JP2005161632A - Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby - Google Patents

Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby Download PDF

Info

Publication number
JP2005161632A
JP2005161632A JP2003402320A JP2003402320A JP2005161632A JP 2005161632 A JP2005161632 A JP 2005161632A JP 2003402320 A JP2003402320 A JP 2003402320A JP 2003402320 A JP2003402320 A JP 2003402320A JP 2005161632 A JP2005161632 A JP 2005161632A
Authority
JP
Japan
Prior art keywords
metal foil
flexible metal
metal
clad laminate
laminating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402320A
Other languages
Japanese (ja)
Inventor
Takeshi Kikuchi
剛 菊池
Hiroyuki Tsuji
宏之 辻
Nagayasu Kaneshiro
永泰 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003402320A priority Critical patent/JP2005161632A/en
Publication of JP2005161632A publication Critical patent/JP2005161632A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible metal clad laminated sheet excellent in dimensional stability, and its manufacturing method. <P>SOLUTION: In the flexible metal clad laminated sheet by laminating a polyimide film and a metal foil through an adhesive layer containing a thermoplastic polyimide, the adhesive layer containing the thermoplastic polyimide is provided on one side of the metal foil before laminating the polyimide film on the metal foil. The flexible metal clad laminated sheet obtained by this manufacturing method is also disclosed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属箔の片面に熱可塑性ポリイミドを含有する接着層を設けた後、これにポリイミドフィルムを貼り合わせて得られるフレキシブル金属張積層板、ならびにその製造方法に関する。更に詳しくは、熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を金属箔上に流延、塗布した後、イミド化して得られる接着層付き金属箔をポリイミドフィルムと貼り合わて得られるフレキシブル金属張積層板、ならびにその製造方法であって、好ましくは金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、長手方向(以下、MD方向ともいう)、幅方向(以下、TD方向ともいう)共に−0.08〜+0.08の範囲にあるフレキシブル金属張積層板、ならびにその製造方法に関する。   The present invention relates to a flexible metal-clad laminate obtained by providing an adhesive layer containing a thermoplastic polyimide on one surface of a metal foil and then bonding a polyimide film to the adhesive layer, and a method for producing the same. More specifically, a flexible film obtained by bonding a metal foil with an adhesive layer obtained by casting and applying a solution containing polyamic acid, which is a precursor of thermoplastic polyimide, onto a metal foil, followed by imidization, and a polyimide film. A metal-clad laminate, and a method for producing the same, and preferably the dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil, The present invention relates to a flexible metal-clad laminate having a longitudinal direction (hereinafter also referred to as MD direction) and a width direction (hereinafter also referred to as TD direction) in the range of −0.08 to +0.08, and a method for producing the same.

近年、エレクトロニクス製品の軽量化、小型化、高密度化にともない、各種プリント基板の需要が伸びているが、中でも、フレキシブル積層板(フレキシブルプリント配線板(FPC)等とも称する)の需要が特に伸びている。フレキシブル積層板は、絶縁性フィルム上に金属箔からなる回路が形成された構造を有している。   In recent years, the demand for various printed circuit boards has increased along with the reduction in weight, size and density of electronic products. In particular, the demand for flexible laminates (also referred to as flexible printed circuit boards (FPCs), etc.) has increased. ing. The flexible laminate has a structure in which a circuit made of a metal foil is formed on an insulating film.

上記フレキシブル積層板は、一般に、各種絶縁材料により形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、各種接着材料を介して金属箔を加熱・圧着することにより貼りあわせる方法により製造される。上記絶縁性フィルムとしては、ポリイミドフィルム等が好ましく用いられている。上記接着材料としては、エポキシ系、アクリル系等の熱硬化性接着剤が一般的に用いられている(これら熱硬化性接着剤を用いたFPCを以下、三層FPCともいう)。   The flexible laminate is generally formed of various insulating materials, and a flexible insulating film is used as a substrate, and a metal foil is bonded to the surface of the substrate by heating and pressure bonding via various adhesive materials. Manufactured by. A polyimide film or the like is preferably used as the insulating film. As the adhesive material, a thermosetting adhesive such as epoxy or acrylic is generally used (FPC using these thermosetting adhesives is hereinafter also referred to as three-layer FPC).

熱硬化性接着剤は比較的低温での接着が可能であるという利点がある。しかし今後、耐熱性、屈曲性、電気的信頼性といった要求特性が厳しくなるに従い、熱硬化性接着剤を用いた三層FPCでは対応が困難になると考えられる。これに対し、絶縁性フィルムに直接金属層を設けたり、接着層に熱可塑性ポリイミドを使用したFPC(以下、二層FPCともいう)が提案されている。この二層FPCは、三層FPCより優れた特性を有し、今後需要が伸びていくことが期待される。   Thermosetting adhesives have the advantage that they can be bonded at relatively low temperatures. However, in the future, as required characteristics such as heat resistance, flexibility, and electrical reliability become stricter, it is considered that it is difficult to cope with a three-layer FPC using a thermosetting adhesive. On the other hand, an FPC (hereinafter also referred to as a two-layer FPC) in which a metal layer is directly provided on an insulating film or a thermoplastic polyimide is used for an adhesive layer has been proposed. This two-layer FPC has characteristics superior to those of the three-layer FPC, and demand is expected to increase in the future.

二層FPCに用いるフレキシブル金属張積層板の作製方法としては、金属箔上にポリイミドの前駆体であるポリアミド酸を流延、塗布した後イミド化するキャスト法、スパッタ、メッキによりポリイミドフィルム上に直接金属層を設けるメタライジング法、熱可塑性ポリイミドを介してポリイミドフィルムと金属箔とを貼り合わせるラミネート法が挙げられる。この中で、ラミネート法は、対応できる金属箔の厚み範囲がキャスト法よりも広く、装置コストがメタライジング法よりも低いという点で優れている。ラミネートを行う装置としては、ロール状の材料を繰り出しながら連続的にラミネートする熱ロールラミネート装置またはダブルベルトプレス装置等が用いられている。上記の内、生産性の点から見れば、熱ロールラミネート法をより好ましく用いることができる。   As a method for producing a flexible metal-clad laminate for use in a two-layer FPC, a polyamic acid, which is a polyimide precursor, is cast on a metal foil, applied, and then casted directly onto a polyimide film by sputtering or plating. Examples thereof include a metallizing method for providing a metal layer and a laminating method for bonding a polyimide film and a metal foil through a thermoplastic polyimide. Among these, the lamination method is superior in that the thickness range of the metal foil that can be handled is wider than that of the casting method and the apparatus cost is lower than that of the metalizing method. As a device for laminating, a hot roll laminating device or a double belt press device for continuously laminating a roll-shaped material is used. Of these, the hot roll laminating method can be used more preferably from the viewpoint of productivity.

従来の三層FPCをラミネート法で作製する際、接着層に熱硬化性樹脂を用いていたため、ラミネート温度は200℃未満で行うことが可能であった(特許文献1参照)。これに対し、二層FPCは熱可塑性ポリイミドを接着層として用いるため、熱融着性を発現させるために200℃以上、場合によっては400℃近くの高温を加える必要がある。そのため、ラミネートされて得られたフレキシブル金属張積層板に残留歪みが発生し、エッチングして配線を形成する際、ならびに部品を実装するために半田リフローを行う際に寸法変化となって現れる。   When a conventional three-layer FPC was produced by a laminating method, a thermosetting resin was used for the adhesive layer, so that the laminating temperature could be less than 200 ° C. (see Patent Document 1). On the other hand, since the two-layer FPC uses thermoplastic polyimide as an adhesive layer, it is necessary to apply a high temperature of 200 ° C. or higher, and in some cases, close to 400 ° C., in order to develop heat-fusibility. Therefore, residual distortion occurs in the flexible metal-clad laminate obtained by laminating, and it appears as a dimensional change when wiring is formed by etching and when solder reflow is performed to mount components.

