散性溶液中に浸漬したまま超音波を照射することで表面に付着している微粒子を剥離して、分散性溶液中に抽出する(抽出ステップS1022)。それから、分散性溶液中に抽出した微粒子の量が、測定可能な量に達したか否かを判定する(判定ステップS1023)。測定可能な量に達していない場合は、上記(3)の電解操作101に戻り、当該電解操作101から判定ステップS1023までを繰り返す。測定可能な量に達した場合は、次の操作へ進む。   Then, by irradiating ultrasonic waves while being immersed in the dispersible solution, the fine particles adhering to the surface are peeled off and extracted into the dispersible solution (extraction step S1022). Then, it is determined whether or not the amount of fine particles extracted into the dispersible solution has reached a measurable amount (determination step S1023). If the measurable amount has not been reached, the process returns to the electrolysis operation 101 in (3) above, and the process from the electrolysis operation 101 to the determination step S1023 is repeated. If the measurable amount is reached, proceed to the next operation.

洗浄ステップS1021は、電解時に生成する鉄錯体により着色した電解液が、分散性水溶液に混入しないようにするためのステップである。着色した電解液により分散性水溶液も着色されると、レーザ回折法や動的光散乱法など、光強度を利用した粒径分布測定装置を使用した場合、測定感度を損なうためである。よって、分析内容が、例えば鋼溶解後の電解液に含まれない成分の元素分析等であれば、特に設ける必要は無い(但し、電解液の構成元素を除く)。洗浄ステップS1021を設けるか否かは、分析内容、分析装置もしくは分散性溶液への混入量等を考慮の上、適宜決めれば良い。また、洗浄用の溶液は、電解液と良くなじんで少量で電解液を落とせるように、電解液の主成分で洗浄するのが好適である。   The washing step S1021 is a step for preventing the electrolytic solution colored by the iron complex generated during electrolysis from being mixed into the dispersible aqueous solution. This is because if the dispersible aqueous solution is also colored by the colored electrolyte solution, the measurement sensitivity is impaired when a particle size distribution measuring device using light intensity such as laser diffraction method or dynamic light scattering method is used. Therefore, if the analysis content is, for example, elemental analysis of components not included in the electrolytic solution after melting steel, there is no need to provide (except for the constituent elements of the electrolytic solution). Whether or not the cleaning step S1021 is provided may be determined as appropriate in consideration of the analysis content, the amount mixed into the analyzer or the dispersible solution, and the like. The washing solution is preferably washed with the main component of the electrolytic solution so that it can be well blended with the electrolytic solution and drop the electrolytic solution in a small amount.

なお、本発明において対象としている微粒子については、上記抽出ステップS1022で示した操作にて、ほぼ全量を回収することが可能である。   It should be noted that almost all the fine particles targeted in the present invention can be recovered by the operation shown in the extraction step S1022.

判定ステップS1023における、分散性溶液中に抽出した微粒子の量が測定可能な量に達したか否かの判定は、電解用試料の電解量の総質量が、予め定めた量に達したか否かで代用する。即ち、電解された電解用試料の総質量が予め定めた量に達していなければ、電解操作101に戻り、達した場合は、電解操作101および抽出操作102を止めて次操作へ進む。この時、電解用試料の電解量の総質量は、分散性溶液中の微粒子濃度と粒径より定める。何故なら、微粒子の粒径分布を測定する際には、装置の測定感度の観点から溶液中の微粒子濃度が重要だからである。通常、電解操作101から判定ステップS1023までの操作は、1個の電解用試料に対して数回繰り返す。実際、電解用試料1の表面積が小さくなれば、分析操作105における分析手法上必要な微粒子濃度を得ることができる量まで電解するには、電解する厚み(以降、電解厚み、とも呼ぶ)を多くとる必要がある。この場合は、電解操作101で行う所定の電解厚みを、事前に求めておいた電解用試料1の中の微粒子のおよその平均粒径の1倍以上、50倍以下とし、かつ電解操作101から抽出操作102までを複数回繰り返すことで、電解した電解用試料の総質量が、測定可能な微粒子濃度となる量となるようにすれば、なお望ましい形態となる。   In the determination step S1023, whether or not the amount of fine particles extracted in the dispersible solution has reached a measurable amount is determined by whether or not the total mass of the electrolysis amount of the electrolysis sample has reached a predetermined amount. Substitute with. That is, if the total mass of the electrolyzed sample has not reached a predetermined amount, the process returns to the electrolysis operation 101, and if it has reached, the electrolysis operation 101 and the extraction operation 102 are stopped and the operation proceeds to the next operation. At this time, the total mass of the electrolysis amount of the sample for electrolysis is determined from the concentration of fine particles and the particle size in the dispersible solution. This is because, when measuring the particle size distribution of the fine particles, the concentration of the fine particles in the solution is important from the viewpoint of the measurement sensitivity of the apparatus. Usually, the operation from the electrolysis operation 101 to the determination step S1023 is repeated several times for one electrolysis sample. In fact, if the surface area of the sample 1 for electrolysis is reduced, the electrolysis thickness (hereinafter also referred to as electrolysis thickness) is increased in order to perform electrolysis up to an amount capable of obtaining the fine particle concentration required for the analysis technique in the analysis operation 105 It is necessary to take. In this case, the predetermined electrolytic thickness performed in the electrolysis operation 101 is set to be 1 to 50 times the approximate average particle diameter of the fine particles in the electrolysis sample 1 obtained in advance, and from the electrolysis operation 101 If the total mass of the electrolyzed sample to be electrolyzed becomes an amount that gives a measurable fine particle concentration by repeating the extraction operation 102 a plurality of times, it is still a desirable form.

(5)次に、分散性溶液中に抽出した微粒子から、磁気分離方法によりセメンタイトを除去する(磁気分離操作103)。この操作は、炭素含有量の多い材料など、微粒子の分析を行なう上で、セメンタイト等の除去を必要とする場合に行う。   (5) Next, cementite is removed from the fine particles extracted in the dispersible solution by a magnetic separation method (magnetic separation operation 103). This operation is performed when it is necessary to remove cementite or the like in analyzing fine particles such as a material having a high carbon content.

この操作を最も簡便に行なうには、微粒子を分散させた溶液中に磁石の棒などを入れて攪拌すれば良い。なお、セメンタイトが磁石棒に磁着する際に微粒子も巻き込んでしまう恐れがあるため、超音波などにより分散性溶液を振動させる等して、セメンタイトと分析対象の微粒子を分離させて分別操作を行なうことが好ましい。また、磁石を繰り返し使用する場合には、洗浄のし易さを鑑み、分散性溶液を入れた容器の外側から磁石を近づけたままデカンテーションさせたり、装脱着が可能なガラス管を磁石棒の周囲に配置した状態で攪拌操作を行なう等の方法が考えられる。   In order to perform this operation most simply, a magnetic rod or the like may be placed in a solution in which fine particles are dispersed and stirred. In addition, when cementite is magnetically attached to a magnetic rod, fine particles may also be involved. Therefore, the cementite and fine particles to be analyzed are separated by, for example, vibrating the dispersible solution with ultrasonic waves. It is preferable. In addition, when the magnet is used repeatedly, in view of ease of cleaning, a glass tube that can be decanted from the outside of the container in which the dispersible solution is placed and the magnet is brought close to the magnet rod is attached to the magnet rod. A method such as performing a stirring operation in a state of being arranged around is conceivable.

(6)分散性溶液中に分散したままの微粒子に対し、超音波を利用して粒径別に分別する分級操作を行なう(分級操作104)。分散性溶液中に、分析対象外粒子と分析対象微粒子が混在する場合には、この分級操作104により分析対象微粒子のみを分離する必要がある。この操作は、分析対象外粒子と分析対象微粒子とで粒径が異なり、分析対象粒子が分析対象外粒子よりも小さい場合に利用できる。   (6) A classification operation is performed on the fine particles dispersed in the dispersible solution by using ultrasonic waves to classify them according to particle diameter (classification operation 104). When the non-analytical particles and the analysis target fine particles coexist in the dispersible solution, it is necessary to separate only the analysis target fine particles by the classification operation 104. This operation can be used when the non-analysis particles and the analysis microparticles have different particle sizes, and the analysis particles are smaller than the non-analysis particles.

