JP2005158719A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2005158719A
JP2005158719A JP2004314916A JP2004314916A JP2005158719A JP 2005158719 A JP2005158719 A JP 2005158719A JP 2004314916 A JP2004314916 A JP 2004314916A JP 2004314916 A JP2004314916 A JP 2004314916A JP 2005158719 A JP2005158719 A JP 2005158719A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004314916A
Other languages
Japanese (ja)
Other versions
JP4929580B2 (en
Inventor
Akihiro Fujii
明博 藤井
Tokuo Inamasu
徳雄 稲益
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004314916A priority Critical patent/JP4929580B2/en
Publication of JP2005158719A publication Critical patent/JP2005158719A/en
Application granted granted Critical
Publication of JP4929580B2 publication Critical patent/JP4929580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery excellent in input/output characteristics. <P>SOLUTION: The lithium ion secondary battery comprises a positive electrode having as a constituting component a positive electrode active substance that can absorb and desorb lithium ions, a negative electrode having as the constituting component a negative electrode active substance that can absorb and desorb lithium ions, and a nonaqueous electrolyte wherein the positive electrode contains the positive electrode active substance and porous carbon whose operating voltage is baser than 4 V vs. metal lithium potential, and the negative electrode contains the negative electrode active substance and porous carbon whose operating voltage is nobler than 1 V vs. the metal lithium potential. The positive electrode contains LiFePO<SB>4</SB>together with the porous carbon, and the negative electrode contains Li<SB>4</SB>Ti<SB>5</SB>O<SB>12</SB>together with the porous carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、入・出力特性に優れたハイブリッド型リチウムイオン二次電池に関する。   The present invention relates to a hybrid type lithium ion secondary battery having excellent input / output characteristics.

近年、携帯電話、ノートパソコン等の携帯機器類用、電気自動車用などの電源としてエネルギー密度が高く、かつ自己放電が少なくてサイクル特性の良い非水二次電池が注目されている。   In recent years, non-aqueous secondary batteries having high energy density, low self-discharge and good cycle characteristics have attracted attention as power sources for portable devices such as mobile phones and notebook computers and electric vehicles.

このような非水二次電池の中で、現在最も広く市場に出回っているのがリチウム二次電池である。   Among such non-aqueous secondary batteries, lithium secondary batteries are currently most widely on the market.

リチウム二次電池の主流としては、2Ah以下の携帯電話用を中心とした小型民生用である。現在、リチウム二次電池用の正極活物質としては数多くのものが存在するが、最も一般的に知られているのは、作動電圧が4V付近のリチウムコバルト酸化物(LiCoO2)やリチウムニッケル酸化物(LiNiO2)、又はスピネル構造を持つリチウムマンガン酸化物(LiMn24)等を基本構成とするリチウム含有遷移金属酸化物である。中でもリチウムコバルト酸化物は、電池容量2Ahまでの小容量リチウム二次電池では、充放電特性とエネルギー密度に優れることから正極活物質として広く採用されている。 The mainstream of lithium secondary batteries is for small-sized consumer use mainly for mobile phones of 2 Ah or less. Currently, there are many positive electrode active materials for lithium secondary batteries, but the most commonly known positive electrode active materials include lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide whose operating voltage is around 4V. It is a lithium-containing transition metal oxide having a basic structure of an oxide (LiNiO 2 ) or a lithium manganese oxide (LiMn 2 O 4 ) having a spinel structure. Among them, lithium cobalt oxide is widely adopted as a positive electrode active material in a small-capacity lithium secondary battery up to a battery capacity of 2 Ah because of its excellent charge / discharge characteristics and energy density.

しかしながら、今後の中型・大型への展開、特に大きな需要が見込まれるHEVへの搭載を考えた場合、現在の小型の仕様ではHEV用途で要求される入・出力特性を満足することができない。特許文献1には、LixTiy4と比表面積が500m2以上の炭素を有する電極が記載され、対極にはLiCoO2、LiNiO2、LiMn24や、それらのCo、Ni、Mnなどの一部を他の金属で置換したものを用いうることが記載されている。しかしながら出力特性及び入力特性が十分でないといった問題があった。
特開2002−158139号公報 特開2000−294238号公報 特開2000−302547号公報 F.Croce et.al. Electochem and Solid−State Letters, 5(3) A47−A50,2002 S.Franger et.al. Electochem and Solid−State Letters, 5(10) A231−A233,2002
However, when considering future expansion to medium-sized and large-sized vehicles, especially mounting on HEVs where large demand is expected, the current small-sized specifications cannot satisfy the input / output characteristics required for HEV applications. Patent Document 1 describes an electrode having Li x Ti y O 4 and carbon having a specific surface area of 500 m 2 or more, and the counter electrode is LiCoO 2 , LiNiO 2 , LiMn 2 O 4, and Co, Ni, Mn thereof. It is described that what substituted one part etc. with other metals can be used. However, there is a problem that output characteristics and input characteristics are not sufficient.
JP 2002-158139 A JP 2000-294238 A JP 2000-302547 A F. Croce et. al. Electrochem and Solid-State Letters, 5 (3) A47-A50, 2002 S. Franger et. al. Electrochem and Solid-State Letters, 5 (10) A231-A233, 2002

本発明は、上記問題点に鑑みてなされたものであり、入・出力特性に優れたリチウムイオン二次電池を提供することを目的としている。 The present invention has been made in view of the above problems, and an object thereof is to provide a lithium ion secondary battery having excellent input / output characteristics.

本発明の構成とその作用効果は次の通りである。但し、作用機構については推定を含んでおり、その作用機構の成否は、本発明を制限するものではない。 The configuration of the present invention and its operational effects are as follows. However, the action mechanism includes estimation, and the success or failure of the action mechanism does not limit the present invention.

本発明は請求項1に記載のように、リチウムイオンを吸蔵・放出しうる正極活物質を構成成分とする正極、リチウムイオンを吸蔵・放出しうる負極活物質を構成成分とする負極活物質を構成成分とする負極、及び、非水電解質を備えたリチウムイオン二次電池において、前記正極は、作動電位が金属リチウム電位に対して4Vより卑な正極活物質と多孔質炭素とを含有し、前記負極は、作動電位が金属リチウム電位に対して1Vより貴な負極活物質と多孔質炭素とを含有することを特徴とするリチウムイオン二次電池である。   According to a first aspect of the present invention, there is provided a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions as a constituent, and a negative electrode active material having a negative electrode active material capable of occluding and releasing lithium ions as a constituent. In the lithium ion secondary battery including a negative electrode as a constituent component and a non-aqueous electrolyte, the positive electrode contains a positive electrode active material and porous carbon whose operating potential is lower than 4 V with respect to the metallic lithium potential, The negative electrode is a lithium ion secondary battery including a negative electrode active material having an operating potential nobler than 1 V with respect to a metallic lithium potential and porous carbon.

このような電極構成にすることで、リチウムイオン二次電池の入・出力特性を改善することが可能となる。   By adopting such an electrode configuration, it becomes possible to improve the input / output characteristics of the lithium ion secondary battery.

活性炭同士を組み合わせた非水系キャパシターがある。これは2.5V〜0.5Vで作動するものであるが、このときの、電池で言うところの正極に相当する電極は約4.0V〜3.0V/Li、負極に相当する電極は約1.5V〜2.5V/Liで作動している。   There is a non-aqueous capacitor that combines activated carbon. This operates at 2.5 V to 0.5 V. At this time, the electrode corresponding to the positive electrode in the battery is about 4.0 V to 3.0 V / Li, and the electrode corresponding to the negative electrode is about Operating from 1.5V to 2.5V / Li.

従って、活性炭を電極に含有させるときに使用する正・負極活物質をそれぞれこの電位窓内で充放電が行える活物質とすることで、本発明の効果を最も効果的に発揮できるようになる。逆に、4.0V/Liを超えて作動する正極活物質、及び1.5V/Liを下回る範囲で作動する負極活物質を使用すると、コバルト酸リチウムを正極に用いたリチウム電池と同じように正極では電解液の酸化反応、負極では還元反応が起こり被膜が形成されてしまう。特に、活性炭はその比表面積が大きいために、それらの副反応量は通常のリチウム電池の比ではなく、分厚い被膜の形成に伴う抵抗増加により、充放電ができなくなったり、副反応により生じたガスにより電池が膨れたり、液が副反応により消費されて液不足になったりする可能性がある。故に、正極及び負極活物質の作動電位を規制することは、電極に多孔質炭素を含有させる上での重要な要件である。   Therefore, the positive and negative electrode active materials used when the activated carbon is contained in the electrode are the active materials that can be charged and discharged within the potential window, respectively, so that the effects of the present invention can be exhibited most effectively. On the contrary, when a positive electrode active material that operates at a voltage exceeding 4.0 V / Li and a negative electrode active material that operates at a range below 1.5 V / Li are used, the same as a lithium battery using lithium cobaltate as a positive electrode. An oxidation reaction of the electrolytic solution occurs at the positive electrode, and a reduction reaction occurs at the negative electrode to form a film. In particular, activated carbon has a large specific surface area, so the amount of these side reactions is not the ratio of ordinary lithium batteries, and it is impossible to charge or discharge due to the increase in resistance accompanying the formation of a thick film, or the gas generated by side reactions. As a result, the battery may swell, or the liquid may be consumed by a side reaction, resulting in a shortage of liquid. Therefore, regulating the operating potential of the positive electrode and the negative electrode active material is an important requirement for allowing the electrode to contain porous carbon.

また、本発明は請求項2に記載のように、前記正極及び負極は、前記多孔質炭素を重量比で5%〜90%含有するリチウムイオン二次電池である。   Moreover, this invention is a lithium ion secondary battery in which the said positive electrode and a negative electrode contain 5 to 90% of said porous carbon by weight ratio, as described in Claim 2.

前記多孔質炭素の含有比率を5重量%以上とすることにより、入出力特性の改善効果を充分に発揮させることができる。また、前記多孔質炭素の含有比率を90重量%以下とすることにより、電気化学的容量の小さい多孔質炭素を用いても、電池のエネルギー密度を大きく低下させることなく十分な高出力パルス特性を備えたリチウムイオン二次電池とすることができる。前記多孔質炭素の含有比率は、より好ましくは10%〜80%であり、さらに好ましくは20%〜70%である。   By setting the content ratio of the porous carbon to 5% by weight or more, the effect of improving input / output characteristics can be sufficiently exhibited. Further, by setting the content ratio of the porous carbon to 90% by weight or less, even when using porous carbon having a small electrochemical capacity, sufficient high output pulse characteristics can be obtained without greatly reducing the energy density of the battery. It can be set as the provided lithium ion secondary battery. The content ratio of the porous carbon is more preferably 10% to 80%, and further preferably 20% to 70%.