特にラミネート法は、ポリイミドフィルム上に熱可塑性ポリイミドを含有する接着層を設ける際に、熱可塑性ポリイミドの前駆体であるポリアミド酸を流延、塗布した後に連続的に加熱してイミド化を行い、金属箔を貼り合わせる際も連続的に加熱加圧を行うため、材料は張力がかけられた状態で加熱環境下に置かれることが多い。そのため、MD方向とTD方向で異なる熱応力が発生する。具体的には、張力のかかるMD方向には引張られる力が働き、逆にTD方向には縮む力が働く。その結果、フレキシブル積層板から金属箔をエッチングする際と、半田リフローを通して加熱する際にこの歪みが解放され、MD方向は収縮し、逆にTD方向は膨張してしまう。   In particular, in the laminating method, when an adhesive layer containing a thermoplastic polyimide is provided on a polyimide film, the polyamic acid which is a precursor of the thermoplastic polyimide is cast and applied, and then continuously heated to imidize, Since the heating and pressurization is continuously performed when the metal foil is bonded, the material is often placed in a heating environment under tension. Therefore, different thermal stresses are generated in the MD direction and the TD direction. Specifically, a pulling force acts in the MD direction where tension is applied, and conversely, a shrinking force acts in the TD direction. As a result, when the metal foil is etched from the flexible laminate and when heated through solder reflow, this strain is released, the MD direction contracts, and conversely, the TD direction expands.

近年、電子機器の小型化、軽量化を達成するために、基板に設けられる配線は微細化が進んでおり、実装する部品も小型化、高密度化されたものが搭載される。そのため、微細な配線を形成した後の寸法変化が大きくなると、設計段階での部品搭載位置からずれて、部品と基板とが良好に接続されなくなるという問題が生じる。
そこで、ラミネート圧力の制御や、接着フィルムの張力制御により、寸法変化を抑える試みがなされている(特許文献2または3参照)。しかしながら、これらの手段により寸法変化は改善されるものの、まだ充分ではなく、更なる寸法変化の改善が求められている。
特開平9−199830号公報 特開2002−326308号公報 特開2002−326280号公報
In recent years, in order to achieve miniaturization and weight reduction of electronic devices, wiring provided on a substrate has been miniaturized, and components to be mounted are mounted with miniaturization and high density. For this reason, if the dimensional change after forming the fine wiring is increased, there is a problem that the component and the board are not well connected due to deviation from the component mounting position in the design stage.
Therefore, attempts have been made to suppress dimensional changes by controlling the laminating pressure or controlling the tension of the adhesive film (see Patent Document 2 or 3). However, although the dimensional change is improved by these means, it is not sufficient yet, and further improvement of the dimensional change is demanded.
JP-A-9-199830 JP 2002-326308 A JP 2002-326280 A

本発明は、上記の課題に鑑みてなされたものであって、その目的は、寸法変化の発生が抑制されたフレキシブル金属張積層板、特にラミネート法で作製した際に寸法変化の発生を抑制できるフレキシブル金属張積層板、ならびにその製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to suppress the occurrence of dimensional change when produced by a flexible metal-clad laminate, particularly the laminate method, in which the occurrence of dimensional change is suppressed. The object is to provide a flexible metal-clad laminate and a method for producing the same.

本発明者らは、上記の課題に鑑み鋭意検討した結果、ポリイミドフィルムより弾性率が高く、張力の影響を受けにくい金属箔に熱可塑性ポリイミドを含有した接着層を設けた後、これをポリイミドフィルムとラミネートすることにより、熱可塑性ポリイミドのイミド化時ならびにラミネート時における熱応力の発生を緩和し、寸法変化の発生を効果的に抑制できることを独自に見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above problems, the present inventors have provided an adhesive layer containing a thermoplastic polyimide on a metal foil that has a higher elastic modulus than a polyimide film and is less susceptible to the influence of tension. Thus, the inventors have uniquely found that the generation of thermal stress during the imidization and lamination of thermoplastic polyimide can be alleviated and the occurrence of dimensional change can be effectively suppressed, and the present invention has been completed.

即ち本発明の第1は、熱可塑性ポリイミドを含有する接着層を介してポリイミドフィルムと金属箔とを貼り合わせるフレキシブル金属張積層板の製造方法であって、該金属箔の片面に熱可塑性ポリイミドを含有する接着層を設けた後、ポリイミドフィルムと貼り合わせて得られることを特徴とする、フレキシブル金属張積層板の製造方法に関する。   That is, the first of the present invention is a method for producing a flexible metal-clad laminate in which a polyimide film and a metal foil are bonded via an adhesive layer containing a thermoplastic polyimide, and thermoplastic polyimide is applied to one side of the metal foil. The present invention relates to a method for producing a flexible metal-clad laminate, which is obtained by providing a containing adhesive layer and then laminating with a polyimide film.

好ましい実施態様は、金属箔の片面に接着層を設ける際に、熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を流延、塗布した後、イミド化することを特徴とする、前記の製造方法に関する。   A preferred embodiment is characterized in that when a bonding layer is provided on one side of a metal foil, a solution containing a polyamic acid that is a precursor of a thermoplastic polyimide is cast and applied, and then imidized. It relates to a manufacturing method.

更に好ましい実施態様は、一対以上の金属ロールを有する熱ロールラミネート装置を用いて接着層付き金属箔とポリイミドフィルムとを貼り合わせて得られることを特徴とする、前記の製造方法に関する。   A further preferred embodiment relates to the above production method, characterized in that it is obtained by laminating a metal foil with an adhesive layer and a polyimide film using a hot roll laminating apparatus having a pair of metal rolls.

本発明の第2は、前記の製造方法により得られるフレキシブル金属張積層板に関する。   2nd of this invention is related with the flexible metal-clad laminated board obtained by the said manufacturing method.

好ましい実施態様は、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.08〜+0.08の範囲にあることを特徴とする、前記のフレキシブル金属張積層板に関する。   In a preferred embodiment, the dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is −0.08 in both the MD direction and the TD direction. It is related with the said flexible metal-clad laminated board characterized by being in the range of-+ 0.08.

本発明の製造方法から得られるフレキシブル金属張積層板は、寸法変化の発生が抑制されており、特にラミネート法における寸法変化の発生も効果的に抑制できる。具体的には、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.08〜+0.08の範囲とすることが可能である。従って、微細な配線を形成したFPC等にも好適に用いることが可能で、位置ずれ等の問題を改善できる。   In the flexible metal-clad laminate obtained from the production method of the present invention, the occurrence of dimensional change is suppressed, and in particular, the occurrence of dimensional change in the laminating method can also be effectively suppressed. Specifically, the dimensional change rate before and after removing the metal foil and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil are −0.08 in both the MD direction and the TD direction. It can be in the range of ~ + 0.08. Therefore, it can be suitably used for an FPC or the like in which fine wiring is formed, and problems such as misalignment can be improved.