分級操作104に用いる器具は、汎用的に用いられている物で構わないが、ろ紙はろ過する分散性溶液の特性に応じて選定する必要がある。分散性溶液の粘度や液中の微粒子濃度が高い場合は、ろ過に時間を要することがあるので、必要に応じて吸引ろ過も行なえる方式とすることが、好ましい。   The instrument used for the classification operation 104 may be a commonly used one, but the filter paper needs to be selected according to the characteristics of the dispersible solution to be filtered. When the viscosity of the dispersible solution and the concentration of fine particles in the liquid are high, it may take time for filtration. Therefore, it is preferable to adopt a system that can perform suction filtration as necessary.

また、分散性溶液中での凝集を防ぐために、分散性溶液に超音波による振動を加えることで、微粒子の凝集を抑制しながら分級すれば、さらに好ましい。分散性溶液への振動の加え方も様々であるが、超音波発振子を粒子の分散溶液中に直接浸漬させる方法が効率的である。この操作の後に使用する粒径分布測定装置やその原理にもよるが、微粒子の粒径測定は、大きな粒子の影響を受けやすい。特に、粒子の散乱強度を指標とした測定装置の場合には、分析対象外の大径粒子(具体的には平均粒径1μm超の析出物もしくは介在物)の影響が大きいため、これらを除去することが重要である。   In order to prevent aggregation in the dispersible solution, it is more preferable to classify the dispersible solution while suppressing aggregation of the fine particles by applying ultrasonic vibration. Although there are various ways of applying vibration to the dispersible solution, it is efficient to immerse the ultrasonic oscillator directly in the particle dispersion solution. Depending on the particle size distribution measuring apparatus used after this operation and its principle, the particle size measurement of fine particles is easily affected by large particles. In particular, in the case of a measuring device using the particle scattering intensity as an index, the influence of large-sized particles that are not analyzed (specifically, precipitates or inclusions with an average particle size exceeding 1 μm) is large, so these are removed. It is important to.

ここで、上記(5)の磁気分離操作103と上記(6)の分級操作104は、どちらの操作が先であっても構わない。しかし、鋼中微粒子を分級する場合には、通常、孔径が小径のフィルタを利用する事から、(5)磁気分離操作103を先に行なう方が良い。(6)分級操作104を先に行なうと、セメンタイトによるフィルタの目詰まりの影響が大きいために、ろ過に長時間を要することがある。   Here, either the magnetic separation operation 103 in (5) or the classification operation 104 in (6) may be performed first. However, when fine particles in steel are classified, a filter having a small pore size is usually used. Therefore, it is better to perform (5) magnetic separation operation 103 first. (6) If the classification operation 104 is performed first, the filter may be clogged by cementite, so that filtration may take a long time.

また、上記(5)の磁気分離操作103と上記(6)の分級操作104は、例えば、測定対象以外の妨害成分を含まない場合等、必要が無い場合は、省略しても良い。   Further, the magnetic separation operation 103 in (5) and the classification operation 104 in (6) may be omitted if they are not necessary, for example, when no interference components other than the measurement target are included.

また、特に小径側の粒径分布を、動的光散乱法にて正確に測定したい場合には、上記(5)磁気分離操作103または上記(6)分級操作104の後に、大径側粒子除去操作407を追加するのが望ましい。何故なら、動的光散乱法においては、粒径の6乗に比例して散乱強度が強くなる為に、粒径の大きい微粒子の個数が、見かけ上多くなる傾向にあるからである。   In particular, when it is desired to accurately measure the particle size distribution on the small diameter side by the dynamic light scattering method, the particle removal on the large diameter side is performed after the above (5) magnetic separation operation 103 or (6) classification operation 104. It is desirable to add operation 407. This is because, in the dynamic light scattering method, since the scattering intensity increases in proportion to the sixth power of the particle size, the number of fine particles having a large particle size tends to increase apparently.

大径側粒子除去操作407において、分析対象となる小径側の粒子と、分析対象外としたい大径側の粒子とを分離する手法としては、ろ過法または遠心分離法を用いることができる。即ち、上記大径側粒子除去操作407は、ろ過法を行うろ過ステップS4071、または遠心分離法を行う遠心分離ステップS4072からなる。図3の分析フローにおける分級操作104の後に、大径側粒子除去操作407を追加した場合の分析フローの一例を図4に示す。   In the large-diameter side particle removal operation 407, a filtration method or a centrifugal separation method can be used as a method for separating the small-diameter side particles to be analyzed from the large-diameter side particles to be excluded from the analysis target. That is, the large-diameter side particle removal operation 407 includes a filtration step S4071 for performing a filtration method or a centrifugation step S4072 for performing a centrifugation method. FIG. 4 shows an example of the analysis flow when the large-diameter side particle removal operation 407 is added after the classification operation 104 in the analysis flow of FIG.

図4において、小径側粒径と大径側粒径が、大きく異なる場合には、ろ過法を適用したろ過ステップS4071へ進む。一方、分析対象の微粒子の密度が、ほぼ一様であることが期待できる場合には、遠心分離ステップS4702へ進むことを選択するのが望ましい。遠心分離法の場合、ろ過法と比較して、回転させる速度と時間の細かい制御により分離条件を任意で設定することが可能となる。また、分散液の量が少ない場合も遠心分離法が有効である。ろ過法は、フィルタを利用する方法が最も簡便であるため、好ましい方法である。   In FIG. 4, when the small-diameter side particle size and the large-diameter side particle size are greatly different, the process proceeds to filtration step S4071 to which a filtration method is applied. On the other hand, when the density of the microparticles to be analyzed can be expected to be substantially uniform, it is desirable to select to proceed to the centrifugation step S4702. In the case of the centrifugal separation method, as compared with the filtration method, it is possible to arbitrarily set the separation conditions by fine control of the rotation speed and time. Also, the centrifugal separation method is effective when the amount of the dispersion is small. The filtration method is a preferred method because a method using a filter is the simplest.

(7)以上の手順で得られた、分級操作104後(場合によっては、大径側粒子除去操作407後)の微粒子を含んだ分散性溶液を、粒径分布測定装置にかける(分析操作105)。例えば、動的光散乱法により分析することができる。   (7) The dispersive solution containing the fine particles obtained after the classification operation 104 (in some cases, after the large-diameter side particle removal operation 407) obtained by the above procedure is applied to the particle size distribution measuring apparatus (analysis operation 105). ). For example, it can be analyzed by a dynamic light scattering method.

上記(1)から(7)の手順で行えば、電解後の鋼表面に露出した微粒子を、直ちに分散性の良い適当な溶媒中に抽出し捕集できることから、凝集し易い微粒子の分散性を確保することが可能となる。この操作により、以降の磁気分離操作103や分級操作104が的確になされ、精度の高い粒径分布測定結果が得られる。もし、分散性溶液中で抽出された微粒子の分散性が悪いと、例えば、磁気分離する際に分析対象とする微粒子がセメンタイトに巻き込まれたり、もしくは凝集が起こって分級操作104が目的通りになされないという問題が発生する。   If the procedure of (1) to (7) is performed, the fine particles exposed on the steel surface after electrolysis can be immediately extracted and collected in a suitable solvent having good dispersibility. It can be secured. By this operation, the subsequent magnetic separation operation 103 and classification operation 104 are accurately performed, and a highly accurate particle size distribution measurement result is obtained. If the dispersibility of the fine particles extracted in the dispersible solution is poor, for example, the fine particles to be analyzed are entrained in cementite during magnetic separation, or agglomeration occurs and the classification operation 104 becomes as intended. The problem of not being generated.