本発明は請求項3に記載のように、前記正極活物質が組成式LiFePO4で表されるオリビン形リン酸鉄リチウムであることを特徴とするリチウムイオン二次電池である。 According to a third aspect of the present invention, in the lithium ion secondary battery according to the third aspect, the positive electrode active material is olivine type lithium iron phosphate represented by a composition formula LiFePO 4 .

前述したように、正極の作動電位を規制することは、電極に多孔質炭素を含有させる上での重要な要件である。上記組成で表されるオリビン形リン酸鉄リチウムは3.3〜3.5V/Li付近に平坦なLi挿入・脱離電位を有することから、電極に多孔質炭素を含有させる場合の正極活物質として適している。尚かつ、リン酸鉄リチウムは全ての酸素がリンと共有結合で結びつき、ポリアニオンを形成しているために、温度上昇に伴い正極中の酸素が放出されて電解液を燃焼させることがない。このため、高温充電状態での安全性はLiCoO2などに比べて飛躍的に向上する。また、化学的・機械的安定性も極めて優れた性質を持ち、長期保存性能にも優れるといった中・大型用途で重要視される要件を満たしており、作動電位も4V/Li以下に作動電位を持つ正極活物質の中では最も高い電位に分類され、真密度も3.6g/ccと大きいことから極めて好ましい。 As described above, regulating the working potential of the positive electrode is an important requirement for incorporating porous carbon into the electrode. Since the olivine-type lithium iron phosphate represented by the above composition has a flat Li insertion / extraction potential in the vicinity of 3.3 to 3.5 V / Li, the positive electrode active material in the case of containing porous carbon in the electrode Suitable as Moreover, since all the oxygen in lithium iron phosphate is covalently bonded to phosphorus to form a polyanion, oxygen in the positive electrode is not released as the temperature rises, and the electrolyte does not burn. For this reason, safety in a high-temperature charged state is dramatically improved as compared with LiCoO 2 or the like. In addition, it has extremely excellent chemical and mechanical stability and meets the requirements of medium and large applications such as excellent long-term storage performance. The operating potential is 4 V / Li or less. It is classified as the highest potential among the positive electrode active materials possessed, and the true density is as high as 3.6 g / cc, which is extremely preferable.

また、本発明は請求項4に記載のように、前記負極活物質が組成式Li4Ti512で表されるスピネル形チタン酸リチウムであることを特徴とするリチウムイオン二次電池である。 The present invention is the lithium ion secondary battery according to claim 4, wherein the negative electrode active material is a spinel type lithium titanate represented by a composition formula Li 4 Ti 5 O 12. .

正極と同様に、負極の作動電位を規制することは、電極に多孔質炭素を含有させる上での重要な要件である。   As with the positive electrode, regulating the working potential of the negative electrode is an important requirement for allowing the electrode to contain porous carbon.

一般的なリチウムイオン二次電池に用いられている負極活物質は炭素材料であり、そのLiイオンの挿入・脱離は1.0V/Li以下のリチウム金属電位に近い電位で行われるため電解液の還元分解に伴う被膜形成が進行する。この被膜には導電性が無いため負極の負荷特性を低下させてしまう。特に、活性炭はその比表面積が大きいために、電解液の還元反応量は通常のリチウム電池の比ではなく、分厚い被膜の形成に伴う抵抗増加により、充放電レート特性が著しく損なわれる可能性がある。   A negative electrode active material used in a general lithium ion secondary battery is a carbon material, and insertion / extraction of Li ions is performed at a potential close to a lithium metal potential of 1.0 V / Li or less. Formation of the film accompanying the reductive decomposition of proceeds. Since this coating is not conductive, the load characteristics of the negative electrode are reduced. In particular, since activated carbon has a large specific surface area, the reduction reaction amount of the electrolytic solution is not the ratio of a normal lithium battery, and charge / discharge rate characteristics may be significantly impaired due to an increase in resistance accompanying the formation of a thick film. .

そういったことから、Liイオンの挿入・脱離が1.4〜1.7V/Li付近で行われるチタン系の負極材料が適している。中でもLi4Ti512は充放電による結晶の歪みが小さく、電池の長寿命化が期待できる点から好ましい。 For these reasons, a titanium-based negative electrode material in which insertion / extraction of Li ions is performed in the vicinity of 1.4 to 1.7 V / Li is suitable. Among these, Li 4 Ti 5 O 12 is preferable from the viewpoint that the crystal distortion due to charging / discharging is small and the life of the battery can be expected to be extended.

さらに、本発明は請求項5に記載のように、前記非水電解質は、常温溶融塩を含有していることを特徴とするリチウムイオン二次電池である。   Furthermore, the present invention is the lithium ion secondary battery according to claim 5, wherein the non-aqueous electrolyte contains a room temperature molten salt.

一般的な電解質としては、常温で液体の有機溶媒にリチウム塩を溶解させてなる電解液が用いられている。しかしながら、このような有機溶媒は、揮発しやすく、引火性も高く、それ故に可燃性物質に分類されるものであるので、過充電、過放電、及びショートなどのアブユース時における安全性や高温環境下における安定性に問題があった。   As a general electrolyte, an electrolytic solution in which a lithium salt is dissolved in an organic solvent that is liquid at room temperature is used. However, these organic solvents are volatile and highly flammable, and are therefore classified as flammable substances. Therefore, safety and high temperature environment during overuse such as overcharge, overdischarge, and short circuit There was a problem with the stability below.

一方、常温溶融塩はその名の通り常温で液体状態を呈している電解質であり、揮発性が殆どない、難燃性であるため常温溶融塩を一般的な電解質に混ぜることで安全性を高め、高温での安定性を改善する効果が期待できる。   On the other hand, room temperature molten salt is an electrolyte that is in a liquid state at room temperature, as its name suggests, and it has almost no volatility and is flame retardant, so it is safer by mixing room temperature molten salt with a general electrolyte. The effect of improving the stability at high temperatures can be expected.

ところが、常温溶融塩は上記特徴の他に液の粘性が高いという特性を有している。故に、この常温溶融塩にリチウム塩を含ませた場合、一般的なリチウム二次電池用電解液に比べLiイオンの輸率が小さくなるため、これを用いてリチウム二次電池を作製すると、ハイレート充放電が殆ど行えなくなる。   However, the room temperature molten salt has the characteristic that the viscosity of the liquid is high in addition to the above characteristics. Therefore, when lithium salt is included in this room temperature molten salt, the transport number of Li ions is smaller than that of a general lithium secondary battery electrolyte. Charging / discharging can hardly be performed.

しかしながら、イオン伝導度に関しては、一般的な電解液よりも優れているため、元々常温溶融塩に含まれるカチオンは液中を素早く移動できる。   However, since the ionic conductivity is superior to that of a general electrolytic solution, the cation originally contained in the room temperature molten salt can move quickly in the solution.

本発明では、電極にリチウム電池用の活物質の他に多孔質炭素を含有させているため、この多孔質炭素表面で電気二重層を形成することでキャパシター的な特性を発現させることが可能であり、その際、イオン伝導度の高い常温溶融塩が液中に含まれることでこの特性が効果的に働き、本発明のリチウムイオン二次電池の入・出力特性をより改善することができる。さらに、常温溶融塩の濃度が濃い方が、電極に含有させた多孔質炭素へのイオン吸着量が増えることで電気二重層容量の増加が見込めるので好ましく、塩濃度は2モル/リットル以上が好ましい。また、このような理由から、非水電解質中に含まれる常温溶融塩の割合は多い方が良く、非水電解質がリチウム塩と常温溶融塩のみから構成されていても本発明の効果に対して悪影響を与えることはなく、何ら問題はない。   In the present invention, since the electrode contains porous carbon in addition to the active material for the lithium battery, it is possible to develop capacitor-like characteristics by forming an electric double layer on the porous carbon surface. In this case, when the room temperature molten salt having high ionic conductivity is contained in the liquid, this characteristic works effectively, and the input / output characteristics of the lithium ion secondary battery of the present invention can be further improved. Further, a higher concentration of the room temperature molten salt is preferable because an increase in the electric double layer capacity can be expected by increasing the amount of ions adsorbed on the porous carbon contained in the electrode, and the salt concentration is preferably 2 mol / liter or more. . For this reason, it is better that the ratio of the ambient temperature molten salt contained in the non-aqueous electrolyte is large, and even if the non-aqueous electrolyte is composed only of a lithium salt and an ambient temperature molten salt, the effect of the present invention is improved. There is no adverse effect and there is no problem.

また、本発明は請求項6記載のように、前記正極活物質は、50%粒子径が6μm以下であり90%粒子径が20μm以下である粒子からなることを特徴とするリチウムイオン二次電池である。   According to a sixth aspect of the present invention, the positive electrode active material comprises particles having a 50% particle size of 6 μm or less and a 90% particle size of 20 μm or less. It is.

このような構成によれば、放電中の正極の過電圧をより低減させることができるため、電池使用中の電圧の平坦製をより向上させることができる。特に、電池の放電末期における電圧の平坦性を向上できる。   According to such a configuration, since the overvoltage of the positive electrode during discharge can be further reduced, the flatness of the voltage during battery use can be further improved. In particular, the flatness of the voltage at the end of discharge of the battery can be improved.

前記正極活物質は、なかでも、50%粒子径が3μm以下であり90%粒子径が10μm以下である粒子からなるものとすると、より好ましい。   In particular, the positive electrode active material is more preferably composed of particles having a 50% particle diameter of 3 μm or less and a 90% particle diameter of 10 μm or less.

本発明によれば、入・出力特性に優れたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery excellent in the input / output characteristic can be provided.

以下に、本発明の実施の形態を例示するが、本発明は、以下の実施の形態に限定されるものではない。   Embodiments of the present invention will be exemplified below, but the present invention is not limited to the following embodiments.

本発明に係るリチウム二次電池は、正極活物質を主要構成成分とする正極と、負極活物質を主要構成成分とする負極と、電解質塩が非水溶媒に含有された非水電解質とから構成され、一般的には、正極と負極との間に、セパレーターとこれらを包装する外装体が設けられる。   The lithium secondary battery according to the present invention includes a positive electrode having a positive electrode active material as a main constituent, a negative electrode having a negative electrode active material as a main constituent, and a nonaqueous electrolyte containing an electrolyte salt in a nonaqueous solvent. In general, a separator and an outer package for packaging them are provided between the positive electrode and the negative electrode.