本発明の実施の一形態について、以下に説明する。   One embodiment of the present invention will be described below.

本発明にかかるフレキシブル金属張積層板の製造方法は、金属箔の片面に熱可塑性ポリイミドを含有する接着層を設けた後、ポリイミドフィルムと貼り合わせることを特徴とする。   The method for producing a flexible metal-clad laminate according to the present invention is characterized in that an adhesive layer containing a thermoplastic polyimide is provided on one side of a metal foil and then bonded to a polyimide film.

使用する金属箔としては特に限定されるものではないが、電子機器・電気機器用途に本発明のフレキシブル金属張積層板を用いる場合には、例えば、銅若しくは銅合金、ステンレス鋼若しくはその合金、ニッケル若しくはニッケル合金(42合金も含む)、アルミニウム若しくはアルミニウム合金からなる箔を挙げることができる。一般的なフレキシブル金属張積層板では、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においても好ましく用いることができる。なお、これらの金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。   The metal foil to be used is not particularly limited, but when the flexible metal-clad laminate of the present invention is used for electronic equipment / electric equipment, for example, copper or copper alloy, stainless steel or its alloy, nickel Alternatively, a foil made of a nickel alloy (including 42 alloy), aluminum, or an aluminum alloy can be used. In general flexible metal-clad laminates, copper foil such as rolled copper foil and electrolytic copper foil is frequently used, but it can also be preferably used in the present invention. In addition, the antirust layer, the heat-resistant layer, or the contact bonding layer may be apply | coated to the surface of these metal foil.

本発明において、上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。また、金属箔の表面粗さに関しても特に限定されるものではなく、適宜選択し得るが、配線の微細化が進んでいる近年では、接着層と接する側(以下、M面ともいう)の表面粗度ができるだけ低い金属箔を使用することが好ましい。表面粗度は一般に、十点平均粗さ(Rz)、中心線平均粗さ(Ra)で表され、これらの値が小さい方が、より低粗度の金属箔ということになる。   In the present invention, the thickness of the metal foil is not particularly limited, and may be any thickness as long as a sufficient function can be exhibited depending on the application. Further, the surface roughness of the metal foil is not particularly limited and can be selected as appropriate. However, in recent years when the wiring is miniaturized, the surface on the side in contact with the adhesive layer (hereinafter also referred to as M-plane). It is preferable to use a metal foil having the lowest possible roughness. The surface roughness is generally expressed by ten-point average roughness (Rz) and centerline average roughness (Ra), and the smaller these values are, the lower the roughness of the metal foil.

上記金属箔上に設ける接着層に含有される熱可塑性ポリイミドとしては、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミド等を好適に用いることができる。中でも、低吸湿特性の点から、熱可塑性ポリエステルイミドが特に好適に用いられる。   As the thermoplastic polyimide contained in the adhesive layer provided on the metal foil, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, thermoplastic polyesterimide, and the like can be suitably used. Among these, thermoplastic polyesterimide is particularly preferably used from the viewpoint of low moisture absorption characteristics.

また、既存の装置でラミネートが可能であり、かつ得られる金属張積層板の耐熱性を損なわないという点から考えると、本発明における熱可塑性ポリイミドは、150〜300℃の範囲にガラス転移温度(Tg)を有していることが好ましい。なお、Tgは動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができる。   In view of the fact that lamination with an existing apparatus is possible and the heat resistance of the resulting metal-clad laminate is not impaired, the thermoplastic polyimide in the present invention has a glass transition temperature (150 to 300 ° C.). Tg) is preferred. In addition, Tg can be calculated | required from the value of the inflexion point of the storage elastic modulus measured with the dynamic viscoelasticity measuring apparatus (DMA).

本発明に係るフレキシブル金属張積層板の製造方法は、金属箔上に熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を塗布、イミド化した後、ポリイミドフィルムと貼り合わせることが好ましい。その際に用いられるポリアミド酸については、特に限定されるわけではなく、公知のあらゆるポリアミド酸を用いることができる。その製造に関しても、公知の原料や反応条件等を用いることができる(例えば、後述する実施例参照)。また、必要に応じて無機あるいは有機物のフィラーを添加しても良い。   In the method for producing a flexible metal-clad laminate according to the present invention, a solution containing polyamic acid, which is a precursor of thermoplastic polyimide, is applied onto a metal foil, imidized, and then bonded to a polyimide film. The polyamic acid used at that time is not particularly limited, and any known polyamic acid can be used. Also for the production, known raw materials, reaction conditions, and the like can be used (for example, see Examples described later). Moreover, you may add an inorganic or organic filler as needed.

上記ポリアミド酸を含有する溶液を金属箔に流延、塗布する方法については特に限定されず、ダイコーター、リバースコーター、グラビアコーター、ブレードコーター等、既存の方法を使用することができる。塗布厚みについては特に限定されず、用途ごとに適宜厚みを調整すれば良いが、塗布厚みが厚くなりすぎるとキュアに要する時間が長くなるため、イミド化後の接着層厚みが10μm以下となるように塗布することが好ましい。また、金属箔とポリイミド層との線膨張係数の差が大きくなると、寸法変化に影響を及ぼすため、コアであるポリイミドフィルムの線膨張係数と厚みも考慮に入れて接着層厚みを設定した方が良い。   The method for casting and coating the solution containing the polyamic acid on a metal foil is not particularly limited, and existing methods such as a die coater, a reverse coater, a gravure coater, and a blade coater can be used. The coating thickness is not particularly limited and may be adjusted appropriately for each application. However, if the coating thickness becomes too thick, the time required for curing becomes long, so that the adhesive layer thickness after imidization becomes 10 μm or less. It is preferable to apply to. Also, if the difference in coefficient of linear expansion between the metal foil and the polyimide layer increases, it will affect the dimensional change, so it is better to set the adhesive layer thickness taking into account the linear expansion coefficient and thickness of the polyimide film that is the core. good.

一般に、ポリイミドはその前駆体であるポリアミド酸をイミド化することにより得られるが、イミド化には、熱キュア法またはケミカルキュア法が用いられる。なお、熱キュア法は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法であり、ケミカルキュア法は、ポリアミド酸溶液に、化学的転化剤及び/又は触媒とを作用させてイミド化を促進する方法である。   In general, polyimide is obtained by imidizing a polyamic acid which is a precursor thereof, and a thermal cure method or a chemical cure method is used for imidization. The thermal cure method is a method in which an imidization reaction proceeds only by heating without causing a dehydrating ring-closing agent or the like to act. The chemical cure method is a method in which a chemical conversion agent and / or a catalyst is applied to a polyamic acid solution. This is a method for promoting imidization.

前記化学的転化剤とはポリアミド酸に対する脱水閉環剤を意味し、例えば、脂肪族酸無水物、芳香族酸無水物、N,N’− ジアルキルカルボジイミド、ハロゲン化低級脂肪族、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物、またはそれら2種以上の混合物が挙げられる。中でも入手の容易性、コストの点から、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族酸無水物、またはそれら2種以上の混合物を好ましく用いることができる。   The chemical conversion agent means a dehydrating ring-closing agent for polyamic acid, for example, aliphatic acid anhydride, aromatic acid anhydride, N, N′-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride. Products, arylphosphonic acid dihalides, thionyl halides, or a mixture of two or more thereof. Among these, from the viewpoint of easy availability and cost, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used.