また、溶解性溶液とは異なる抽出用の分散性溶液を任意に選択することができるので、微粒子に適した分散性溶液を用いることができる。これらにより、抽出後の分析、特に粒径分布、を精度良く分析することが可能となる。また、簡便かつ極めて短時間で統計的に信頼性のある分析結果を得ることができる。   In addition, since a dispersible solution for extraction different from the soluble solution can be arbitrarily selected, a dispersible solution suitable for fine particles can be used. By these, it becomes possible to analyze the analysis after extraction, particularly the particle size distribution with high accuracy. Moreover, a statistically reliable analysis result can be obtained in a simple and extremely short time.

なお、本実施の形態においては、電解液を用いた電解法にて鋼を溶解したが、本発明はこれに限定するものでは無い。他に、溶解性の低い微粒子の場合には、酸性の水溶液を溶解性溶液とした酸溶解法という方法も使用できる。この場合、電解操作101に代えて、電解操作101での電解法を酸溶解法等に代えた溶解操作となる。分析対象の微粒子や、溶解すべきの鋼の種類や溶解量により、適切な溶解手法を適宜決定すれば良い。   In the present embodiment, steel is melted by an electrolytic method using an electrolytic solution, but the present invention is not limited to this. In addition, in the case of fine particles with low solubility, an acid dissolution method using an acidic aqueous solution as a soluble solution can also be used. In this case, instead of the electrolysis operation 101, the electrolysis method in the electrolysis operation 101 is a dissolution operation in which the acid dissolution method or the like is used. An appropriate melting method may be determined as appropriate depending on the fine particles to be analyzed, the type of steel to be dissolved, and the amount of dissolution.

実施の形態の(1)から(7)の手順と図1の分析フローに従って粒径分布測定を行なった例を、実施例1の本発明例として説明する。各操作の具体的な条件は、以下に示す通りであるが、本発明は下記の具体的な条件に制限されるものではない。   An example in which the particle size distribution measurement is performed according to the procedures (1) to (7) of the embodiment and the analysis flow of FIG. 1 will be described as an example of the present invention of Example 1. Specific conditions for each operation are as follows, but the present invention is not limited to the following specific conditions.

鋼として炭素鋼を使用し、その化学成分は、C:0.10mass%、Si:0.2mass%、Mn:1.0mass%、P:0.024mass%、S:0.009mass%、Cr:0.03mass%、Ti:0.05mass%である。この鋼を20mm×50mm×1mmの大きさに加工したものを、電解用試料として4枚用意した。   Carbon steel is used as the steel, and its chemical composition is C: 0.10 mass%, Si: 0.2 mass%, Mn: 1.0 mass%, P: 0.024 mass%, S: 0.009 mass%, Cr: 0.03 mass%, Ti : 0.05 mass%. Four pieces of this steel processed into a size of 20 mm × 50 mm × 1 mm were prepared as electrolysis samples.

電解操作101は、図2と同じ装置構成にて行い、電解液として、500mlの10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)を使用した。また、電解用試料1枚につき、0.1gずつの電解を行なった。さらに、全ての電解用試料について、表層の汚染を除去するための捨て電解を、最初に1度だけ電解操作101の直前に行なった。   The electrolysis operation 101 was carried out with the same apparatus configuration as in FIG. 2, and 500 ml of 10% AA-based electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride-methanol) was used as the electrolyte. In addition, 0.1 g of electrolysis was performed for each electrolysis sample. Further, all the electrolysis samples were subjected to discarded electrolysis for removing the surface layer contamination first before the electrolysis operation 101 only once.

抽出操作102に用いる分散性溶液としては、濃度500mg/lのヘキサメタリン酸ナトリウム水溶液を用い、これを50mlだけ電解装置とは別のビーカーに準備した。   As a dispersible solution used for the extraction operation 102, a sodium hexametaphosphate aqueous solution having a concentration of 500 mg / l was used, and 50 ml of this was prepared in a beaker separate from the electrolyzer.

なお、最適なヘキサメタリン酸ナトリウム濃度については、ゼータ電位計を用いて決定した。ヘキサメタリン酸ナトリウム濃度と、ゼータ電位もしくは測定された平均粒径との関係の例を、図11に示す。なお、この平均粒径は、本実施例の試料と同一組織の別試料にて求めた。この図11より、分散性溶液のゼータ電位の絶対値が大きくなると、平均粒径が小さくなり凝集を防ぐ傾向にあることが分かる。またこの結果から、本実施例において最適なヘキサメタリン酸ナトリウム濃度は、500mg/lであると判断した。   In addition, about the optimal sodium hexametaphosphate density | concentration, it determined using the zeta electrometer. An example of the relationship between the sodium hexametaphosphate concentration and the zeta potential or the measured average particle size is shown in FIG. The average particle diameter was determined using another sample having the same structure as the sample of this example. From FIG. 11, it can be seen that when the absolute value of the zeta potential of the dispersible solution is increased, the average particle size is decreased and aggregation tends to be prevented. From this result, it was determined that the optimum sodium hexametaphosphate concentration in this example was 500 mg / l.

このヘキサメタリン酸ナトリウム水溶液は、無機微粒子に対して広く分散性を有する。ヘキサメタリン酸ナトリウム水溶液の濃度は、100mg/l以上、10000mg/l以下であることが好ましい。何故なら、濃度が低すぎると分散効果が不足し、濃度が高すぎると逆に凝集の効果が発現するためである。   This aqueous sodium hexametaphosphate solution is widely dispersible with respect to inorganic fine particles. The concentration of the aqueous sodium hexametaphosphate solution is preferably 100 mg / l or more and 10000 mg / l or less. This is because if the concentration is too low, the dispersion effect is insufficient, while if the concentration is too high, the effect of aggregation is manifested.

また、抽出操作102中も、分散性溶液には超音波による振動を加えた。   In addition, during the extraction operation 102, ultrasonic vibration was applied to the dispersible solution.

そして、電解操作101から抽出操作102までを、電解用試料1枚に付き10回繰り返した後、磁気分離操作103へ進んだ。ここで、統計的に信頼性のあるデータを採取するために、電解用試料1枚に付き電解操作101から抽出操作102までを10回繰り返して得られた微粒子全てを、同じ分散性溶液に抽出した。   Then, the electrolysis operation 101 to the extraction operation 102 were repeated 10 times per electrolysis sample, and then the magnetic separation operation 103 was performed. Here, in order to collect statistically reliable data, all the fine particles obtained by repeating the electrolysis operation 101 to the extraction operation 102 for one electrolysis sample 10 times are extracted into the same dispersive solution. did.

磁気分離操作103は、分散性溶液中に磁石棒を入れて攪拌することで行なった。また、磁気分離操作中も、分散性溶液には超音波による振動を加えた。   The magnetic separation operation 103 was performed by putting a magnetic rod in the dispersible solution and stirring. In addition, ultrasonic vibration was applied to the dispersible solution during the magnetic separation operation.

分析対象外粒子の除去手段としての分級操作104は、セメンタイト除去後の微粒子を含んだ分散性溶液を0.4μmのフィルタを用い超音波を利用して分級することで行なった。チップを液中に浸漬させて加振するタイプの超音波発生装置を用い、濃度が500mg/lのヘキサメタリン酸ナトリウム水溶液20ml程度をフィルタの上に注ぎ、発振子を浸して超音波を発生させた状態としてから、微粒子を含んだ分散性溶液を加えた。   The classification operation 104 as a means for removing non-analyzed particles was performed by classifying the dispersible solution containing the fine particles after the removal of cementite using an ultrasonic wave using a 0.4 μm filter. Using an ultrasonic generator of the type that immerses the chip in the solution and vibrates, about 20 ml of a sodium hexametaphosphate aqueous solution with a concentration of 500 mg / l is poured onto the filter, and an ultrasonic wave is generated by immersing the oscillator. After being in the state, a dispersible solution containing fine particles was added.