本発明のリチウム二次電池の正極には作動電位が金属リチウム電位に対して4Vより卑な正極活物質で構成された電極が好適に使用される。   For the positive electrode of the lithium secondary battery of the present invention, an electrode composed of a positive electrode active material whose operating potential is lower than 4 V with respect to the metallic lithium potential is preferably used.

該正極活物質としては、CuO,Cu2O,Ag2O,CuS,CuSO4等のI族金属化合物、TiS2,SiO2,SnO等のIV族金属化合物、V25,V612,VOx,Nb25,Bi23,Sb23等のV族金属化合物、CrO3,Cr23,MoO3,MoS2,WO3,SeO2等のVI族金属化合物、MnO2,Mn23等のVII族金属化合物、Fe23,FeO,Fe34,Ni23,NiO,CoO3,CoO等のVIII族金属化合物、または、一般式LixMX2,LixMNy2(M、NはIからVIII族の金属、Xは酸素、硫黄等のカルコゲン化合物を示す。)等で表される、例えばリチウム−コバルト系複合酸化物やリチウム−マンガン系複合酸化物等のリチウム含有遷移金属酸化物、オリビン構造を有するLixFePO4やLixFeSO4、さらに、ジスルフィド,ポリピロール,ポリアニリン,ポリパラフェニレン,ポリアセチレン,ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素材等が挙げられるが、これらに限定されるものではない。これらの中で、リチウム含有遷移金属酸化物、オリビン構造を有するLixFePO4は、高い作動電圧を持ち、リチウムを放出可能な正極活物質であるため、組み立てた時点でリチウムを吸蔵可能な負極活物質と組み合わせることが容易である。さらに、オリビン構造を有するLixFePO4は、充電終止電圧が3.6V以下であってもリチウムを放出する能力を持っているので好ましい。 Examples of the positive electrode active material include group I metal compounds such as CuO, Cu 2 O, Ag 2 O, CuS, and CuSO 4 , group IV metal compounds such as TiS 2 , SiO 2 , and SnO, V 2 O 5 , and V 6 O. Group V metal compounds such as 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , and Group VI metals such as CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 and SeO 2 Compounds, Group VII metal compounds such as MnO 2 and Mn 2 O 3 , Group VIII metal compounds such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 and CoO, or a general formula Li x MX 2 , Li x MN y X 2 (M, N is a group I to VIII metal, X is a chalcogen compound such as oxygen, sulfur, etc.) And lithium-containing transition metal oxides such as lithium-manganese complex oxides , Li x FePO 4 and Li x FeSO 4 having an olivine structure, further, disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, conductive polymer compounds such as polyacene-based material, but pseudo-graphite structure carbon material and the like However, it is not limited to these. Among these, lithium-containing transition metal oxide, Li x FePO 4 having an olivine structure is a positive electrode active material having a high operating voltage and capable of releasing lithium, so that a negative electrode capable of occluding lithium at the time of assembly. Easy to combine with active material. Furthermore, Li x FePO 4 having an olivine structure is preferable because it has the ability to release lithium even when the end-of-charge voltage is 3.6 V or less.

本発明に用いる負極には作動電位が金属リチウム電位に対して1Vより貴な負極活物質で構成された電極が好適に使用される。   As the negative electrode used in the present invention, an electrode composed of a negative electrode active material having an operating potential nobler than 1 V with respect to the metallic lithium potential is preferably used.

該負極活物質としては、CuO,Cu2O,Ag2O,CuS,CuSO4等のI族金属化合物、TiS2,SiO2,SnO等のIV族金属化合物、V25,V612,VOx,Nb25,Bi23,Sb23等のV族金属化合物、CrO3,Cr23,MoO3,MoS2,WO3,SeO2等のVI族金属化合物、MnO2,Mn23等のVII族金属化合物、Fe23,FeO,Fe34,Ni23,NiO,CoO3,CoO等のVIII族金属化合物、または、一般式LixMX2,LixMNy2(M、NはIからVIII族の金属、Xは酸素、硫黄等のカルコゲン化合物を示す。)等で表される、例えばLiyTiO2、Li4+yTi512,Li4+yTi1120のようなチタン酸リチウム、さらに、ジスルフィド,ポリピロール,ポリアニリン,ポリパラフェニレン,ポリアセチレン,ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素材等が挙げられるが、これらに限定されるものではない。これらの中で、Li4+yTi512は、リチウム電位に対して1.4〜1.6Vに平坦な電位を有する。さらに、リチウム電位に対して1.2V以上でほとんどのリチウムを吸蔵することが可能であり、負極活物質として1.2V以上で充電終止電位を検出することに適している。またLi4+yTi512は、グラファイトと異なりリチウムの吸蔵放出に伴う結晶の歪みが小さいことからリチウムイオン二次電池の寿命向上が可能となること等から好ましい。 Examples of the negative electrode active material include group I metal compounds such as CuO, Cu 2 O, Ag 2 O, CuS and CuSO 4 , group IV metal compounds such as TiS 2 , SiO 2 and SnO, V 2 O 5 and V 6 O. Group V metal compounds such as 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , and Group VI metals such as CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 and SeO 2 Compounds, Group VII metal compounds such as MnO 2 and Mn 2 O 3 , Group VIII metal compounds such as Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 and CoO, or a general formula Li x MX 2 , Li x MN y X 2 (M, N represents a group I to VIII metal, X represents a chalcogen compound such as oxygen or sulfur), etc., for example, Li y TiO 2 , Li 4 + y Ti 5 O 12, lithium titanate, such as Li 4 + y Ti 11 O 20 , further di- Rufido, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, conductive polymer compounds such as polyacene-based material, but pseudo-graphite structure carbon material and the like, but is not limited thereto. Among these, Li 4 + y Ti 5 O 12 has a flat potential of 1.4 to 1.6 V with respect to the lithium potential. Furthermore, most lithium can be occluded at 1.2 V or more with respect to the lithium potential, and the negative electrode active material is suitable for detecting the end-of-charge potential at 1.2 V or more. Li 4 + y Ti 5 O 12 is preferable because, unlike graphite, the crystal distortion associated with insertion and extraction of lithium is small, so that the life of the lithium ion secondary battery can be improved.

本発明のリチウムイオン二次電池の正極活物質としてはリン酸鉄リチウムで構成された電極が、負極にはチタン酸リチウムで構成された電極が好適に使用される。   An electrode composed of lithium iron phosphate is suitably used as the positive electrode active material of the lithium ion secondary battery of the present invention, and an electrode composed of lithium titanate is preferably used as the negative electrode.

本発明に用いるLixFePO4を合成するにあたっては、前記した組成式を満たし、LiFePO4の単相が生成していれば製造方法は特に限定されるものではない。現実的には固相法(例えば特許文献2参照)、ゾル−ゲル法(例えば非特許文献1参照)、水熱法(例えば非特許文献2参照)が一般的に知られている。 In synthesizing Li x FePO 4 used in the present invention, the production method is not particularly limited as long as the composition formula is satisfied and a single phase of LiFePO 4 is generated. Actually, a solid phase method (for example, see Patent Document 2), a sol-gel method (for example, see Non-Patent Document 1), and a hydrothermal method (for example, see Non-Patent Document 2) are generally known.

また、リン酸鉄リチウムはその電子伝導性が悪いことから、これを補うために粒子表面にカーボンコートを行ったり、Feの一部をNbに代表される他の元素で置換したりする処置を施してもよく、そのような処置を施しても本発明の効果が損なわれることは無く、入・出力特性の改善に十分寄与するものである。そのような処理を施したカーボンコートリン酸鉄リチウム及び他元素置換リン酸鉄リチウムを正極活物質として用いたリチウムイオン二次電池も本発明の範囲内のものである。   In addition, since lithium iron phosphate has poor electronic conductivity, a carbon coat is applied to the particle surface to compensate for this, or a part of Fe is replaced with another element typified by Nb. Even if such treatment is performed, the effect of the present invention is not impaired, and it contributes sufficiently to the improvement of the input / output characteristics. A lithium ion secondary battery using carbon-coated lithium iron phosphate and other element-substituted lithium iron phosphate subjected to such treatment as a positive electrode active material is also within the scope of the present invention.

本発明に用いるLi4Ti512を合成するにあたっては、前記した組成式を満たしていれば製造方法は特に限定されるものではない。製造方法の例としては例えば特許文献3に記載の方法が挙げられる。 In synthesizing Li 4 Ti 5 O 12 used in the present invention, the production method is not particularly limited as long as the above composition formula is satisfied. As an example of a manufacturing method, the method of patent document 3 is mentioned, for example.

正・負極に含有させる多孔質炭素としては、活性炭やカーボンナノチューブが挙げられるが、キャパシターで一般的に使用されているものであれば特に限定されることはない。但し、多孔質炭素の電気容量がその比表面積に依存することから、比表面積に関しては大きい方が良く、活性炭であれば少なくとも1000m2/g以上、好ましくは1500m2/g以上であることが望ましく、カーボンナノチューブであれば100m2/g以上であることが好ましい。さらに、カーボンナノチューブの場合、電気二重層容量の関係から単層よりも多層である方が好ましい。また、これらの多孔質炭素に窒素などの異種元素が含まれていても良い。 Examples of the porous carbon contained in the positive and negative electrodes include activated carbon and carbon nanotubes, but are not particularly limited as long as they are generally used in capacitors. However, since the electric capacity of the porous carbon depends on its specific surface area, it is better that the specific surface area is large. In the case of activated carbon, it is preferably at least 1000 m 2 / g or more, preferably 1500 m 2 / g or more. In the case of carbon nanotubes, it is preferably 100 m 2 / g or more. Further, in the case of carbon nanotubes, it is preferable to have a multi-layer structure rather than a single-layer structure in view of electric double layer capacity. These porous carbons may contain a different element such as nitrogen.

多孔質炭素を電極に含有させる方法としては、電極作製時に単に正・負活物質と多孔質炭素とを物理混合する手法の他に、直接正・負極活物質にコート或いは、多孔質炭素に正・負極活物質をコートすることでも本発明の効果を十分に発揮することが可能な電極を作製することができる。コート法としては、ゾル−ゲル法やディップコーティング法などが挙げられるが、特にそれらに限定されることはなく、被コート粒子の表面にコート物質が接着されていれば良い。また、正・負極活物質合成時に多孔質炭素を混ぜる事も有効である。   In addition to the method of physically mixing the positive and negative active materials and the porous carbon at the time of producing the electrode, the method of adding the porous carbon to the electrode can be applied directly to the positive and negative electrode active materials or directly to the porous carbon. -The electrode which can fully exhibit the effect of this invention can be produced also by coating a negative electrode active material. Examples of the coating method include a sol-gel method and a dip coating method. However, the coating method is not particularly limited thereto, and it is sufficient that the coating substance is adhered to the surface of the particles to be coated. It is also effective to mix porous carbon during the synthesis of the positive and negative electrode active materials.