また、前記触媒とはポリアミド酸に対する脱水閉環作用を促進する効果を有する成分を意味し、例えば、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。中でも触媒としての反応性の点から、複素環式第三級アミンから選択されるものが特に好ましく用いられる。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。   Further, the catalyst means a component having an effect of promoting dehydration ring-closing action on polyamic acid, and examples thereof include aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines. . Among them, those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used.

脱水剤である酸無水物は水と反応した際に副生成物として酸が発生するため、金属箔に接触すると、金属箔表面が化学変化を起こして変質する可能性がある。従って、本発明においては、熱可塑性ポリイミドのイミド化は熱キュア法で行った方が好ましい。熱キュアの温度は高い方がイミド化が起こりやすいため、キュア速度を速くすることができ、生産性の面で好ましい。但し、高すぎると熱可塑性ポリイミドが熱分解を起こす可能性がある。
一方、熱キュアの温度が低すぎると、イミド化が進みにくく、キュア工程に要する時間が長くなってしまう。熱キュアの温度は、熱可塑性ポリイミドのガラス転移温度〜ガラス転移温度+200℃の範囲内に設定することが好ましく、ガラス転移温度+50℃〜ガラス転移温度+150℃の範囲内に設定することがより好ましい。また、イミド化時間に関しては、実質的にイミド化および乾燥が完結するに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には1〜600秒程度の範囲で適宜設定される。また、接着層の熔融流動性を改善する目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させることもできる。
An acid anhydride, which is a dehydrating agent, generates an acid as a by-product when it reacts with water. Therefore, when it comes into contact with the metal foil, there is a possibility that the surface of the metal foil undergoes a chemical change and deteriorates. Therefore, in the present invention, it is preferable to imidize the thermoplastic polyimide by a thermal curing method. The higher the temperature of the heat curing, the easier the imidization occurs, so the curing speed can be increased, which is preferable in terms of productivity. However, if it is too high, the thermoplastic polyimide may cause thermal decomposition.
On the other hand, if the temperature of the heat curing is too low, imidization is difficult to proceed, and the time required for the curing process becomes long. The temperature of the thermal curing is preferably set in the range of glass transition temperature to glass transition temperature + 200 ° C of the thermoplastic polyimide, and more preferably in the range of glass transition temperature + 50 ° C to glass transition temperature + 150 ° C. . Further, regarding the imidization time, it is sufficient to take a time sufficient for the imidization and drying to be substantially completed, and it is not limited uniquely, but generally in the range of about 1 to 600 seconds. Set as appropriate. Moreover, in order to improve the melt fluidity of the adhesive layer, it is possible to intentionally lower the imidization rate and / or leave the solvent.

金属箔をロール状態で供給して接着層を塗布、イミド化する場合、搬送性ならびに巻取りの点から張力をかけるが、その際の金属箔にかける張力としては、5N/m〜200N/mの範囲内とすることが好ましく、10N/m〜150N/mの範囲内とすることが特に好ましい。張力が上記範囲より小さい場合、搬送時にたるみが生じ、均一に巻き取れない等の問題が生じる可能性がある。逆に上記範囲よりも大きい場合、金属箔を用いても張力の影響が強くなり、高温で強い張力がかかるために熱応力が発生して寸法変化に影響を与える可能性がある。   When a metal foil is supplied in a roll state and an adhesive layer is applied and imidized, tension is applied from the viewpoint of transportability and winding, and the tension applied to the metal foil at that time is 5 N / m to 200 N / m. It is preferable to set it within the range of 10 N / m to 150 N / m. When the tension is smaller than the above range, sagging may occur during conveyance, which may cause problems such as being unable to wind evenly. On the other hand, if it is larger than the above range, even if a metal foil is used, the influence of the tension becomes strong, and since a strong tension is applied at a high temperature, there is a possibility that a thermal stress is generated and affects the dimensional change.

本発明に係るフレキシブル金属張積層板は上記接着層付き金属箔とポリイミドフィルムを張り合わせる事により得られる。貼り合わせるポリイミドフィルムの種類は特に限定されるものではなく、従来公知のものを使用することができる。市販のポリイミドフィルムとしては、例えば、アピカル(鐘淵化学工業社製)、カプトン(デュポン社製)、ユーピレックス(宇部興産社製)が挙げられる。このうち、弾性率、線膨張係数、吸水率の点から、アピカルHP(鐘淵化学工業社製)を好ましく用いることができる。   The flexible metal-clad laminate according to the present invention is obtained by laminating the metal foil with an adhesive layer and a polyimide film. The kind of polyimide film to be bonded is not particularly limited, and a conventionally known film can be used. Examples of commercially available polyimide films include apical (manufactured by Kaneka Chemical Co., Ltd.), kapton (manufactured by DuPont), and upilex (manufactured by Ube Industries). Of these, Apical HP (manufactured by Kaneka Chemical Co., Ltd.) can be preferably used from the viewpoint of elastic modulus, linear expansion coefficient, and water absorption.

上記市販のフィルム以外にも、従来公知の原料を用いて得られるポリアミド酸をイミド化して使用することができる。イミド化については、上記熱可塑性ポリイミドと同様に、熱キュア法ならびにケミカルキュア法を用いることができる。上記熱キュア法若しくはケミカルキュア法は単独で、或いはケミカルキュア法と熱キュア法を併用してイミド化することもできる。中でも、フィルムの靭性、破断強度、及び生産性の点から、ケミカルキュア法によりイミド化することが好ましい。イミド化の反応条件は特に制限されず、ポリアミド酸の種類、フィルムの厚さ、熱キュア法及び/又はケミカルキュア法の選択等により、変動し得る。また、ポリアミド酸には必要に応じて無機あるいは有機物のフィラーを添加しても良い。   In addition to the commercially available film, a polyamic acid obtained using a conventionally known raw material can be imidized and used. For imidization, a thermal cure method and a chemical cure method can be used in the same manner as the thermoplastic polyimide. The thermal curing method or the chemical curing method may be imidized alone or in combination with the chemical curing method and the thermal curing method. Especially, it is preferable to imidize by a chemical cure method from the point of the toughness of a film, breaking strength, and productivity. The reaction conditions for imidation are not particularly limited, and may vary depending on the type of polyamic acid, film thickness, thermal curing method and / or chemical curing method, and the like. Moreover, you may add an inorganic or organic filler to a polyamic acid as needed.

本発明における接着層付き金属箔とポリイミドフィルムの貼り合わせには、例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、装置構成が単純であり保守コストの面で有利であるという点から、一対以上の金属ロールを有する熱ロールラミネート装置を用いることが好ましい。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。   For the bonding of the metal foil with an adhesive layer and the polyimide film in the present invention, for example, a hot roll laminating apparatus having a pair of metal rolls or a continuous treatment by a double belt press (DBP) can be used. Among these, it is preferable to use a hot roll laminating apparatus having a pair of metal rolls because the apparatus configuration is simple and advantageous in terms of maintenance cost. The “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.