その後、動的光散乱方式の粒径分布測定装置にて、分散性溶液中の微粒子の粒径分布を測定した。得られた結果を図5に示す。   Thereafter, the particle size distribution of the fine particles in the dispersible solution was measured with a dynamic light scattering type particle size distribution measuring apparatus. The obtained results are shown in FIG.

比較例として、電解操作101の後に、洗浄ステップS1021を行なわず、かつ抽出ステップS1022において、微粒子に対して分散性を有さないメタノール中に鋼中微粒子を抽出した場合の、メタノール溶液も得ておいた。これ以外の、電解操作101、ステップS1022からS1023まで、および磁気分離操作103から分析操作105までは、実施例と全く同様である。得られた粒径分布の結果を、同じく図5に示す。   As a comparative example, a methanol solution is also obtained in which the washing step S1021 is not performed after the electrolysis operation 101, and the fine particles in steel are extracted into methanol that is not dispersible with respect to the fine particles in the extraction step S1022. Oita. Other than this, the electrolysis operation 101, steps S1022 to S1023, and the magnetic separation operation 103 to the analysis operation 105 are exactly the same as in the embodiment. The result of the obtained particle size distribution is also shown in FIG.

図5において、比較例に比べ、本発明例の方が、全体に平均粒径が小さい側に分布している。これは、比較例においては、凝集して見かけの粒径が大きくなってしまったため、同じ鋼で相対的に平均粒径が大きい側へ分布していると考えられる。よって、この結果から、本発明によれば、微細な粒子を抽出する際に生じやすい凝集を、大幅に抑制できることが明らかになった。   In FIG. 5, compared with the comparative example, the example of the present invention is distributed on the side where the average particle size is smaller as a whole. This is because in the comparative example, the apparent particle size is increased due to aggregation, so that it is considered that the same steel is distributed to the side having a relatively large average particle size. Therefore, from this result, according to the present invention, it has been clarified that aggregation that tends to occur when fine particles are extracted can be significantly suppressed.

電解法における電解厚み(事前に求めた微粒子の平均粒径に対する倍率で示す)と、抽出された微粒子の平均粒径との関係を調査した結果を実施例2とした。実施の形態の(1)から(7)の手順と図3の分析フローに従って粒径分布測定を行ない、その結果から平均粒径を算出した。各操作の具体的な条件は、以下に示す通りであるが、本発明は下記の具体的な条件に制限されるものではない。   The result of investigating the relationship between the electrolytic thickness in the electrolytic method (represented by the magnification with respect to the average particle diameter of the fine particles obtained in advance) and the average particle diameter of the extracted fine particles was taken as Example 2. The particle size distribution was measured according to the procedures (1) to (7) of the embodiment and the analysis flow of FIG. 3, and the average particle size was calculated from the results. Specific conditions for each operation are as follows, but the present invention is not limited to the following specific conditions.

鋼として炭素鋼を使用し、その化学成分は、C:0.10mass%、Si:0.2mass%、Mn:1.0mass%、P:0.024mass%、S:0.009mass%、Cr:0.03mass%、Ti:0.05mass%である。この鋼を20mm×50mm×1mmの大きさに加工したものを、電解用試料として4枚用意した。一方、同一鋼から別に採取したものを、事前分析用試料として1枚用意した。   Carbon steel is used as the steel, and its chemical composition is C: 0.10 mass%, Si: 0.2 mass%, Mn: 1.0 mass%, P: 0.024 mass%, S: 0.009 mass%, Cr: 0.03 mass%, Ti : 0.05 mass%. Four pieces of this steel processed into a size of 20 mm × 50 mm × 1 mm were prepared as electrolysis samples. On the other hand, one sample collected separately from the same steel was prepared as a sample for preliminary analysis.

平均粒径事前算出操作306における平均粒径の事前分析ステップS3061は、走査型電子顕微鏡を用いて行った。事前分析用試料を軽くエッチングした後、その表面を走査型電子顕微鏡にて3×104倍で10視野撮影した。撮影された写真をコンピュータにて画像処理を行い、各微粒子の平均直径を粒径として求めた。そして、全微粒子の粒径分布に対する中央値(メジアン)を、事前に求めた、電解用試料中の微粒子のおよその平均粒径(以降、事前平均粒径と呼ぶ)とした。この事前平均粒径に対し、6倍、12倍、18倍、36倍の4水準の電解厚みを設定した。次の電解量の算出ステップS3062で、これら設定した電解厚みを電解用試料の鋼の質量に換算し、さらに、この換算された鋼の質量を電解できる、供給電荷量に換算した。この供給電荷量と電流密度より電解時間を算出し、この電解時間にて電解量を制御した。 The average particle size pre-analysis step S3061 in the average particle size pre-calculation operation 306 was performed using a scanning electron microscope. After lightly etching the sample for preliminary analysis, the surface of the sample was photographed at 10 × 3 × 10 4 times with a scanning electron microscope. The photograph taken was subjected to image processing with a computer, and the average diameter of each fine particle was determined as the particle diameter. Then, the median (median) with respect to the particle size distribution of all the fine particles was determined in advance as the approximate average particle size of the fine particles in the sample for electrolysis (hereinafter referred to as the prior average particle size). Four levels of electrolytic thickness were set to 6 times, 12 times, 18 times, and 36 times with respect to the prior average particle diameter. In the next electrolysis amount calculation step S3062, the set electrolysis thickness was converted into the mass of steel of the sample for electrolysis, and further, the converted mass of steel was converted into the supply charge amount that can be electrolyzed. The electrolysis time was calculated from the supplied charge amount and the current density, and the electrolysis amount was controlled by this electrolysis time.

電解操作101は、図2と同じ装置構成にて行い、電解液として、200mlの10%AA系電解液を使用した。また、全ての電解用試料について、表層の汚染を除去するための捨て電解を、最初に1度だけ電解操作101の直前に行なった。   The electrolysis operation 101 was performed with the same apparatus configuration as in FIG. 2, and 200 ml of 10% AA-based electrolyte was used as the electrolyte. For all the electrolysis samples, the discard electrolysis for removing the surface contamination was first performed just before the electrolysis operation 101 once.

さらに、上記電解厚み1水準に対して電解用試料を1枚ずつ用いて、上記平均粒径事前算出操作306で設定した電解厚みだけ電解を行った。電解時の電流密度は、全ての水準において20mA/cm2とした。 Further, electrolysis was performed for the electrolytic thickness set in the average particle size pre-calculation operation 306 using one electrolysis sample for each level of electrolytic thickness. The current density during electrolysis was 20 mA / cm 2 at all levels.

抽出操作102に用いる分散性溶液としては、濃度500mg/lのヘキサメタリン酸ナトリウム水溶液を用い、別のビーカーに準備した。抽出操作102中は、分散性溶液に超音波による振動を加えて、電解用試料表面に付着した状態の微粒子をヘキサメタリン酸ナトリウム水溶液中に分散させた。   As a dispersible solution used for the extraction operation 102, a sodium hexametaphosphate aqueous solution having a concentration of 500 mg / l was used and prepared in another beaker. During the extraction operation 102, ultrasonic vibration was applied to the dispersible solution to disperse the fine particles adhered to the surface of the electrolysis sample in the aqueous solution of sodium hexametaphosphate.

そして、電解操作101から抽出操作102までを、電解用試料1枚に付き10回繰り返した後、磁気分離操作103へ進んだ。また、統計的に信頼性のあるデータを採取するために、電解用試料1枚に付き電解操作101から抽出操作102までを10回繰り返して得られた微粒子全てを、同じ分散性溶液に抽出した。   Then, the electrolysis operation 101 to the extraction operation 102 were repeated 10 times per electrolysis sample, and then the magnetic separation operation 103 was performed. In addition, in order to collect statistically reliable data, all the fine particles obtained by repeating the electrolysis operation 101 to the extraction operation 102 10 times per one electrolysis sample were extracted into the same dispersive solution. .