非水電解質に用いることのできる常温溶融塩を構成するアニオンは、ペルフルオロアルキル基を有する有機物アニオン、または、ペルフルオロアルキル基を有さない非金属元素のみからなるアニオンの内少なくとも1種を有するものとすることが好ましい。前記ペルフルオロアルキル基を有する有機物アニオンとしては、CF3SO3 -、CF3COO-、N(CF3SO22 -、N(C25SO22 -、N(CF3SO2)(C49SO2-、C(CF3SO23 -及びC(C25SO23 -からなる群から1種以上のアニオンを選択することが好ましく、特にN(CF3SO22 -であることが好ましいが、これらに限定されるものではない。ペルフルオロアルキル基を有さない非金属元素のみからなるアニオンとしては、BF4 -、PF6 -、AsF6 -、ClO4 -、CN-及びCH3COO-からなる群から1種以上のアニオンを選択することが好ましく、特にBF4 -であることが好ましいが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上混合して用いてもよい。 An anion constituting a room temperature molten salt that can be used for a non-aqueous electrolyte has at least one of an organic anion having a perfluoroalkyl group or an anion consisting only of a nonmetallic element having no perfluoroalkyl group. It is preferable to do. Examples of the organic anion having a perfluoroalkyl group include CF 3 SO 3 , CF 3 COO , N (CF 3 SO 2 ) 2 , N (C 2 F 5 SO 2 ) 2 , and N (CF 3 SO 2 ) (C 4 F 9 SO 2 ) , C (CF 3 SO 2 ) 3 and C (C 2 F 5 SO 2 ) 3 are preferably selected, and particularly N (CF 3 SO 2 ) 2 is preferable, but not limited thereto. As an anion consisting of only a nonmetallic element having no perfluoroalkyl group, one or more anions from the group consisting of BF 4 , PF 6 , AsF 6 , ClO 4 , CN and CH 3 COO are used. It is preferable to select, and in particular, BF 4 is preferable, but not limited thereto. These may be used alone or in combination of two or more.

また、常温溶融塩としては、四級アンモニウム有機物カチオンを有するものとすることが好ましい。四級アンモニウム有機物カチオンとしては、イミダゾリウムカチオン、テトラアルキルアンモニウムカチオン、ピリジニウムカチオン、ピロリウムカチオン、ピラゾリウムカチオン、ピロリニウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン等が挙げられる。このうち特に、(化学式1)で示される骨格を有するイミダゾリウムカチオンが好ましい。   Further, the room temperature molten salt preferably has a quaternary ammonium organic cation. Examples of the quaternary ammonium organic cation include imidazolium cation, tetraalkylammonium cation, pyridinium cation, pyrrolium cation, pyrazolium cation, pyrrolinium cation, pyrrolidinium cation, and piperidinium cation. Among these, an imidazolium cation having a skeleton represented by (Chemical Formula 1) is particularly preferable.

前記イミダゾリウムカチオンとしては、例えば、ジアルキルイミダゾリウムカチオンとして、1,3−ジメチルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン、1,3−ジエチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン等が、またトリアルキルイミダゾリウムカチオンとして、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the imidazolium cation include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1,3-diethylimidazolium ion, 1-butyl-3-yl as dialkylimidazolium cation. Methyl imidazolium ion, etc., and trialkyl imidazolium cation, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion Ions, 1-butyl-2,3-dimethylimidazolium ions, and the like, but are not limited thereto.

前記テトラアルキルアンモニウムカチオンとしては、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the tetraalkylammonium cation include, but are not limited to, trimethylethylammonium ion, trimethylpropylammonium ion, trimethylhexylammonium ion, and tetrapentylammonium ion.

前記ピリジニウムカチオンとしては、N−メチルピリジニウムイオン、N−エチルピリジニウムイオン、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン1−エチル−2−メチルピリジニウム、1−ブチル−4−メチルピリジニウム、1−ブチル−2,4−ジメチルピリジニウム等が挙げられるが、これらに限定されるものではない。   Examples of the pyridinium cation include N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion, N-butylpyridinium ion 1-ethyl-2-methylpyridinium, 1-butyl-4-methylpyridinium, 1-butyl Examples include -2,4-dimethylpyridinium, but are not limited thereto.

前記ピロリウムカチオンとしては、1,1−ジメチルピロリウムイオン、1−エチル−1−メチルピロリウムイオン、1−メチル−1−プロピルピロリウムイオン、1−ブチル−1−メチルピロリウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the pyrrolium cation include 1,1-dimethylpyrrolium ion, 1-ethyl-1-methylpyrrolium ion, 1-methyl-1-propylpyrrolium ion, 1-butyl-1-methylpyrrolium ion, It is not limited to these.

前記ピラゾリウムカチオンとしては、1,2−ジメチルピラゾリウムイオン、1−エチル−2−メチルピラゾリウムイオン、1−プロピル−2−メチルピラゾリウムイオン、1−ブチル−2−メチルピラゾリウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the pyrazolium cation include 1,2-dimethylpyrazolium ion, 1-ethyl-2-methylpyrazolium ion, 1-propyl-2-methylpyrazolium ion, 1-butyl-2-methylpyrazolium ion, and the like. However, it is not limited to these.

前記ピロリニウムカチオンとしては、1,2−ジメチルピロリニウムイオン、1−エチル−2−メチルピロリニウムイオン、1−プロピル−2−メチルピロリニウムイオン、1−ブチル−2−メチルピロリニウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the pyrrolium cation include 1,2-dimethylpyrrolium ion, 1-ethyl-2-methylpyrrolium ion, 1-propyl-2-methylpyrrolium ion, 1-butyl-2-methylpyrrolium ion, and the like. Although it is mentioned, it is not limited to these.

前記ピロリジニウムカチオンとしては、1,1−ジメチルピロリジニウムイオン、1−エチル−1−メチルピロリジニウムイオン、1−メチル−1−プロピルピロリジニウムイオン、1−ブチル−1−メチルピロリジニウムイオン等が挙げられるが、これらに限定されるものではない。   Examples of the pyrrolidinium cation include 1,1-dimethylpyrrolidinium ion, 1-ethyl-1-methylpyrrolidinium ion, 1-methyl-1-propylpyrrolidinium ion, 1-butyl-1-methylpyrrolidinium ion, and the like. However, it is not limited to these.

前記ピペリジニウムカチオンとしては、1,1−ジメチルピぺリジニウムイオン、1−エチル−1−メチルピぺリジニウムイオン、1−メチル−1−プロピルピぺリジニウムイオン、1−ブチル−1−メチルピぺリジニウムイオン等が挙げられるが、これらに限定されるものではない。
なお、これらの四級アンモニウム有機物カチオンを有する常温溶融塩は、単独で用いてもよく、2種以上混合して用いてもよい。
Examples of the piperidinium cation include 1,1-dimethylpiperidinium ion, 1-ethyl-1-methylpiperidinium ion, 1-methyl-1-propylpiperidinium ion, 1-butyl-1-methylpiperidinium ion, and the like. However, it is not limited to these.
In addition, the normal temperature molten salt which has these quaternary ammonium organic substance cations may be used independently, and may be used in mixture of 2 or more types.

以下に、実施例並びに比較例を挙げて本発明を説明するが、本発明は以下の記載により限定されるものではない。   Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following description.

(実施例1)
(LiFePO4の作製)
シュウ酸鉄二水和物(FeC24・2H2O)とリン酸二水素アンモニウム(NH42PO4)と炭酸リチウム(Li2CO3)とをモル比が2:2:1になるように計り取り、混合した。その後、2−プロパノールを溶媒としてボールミルで10時間粉砕混合を行った。次に、この混合物を真空乾燥することで溶媒である2−プロパノールを除去し、前駆体を得た。
(Example 1)
(Production of LiFePO 4 )
A molar ratio of iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) in a 2: 2: 1 ratio Weighed out and mixed. Thereafter, the mixture was pulverized and mixed for 10 hours with a ball mill using 2-propanol as a solvent. Next, this mixture was vacuum-dried to remove 2-propanol as a solvent to obtain a precursor.

得られた前駆体をアルミナ製の香鉢に入れ、環状焼成炉にて、アルゴン流通下(0.5リットル/分)で300℃、5時間の仮焼成を行った。さらに、その後、アルゴン流通下(0.5リットル/分)で650℃、20時間焼成してLiFePO4の粉末を合成した。 The obtained precursor was put into an incense pot made of alumina, and pre-baked in an annular baking furnace at 300 ° C. for 5 hours under an argon flow (0.5 liter / min). Further, LiFePO 4 powder was synthesized by baking at 650 ° C. for 20 hours under an argon flow (0.5 liter / min).

(正極の作製)
前記LiFePO4(正極活物質)、アセチレンブラック(導電剤)、ポリフッ化ビニリデン(PVdF、結着剤)及び活性炭(多孔質炭素、比表面積2000m2/g)を、重量比40:10:10:4
0の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練して、正極ペーストを得た。前記正極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後、プレス加工を行い、正極とした。正極には正極端子を超音波溶接により溶接した。
(Preparation of positive electrode)
The LiFePO 4 (positive electrode active material), acetylene black (conductive agent), polyvinylidene fluoride (PVdF, binder) and activated carbon (porous carbon, specific surface area 2000 m 2 / g) were used in a weight ratio of 40:10:10: 4
The mixture was mixed at a ratio of 0, N-methyl-2-pyrrolidone (NMP) was added and sufficiently kneaded to obtain a positive electrode paste. The positive electrode paste was applied to both surfaces of an aluminum foil current collector with a thickness of 20 μm, dried, and then pressed to obtain a positive electrode. A positive electrode terminal was welded to the positive electrode by ultrasonic welding.