上記熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。保護材料としては、熱ラミネート工程の加熱温度に耐えうるものであれば特に限定されず、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等を好適に用いることができる。中でも、耐熱性、再使用等のバランスが優れる点から、非熱可塑性ポリイミドフィルムがより好ましく用いられる。また、厚みが薄いとラミネート時の緩衝ならびに保護の役目を十分に果たさなくなるため、非熱可塑性ポリイミドフィルムの厚みは75μm以上であることが好ましい。   The specific configuration of the means for carrying out the thermal lamination is not particularly limited, but a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is preferable to do. The protective material is not particularly limited as long as it can withstand the heating temperature in the heat laminating process, and preferably a heat-resistant plastic such as a non-thermoplastic polyimide film, a metal foil such as a copper foil, an aluminum foil, or a SUS foil. Can be used. Among these, a non-thermoplastic polyimide film is more preferably used from the viewpoint of excellent balance between heat resistance and reuse. In addition, if the thickness is thin, the function of buffering and protecting at the time of lamination will not be sufficiently fulfilled, so the thickness of the non-thermoplastic polyimide film is preferably 75 μm or more.

上記熱ラミネート手段における被積層材料の加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記熱ラミネート手段における被積層材料の加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。   The heating method of the material to be laminated in the heat laminating means is not particularly limited. For example, heating using a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, or the like. Means can be used. Similarly, the pressurization method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, etc. The pressurizing means adopting can be used.

上記熱ラミネート工程における加熱温度、すなわちラミネート温度は、接着フィルムのガラス転移温度(Tg)+50℃以上の温度であることが好ましく、接着フィルムのTg+100℃以上がより好ましい。Tg+50℃以上の温度であれば、接着フィルムと金属箔とを良好に熱ラミネートすることができる。またTg+100℃以上であれば、ラミネート速度を上昇させてその生産性をより向上させることができる。   The heating temperature in the thermal laminating step, that is, the laminating temperature, is preferably a glass transition temperature (Tg) of the adhesive film + 50 ° C. or higher, and more preferably Tg + 100 ° C. or higher of the adhesive film. If it is Tg + 50 degreeC or more temperature, an adhesive film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed | rate can be raised and the productivity can be improved more.

上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱ラミネートが可能になり、1.0m/分以上であれば生産性をより一層向上することができる。   The laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.

上記熱ラミネート工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる積層板の寸法変化が悪化する傾向がある。また、逆にラミネート圧力が低すぎると得られる積層板の金属箔の接着強度が低くなる。そのためラミネート圧力は、49〜490N/cm(5〜50kgf/cm)の範囲内であることが好ましく、98〜294N/cm(10〜30kgf/cm)の範囲内であることがより好ましい。この範囲内であれば、ラミネート温度、ラミネート速度およびラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。   The higher the pressure in the heat laminating step, that is, the laminating pressure, is advantageous in that the laminating temperature can be lowered and the laminating speed can be increased. There is a tendency to get worse. On the other hand, if the lamination pressure is too low, the adhesive strength of the metal foil of the laminate obtained is lowered. Therefore, the lamination pressure is preferably in the range of 49 to 490 N / cm (5 to 50 kgf / cm), and more preferably in the range of 98 to 294 N / cm (10 to 30 kgf / cm). Within this range, the three conditions of the lamination temperature, the lamination speed and the lamination pressure can be made favorable, and the productivity can be further improved.

ラミネート時の接着層付き金属箔の張力は、0.1〜200N/cm、さらには1〜100N/cm、特には5〜50N/cmが好ましい。張力がこの範囲を下回ると、搬送時にたるみ等が生じるため、外観の良好なフレキシブル金属張積層板を得ることが困難となる場合があり、またこの範囲を上回ると、弾性率の高い金属箔でも張力の影響が大きくなるため、寸法安定性が劣る傾向にある。   The tension of the metal foil with an adhesive layer during lamination is preferably 0.1 to 200 N / cm, more preferably 1 to 100 N / cm, and particularly preferably 5 to 50 N / cm. If the tension is below this range, sagging may occur during transportation, which may make it difficult to obtain a flexible metal-clad laminate with good appearance. Since the influence of tension becomes large, dimensional stability tends to be inferior.

また、ラミネート時のポリイミドフィルム張力は、0.01〜2N/cm、さらには0.02〜1.5N/cm、特には0.05〜1.0N/cmが好ましい。張力がこの範囲を下回ると、搬送時にたるみ等が生じるため、外観の良好なフレキシブル金属張積層板を得ることが困難となる場合があり、またこの範囲を上回ると、ポリイミドフィルムがMD方向に強く引っ張られた状態でラミネートが行われることになり、寸法安定性が劣る傾向にある。   The polyimide film tension during lamination is preferably 0.01 to 2 N / cm, more preferably 0.02 to 1.5 N / cm, and particularly preferably 0.05 to 1.0 N / cm. If the tension is below this range, sagging may occur during transportation, which may make it difficult to obtain a flexible metal-clad laminate with good appearance. If the tension is above this range, the polyimide film will be strong in the MD direction. Lamination is performed in a pulled state, and dimensional stability tends to be inferior.

本発明にかかるフレキシブル金属張積層板を得るためには、連続的に被積層材料を加熱しながら圧着する熱ラミネート装置を用いることが好ましいが、この熱ラミネート装置では、熱ラミネート手段の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、上記熱ラミネート装置の生産性をより一層向上させることができる。上記被積層材料繰出手段および被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着フィルムや金属箔、あるいは得られる積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。   In order to obtain the flexible metal-clad laminate according to the present invention, it is preferable to use a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating, but in this thermal laminating apparatus, before the thermal laminating means, A laminated material feeding means for feeding the laminated material may be provided, or a laminated material winding means for winding the laminated material may be provided after the thermal laminating means. By providing these means, the productivity of the thermal laminating apparatus can be further improved. The specific configuration of the laminated material feeding means and the laminated material winding means is not particularly limited, and for example, an adhesive film, a metal foil, or a known roll shape capable of winding up the obtained laminated plate A winder etc. can be mentioned.

さらに、保護材料を巻き取ったり繰り出したりする保護材料巻取手段や保護材料繰出手段を設けると、より好ましい。これら保護材料巻取手段・保護材料繰出手段を備えていれば、熱ラミネート工程で、一度使用された保護材料を巻き取って繰り出し側に再度設置することで、保護材料を再使用することができる。また、保護材料を巻き取る際に、保護材料の両端部を揃えるために、端部位置検出手段および巻取位置修正手段を設けてもよい。これによって、精度よく保護材料の端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら保護材料巻取手段、保護材料繰出手段、端部位置検出手段および巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。   Furthermore, it is more preferable to provide a protective material winding means and a protective material feeding means for winding and feeding the protective material. If these protective material take-up means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the pay-out side. . Further, when winding up the protective material, end position detecting means and winding position correcting means may be provided in order to align both ends of the protective material. As a result, the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased. The specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.

本発明にかかる製造方法により得られるフレキシブル金属張積層板においては、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.08〜+0.08の範囲にあることが非常に好ましい。金属箔除去前後の寸法変化率は、エッチング工程前のフレキシブル金属張積層板における所定の寸法およびエッチング工程後の所定の寸法の差分と、上記エッチング工程前の所定の寸法との比で表される。加熱前後の寸法変化率は、上記エッチング工程後のフレキシブル金属張積層板における所定の寸法および加熱工程後の所定の寸法の差分と、上記エッチング工程後の所定の寸法との比で表される。   In the flexible metal-clad laminate obtained by the manufacturing method according to the present invention, the dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil. However, it is very preferable that both the MD direction and the TD direction are in the range of -0.08 to +0.08. The rate of dimensional change before and after removal of the metal foil is expressed as a ratio between a difference between a predetermined dimension in the flexible metal-clad laminate before the etching process and a predetermined dimension after the etching process and a predetermined dimension before the etching process. . The dimensional change rate before and after heating is expressed as a ratio between a difference between a predetermined dimension in the flexible metal-clad laminate after the etching process and a predetermined dimension after the heating process and a predetermined dimension after the etching process.