磁気分離操作103は、分散性溶液中に磁石棒を入れて攪拌することで行なった。また、磁気分離操作103中も、分散性溶液には超音波による振動を加えた。   The magnetic separation operation 103 was performed by putting a magnetic rod in the dispersible solution and stirring. In addition, during the magnetic separation operation 103, ultrasonic vibration was applied to the dispersible solution.

分析対象外粒子の除去手段としての分級操作104は、セメンタイト除去後の微粒子を含んだ分散性溶液を、孔径0.4μmのフィルタを用い超音波を利用して分級することで行なった。チップを液中に浸漬させて加振するタイプの超音波発生装置を用い、濃度が500mg/lのヘキサメタリン酸ナトリウム水溶液20ml程度をフィルタの上に注ぎ、発振子を浸して超音波を発生させた状態としてから、微粒子を含んだヘキサメタリン酸ナトリウム水溶液を加えた。   The classification operation 104 as a means for removing non-analyzed particles was performed by classifying a dispersible solution containing fine particles after removal of cementite using an ultrasonic wave using a filter having a pore diameter of 0.4 μm. Using an ultrasonic generator of the type that immerses the chip in the solution and vibrates, about 20 ml of a sodium hexametaphosphate aqueous solution with a concentration of 500 mg / l is poured onto the filter, and an ultrasonic wave is generated by immersing the oscillator. After the state was reached, an aqueous solution of sodium hexametaphosphate containing fine particles was added.

その後、動的光散乱方式の粒径分布測定装置にて、分散性溶液中の微粒子の粒径分布を測定した。電解厚みが事前平均粒径の6倍と36倍の場合の粒径分布の例を、図6に示す。   Thereafter, the particle size distribution of the fine particles in the dispersible solution was measured with a dynamic light scattering type particle size distribution measuring apparatus. An example of the particle size distribution when the electrolytic thickness is 6 times and 36 times the prior average particle size is shown in FIG.

この粒径分布結果から、全微粒子の粒径分布に対する中央値(メジアン)を平均粒径として算出した。さらに、上記と同一の手順と条件による粒径分布測定を、電解量1水準あたり4回行い、得られた4つの平均粒径の値をさらに単純算術平均して、電解厚み1水準あたりの平均粒径とした。得られた結果を図7に示す。図7中の、白丸(符号:○)が電解厚み1水準あたりの平均粒径を、エラーバーが4つの平均粒径の値の範囲を示している。   From this particle size distribution result, the median (median) with respect to the particle size distribution of all the fine particles was calculated as the average particle size. In addition, the particle size distribution measurement was performed four times per electrolytic level per the same procedure and conditions as above, and the average value per electrolytic thickness was calculated by further averaging the four average particle sizes obtained. The particle size was taken. The obtained results are shown in FIG. In FIG. 7, white circles (symbols: ◯) indicate the average particle size per level of electrolytic thickness, and error bars indicate the range of four average particle size values.

図7では、電解厚みが薄くなるに従い、抽出微粒子の平均粒径が小さくなる傾向が見られた。即ち、電解厚みを厚くすると、凝集して見かけの粒径が大きくなってしまうと考えられる。よって、この結果から、電解操作101中に発生する微粒子の凝集を抑制するためには、電解操作101から抽出操作102までにおける電解量を、電解用試料1の厚み換算で薄い方がより望ましいことが明らかになった。今回の試料については、電解操作101での電解厚みを、事前平均粒径の6倍程度以下とした場合に、さらに大きく凝集を緩和できた。なお、試料により最適な電解厚みは異なるので、試料に応じて電解厚み条件の最適化を行なう必要がある。   In FIG. 7, the average particle diameter of the extracted fine particles tended to decrease as the electrolytic thickness was reduced. That is, when the electrolytic thickness is increased, it is considered that the apparent particle size is increased due to aggregation. Therefore, from this result, in order to suppress the aggregation of fine particles generated during the electrolysis operation 101, it is more desirable that the amount of electrolysis from the electrolysis operation 101 to the extraction operation 102 is thinner in terms of the thickness of the electrolysis sample 1. Became clear. In the case of this sample, when the electrolytic thickness in the electrolysis operation 101 was set to about 6 times or less of the prior average particle diameter, aggregation could be further greatly reduced. Note that since the optimum electrolytic thickness varies depending on the sample, it is necessary to optimize the electrolytic thickness condition according to the sample.

電解法における電流密度と抽出された微粒子の平均粒径との関係を調査した結果を、実施例3とした。実施の形態の(1)から(7)の手順と図3の分析フローに従って粒子分布測定を行なった。各操作の具体的な条件は、以下に示す通りであるが、本発明は下記の具体的な条件に制限されるものではない。   The result of investigating the relationship between the current density in the electrolysis method and the average particle diameter of the extracted fine particles was taken as Example 3. The particle distribution was measured according to the procedures (1) to (7) of the embodiment and the analysis flow of FIG. Specific conditions for each operation are as follows, but the present invention is not limited to the following specific conditions.

鋼として炭素鋼を使用し、その化学成分は、C:0.10mass%、Si:0.2mass%、Mn:1.0mass%、P:0.024mass%、S:0.009mass%、Cr:0.03mass%、Ti:0.05mass%である。この鋼を20mm×50mm×1mmの大きさに加工したものを、電解用試料として5枚用意した。   Carbon steel is used as the steel, and its chemical composition is C: 0.10 mass%, Si: 0.2 mass%, Mn: 1.0 mass%, P: 0.024 mass%, S: 0.009 mass%, Cr: 0.03 mass%, Ti : 0.05 mass%. Five pieces of this steel processed into a size of 20 mm × 50 mm × 1 mm were prepared as electrolysis samples.

先ず、平均粒径事前算出操作306を実施例2と同一条件で行い、事前平均粒径と電解操作101における電解の量を設定した。本実施例の場合、電解操作101での電解量は、事前平均粒径の6倍の電解厚みに相当する量とした。この電解厚みを電解用試料の鋼の質量に換算し、この換算された鋼の質量を電解できる供給電荷量に換算し、さらに、この供給電荷量と電流密度より電解時間を算出した。   First, the average particle diameter pre-calculation operation 306 was performed under the same conditions as in Example 2, and the prior average particle diameter and the amount of electrolysis in the electrolysis operation 101 were set. In the case of this example, the amount of electrolysis in the electrolysis operation 101 was set to an amount corresponding to an electrolysis thickness of 6 times the prior average particle diameter. This electrolytic thickness was converted to the mass of steel of the sample for electrolysis, and the converted mass of steel was converted to a supply charge amount that could be electrolyzed, and the electrolysis time was calculated from this supply charge amount and current density.

電解操作101は、図2と同じ装置構成にて行い、電解液として、200mlの10%AA系電解液を使用した。また、全ての電解用試料について、表層の汚染を除去するための捨て電解を、最初に1度だけ電解操作101の直前に行なった。電解量は、先の平均粒径事前算出操作306で算出した電解時間にて、制御した。   The electrolysis operation 101 was performed with the same apparatus configuration as in FIG. 2, and 200 ml of 10% AA-based electrolyte was used as the electrolyte. For all the electrolysis samples, the discard electrolysis for removing the surface contamination was first performed just before the electrolysis operation 101 once. The amount of electrolysis was controlled by the electrolysis time calculated in the previous average particle diameter pre-calculation operation 306.