(Li4Ti512の作製)
酸化チタン(TiO2 ルチル化率90%)とLi2CO3とをLi/Ti比が0.80になるように秤量し、自動乳鉢で30分混合した。この混合物をアルミナ製の香鉢に入れ、電気炉にて700℃で4時間、酸素流通下(0.1l/min)で仮焼成を行った。さらに、この仮焼成体を電気炉にて800℃で5時間、酸素流通下(0.1l/min)で焼成を行った。こうして合成した粉末を自動乳鉢で粉砕することでLi4Ti512の粉末を得た。
(Production of Li 4 Ti 5 O 12 )
Titanium oxide (TiO 2 rutile ratio 90%) and Li 2 CO 3 were weighed so that the Li / Ti ratio was 0.80 and mixed for 30 minutes in an automatic mortar. This mixture was put in an alumina casserole, and calcined in an electric furnace at 700 ° C. for 4 hours under oxygen flow (0.1 l / min). Further, this temporarily fired body was fired in an electric furnace at 800 ° C. for 5 hours under oxygen flow (0.1 l / min). The synthesized powder was pulverized in an automatic mortar to obtain Li 4 Ti 5 O 12 powder.

(負極の作製)
上記によって得たLi4Ti512(負極活物質)、アセチレンブラック(導電剤)、ポリフッ化ビニリデン(PVdF、結着剤)及び活性炭(多孔質炭素、比表面積2000m2/g)を重量比40:10
:10:40の割合で混合し、N―メチル−2−ピロリドン(NMP)を加えて十分混練して、負極ペーストを得た。次に、前記負極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後、プレス加工して負極とした。負極には負極端子を超音波溶接により溶接した。
(Preparation of negative electrode)
Weight ratio of Li 4 Ti 5 O 12 (negative electrode active material), acetylene black (conductive agent), polyvinylidene fluoride (PVdF, binder) and activated carbon (porous carbon, specific surface area 2000 m 2 / g) obtained as above. 40:10
Was mixed at a ratio of 10:40, and N-methyl-2-pyrrolidone (NMP) was added and sufficiently kneaded to obtain a negative electrode paste. Next, the negative electrode paste was applied on both surfaces of an aluminum foil current collector with a thickness of 20 μm, dried, and then pressed to form a negative electrode. A negative electrode terminal was welded to the negative electrode by ultrasonic welding.

(電解液の調製)
エチレンカーボネートとγ−ブチルラクトン体積比1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiBF4を2mol/lの濃度で溶解させ、非水電解質Aを作製した。
(Preparation of electrolyte)
A nonaqueous electrolyte A was prepared by dissolving LiBF 4 as a fluorine-containing electrolyte salt at a concentration of 2 mol / l in a mixed solvent in which ethylene carbonate and γ-butyllactone were mixed at a volume ratio of 1: 1.

(電池の作製)
上述した部材を用いて露点が−40℃以下の乾燥雰囲気下においてラミネート電池を作製した。電池断面図を図1に示す。正極と負極とを20μm厚さのポリプロピレン製セパレータを介して長円形状に巻回した。外装体として、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、この極群を前記正極端子及び負極端子の開放端部が外部露出するように注液孔となる部分を除いて気密封止した。
(Production of battery)
A laminate battery was produced using the above-described members in a dry atmosphere having a dew point of −40 ° C. or lower. A cross-sectional view of the battery is shown in FIG. The positive electrode and the negative electrode were wound in an oval shape through a polypropylene separator having a thickness of 20 μm. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal adhesive polypropylene film (50 μm) is used as the outer package, and the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside. Thus, it was hermetically sealed except for the portion to be the injection hole.

前記注液孔から一定量の非水電解質Aを注液後、真空状態で前記注液孔部分を熱封口し、扁平形のリチウム二次電池を作製する。これを実施例1の電池とした。SUS製電槽缶内に収容し、正負極をそれぞれ端子接続した後、蓋付けをしてレーザー溶接した。つづいて、上述した電解液を所定量導入した後、液導入口を封口した。このようにして作製したリチウムイオン二次電池を本発明電池1とする。   After injecting a certain amount of non-aqueous electrolyte A from the injection hole, the injection hole part is heat sealed in a vacuum state to produce a flat lithium secondary battery. This was designated as the battery of Example 1. The battery was placed in a SUS battery case, and positive and negative electrodes were connected to terminals, and then a lid was attached and laser welding was performed. Subsequently, after introducing a predetermined amount of the above-described electrolytic solution, the liquid inlet was sealed. The lithium ion secondary battery thus produced is referred to as the battery 1 of the present invention.

(実施例2)
(電解液の調製)
1−エチル−3−メチルイミダゾリウムイオン(EMI+)とテトラフルオロホウ酸イオン(BF4−)とからなる常温溶融塩(EMIBF4)1リットルに、2mol/lの濃度でLiBF4を溶解させ、非水電解液Bを作製した。
前記非水電解質Aと非水電解質Bとを1:1の重量比で混合して非水電解質Cを調製した。前記電解質中の水分量は30ppm未満とした。
(Example 2)
(Preparation of electrolyte)
LiBF 4 is dissolved at a concentration of 2 mol / l in 1 liter of a room temperature molten salt (EMIBF 4 ) composed of 1-ethyl-3-methylimidazolium ion (EMI + ) and tetrafluoroborate ion (BF4-), Nonaqueous electrolyte B was produced.
Nonaqueous electrolyte C and nonaqueous electrolyte B were mixed at a weight ratio of 1: 1 to prepare nonaqueous electrolyte C. The amount of water in the electrolyte was less than 30 ppm.

(電池の作製)
上述した非水電解質Cを注液したことを除いては、実施例1と同様にして作製したリチウムイオン二次電池を本発明電池2とする。
(Production of battery)
A lithium ion secondary battery produced in the same manner as in Example 1 except that the nonaqueous electrolyte C described above was injected was designated as the battery 2 of the present invention.

(比較例1)
(正極の作製)
LiFePO4(正極活物質)、アセチレンブラック(導電剤)及びポリフッ化ビニリデン(PVdF、結着剤)を、重量比75:15:10の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練して、正極ペーストを得た。前記正極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後、プレス加工を行い、正極とした。正極には正極端子を超音波溶接により溶接した。
(Comparative Example 1)
(Preparation of positive electrode)
LiFePO 4 (positive electrode active material), acetylene black (conductive agent) and polyvinylidene fluoride (PVdF, binder) are mixed at a weight ratio of 75:15:10, and N-methyl-2-pyrrolidone (NMP) is mixed. Was added and kneaded sufficiently to obtain a positive electrode paste. The positive electrode paste was applied to both surfaces of an aluminum foil current collector with a thickness of 20 μm, dried, and then pressed to obtain a positive electrode. A positive electrode terminal was welded to the positive electrode by ultrasonic welding.

(電池の作製)
上述した正極と実施例1で作製した負極を用いて露点が−40℃以下の乾燥雰囲気下において設計容量200mAhの角形電池を作製した。電池断面図を図1に示す。正極と負極とを20μm厚さのポリプロピレン製セパレータを介して長円形状に巻回した。外装体として、ポリエチレンテレフタレート(15μm)/アルミニウム箔(50μm)/金属接着性ポリプロピレンフィルム(50μm)からなる金属樹脂複合フィルムを用い、この極群を前記正極端子及び負極端子の開放端部が外部露出するように注液孔となる部分を除いて気密封止した。
(Production of battery)
Using the positive electrode described above and the negative electrode produced in Example 1, a square battery having a design capacity of 200 mAh was produced in a dry atmosphere with a dew point of −40 ° C. or lower. A cross-sectional view of the battery is shown in FIG. The positive electrode and the negative electrode were wound in an oval shape through a polypropylene separator having a thickness of 20 μm. A metal resin composite film made of polyethylene terephthalate (15 μm) / aluminum foil (50 μm) / metal adhesive polypropylene film (50 μm) is used as the outer package, and the open ends of the positive electrode terminal and the negative electrode terminal are exposed to the outside. Thus, it was hermetically sealed except for the portion to be the injection hole.

前記注液孔から一定量の非水電解質Aのみを注液後、真空状態で前記注液孔部分を熱封口し、設計容量200mAhの扁平形のリチウム二次電池を作製する。これを実施例1の電池とした。SUS製電槽缶内に収容し、正負極をそれぞれ端子接続した後、蓋付けをしてレーザー溶接した。つづいて、上述した電解液を所定量導入した後、液導入口を封口した。このようにして作製したリチウムイオン二次電池を比較電池1とする。   After pouring only a certain amount of non-aqueous electrolyte A from the liquid injection hole, the liquid injection hole part is thermally sealed in a vacuum state to produce a flat lithium secondary battery having a design capacity of 200 mAh. This was designated as the battery of Example 1. The battery was placed in a SUS battery case, and positive and negative electrodes were connected to terminals, and then a lid was attached and laser welding was performed. Subsequently, after introducing a predetermined amount of the above-described electrolytic solution, the liquid inlet was sealed. The lithium ion secondary battery produced in this way is referred to as comparative battery 1.

(比較例2)
(正極の作製)
LiCoO2(正極活物質)、アセチレンブラック(導電剤)、ポリフッ化ビニリデン(PVdF、結着剤)及び活性炭(多孔質炭素)を、重量比40:10:10:40の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練して、正極ペーストを得た。前記正極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後、プレス加工を行い、正極とした。正極には正極端子を超音波溶接により溶接した。
(Comparative Example 2)
(Preparation of positive electrode)
LiCoO 2 (positive electrode active material), acetylene black (conductive agent), polyvinylidene fluoride (PVdF, binder) and activated carbon (porous carbon) are mixed at a weight ratio of 40: 10: 10: 40, and N -Methyl-2-pyrrolidone (NMP) was added and sufficiently kneaded to obtain a positive electrode paste. The positive electrode paste was applied to both surfaces of an aluminum foil current collector with a thickness of 20 μm, dried, and then pressed to obtain a positive electrode. A positive electrode terminal was welded to the positive electrode by ultrasonic welding.

(電池の作製)
上述した正極を用いたことを除いては、実施例1と同様にして作製したリチウムイオン二次電池を比較電池2とする。
(Production of battery)
A lithium ion secondary battery produced in the same manner as in Example 1 except that the positive electrode described above was used is referred to as Comparative Battery 2.

(初期充放電)
電池の初期活性化の目的で、本発明電池1及び2、比較電池1及び2のそれぞれの電池について、5サイクルの定電流充放電を行った。電流は、充電・放電とも0.1ItmA(10時間率)とした。ここで、本発明電池1、2及び比較電池1については充電終止電圧2.5V、放電終止電圧0.5Vとし、比較電池2については充電終止電圧は2.7V、放電終止電圧1.5Vとした。ここで、5サイクル目の放電容量をもって公称容量とする。
(Initial charge / discharge)
For the purpose of initial activation of the batteries, the batteries 1 and 2 of the present invention and the comparative batteries 1 and 2 were each charged and discharged at a constant current of 5 cycles. The current was set to 0.1 ItmA (10 hour rate) for both charging and discharging. Here, the batteries 1 and 2 of the present invention and the comparative battery 1 have an end-of-charge voltage of 2.5 V and an end-of-discharge voltage of 0.5 V, and the comparative battery 2 has an end-of-charge voltage of 2.7 V and an end-of-discharge voltage of 1.5 V. did. Here, the discharge capacity at the fifth cycle is defined as the nominal capacity.