寸法変化率がこの範囲内から外れると、フレキシブル金属張積層板において、微細な配線を形成した後、ならびに部品搭載時の寸法変化が大きくなってしまい、設計段階での部品搭載位置からずれることになる。その結果、実装する部品と基板とが良好に接続されなくなるおそれがある。換言すれば、寸法変化率が上記範囲内であれば、部品搭載に支障がないと見なすことが可能になる。   If the dimensional change rate is out of this range, the dimensional change at the time of component mounting becomes large after forming fine wiring in the flexible metal-clad laminate, and it will deviate from the component mounting position at the design stage. Become. As a result, there is a possibility that the component to be mounted and the board are not connected well. In other words, if the rate of dimensional change is within the above range, it can be considered that there is no problem in component mounting.

上記寸法変化率の測定方法は特に限定されるものではなく、フレキシブル金属張積層板において、エッチングまたは加熱工程の前後に生じる寸法の増減を測定できる方法であれば、従来公知のどのような方法でも用いることができる。   The method for measuring the dimensional change rate is not particularly limited, and any method known in the art can be used as long as it can measure the increase or decrease in dimensions that occurs before and after the etching or heating process in the flexible metal-clad laminate. Can be used.

ここで、寸法変化率の測定は、MD方向、TD方向の双方について測定することが必須となる。連続的にイミド化ならびにラミネートする場合、MD方向およびTD方向では張力のかかり方が異なるため、熱膨張・収縮の度合いに差が現れ、寸法変化率も異なる。したがって、寸法変化率の小さい材料では、MD方向およびTD方向の双方ともに変化率が小さいことが要求される。本発明においては、フレキシブル金属張積層板の、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.08〜+0.08の範囲にあることが非常に好ましい。   Here, it is essential to measure the dimensional change rate in both the MD direction and the TD direction. When imidizing and laminating continuously, the tension is different in the MD direction and the TD direction, so a difference appears in the degree of thermal expansion / contraction and the dimensional change rate is also different. Therefore, a material having a small dimensional change rate is required to have a low change rate in both the MD direction and the TD direction. In the present invention, the dimensional change rate before and after removing the metal foil of the flexible metal-clad laminate, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil are MD direction, It is very preferable that the TD direction is in the range of -0.08 to +0.08.

なお、寸法変化率を測定する際のエッチング工程の具体的な条件は特に限定されるものではない。すなわち、金属箔の種類や形成されるパターン配線の形状等に応じてエッチング条件は異なるので、本発明において寸法変化率を測定する際のエッチング工程の条件は従来公知のどのような条件であってもよい。同様に、加熱工程においても、250℃で30分間加熱がなされれば良く、具体的な条件は特に限定されない。   In addition, the specific conditions of the etching process at the time of measuring a dimensional change rate are not specifically limited. That is, since the etching conditions differ depending on the type of metal foil and the shape of the pattern wiring to be formed, the etching process conditions for measuring the dimensional change rate in the present invention are any conventionally known conditions. Also good. Similarly, in the heating process, it is sufficient that heating is performed at 250 ° C. for 30 minutes, and specific conditions are not particularly limited.

本発明にかかる製造方法によって得られるフレキシブル金属張積層板は、前述したように、金属箔をエッチングして所望のパターン配線を形成すれば、各種の小型化、高密度化された部品を実装したフレキシブル配線板として用いることができる。もちろん、本発明の用途はこれに限定されるものではなく、金属箔を含む積層体であれば、種々の用途に利用できることはいうまでもない。   As described above, the flexible metal-clad laminate obtained by the manufacturing method according to the present invention can be mounted with various miniaturized and high-density components by forming a desired pattern wiring by etching the metal foil. It can be used as a flexible wiring board. Of course, the application of the present invention is not limited to this, and it goes without saying that it can be used for various applications as long as it is a laminate including a metal foil.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

なお、合成例、実施例及び比較例における熱可塑性ポリイミドのガラス転移温度、フレキシブル積層板の寸法変化率、金属箔引き剥し強度の評価法は次の通りである。   In addition, the evaluation method of the glass transition temperature of the thermoplastic polyimide in a synthesis example, an Example, and a comparative example, the dimensional change rate of a flexible laminated board, and metal foil peeling strength is as follows.

(ガラス転移温度)
ガラス転移温度は、セイコーインスツルメンツ社製 DMS200により、昇温速度3℃/分にて、室温から400℃までの温度範囲で測定し、貯蔵弾性率の変曲点をガラス転移温度とした。
(Glass-transition temperature)
The glass transition temperature was measured with a DMS200 manufactured by Seiko Instruments Inc. at a temperature rising rate of 3 ° C./min in a temperature range from room temperature to 400 ° C., and the inflection point of the storage elastic modulus was taken as the glass transition temperature.

(寸法変化率)
JIS C6481に基づいて、フレキシブル積層板に4つの穴を形成し、各穴のそれぞれの距離を測定した。次に、エッチング工程を実施してフレキシブル積層板から金属箔を除去した後に、20℃、60%RHの恒温室に24時間放置した。その後、エッチング工程前と同様に、上記4つの穴について、それぞれの距離を測定した。金属箔除去前における各穴の距離の測定値をD1とし、金属箔除去後における各穴の距離の測定値をD2として、次式によりエッチング前後の寸法変化率を求めた。
寸法変化率(%)={(D2−D1)/D1}×100
続いて、エッチング後の測定サンプルを250℃で30分加熱した後、20℃、60%RHの恒温室に24時間放置した。その後、上記4つの穴について、それぞれの距離を測定した。加熱後における各穴の距離の測定値をD3として、次式により加熱前後の寸法変化率を求めた。
寸法変化率(%)={(D3−D2)/D2}×100
なお、上記寸法変化率は、MD方向及びTD方向の双方について測定した。
(Dimensional change rate)
Based on JIS C6481, four holes were formed in the flexible laminate, and the distance of each hole was measured. Next, after carrying out an etching process to remove the metal foil from the flexible laminate, it was left in a temperature-controlled room at 20 ° C. and 60% RH for 24 hours. Then, each distance was measured about the said four holes similarly to the etching process front. The measured value of the distance between the holes before removing the metal foil was set as D1, and the measured value of the distance between the holes after removing the metal foil was set as D2, and the dimensional change rate before and after etching was obtained by the following equation.
Dimensional change rate (%) = {(D2-D1) / D1} × 100
Subsequently, the measurement sample after etching was heated at 250 ° C. for 30 minutes and then left in a constant temperature room at 20 ° C. and 60% RH for 24 hours. Then, each distance was measured about the said four holes. The measured value of the distance of each hole after heating was set to D3, and the dimensional change rate before and after heating was obtained by the following formula.
Dimensional change rate (%) = {(D3-D2) / D2} × 100
In addition, the said dimensional change rate was measured about both MD direction and TD direction.