電流密度は、1mA/cm2、2mA/cm2、5mA/cm2、10mA/cm2、および20mA/cm2の5水準とし、それぞれの水準に対し、電解用試料を1枚ずつ用いた。 Current density, the five levels of 1mA / cm 2, 2mA / cm 2, 5mA / cm 2, 10mA / cm 2, and 20 mA / cm 2, for each level, was used one by one electrolysis sample.

抽出操作102にて用いる分散性溶液としては、濃度500mg/lのヘキサメタリン酸ナトリウム水溶液を用い、別のビーカーに準備した。抽出操作102中は、分散性溶液に超音波による振動を加えて、電解用試料表面に付着した状態の微粒子をヘキサメタリン酸ナトリウム水溶液中に分散させた。   As a dispersible solution used in the extraction operation 102, a sodium hexametaphosphate aqueous solution having a concentration of 500 mg / l was used and prepared in another beaker. During the extraction operation 102, ultrasonic vibration was applied to the dispersible solution to disperse the fine particles adhered to the surface of the electrolysis sample in the aqueous solution of sodium hexametaphosphate.

そして、電解操作101から抽出操作102までを、電解用試料1枚に付き10回繰り返した後に、磁気分離操作103へ進んだ。また、統計的に信頼性のあるデータを採取するために、電解用試料1枚に付き電解操作101から抽出操作102までを10回繰り返して得られた微粒子全てを、同じ分散性溶液に抽出した。   Then, the electrolysis operation 101 to the extraction operation 102 were repeated 10 times for one electrolysis sample, and then the magnetic separation operation 103 was performed. In addition, in order to collect statistically reliable data, all the fine particles obtained by repeating the electrolysis operation 101 to the extraction operation 102 10 times per one electrolysis sample were extracted into the same dispersive solution. .

磁気分離操作103は、分散性溶液中に磁石棒を入れて攪拌することで行なった。また、磁気分離操作103中も、分散性溶液には超音波による振動を加えた。   The magnetic separation operation 103 was performed by putting a magnetic rod in the dispersible solution and stirring. In addition, during the magnetic separation operation 103, ultrasonic vibration was applied to the dispersible solution.

分析対象外粒子の除去手段としての分級操作104は、セメンタイト除去後の微粒子を含んだ分散性溶液を、孔径0.4μmのフィルタと超音波を利用したろ過法により分級することで行なった。チップを液中に浸漬させて加振するタイプの超音波発生装置を用い、濃度が500mg/lのヘキサメタリン酸ナトリウム水溶液20ml程度をフィルタの上に注ぎ、発振子を浸して超音波を発生させた状態としてから、微粒子を含んだヘキサメタリン酸ナトリウム水溶液を加えた。   The classification operation 104 as a means for removing non-analyzed particles was performed by classifying the dispersible solution containing fine particles after the removal of cementite by a filtration method using a filter having a pore size of 0.4 μm and ultrasonic waves. Using an ultrasonic generator of the type that immerses the chip in the solution and vibrates, about 20 ml of a sodium hexametaphosphate aqueous solution with a concentration of 500 mg / l is poured onto the filter, and an ultrasonic wave is generated by immersing the oscillator. After the state was reached, an aqueous solution of sodium hexametaphosphate containing fine particles was added.

その後、動的光散乱方式の粒径分布測定装置にて、分散性溶液中の微粒子の粒径分布を測定し、その粒径分布結果から全微粒子の粒径分布に対する中央値(メジアン)を平均粒径として算出した。さらに、上記と同一の手順と条件による粒径分布測定を、電流密度1水準あたり4回行い、得られた4つの平均粒径の値をさらに単純算術平均して、電流密度1水準あたりの平均粒径とした。得られた結果を図8に示す。図8中の黒丸(符号:●)が電解厚み1水準あたりの平均粒径を、エラーバーが4つの平均粒径の値の範囲を示している。   After that, the particle size distribution of the fine particles in the dispersive solution is measured with a dynamic light scattering type particle size distribution measuring device, and the median (median) for the particle size distribution of all the fine particles is averaged from the particle size distribution result. Calculated as particle size. In addition, the particle size distribution measurement was performed four times per current density level using the same procedure and conditions as above, and the average of the four average particle sizes obtained was further averaged and averaged per current density level. The particle size was taken. The obtained result is shown in FIG. In FIG. 8, black circles (symbol: ●) indicate the average particle diameter per level of electrolytic thickness, and error bars indicate the range of four average particle diameter values.

図8では、電解時の電流密度が低くなるに従い、抽出微粒子の平均粒径が小さくなる傾向が見られた。これは、電流密度を高くすると、局所的に電解が進むことによる凝集のために見かけの粒径が大きくなってしまう為と考えられる。この結果から、今回の試料については、電流密度を2mA/cm2以下とした場合に、大きく凝集を緩和できている。なお、最適な電流密度は試料の表面状態にも依存すると考えられるため、試料に応じて電流密度条件の最適化を行なう必要がある。 In FIG. 8, the average particle diameter of the extracted fine particles tended to decrease as the current density during electrolysis decreased. This is considered to be because when the current density is increased, the apparent particle size becomes larger due to aggregation due to local progress of electrolysis. From this result, in this sample, when the current density is 2 mA / cm 2 or less, the aggregation can be relieved greatly. Note that since the optimum current density is considered to depend on the surface state of the sample, it is necessary to optimize the current density condition according to the sample.

実施の形態の(1)から(7)の手順と図4の分析フローに従って粒径分布測定を行なった例を、実施例4の本発明例として説明する。なお、大径側粒子除去操作407では、遠心分離ステップS4072の方を選択した。各操作の具体的な条件は、以下に示す通りであるが、本発明は下記の具体的な条件に制限されるものではない。   An example in which the particle size distribution measurement is performed according to the procedures (1) to (7) of the embodiment and the analysis flow of FIG. 4 will be described as an example of the present invention of Example 4. In the large diameter side particle removing operation 407, the centrifugal separation step S4072 was selected. Specific conditions for each operation are as follows, but the present invention is not limited to the following specific conditions.

鋼として炭素鋼を使用し、その化学成分は、C:0.10mass%、Si:0.2mass%、Mn:1.0mass%、P:0.024mass%、S:0.009mass%、Cr:0.03mass%、Ti:0.05mass%である。この鋼を20mm×50mm×1mmの大きさに加工したものを、電解用試料として4枚用意した。   Carbon steel is used as the steel, and its chemical composition is C: 0.10 mass%, Si: 0.2 mass%, Mn: 1.0 mass%, P: 0.024 mass%, S: 0.009 mass%, Cr: 0.03 mass%, Ti : 0.05 mass%. Four pieces of this steel processed into a size of 20 mm × 50 mm × 1 mm were prepared as electrolysis samples.

先ず、平均粒径事前算出操作306を実施例2と同一条件で行い、事前平均粒径と電解操作101における電解の量を設定した。本実施例の場合、電解操作101での電解量は、事前平均粒径の6倍の電解厚みに相当する量とした。この電解厚みを電解用試料の鋼の質量に換算し、この換算された鋼の質量を電解できる供給電荷量に換算し、さらに、この供給電荷量と電流密度より電解時間を算出した。   First, the average particle diameter pre-calculation operation 306 was performed under the same conditions as in Example 2, and the prior average particle diameter and the amount of electrolysis in the electrolysis operation 101 were set. In the case of this example, the amount of electrolysis in the electrolysis operation 101 was set to an amount corresponding to an electrolysis thickness of 6 times the prior average particle diameter. This electrolytic thickness was converted to the mass of steel of the sample for electrolysis, and the converted mass of steel was converted to a supply charge amount that could be electrolyzed, and the electrolysis time was calculated from this supply charge amount and current density.