(出力試験)
前記初期充放電に続き、0.1ItAで充電末状態にした電池をそれぞれ用意し、20℃の恒温槽中で1、5,10,20,40,60,80,100mA/cm2の各電流で定電流放電を行った。各電流値での放電終了後、0.1ItAで充電した後、次の電流値での放電を行った。
(Output test)
Following the initial charge / discharge, batteries that were charged at 0.1 ItA were prepared, and each current of 1, 5, 10, 20, 40, 60, 80, and 100 mA / cm 2 in a constant temperature bath at 20 ° C. A constant current discharge was performed. After discharging at each current value, the battery was charged at 0.1 ItA, and then discharged at the next current value.

各電流値において放電開始後10秒目の電圧とそのときの電流値から出力Wを算出し、さらにその値を電池重量で割って質量出力密度W/kgを求めた。   At each current value, the output W was calculated from the voltage 10 seconds after the start of discharge and the current value at that time, and the value was divided by the battery weight to determine the mass output density W / kg.

(入力試験)
前記初期充放電に続き、0.1ItAで放電末状態にした電池をそれぞれ用意し、20℃の恒温槽中で1、5,10,20,40,60,80,100mA/cm2の各電流で定電流充電を行った。各電流値での充電終了後、0.1ItAで放電した後、次の電流値での充電を行った。
(Input test)
Following the initial charge / discharge, batteries that were discharged at 0.1 ItA were prepared, and each current of 1, 5, 10, 20, 40, 60, 80, and 100 mA / cm 2 in a constant temperature bath at 20 ° C. The constant current charging was performed. After completion of charging at each current value, the battery was discharged at 0.1 ItA, and then charged at the next current value.

各電流値において充電開始後10秒目の電圧とそのときの電流値から出力Wを算出し、さらにその値を電池重量で割って質量入力密度W/kgを求めた。   At each current value, the output W was calculated from the voltage 10 seconds after the start of charging and the current value at that time, and the value was divided by the battery weight to determine the mass input density W / kg.

(高温放置試験)
前記初期充放電に続き、0.1ItAで充電末状態にした電池をそれぞれ用意し、80℃の恒温槽中に24時間放置した。その後、20℃の恒温槽に5時間放置することで電池を十分に冷まし、電池の膨れを目測で確認した。
出力試験と高出力パルス試験の結果及び高温放置試験の結果を表1に示す。高温放置試験の結果については、電池膨れが無ければ○、膨れていれば×で表した。
(High temperature storage test)
Subsequent to the initial charge / discharge, batteries that were charged at 0.1 ItA were prepared, and left in a constant temperature bath at 80 ° C. for 24 hours. Thereafter, the battery was sufficiently cooled by being left in a constant temperature bath at 20 ° C. for 5 hours, and the swelling of the battery was visually confirmed.
Table 1 shows the results of the output test, the high output pulse test, and the high temperature storage test. The result of the high temperature storage test is indicated by ○ when the battery is not swollen and × when the battery is swollen.

Figure 2005158719
Figure 2005158719

表2の結果からわかるように、正極活物質としてLiCoO2を用いた比較電池2にのみ膨れが認められ、その他には電池膨れは起こらなかった。これは、正極活物質として用いたLiCoO2の充電末電位が4.3V/Liと通常の非水系キャパシターの陽極電位より高くなるため、正極内に含有させた多孔質炭素である比表面積の大きい活性炭により正極場での電解液の酸化反応に伴うガスが多量に発生したためであると考えられる。その他のLiFePO4を正極活物質として用いたものは、充電末においても正極と電解液の酸化反応が起こらない電位にあるためガス発生も起こらず膨れなかったものと思われる。表1において本発明電池1と比較電池1を比較すると、両方の電極に活性炭を含む本発明電池1の方が比較電池1よりも入・出力特性が改善されていることが分かる。これは、電極内に活性炭を共存させることで放電時の分極抵抗が緩和され短時間での大電流放電が可能となった為であると思われる。 As can be seen from the results in Table 2, only the comparative battery 2 using LiCoO 2 as the positive electrode active material was swollen, and no other battery swelling occurred. This is because the final charge potential of LiCoO 2 used as the positive electrode active material is 4.3 V / Li, which is higher than the anodic potential of a normal non-aqueous capacitor, so that the specific surface area of porous carbon contained in the positive electrode is large. This is probably because a large amount of gas was generated by the activated carbon due to the oxidation reaction of the electrolyte solution at the positive electrode field. The other materials using LiFePO 4 as the positive electrode active material are considered to have no potential for gas generation and swelling due to the potential at which no oxidation reaction between the positive electrode and the electrolyte occurs even at the end of charging. Comparing the battery 1 of the present invention and the comparative battery 1 in Table 1, it can be seen that the battery 1 of the present invention containing activated carbon in both electrodes has improved input / output characteristics than the comparative battery 1. This is considered to be due to the fact that activated carbon coexists in the electrode, so that the polarization resistance at the time of discharge is relaxed and a large current discharge in a short time becomes possible.

さらに、本発明電池2は本発明電池1よりも入・出力特性が改善されており、比較電池1と比較するとその差は歴然である。非水電解液中に常温溶融塩を加えたことで電極内の多孔質炭素表面による電気二重層容量が有効的に活用される事で、さらなる入・出力特性の改善が可能となったと考えられる。   Furthermore, the battery 2 of the present invention has improved input / output characteristics compared to the battery 1 of the present invention, and the difference is obvious when compared with the comparative battery 1. It is thought that the addition of room temperature molten salt to the non-aqueous electrolyte effectively improves the input / output characteristics by utilizing the electric double layer capacity due to the porous carbon surface in the electrode. .

前記前記初期充放電に続き0.1ItAで充電末状態にした本発明電池1を別途準備し、0.1ItAの定電流で公称容量に対して100%の電気量を放電した。図1にこのときの放電曲線を示す。図1に示す曲線は閉会路電圧の変化であるが、ここで、公称容量の50%以上にわたって電位変化が0.1V以内となっている。   Following the initial charge / discharge, the battery 1 of the present invention which was brought to the end of charge at 0.1 ItA was separately prepared, and a quantity of electricity of 100% of the nominal capacity was discharged at a constant current of 0.1 ItA. FIG. 1 shows a discharge curve at this time. The curve shown in FIG. 1 is a change in the closed circuit voltage. Here, the potential change is within 0.1 V over 50% or more of the nominal capacity.

(実施例3)
(正極活物質Mの作製)
シュウ酸鉄二水和物(FeC24・2H2O)、リン酸二水素アンモニウム(NH42PO4)及び炭酸リチウム(Li2CO3)をモル比が2:2:1となるように計り取り、混合した。次に、この混合物に溶媒として2−プロパノールを加え、ボールミルにて2時間粉砕混合を行った。このようにして前駆体を得た。
(Example 3)
(Preparation of positive electrode active material M)
The molar ratio of iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) is 2: 2: 1. Weighed out and mixed. Next, 2-propanol was added as a solvent to this mixture, and pulverized and mixed for 2 hours using a ball mill. A precursor was thus obtained.

上記で得られた前駆体をアルミナ製の匣鉢に入れ、環状焼成炉にて、窒素流通下(0.5dm3/分)で600℃、10時間焼成してLiFePO4の粉末を合成した。次に、微粉化処理として、得られたLiFePO4の粉末をボールミルのポットに入れ、ポット内部をアルゴン置換した後、24時間粉砕を行った。 The precursor obtained above was put in an alumina sagger and calcined at 600 ° C. for 10 hours under a nitrogen flow (0.5 dm 3 / min) in an annular firing furnace to synthesize LiFePO 4 powder. Next, as a pulverization treatment, the obtained LiFePO 4 powder was put in a pot of a ball mill, and the inside of the pot was purged with argon, followed by grinding for 24 hours.

粉砕後のLiFePO4粉末とポリビニルアルコール粉末を9:7の重量比で混合し、この混合物をアルミナ製の匣鉢に入れ、環状焼成炉にて窒素流通下(1.5dm3/分)で700℃、2時間熱処理しすることによりLiFePO4粉末の粒子表面にカーボンコートを行った。この処理により、LiFePO4粒子上に約5wt%のカーボンがコートされる。カーボンコートされたLiFePO4の凝集状態を解すため、さらにボールミルを用いて20分間の粉砕処理を行った。これを正極活物質Mとする。2−プロパノールを分散媒として沈降式レーザー回折型粒度分布計(ベックマン社製、カウンターLS13320型)を用いて正極活物質Mの粒度分布を測定した結果、正極活物質Mの90%粒子径(D90)は1.83μm、50%粒子径(D90)は1.15μm、10%粒子径(D10)は0.65μmであった。 The pulverized LiFePO 4 powder and polyvinyl alcohol powder are mixed at a weight ratio of 9: 7, and this mixture is put in an alumina sagger, and 700 in an annular baking furnace under nitrogen flow (1.5 dm 3 / min). The surface of the particles of LiFePO 4 powder was coated with carbon by heat treatment at 2 ° C. for 2 hours. By this treatment, about 5 wt% carbon is coated on the LiFePO 4 particles. In order to release the aggregation state of the carbon-coated LiFePO 4 , a pulverization treatment for 20 minutes was further performed using a ball mill. This is designated as a positive electrode active material M. As a result of measuring the particle size distribution of the positive electrode active material M using a sedimentation-type laser diffraction type particle size distribution analyzer (manufactured by Beckman Co., Ltd., counter LS13320 type) using 2-propanol as a dispersion medium, the 90% particle diameter (D90 ) Was 1.83 μm, 50% particle size (D90) was 1.15 μm, and 10% particle size (D10) was 0.65 μm.

(正極活物質Nの作製)
シュウ酸鉄二水和物(FeC24・2H2O)、リン酸二水素アンモニウム(NH42PO4)及び炭酸リチウム(Li2CO3)をモル比が2:2:1となるように計り取り、混合した。次に、この混合物に溶媒として2−プロパノールを加え、ボールミルにて2時間粉砕混合を行った。このようにして前駆体を得た。
(Preparation of positive electrode active material N)
The molar ratio of iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and lithium carbonate (Li 2 CO 3 ) is 2: 2: 1. Weighed out and mixed. Next, 2-propanol was added as a solvent to this mixture, and pulverized and mixed for 2 hours using a ball mill. A precursor was thus obtained.