(金属箔の引き剥がし強度:接着強度)
JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、5mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。
(Stripping strength of metal foil: Adhesive strength)
A sample was prepared according to “6.5 Peel Strength” of JIS C6471, and a 5 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured.

(合成例1;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを780g、BAPPを107.5g加え、窒素雰囲気下で攪拌しながら、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう。)を54.9g徐々に添加した。続いて、TMEGを34.6g添加し、氷浴下で30分間撹拌した。3.0gのTMEGを20gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が3000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
(Synthesis Example 1; Synthesis of thermoplastic polyimide precursor)
To a glass flask having a volume of 2000 ml, 780 g of DMF and 107.5 g of BAPP were added, and 54.9 g of benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA) was gradually added while stirring in a nitrogen atmosphere. Subsequently, 34.6 g of TMEG was added and stirred for 30 minutes in an ice bath. A solution in which 3.0 g of TMEG was dissolved in 20 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 3000 poise, addition and stirring were stopped to obtain a polyamic acid solution.

得られたポリアミド酸溶液を25μmPETフィルム(セラピールHP,東洋メタライジング社製)上に最終厚みが20μmとなるように流延し、120℃で5分間乾燥を行った。乾燥後の自己支持性フィルムをPETから剥離した後、金属製のピン枠に固定し、150℃で5分間、200℃で5分間、250℃で5分間、350℃で5分間乾燥を行い、単層シートを得た。この熱可塑性ポリイミドのガラス転移温度は190℃であった。   The obtained polyamic acid solution was cast on a 25 μm PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.) so as to have a final thickness of 20 μm, and dried at 120 ° C. for 5 minutes. After peeling off the dried self-supporting film from PET, it is fixed to a metal pin frame and dried at 150 ° C. for 5 minutes, 200 ° C. for 5 minutes, 250 ° C. for 5 minutes, 350 ° C. for 5 minutes, A single layer sheet was obtained. The glass transition temperature of this thermoplastic polyimide was 190 ° C.

(合成例2;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを780g、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(以下、BAPPともいう。)を115.6g加え、窒素雰囲気下で攪拌しながら、BPDAを78.7g徐々に添加した。続いて、TMEGを3.8g添加し、氷浴下で30分間撹拌した。2.0gのTMEGを20gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が3000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
(Synthesis Example 2: Synthesis of thermoplastic polyimide precursor)
While adding 780 g of DMF and 115.6 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask having a capacity of 2000 ml, while stirring under a nitrogen atmosphere, 78.7 g of BPDA was gradually added. Subsequently, 3.8 g of TMEG was added and stirred for 30 minutes in an ice bath. A solution in which 2.0 g of TMEG was dissolved in 20 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 3000 poise, addition and stirring were stopped to obtain a polyamic acid solution.

また、得られたポリアミド酸溶液を用いて合成例1と同様の操作を行い、厚み20μmの熱可塑性ポリイミド単層シートを得てガラス転移温度を測定したところ、240℃であった。   Moreover, operation similar to the synthesis example 1 was performed using the obtained polyamic-acid solution, the 20-micrometer-thick thermoplastic polyimide single layer sheet was measured, and it was 240 degreeC when the glass transition temperature was measured.

(実施例1)
合成例1で得られたポリアミド酸溶液を18μm圧延銅箔(BHY−22B−T,ジャパンエナジー社製)上に最終厚みが4μmとなるように塗布し、140℃で1分間乾燥させた。続いて、雰囲気温度300℃の遠赤炉の中を30N/mの張力をかけて20秒間通し、加熱イミド化を行って接着層付き銅箔を得た。
(Example 1)
The polyamic acid solution obtained in Synthesis Example 1 was applied on 18 μm rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) so that the final thickness was 4 μm, and dried at 140 ° C. for 1 minute. Then, the inside of the far-red furnace having an atmospheric temperature of 300 ° C. was passed through for 20 seconds with a tension of 30 N / m, and heated imidization was performed to obtain a copper foil with an adhesive layer.

17μm厚のポリイミドフィルム(アピカルHPP,鐘淵化学工業社製)の両面に、熱可塑性ポリイミド層がポリイミドフィルムに接するように、得られた接着層付き銅箔を配し、さらにその両側に保護材料(アピカル125NPI;鐘淵化学工業株式会社製)を配して、熱ロールラミネート機を用いて、ポリイミドフィルム張力0.4N/cm、接着層付き銅箔張力15N/cm、ラミネート温度330℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、本発明にかかるフレキシブル金属張積層板を作製した。   The obtained copper foil with an adhesive layer is arranged on both sides of a 17 μm-thick polyimide film (Apical HPP, Kaneka Chemical Industry Co., Ltd.) so that the thermoplastic polyimide layer is in contact with the polyimide film. (Apical 125 NPI; manufactured by Kaneka Chemical Co., Ltd.) and using a hot roll laminator, polyimide film tension 0.4 N / cm, copper foil tension with adhesive layer 15 N / cm, laminating temperature 330 ° C., laminating Thermal lamination was carried out continuously under the conditions of a pressure of 196 N / cm (20 kgf / cm) and a lamination speed of 1.5 m / min to produce a flexible metal-clad laminate according to the present invention.

(実施例2)
銅箔として18μm電解銅箔(3EC−VLP,三井金属社製)を用いる以外は実施例1と同様の操作を行い、本発明にかかるフレキシブル金属張積層板を作製した。
(Example 2)
A flexible metal-clad laminate according to the present invention was produced by performing the same operation as in Example 1 except that 18 μm electrolytic copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd.) was used as the copper foil.

(実施例3)
合成例2で得られたポリアミド酸溶液を用い、IR炉の雰囲気温度を390℃、ラミネート温度を360℃にする以外は実施例1と同様の操作を行い、本発明にかかるフレキシブル金属張積層板を作製した。
(Example 3)
A flexible metal-clad laminate according to the present invention was carried out in the same manner as in Example 1 except that the polyamic acid solution obtained in Synthesis Example 2 was used, the atmospheric temperature of the IR furnace was set to 390 ° C., and the lamination temperature was set to 360 ° C. Was made.

(比較例1)
合成例1で得られたポリアミド酸溶液を固形分濃度10重量%になるまでDMFで希釈した後、17μm厚のポリイミドフィルム(アピカルHPP,鐘淵化学工業社製)の両面に、熱可塑性ポリイミド層(接着層)の最終片面厚みが4μmとなるようにポリアミド酸を塗布した後、140℃で1分間加熱を行った。続いて、雰囲気温度300℃の遠赤炉の中を30N/mの張力をかけて20秒間通し、加熱イミド化を行って、接着フィルムを得た。
(Comparative Example 1)
After diluting the polyamic acid solution obtained in Synthesis Example 1 with DMF to a solid content concentration of 10% by weight, a thermoplastic polyimide layer is formed on both sides of a 17 μm-thick polyimide film (Apical HPP, Kaneka Chemical Co., Ltd.). The polyamic acid was applied so that the final thickness of the (adhesion layer) was 4 μm, and then heated at 140 ° C. for 1 minute. Then, the inside of the far-infrared furnace having an atmospheric temperature of 300 ° C. was passed through a tension of 30 N / m for 20 seconds to perform heating imidization to obtain an adhesive film.