電解操作101は、図2と同じ装置構成にて行い、電解液として、200mlの10%AA系電解液を使用した。また、全ての電解用試料について、表層の汚染を除去するための捨て電解を、最初に1度だけ電解操作101の直前に行なった。電解量は、先の平均粒径事前算出操作306で算出した電解時間にて、制御した。電解時の電流密度は、全ての電解試料に対して、2mA/cm2とした。 The electrolysis operation 101 was performed with the same apparatus configuration as in FIG. 2, and 200 ml of 10% AA-based electrolyte was used as the electrolyte. For all the electrolysis samples, the discard electrolysis for removing the surface contamination was first performed just before the electrolysis operation 101 once. The amount of electrolysis was controlled by the electrolysis time calculated in the previous average particle diameter pre-calculation operation 306. The current density during electrolysis was 2 mA / cm 2 for all electrolytic samples.

抽出操作102にて用いる分散性溶液としては、濃度500mg/lのヘキサメタリン酸ナトリウム水溶液を用い、別のビーカーに準備した。抽出操作102中は、分散性溶液に超音波による振動を加えて、電解用試料表面に付着した状態の微粒子をヘキサメタリン酸ナトリウム水溶液中に分散させた。   As a dispersible solution used in the extraction operation 102, a sodium hexametaphosphate aqueous solution having a concentration of 500 mg / l was used and prepared in another beaker. During the extraction operation 102, ultrasonic vibration was applied to the dispersible solution to disperse the fine particles adhered to the surface of the electrolysis sample in the aqueous solution of sodium hexametaphosphate.

そして、電解操作101から抽出操作102までを、電解用試料1枚に付き10回繰り返した後に、磁気分離操作103へ進んだ。ここで、統計的に信頼性のあるデータを採取するために、電解用試料1枚に付き電解操作101から抽出操作102までを10回繰り返して得られた微粒子全てを、同じ分散性溶液に抽出した。   Then, the electrolysis operation 101 to the extraction operation 102 were repeated 10 times for one electrolysis sample, and then the magnetic separation operation 103 was performed. Here, in order to collect statistically reliable data, all the fine particles obtained by repeating the electrolysis operation 101 to the extraction operation 102 for one electrolysis sample 10 times are extracted into the same dispersive solution. did.

磁気分離操作103は、分散性溶液中に磁石棒を入れて攪拌することで行なった。また、磁気分離操作103中も、分散性溶液には超音波による振動を加えた。   The magnetic separation operation 103 was performed by putting a magnetic rod in the dispersible solution and stirring. In addition, during the magnetic separation operation 103, ultrasonic vibration was applied to the dispersible solution.

さらに、大径側の微粒子を除去する遠心分離ステップS4072において、磁気分離操作103後の分散性溶液を、微粒子を分散させたまま遠心分離器用のセルに充填した。そして、回転速度が9000rpm、時間が2分の条件にて、遠心分離器を動作させた。   Further, in the centrifugal separation step S4072 for removing the large-diameter side fine particles, the dispersible solution after the magnetic separation operation 103 was filled in the centrifuge cell with the fine particles dispersed. Then, the centrifuge was operated under the conditions where the rotation speed was 9000 rpm and the time was 2 minutes.

その後、動的光散乱方式の粒径分布測定装置にて、分散性溶液中の微粒子の粒径分布を測定した、得られた結果を図9に示す。図5に示した実施例1の本発明例および比較例と比較して、実施例4の粒径分布の中央値(メジアン)はさらに小さい粒径側に移動している。このことから、分級操作104の後に大径側粒径除去操作407を追加すると、より小径側の粒子分布が測定可能となることが分かった。なお、試料により最適な遠心分離条件は異なるので、試料に応じて最適化を行なう必要がある。   Thereafter, the particle size distribution of the fine particles in the dispersible solution was measured with a dynamic light scattering type particle size distribution measuring apparatus, and the obtained results are shown in FIG. Compared to the inventive example and the comparative example of Example 1 shown in FIG. 5, the median value (median) of the particle size distribution of Example 4 is shifted to a smaller particle size side. From this, it was found that the particle distribution on the smaller diameter side can be measured by adding the large diameter side particle diameter removing operation 407 after the classification operation 104. In addition, since the optimal centrifugation conditions differ with a sample, it is necessary to optimize according to a sample.

本発明に係る実施の形態の例の分析フローを示した図。The figure which showed the analysis flow of the example of embodiment which concerns on this invention. 本発明に係る分析方法で用いる電解装置の構成を模式的に示した図。The figure which showed typically the structure of the electrolyzer used with the analysis method which concerns on this invention. 図1に平均粒径事前算出操作306を追加した例の分析フローを示した図。The figure which showed the analysis flow of the example which added the average particle diameter prior calculation operation 306 to FIG. 図3に大径側粒子除去操作407を追加した例の、分析フローを示した図。The figure which showed the analysis flow of the example which added the large diameter side particle removal operation 407 to FIG. 本発明例と比較例における粒径分布測定の結果を示した図。The figure which showed the result of the particle size distribution measurement in this invention example and a comparative example. 電解厚みを、鋼厚み換算で、事前平均粒径の6倍と36倍とした場合における、粒径分布測定の結果を示した図。The figure which showed the result of the particle size distribution measurement in case the electrolytic thickness is 6 times and 36 times the prior average particle size in terms of steel thickness. 事前平均粒径に対する電解厚みと、抽出された微粒子の平均粒径との相関を示した図。The figure which showed the correlation with the electrolytic thickness with respect to a prior average particle diameter, and the average particle diameter of the extracted microparticles | fine-particles. 電解法における電流密度と、抽出された微粒子の平均粒径との相関を示した図。The figure which showed the correlation with the current density in an electrolysis method, and the average particle diameter of the extracted microparticles | fine-particles. 電解法において、分級操作104の後に遠心分離ステップS4071を追加した場合の、粒径分布測定の結果を示した図。The figure which showed the result of the particle size distribution measurement at the time of adding centrifugation step S4071 after the classification operation 104 in an electrolysis method. 分散性溶液を純水(本発明例)またはメタノール(比較例)とした場合の鋼中微粒子の粒径分布を示した図。The figure which showed the particle size distribution of the fine particle in steel when a dispersible solution is made into pure water (invention example) or methanol (comparative example). ヘキサメタリン酸ナトリウム水溶液濃度とゼータ電位、またはヘキサメタリン酸ナトリウム水溶液濃度と測定された平均粒径との関係の例を示した図。The figure which showed the example of the relationship between the sodium hexametaphosphate aqueous solution density | concentration and zeta potential, or the sodium hexametaphosphate aqueous solution density | concentration and the measured average particle diameter.

符号の説明Explanation of symbols

1 電解用試料
2 電解用試料の固定用治具
3 電極
4 ビーカー
5 定電流電解装置
6 電解液
7 電解装置
100 準備操作
101 電解操作
102 抽出操作
103 磁気分離操作
104 分級操作
105 分析操作
306 平均粒径事前算出操作
407 大径側粒子除去操作
S1021 洗浄ステップ
S1022 抽出ステップ
S1023 判定ステップ
S3061 平均粒径の事前分析ステップ
S3062 電解量の算出ステップ
S4071 ろ過ステップ
S4072 遠心分離ステップ
DESCRIPTION OF SYMBOLS 1 Electrolysis sample 2 Electrolytic sample fixing jig 3 Electrode 4 Beaker 5 Constant current electrolysis apparatus 6 Electrolytic solution 7 Electrolysis apparatus 100 Preparatory operation 101 Electrolysis operation 102 Extraction operation 103 Magnetic separation operation 104 Classification operation 105 Analytical operation 306 Average particle Diameter pre-calculation operation 407 Large-diameter side particle removal operation S1021 Washing step S1022 Extraction step S1023 Judgment step S3061 Average particle diameter pre-analysis step S3062 Electrolytic amount calculation step S4071 Filtration step S4072 Centrifugation step

Claims (5)