上記で得られた前駆体をアルミナ製の匣鉢に入れ、環状焼成炉にて、窒素流通下(0.5dm3/分)で600℃、10時間焼成してLiFePO4の粉末を合成した。 The precursor obtained above was put in an alumina sagger and calcined at 600 ° C. for 10 hours under a nitrogen flow (0.5 dm 3 / min) in an annular firing furnace to synthesize LiFePO 4 powder.

得られたLiFePO4粉末とポリビニルアルコール粉末を9:7の重量比で混合し、この混合物をアルミナ製の匣鉢に入れ、環状焼成炉にて窒素流通下(1.5dm3/分)で700℃、2時間熱処理しすることによりLiFePO4粉末の粒子表面にカーボンコートを行った。この処理により、LiFePO4粒子上に約5wt%のカーボンがコートされる。LiFePO4の凝集状態を解すため、さらにボールミルを用いて20分間の粉砕処理を行った。これを正極活物質Nとする。上記と同様にして正極活物質Nの粒度分布を測定した結果、正極活物質Nの90%粒子径(D90)は33.5μm、50%粒子径(D90)は7.25μm、10%粒子径(D10)は1.69μmであった。 The obtained LiFePO 4 powder and polyvinyl alcohol powder were mixed at a weight ratio of 9: 7, and this mixture was placed in an alumina sagger, and 700 ° C. under a nitrogen flow (1.5 dm 3 / min) in an annular baking furnace. The surface of the particles of LiFePO 4 powder was coated with carbon by heat treatment at 2 ° C. for 2 hours. By this treatment, about 5 wt% carbon is coated on the LiFePO 4 particles. In order to release the aggregation state of LiFePO 4 , a pulverization treatment for 20 minutes was further performed using a ball mill. This is designated as a positive electrode active material N. As a result of measuring the particle size distribution of the positive electrode active material N in the same manner as described above, the 90% particle size (D90) of the positive electrode active material N is 33.5 μm, the 50% particle size (D90) is 7.25 μm, and the 10% particle size. (D10) was 1.69 μm.

(正極の作製)
正極活物質、アセチレンブラック(導電剤)、ポリフッ化ビニリデン(PVdF、結着剤)及び活性炭(多孔質炭素、比表面積2000m2/g)を、重量比40:10:10:40の割合で混合し、N−メチル−2−ピロリドン(NMP)を加えて十分混練して、正極ペーストを得た。前記正極ペーストを厚さ20μmのアルミニウム箔集電体上の両面に塗布し、乾燥した後、プレス加工を行い、30mm×30mmの大きさに切り出して正極とした。正極には正極端子を超音波溶接により溶接した。ここで、前記正極活物質Mを用いて作製した正極を正極Mとし、正極活物質Nを用いて作製した正極を正極Nとした。
(Preparation of positive electrode)
Mixing positive electrode active material, acetylene black (conductive agent), polyvinylidene fluoride (PVdF, binder) and activated carbon (porous carbon, specific surface area 2000 m 2 / g) in a weight ratio of 40: 10: 10: 40 Then, N-methyl-2-pyrrolidone (NMP) was added and sufficiently kneaded to obtain a positive electrode paste. The positive electrode paste was applied on both sides of an aluminum foil current collector with a thickness of 20 μm, dried, and then pressed, and cut into a size of 30 mm × 30 mm to obtain a positive electrode. A positive electrode terminal was welded to the positive electrode by ultrasonic welding. Here, the positive electrode produced using the positive electrode active material M was designated as positive electrode M, and the positive electrode produced using the positive electrode active material N was designated as positive electrode N.

(電解液の調製)
エチレンカーボネートとジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、含フッ素系電解質塩であるLiPF6を1mol/lの濃度で溶解させ、実施例3における非水電解質とした。
(Preparation of electrolyte)
LiPF 6 as a fluorine-containing electrolyte salt was dissolved at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to obtain a nonaqueous electrolyte in Example 3.

(正極の評価)
実施例1と同様にしてリチウムイオン二次電池を作製した。但し、単極挙動を観察するために参照極を挿入した。この電池を使って前記正極M及び正極Nの電気化学的性能を評価した。以下の試験において充電は0.1ItmA(10時間率)、15時間の定電流定電圧充電とし、放電終止は正極電位が2.0V(vs.Li/Li+)に達する時点とした。また、充電から放電への切り替わり時及び放電から充電への切り替わり時には30分の休止時間を設けた。まず、放電電流を0.1ItmA(10時間率)た充放電を4サイクル行った後、5サイクル目は放電電流を2ItmAとした。正極M及び正極Nをそれぞれ用いて作製したリチウムイオン二次電池(それぞれ電池M、電池N)とするについて上記試験を行い、結果を比較した。
(Evaluation of positive electrode)
A lithium ion secondary battery was produced in the same manner as in Example 1. However, a reference electrode was inserted to observe unipolar behavior. The electrochemical performance of the positive electrode M and the positive electrode N was evaluated using this battery. In the following tests, charging was performed at 0.1 ItmA (10 hour rate) and constant current / constant voltage charging for 15 hours, and the end of discharging was performed when the positive electrode potential reached 2.0 V (vs. Li / Li + ). In addition, a pause of 30 minutes was provided when switching from charging to discharging and when switching from discharging to charging. First, after charging and discharging with a discharge current of 0.1 ItmA (10 hour rate) for 4 cycles, the discharge current was set to 2 ItmA for the fifth cycle. The above test was performed on lithium ion secondary batteries (battery M and battery N, respectively) produced using the positive electrode M and the positive electrode N, respectively, and the results were compared.

図2に、微粉化処理を行った正極活物質Mを用いた電池Mの4サイクル目及び5サイクル目の放電時の正極電位変化を、図3に、微粉化処理を行わなかった正極活物質Nを用いた電池Nの4サイクル目及び5サイクル目の放電時の正極電位変化をそれぞれ示す。   FIG. 2 shows changes in the positive electrode potential during the discharge of the fourth cycle and the fifth cycle of the battery M using the positive electrode active material M subjected to the pulverization treatment, and FIG. 3 shows the positive electrode active material not subjected to the pulverization treatment. The change of the positive electrode potential at the time of the discharge of the 4th cycle of the battery N using N and the 5th cycle is shown, respectively.

図2及び図3からわかるように、0.1ItmAの定電流連続放電電位推移を比較すると、微粉化処理を行っていない正極活物質を用いた電池Nでは135mAh/g程度で放電電位が3Vに達しているのに対し、微粉化処理を行った正極活物質を用いた電池Mでは放電電位が3Vに達するまでに150mAh/g近い放電が可能となった。同様に、2ItmAの定電流連続放電電位推移を比較すると、微粉化処理を行っていない正極活物質を用いた電池Nでは70mAh/g程度で放電電位が3Vに達しているのに対し、微粉化処理を行った正極活物質を用いた電池Mでは放電電位が3Vに達するまでに90mAh/g近い放電が可能となった。このように、正極活物質の粉末は、50%粒子径が6μm以下であり90%粒子径が20μm以下である粒子からなるもの、より好ましくは、50%粒子径が3μm以下であり90%粒子径が10μm以下である粒子からなるものとすることにより、電池使用中の電圧の平坦性をより向上させることができ、特に、電池の放電末期における電圧の平坦性を向上できることがわかる。   As can be seen from FIG. 2 and FIG. 3, when the transition of the constant current continuous discharge potential of 0.1 ItmA is compared, in the battery N using the positive electrode active material not subjected to the pulverization treatment, the discharge potential is 3 V at about 135 mAh / g. On the other hand, in the battery M using the positive electrode active material subjected to the pulverization treatment, it was possible to discharge nearly 150 mAh / g before the discharge potential reached 3V. Similarly, when the constant current continuous discharge potential transition of 2 ItmA is compared, in the battery N using the positive electrode active material not subjected to the pulverization treatment, the discharge potential reaches 3 V at about 70 mAh / g, whereas the pulverization is performed. In the battery M using the treated positive electrode active material, it was possible to discharge nearly 90 mAh / g before the discharge potential reached 3V. Thus, the positive electrode active material powder is composed of particles having a 50% particle size of 6 μm or less and a 90% particle size of 20 μm or less, more preferably, a 50% particle size of 3 μm or less and 90% particles. It can be seen that, by using particles having a diameter of 10 μm or less, the flatness of the voltage during use of the battery can be further improved, and in particular, the flatness of the voltage at the end of discharge of the battery can be improved.

本発明電池の放電電圧変化を示す図である。It is a figure which shows the discharge voltage change of this invention battery. 本発明電池の放電時の正極電位変化を示す図である。It is a figure which shows the positive electrode electric potential change at the time of discharge of this invention battery. 本発明電池の放電時の正極電位変化を示す図である。It is a figure which shows the positive electrode electric potential change at the time of discharge of this invention battery.