得られた接着フィルムの両面に18μmの圧延銅箔(BHY−22B−T;ジャパンエナジー製)、さらにその両側に保護材料(アピカル125NPI;鐘淵化学工業株式会社製)を配して、接着フィルム張力0.4N/cm、銅箔張力15N/cm、熱ロールラミネート機を用いて、ラミネート温度330℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、フレキシブル金属張積層板を作製した。   An 18 μm rolled copper foil (BHY-22B-T; manufactured by Japan Energy) is disposed on both sides of the obtained adhesive film, and protective materials (Apical 125 NPI; manufactured by Kaneka Chemical Co., Ltd.) are disposed on both sides thereof. Continuous with tension of 0.4 N / cm, copper foil tension of 15 N / cm, laminating temperature of 330 ° C., laminating pressure of 196 N / cm (20 kgf / cm), laminating speed of 1.5 m / min. The laminate was heat laminated to produce a flexible metal-clad laminate.

(比較例2)
銅箔として、18μm電解銅箔(3EC−VLP,三井金属社製)を用いる以外は比較例1と同様の操作を行い、フレキシブル金属張積層板を作製した。
(Comparative Example 2)
A flexible metal-clad laminate was prepared by performing the same operation as in Comparative Example 1 except that 18 μm electrolytic copper foil (3EC-VLP, manufactured by Mitsui Kinzoku Co., Ltd.) was used as the copper foil.

(比較例3)
合成例2で得られたポリアミド酸溶液を用い、IR炉の雰囲気温度を390℃、ラミネート温度を360℃にする以外は比較例1と同様の操作を行い、フレキシブル金属張積層板を作製した。
(Comparative Example 3)
Using the polyamic acid solution obtained in Synthesis Example 2, the same operation as in Comparative Example 1 was performed except that the atmospheric temperature of the IR furnace was set to 390 ° C. and the lamination temperature was set to 360 ° C., thereby producing a flexible metal-clad laminate.

各実施例、比較例で使用したフレキシブル金属張積層板の特性を評価した結果を表1に示す。   Table 1 shows the results of evaluation of the characteristics of the flexible metal-clad laminate used in each example and comparative example.

Figure 2005161632
比較例1〜比較例3に示すように、ポリイミドフィルムに熱可塑性ポリイミド層を設けて銅箔とラミネートを行った場合は、エッチング後ならびに加熱後の寸法安定性に劣る結果となった。これに対し、銅箔に熱可塑性ポリイミド層を設けてポリイミドフィルムとラミネートを行った実施例1〜3では、張力の影響を受けにくくなり、良好な寸法安定性が確認された。また、製造方法を変えても、金属箔に対する接着強度には影響がなかった。
Figure 2005161632
As shown in Comparative Examples 1 to 3, when a polyimide film was provided with a thermoplastic polyimide layer and laminated with a copper foil, the results were poor in dimensional stability after etching and after heating. On the other hand, in Examples 1 to 3 in which a thermoplastic polyimide layer was provided on a copper foil and laminated with a polyimide film, it was less affected by tension and good dimensional stability was confirmed. Moreover, even if the manufacturing method was changed, the adhesive strength to the metal foil was not affected.

Claims (5)

熱可塑性ポリイミドを含有する接着層を介してポリイミドフィルムと金属箔とを貼り合わせるフレキシブル金属張積層板の製造方法であって、該金属箔の片面に熱可塑性ポリイミドを含有する接着層を設けた後、ポリイミドフィルムと貼り合わせて得られることを特徴とする、フレキシブル金属張積層板の製造方法。 A method for producing a flexible metal-clad laminate in which a polyimide film and a metal foil are bonded via an adhesive layer containing a thermoplastic polyimide, and after an adhesive layer containing a thermoplastic polyimide is provided on one side of the metal foil A method for producing a flexible metal-clad laminate, characterized by being obtained by laminating with a polyimide film. 金属箔の片面に接着層を設ける際に、熱可塑性ポリイミドの前駆体であるポリアミド酸を含有する溶液を流延、塗布した後、イミド化することを特徴とする、請求項1記載のフレキシブル金属張積層板の製造方法。 The flexible metal according to claim 1, wherein when an adhesive layer is provided on one side of the metal foil, a solution containing polyamic acid, which is a precursor of thermoplastic polyimide, is cast and applied, and then imidized. A method for producing a tension laminate. 一対以上の金属ロールを有する熱ロールラミネート装置を用いて接着層付き金属箔とポリイミドフィルムとを貼り合わせて得られることを特徴とする、請求項1または2に記載のフレキシブル金属張積層板の製造方法。 3. A flexible metal-clad laminate according to claim 1 or 2, which is obtained by bonding a metal foil with an adhesive layer and a polyimide film using a hot roll laminator having a pair of metal rolls. Method. 請求項3に記載の製造方法により得られる、フレキシブル金属張積層板。 A flexible metal-clad laminate obtained by the production method according to claim 3. 金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.08〜+0.08の範囲にあることを特徴とする、請求項4に記載のフレキシブル金属張積層板。 The dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil is −0.08 to +0.08 in both the MD direction and the TD direction. The flexible metal-clad laminate according to claim 4, which is in a range.
JP2003402320A 2003-12-01 2003-12-01 Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby Pending JP2005161632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402320A JP2005161632A (en) 2003-12-01 2003-12-01 Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402320A JP2005161632A (en) 2003-12-01 2003-12-01 Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby

Publications (1)

Publication Number Publication Date
JP2005161632A true JP2005161632A (en) 2005-06-23

Family

ID=34725911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402320A Pending JP2005161632A (en) 2003-12-01 2003-12-01 Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby

Country Status (1)

Country Link
JP (1) JP2005161632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062274A (en) * 2005-09-01 2007-03-15 Shin Etsu Chem Co Ltd Flexible laminated board cladded with copper layer on single site and manufacturing method of it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062274A (en) * 2005-09-01 2007-03-15 Shin Etsu Chem Co Ltd Flexible laminated board cladded with copper layer on single site and manufacturing method of it

Similar Documents

Publication Publication Date Title
US8426548B2 (en) Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
KR100958466B1 (en) Novel polyimide film and use thereof
JP5069847B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069846B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5064033B2 (en) Adhesive sheet and copper-clad laminate
JP4551094B2 (en) Adhesive film, flexible metal-clad laminate with improved dimensional stability obtained therefrom, and method for producing the same
JP4509032B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability
JP4486333B2 (en) Adhesive film and flexible metal-clad laminate with improved hygroscopic solder resistance obtained therefrom
JP5620093B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP5134198B2 (en) Polyimide film laminate and use thereof
JP4271563B2 (en) Method for producing flexible metal-clad laminate
JP2005199481A (en) Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
JP5918822B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP2007050599A (en) Flexible metal-clad laminated plate excellent in dimensional stability and its production method
JP2005193542A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP2005161632A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP2005193541A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP4663976B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability
JP4838509B2 (en) Method for producing flexible metal-clad laminate
JP2005186574A (en) Method for manufacturing adhesive sheet, adhesive sheet and flexible metal clad laminated plate made by using the same
JP2007296730A (en) Flexible metal-clad laminate excellent in dimensional stability and its manufacturing method
JP2007296729A (en) Flexible metal-clad laminate excellent in dimensional stability and its manufacturing method
JP2007296728A (en) Flexible metal-clad laminate excellent in dimensional stability and its manufacturing method
JPWO2006082828A1 (en) Isotropic adhesive film and flexible metal-clad laminate
JP2005335102A (en) Adhesive joining member enhanced in dimensional stability and flexible metal clad laminated sheet