鋼試料を電解する電解操作と、該電解後の鋼試料の残部を、前記電解に用いた電解液とは異なりかつ分散性を有する溶液に浸漬し、前記鋼試料中の微粒子を抽出する抽出操作と、
該抽出操作後の前記溶液中に抽出された微粒子を動的光散乱法にて分析する分析操作とを有することを特徴とする鋼中微粒子の分析方法。
Electrolytic operation for electrolyzing the steel sample, and extraction operation for extracting the fine particles in the steel sample by immersing the remainder of the steel sample after the electrolysis in a solution different from the electrolytic solution used for the electrolysis and having dispersibility When,
An analysis operation for analyzing fine particles extracted in the solution after the extraction operation by a dynamic light scattering method.
前記分散性を有する溶液が、ヘキサメタリン酸ナトリウム水溶液であることを特徴とする請求項1に記載の鋼中微粒子の分析方法。   The method for analyzing fine particles in steel according to claim 1, wherein the dispersible solution is an aqueous solution of sodium hexametaphosphate. 前記分析操作では、平均粒径が1μm以下の大きさの微粒子を分析することを特徴とする請求項1または2に記載の鋼中微粒子の分析方法。   3. The method for analyzing fine particles in steel according to claim 1, wherein in the analysis operation, fine particles having an average particle size of 1 μm or less are analyzed. 前記分析操作では、前記鋼試料に付着した微粒子のみを分析することを特徴とする請求項1ないし3のいずれかに記載の鋼中微粒子の分析方法。   The method for analyzing fine particles in steel according to any one of claims 1 to 3, wherein in the analysis operation, only fine particles adhering to the steel sample are analyzed. 前記溶液中に抽出された微粒子をろ過し、分析対象となる小径側の微粒子を含んだろ液を得るろ過操作と、該ろ過操作にて得られた微粒子を含んだろ液を動的光散乱法にて分析する分析操作とを有することを特徴とする請求項1ないし4のいずれかに記載の鋼中微粒子の分析方法。   Filtration operation for filtering the fine particles extracted into the solution to obtain a filtrate containing fine particles on the small diameter side to be analyzed, and the filtrate containing the fine particles obtained by the filtration operation in a dynamic light scattering method 5. The method for analyzing fine particles in steel according to claim 1, further comprising:
JP2007171706A 2007-06-29 2007-06-29 Analysis method of fine particles in steel Active JP4972784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171706A JP4972784B2 (en) 2007-06-29 2007-06-29 Analysis method of fine particles in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171706A JP4972784B2 (en) 2007-06-29 2007-06-29 Analysis method of fine particles in steel

Publications (2)

Publication Number Publication Date
JP2009008584A true JP2009008584A (en) 2009-01-15
JP4972784B2 JP4972784B2 (en) 2012-07-11

Family

ID=40323805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171706A Active JP4972784B2 (en) 2007-06-29 2007-06-29 Analysis method of fine particles in steel

Country Status (1)

Country Link
JP (1) JP4972784B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891060A (en) * 2016-05-12 2016-08-24 绍兴文理学院 Online wear particle monitoring system adopting electric shock hammer adsorption and adjacent capacitance
JP2019056694A (en) * 2017-09-18 2019-04-11 アクツィエン−ゲゼルシャフト デア ディリンジャー ヒュッテンベルケ Method for analyzing, and especially precipitating or/and isolating particle in steel
CN115184393A (en) * 2017-06-26 2022-10-14 北京科技大学 Integrated device and method for extracting second-phase particles in steel through electrolysis
CN117589545A (en) * 2024-01-19 2024-02-23 武汉科技大学 Preparation method of nanoparticle sample for transmission electron microscope analysis
CN117589545B (en) * 2024-01-19 2024-04-12 武汉科技大学 Preparation method of nanoparticle sample for transmission electron microscope analysis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110896A (en) * 1978-02-20 1979-08-30 Nippon Steel Corp Method and apparatus of electrolytic extraction and separation of non-metallic inclusions in large volume of metal sample
JPH05346387A (en) * 1992-06-15 1993-12-27 Nkk Corp Judging method for cleanliness of metal material
JPH08292187A (en) * 1995-04-21 1996-11-05 Kawasaki Steel Corp Analysis of enclosure in steel
JP2000131313A (en) * 1998-10-28 2000-05-12 Nkk Corp Secondary treatment method of inclusion and precipitate contained in steel sample
JP2000137015A (en) * 1998-10-30 2000-05-16 Nkk Corp Nonaqueous solvent electrolyte for extracting inclusion or deposit in iron steel sample, and electrolytic extraction method of iron steel sample
JP2004317203A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
JP2005164560A (en) * 2003-11-28 2005-06-23 Hironari Kikura Dark-field particle measurement device and method therefor
JP2006308574A (en) * 2005-03-30 2006-11-09 Sysmex Corp Method and device for counting megakaryocyte

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110896A (en) * 1978-02-20 1979-08-30 Nippon Steel Corp Method and apparatus of electrolytic extraction and separation of non-metallic inclusions in large volume of metal sample
JPH05346387A (en) * 1992-06-15 1993-12-27 Nkk Corp Judging method for cleanliness of metal material
JPH08292187A (en) * 1995-04-21 1996-11-05 Kawasaki Steel Corp Analysis of enclosure in steel
JP2000131313A (en) * 1998-10-28 2000-05-12 Nkk Corp Secondary treatment method of inclusion and precipitate contained in steel sample
JP2000137015A (en) * 1998-10-30 2000-05-16 Nkk Corp Nonaqueous solvent electrolyte for extracting inclusion or deposit in iron steel sample, and electrolytic extraction method of iron steel sample
JP2004317203A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Method of evaluating inclusion and precipitate in metal and evaluation tool therefor
JP2005164560A (en) * 2003-11-28 2005-06-23 Hironari Kikura Dark-field particle measurement device and method therefor
JP2006308574A (en) * 2005-03-30 2006-11-09 Sysmex Corp Method and device for counting megakaryocyte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891060A (en) * 2016-05-12 2016-08-24 绍兴文理学院 Online wear particle monitoring system adopting electric shock hammer adsorption and adjacent capacitance
CN115184393A (en) * 2017-06-26 2022-10-14 北京科技大学 Integrated device and method for extracting second-phase particles in steel through electrolysis
JP2019056694A (en) * 2017-09-18 2019-04-11 アクツィエン−ゲゼルシャフト デア ディリンジャー ヒュッテンベルケ Method for analyzing, and especially precipitating or/and isolating particle in steel
CN117589545A (en) * 2024-01-19 2024-02-23 武汉科技大学 Preparation method of nanoparticle sample for transmission electron microscope analysis
CN117589545B (en) * 2024-01-19 2024-04-12 武汉科技大学 Preparation method of nanoparticle sample for transmission electron microscope analysis

Also Published As

Publication number Publication date
JP4972784B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
TWI403714B (en) Determination of Particle Size Distribution of Microparticles in Metallic Materials
KR101152438B1 (en) Method for analysis of metallic material
JP4737278B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP5223665B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP4972784B2 (en) Analysis method of fine particles in steel
JP5277906B2 (en) Measuring method of particle size distribution of fine particles
JP2014021060A (en) Measuring method for particle size distribution of fine particle in metal
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
JP6911368B2 (en) Analytical method for fine particles in steel materials
JP2010127789A (en) Method for quantifying precipitate and/or inclusion in metal material
JP5042806B2 (en) Method for producing metal oxide fine particles, method for evaluating metal oxide fine particles, and metal oxide fine particles
JP5088305B2 (en) Method for analyzing precipitates and / or inclusions in metal materials
JP2009019956A (en) Analyzing method of precipitate and/or inclusion in metal sample
JP5359244B2 (en) Method for analyzing precipitates and / or inclusions in a metal sample
WO2021106711A1 (en) Method for extracting precipitates and/or inclusions, method for quantitatively analyzing precipitates and/or inclusions, and electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

R150 Certificate of patent or registration of utility model

Ref document number: 4972784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250