Claims (6)

リチウムイオンを吸蔵・放出しうる正極活物質を構成成分とする正極、リチウムイオンを吸蔵・放出しうる負極活物質を構成成分とする負極活物質を構成成分とする負極、及び、非水電解質を備えたリチウムイオン二次電池において、前記正極は、作動電位が金属リチウム電位に対して4Vより卑な正極活物質と多孔質炭素とを含有し、前記負極は、作動電位が金属リチウム電位に対して1Vより貴な負極活物質と多孔質炭素とを含有することを特徴とするリチウムイオン二次電池。 A positive electrode having a positive electrode active material capable of occluding and releasing lithium ions as a constituent component, a negative electrode having a negative electrode active material having a negative electrode active material capable of occluding and releasing lithium ions as a constituent component, and a non-aqueous electrolyte In the lithium ion secondary battery provided, the positive electrode contains a positive electrode active material and porous carbon whose operating potential is lower than 4 V with respect to the metallic lithium potential, and the negative electrode has an operating potential with respect to the metallic lithium potential. A lithium ion secondary battery comprising a negative electrode active material nobler than 1 V and porous carbon. 前記正極及び負極は、前記多孔質炭素を重量比で5%〜90%含有する請求項1記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the positive electrode and the negative electrode contain 5% to 90% of the porous carbon by weight. 前記正極活物質が組成式LiFePO4で表されるオリビン形リン酸鉄リチウムであることを特徴とする請求項1または2記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein the positive electrode active material is an olivine-type lithium iron phosphate represented by a composition formula LiFePO 4. 4 . 前記負極活物質が組成式Li4Ti512で表されるスピネル形チタン酸リチウムであることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material is spinel type lithium titanate represented by a composition formula Li 4 Ti 5 O 12 . 前記非水電解質は、常温溶融塩を含有していることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 4, wherein the non-aqueous electrolyte contains a room temperature molten salt. 前記正極活物質は、50%粒子径が6μm以下であり90%粒子径が20μm以下である粒子からなることを特徴とする請求項3〜5のいずれかに記載のリチウムイオン二次電池。 6. The lithium ion secondary battery according to claim 3, wherein the positive electrode active material is composed of particles having a 50% particle diameter of 6 μm or less and a 90% particle diameter of 20 μm or less.
JP2004314916A 2003-10-30 2004-10-29 Lithium ion secondary battery Expired - Fee Related JP4929580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314916A JP4929580B2 (en) 2003-10-30 2004-10-29 Lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003371359 2003-10-30
JP2003371359 2003-10-30
JP2004314916A JP4929580B2 (en) 2003-10-30 2004-10-29 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005158719A true JP2005158719A (en) 2005-06-16
JP4929580B2 JP4929580B2 (en) 2012-05-09

Family

ID=34741231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314916A Expired - Fee Related JP4929580B2 (en) 2003-10-30 2004-10-29 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4929580B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353652A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Secondary power supply
WO2007006123A1 (en) * 2005-04-15 2007-01-18 Avestor Limited Partnership Lithium ion rocking chair rechargeable battery
JP2007059320A (en) * 2005-08-26 2007-03-08 Toyota Motor Corp Ion conductive material and utilization thereof
JP2007517364A (en) * 2003-12-29 2007-06-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Electrochemical elements for use at high temperatures
JP2007335308A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2009048958A (en) * 2007-08-23 2009-03-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2009089823A1 (en) * 2008-01-14 2009-07-23 Temic Automotive Electric Motors Gmbh Energy store and on-board network having such an energy store
JP2010510631A (en) * 2006-11-15 2010-04-02 ヴァレンス テクノロジー インコーポレーテッド Secondary electrochemical cell with high rate capability
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery
WO2011013228A1 (en) * 2009-07-30 2011-02-03 株式会社 東芝 Nonaqueous electrolyte secondary battery
CN102201576A (en) * 2011-04-25 2011-09-28 北京科技大学 Porous carbon in situ composite lithium iron phosphate cathode material and preparation method thereof
JP2011249238A (en) * 2010-05-28 2011-12-08 National Institute Of Advanced Industrial & Technology Power storage device with proton as insertion species
US8334676B2 (en) 2007-11-21 2012-12-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, battery pack, hybrid electric vehicle, battery pack system, and charge-discharge control method
US20140085773A1 (en) * 2012-09-25 2014-03-27 Yunasko Limited Hybrid electrochemical energy storage device
JP2015038901A (en) * 2011-01-26 2015-02-26 五十嵐 五郎 Expanded graphite for adsorbing and storing uses
JP2015088266A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Lithium battery
EP2597706A4 (en) * 2010-07-23 2015-09-02 Toyota Motor Co Ltd Lithium ion secondary battery
US9184445B2 (en) 2011-03-02 2015-11-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN105406026A (en) * 2014-08-27 2016-03-16 江苏华盛精化工股份有限公司 Rechargeable lithium ion battery based on lithium metal phosphate
US9444120B2 (en) * 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
WO2023117492A2 (en) 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities
WO2023117490A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736558B1 (en) 2014-12-29 2017-05-16 주식회사 엘지화학 Method for preparing porous lithium iron phosphate particle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173312A (en) * 1987-01-13 1988-07-16 旭硝子株式会社 Electric double-layer capacitor
JP2000138142A (en) * 1998-11-02 2000-05-16 Honda Motor Co Ltd Electric double layer capacitor
JP2000228222A (en) * 1999-02-05 2000-08-15 Asahi Glass Co Ltd Secondary power supply
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
JP2002110472A (en) * 2000-09-26 2002-04-12 Mitsubishi Chemicals Corp Electrical double layer capacitor
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2002158139A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Electrode material for secondary power supply and electrochemical capacitor
JP2002231308A (en) * 2001-01-31 2002-08-16 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2003077458A (en) * 2001-09-06 2003-03-14 Denso Corp Lithium secondary battery electrode and lithium secondary battery
JP2003297361A (en) * 2002-01-31 2003-10-17 Sanyo Electric Co Ltd Precursor battery, lithium secondary battery, and manufacturing method for lithium secondary batteries
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173312A (en) * 1987-01-13 1988-07-16 旭硝子株式会社 Electric double-layer capacitor
JP2000138142A (en) * 1998-11-02 2000-05-16 Honda Motor Co Ltd Electric double layer capacitor
JP2000228222A (en) * 1999-02-05 2000-08-15 Asahi Glass Co Ltd Secondary power supply
JP2001110418A (en) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and the lithium secondary battery
JP2002110472A (en) * 2000-09-26 2002-04-12 Mitsubishi Chemicals Corp Electrical double layer capacitor
WO2002041420A1 (en) * 2000-11-17 2002-05-23 Kansai Research Institute, Inc. Nonaqueous lithium secondary cell
JP2002158139A (en) * 2000-11-17 2002-05-31 Hitachi Maxell Ltd Electrode material for secondary power supply and electrochemical capacitor
JP2002231308A (en) * 2001-01-31 2002-08-16 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2003077458A (en) * 2001-09-06 2003-03-14 Denso Corp Lithium secondary battery electrode and lithium secondary battery
JP2003297361A (en) * 2002-01-31 2003-10-17 Sanyo Electric Co Ltd Precursor battery, lithium secondary battery, and manufacturing method for lithium secondary batteries
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517364A (en) * 2003-12-29 2007-06-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Electrochemical elements for use at high temperatures
JP4617727B2 (en) * 2004-06-08 2011-01-26 パナソニック株式会社 Secondary power supply
JP2005353652A (en) * 2004-06-08 2005-12-22 Matsushita Electric Ind Co Ltd Secondary power supply
JP2008536272A (en) * 2005-04-15 2008-09-04 アヴェスター リミティッド パートナーシップ Lithium-ion rocking chair rechargeable battery
WO2007006123A1 (en) * 2005-04-15 2007-01-18 Avestor Limited Partnership Lithium ion rocking chair rechargeable battery
JP4701923B2 (en) * 2005-08-26 2011-06-15 トヨタ自動車株式会社 Ion conductive materials and their use
JP2007059320A (en) * 2005-08-26 2007-03-08 Toyota Motor Corp Ion conductive material and utilization thereof
US9444120B2 (en) * 2005-12-21 2016-09-13 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method for manufacturing the same
JP2007335308A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010510631A (en) * 2006-11-15 2010-04-02 ヴァレンス テクノロジー インコーポレーテッド Secondary electrochemical cell with high rate capability
JP2008198815A (en) * 2007-02-14 2008-08-28 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2009048958A (en) * 2007-08-23 2009-03-05 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8334676B2 (en) 2007-11-21 2012-12-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, battery pack, hybrid electric vehicle, battery pack system, and charge-discharge control method
WO2009089823A1 (en) * 2008-01-14 2009-07-23 Temic Automotive Electric Motors Gmbh Energy store and on-board network having such an energy store
JP2010277958A (en) * 2009-06-01 2010-12-09 Hitachi Chem Co Ltd Lithium ion secondary battery
WO2011013228A1 (en) * 2009-07-30 2011-02-03 株式会社 東芝 Nonaqueous electrolyte secondary battery
JP5380537B2 (en) * 2009-07-30 2014-01-08 株式会社東芝 Non-aqueous electrolyte secondary battery
JP2011249238A (en) * 2010-05-28 2011-12-08 National Institute Of Advanced Industrial & Technology Power storage device with proton as insertion species
EP2597706A4 (en) * 2010-07-23 2015-09-02 Toyota Motor Co Ltd Lithium ion secondary battery
US9172083B2 (en) 2010-07-23 2015-10-27 Toyota Jidosha Kabushik Kaisha Lithium ion secondary battery
JP2015038901A (en) * 2011-01-26 2015-02-26 五十嵐 五郎 Expanded graphite for adsorbing and storing uses
US9184445B2 (en) 2011-03-02 2015-11-10 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN102201576A (en) * 2011-04-25 2011-09-28 北京科技大学 Porous carbon in situ composite lithium iron phosphate cathode material and preparation method thereof
US20140085773A1 (en) * 2012-09-25 2014-03-27 Yunasko Limited Hybrid electrochemical energy storage device
JP2015088266A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Lithium battery
CN105406026A (en) * 2014-08-27 2016-03-16 江苏华盛精化工股份有限公司 Rechargeable lithium ion battery based on lithium metal phosphate
WO2023117492A2 (en) 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities
WO2023117490A1 (en) * 2021-12-23 2023-06-29 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities
WO2023117492A3 (en) * 2021-12-23 2023-08-17 Skeleton Technologies GmbH Electrode material compositions for electrodes of energy storage cells with fast charge and discharge capabilities

Also Published As

Publication number Publication date
JP4929580B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929580B2 (en) Lithium ion secondary battery
JP5084802B2 (en) Lithium ion secondary battery
JP4625733B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP4237659B2 (en) Non-aqueous electrolyte battery
JP4213687B2 (en) Nonaqueous electrolyte battery and battery pack
JP4159954B2 (en) Non-aqueous electrolyte battery
KR100772751B1 (en) Non-aqueous electrolyte secondary battery
JP4625744B2 (en) Nonaqueous electrolyte battery and battery pack
JP5218406B2 (en) Water-based lithium secondary battery
US8951448B2 (en) Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery
JP5717461B2 (en) Battery electrode and method for manufacturing the same, non-aqueous electrolyte battery, battery pack and active material
JP2005317512A (en) Nonaqueous electrolyte battery
JP2009054475A (en) Nonaqueous electrolyte solution battery and battery pack
JP2005135775A (en) Lithium ion secondary battery
JP2011054334A (en) Lithium secondary battery
WO2015068680A1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
JP4983382B2 (en) Water-based lithium secondary battery
JP2006040748A (en) Electrochemical device
JP2006073259A (en) Positive electrode active material and water dissolving lithium secondary battery
JP2010015852A (en) Secondary battery
CN112689916A (en) Electric storage element
JP2002175836A (en) Nonaqueous electrolyte battery
JP2010225394A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery charging method
JP2005100771A (en) Nonaqueous electrolytic solution battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4929580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees