JP2002231308A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JP2002231308A JP2002231308A JP2001022884A JP2001022884A JP2002231308A JP 2002231308 A JP2002231308 A JP 2002231308A JP 2001022884 A JP2001022884 A JP 2001022884A JP 2001022884 A JP2001022884 A JP 2001022884A JP 2002231308 A JP2002231308 A JP 2002231308A
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- secondary battery
- active material
- electrolyte secondary
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 48
- 239000010439 graphite Substances 0.000 claims abstract description 48
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- 238000007599 discharging Methods 0.000 claims abstract description 13
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 10
- 239000005486 organic electrolyte Substances 0.000 claims abstract description 10
- 238000007600 charging Methods 0.000 claims abstract description 8
- 239000011149 active material Substances 0.000 claims abstract description 4
- 239000011229 interlayer Substances 0.000 claims description 6
- 239000007773 negative electrode material Substances 0.000 abstract description 17
- 239000003792 electrolyte Substances 0.000 abstract description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 5
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 5
- 238000000790 scattering method Methods 0.000 abstract description 3
- 239000008151 electrolyte solution Substances 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 8
- 229910021382 natural graphite Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 150000005676 cyclic carbonates Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 238000009830 intercalation Methods 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 238000010280 constant potential charging Methods 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- -1 for example Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000003339 pole cell Anatomy 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Carbon And Carbon Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解液二次電
池に関し、さらに詳しくは、充放電特性の改善された非
水電解液二次電池に関するものである。The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having improved charge / discharge characteristics.
【0002】[0002]
【従来の技術】現在、市販されているリチウムイオン二
次電池は、一般に、LiCoO2 などのリチウム含有金
属酸化物を正極活物質とし、黒鉛を負極活物質としてお
り、電解液には、エチレンカーボネートなどの環状カー
ボネートとジエチルカーボネートなどの非環状カーボネ
ートとを混合した有機溶媒に電解質を溶解させたものが
多く用いられている。このような電解液は、負極活物質
である黒鉛の電解液選択性によっており、高効率充放電
に必要な環状カーボネートに対して、非環状カーボネー
トは電解液の低粘度化のために必要とされている。 2. Description of the Related Art At present, commercially available lithium ion secondary batteries generally use a lithium-containing metal oxide such as LiCoO 2 as a positive electrode active material and graphite as a negative electrode active material. In many cases, an electrolyte is dissolved in an organic solvent obtained by mixing a cyclic carbonate such as, for example, with a non-cyclic carbonate such as diethyl carbonate. Such an electrolytic solution depends on the electrolytic solution selectivity of graphite, which is a negative electrode active material, and the acyclic carbonate is required for lowering the viscosity of the electrolytic solution, as opposed to the cyclic carbonate required for highly efficient charging and discharging. ing.
【0003】一方、上記以外の電解液の有機溶媒とし
て、ジメトキシエタンの使用が検討されている。この溶
媒は、正極にLiCoO2 を用いるような4V級電池で
は耐酸化電位が低いため使用できないが、上記の非環状
カーボネートに比べ、高誘電率で低粘度であるなどの利
点があることから、この溶媒を多く用いることにより、
負荷特性や貯蔵特性にすぐれた二次電池を得る試みがな
されている。On the other hand, the use of dimethoxyethane as an organic solvent for an electrolytic solution other than those described above has been studied. This solvent cannot be used in a 4 V class battery using LiCoO 2 for the positive electrode because of its low oxidation resistance, but has advantages such as a high dielectric constant and a low viscosity as compared with the acyclic carbonate described above. By using a lot of this solvent,
Attempts have been made to obtain secondary batteries having excellent load characteristics and storage characteristics.
【0004】[0004]
【発明が解決しようとする課題】しかし、ジメトキシエ
タンは、黒鉛に対し、Liと同様にインターカレートす
ることが知られている。これは、J.Electroc
hem.Soc.vol.145,No.7,P239
6にも報告されているように、0.6V(対Li/Li
+ )周辺に変曲点を持つショルダーとなって現れること
からも明らかで、このコインターカレートにより、Li
のみのインターカレートよりも電極の膨張率が大きくな
るだけでなく、充放電特性が低下する問題がある。However, it is known that dimethoxyethane intercalates graphite in the same manner as Li. This is described in J.A. Electroc
hem. Soc. vol. 145, No. 7, P239
As reported in FIG. 6, 0.6 V (vs. Li / Li
+ ) It is also evident from the appearance of a shoulder with an inflection point around it.
There is a problem that not only the expansion rate of the electrode becomes larger than that of only the intercalate, but also the charge / discharge characteristics deteriorate.
【0005】これに対して、黒鉛に代えて、同じ炭素質
である低結晶カーボンを用いると、ジメトキシエタンの
コインターカレートはみられなくなるが、黒鉛に比べる
と、体積エネルギー密度が低く、放電電位も低くなる。
また、これを克服するため、最近では、黒鉛表面に低結
晶カーボンを被覆した、いわゆるコアシェル構造の黒鉛
が開発されている。しかし、この種の黒鉛は、Liのイ
ンターカレートによるコアシェルの膨張率に違いが生
じ、シェルの信頼性に難点がある。On the other hand, if low-crystalline carbon, which is the same carbonaceous material, is used instead of graphite, co-intercalation of dimethoxyethane is not observed, but the volume energy density is lower than that of graphite, and The potential also decreases.
In order to overcome this, recently, graphite having a so-called core-shell structure in which graphite surface is coated with low-crystalline carbon has been developed. However, this kind of graphite has a difference in the expansion coefficient of the core shell due to the intercalation of Li, and has a problem in the reliability of the shell.
【0006】本発明は、このような事情に照らして、黒
鉛を負極活物質とし、電解液の有機溶媒として負荷特性
や貯蔵特性の向上に寄与するジメトキシエタンを使用し
た、リチウムイオン二次電池などの非水電解液二次電池
において、上記の黒鉛として特定のものを使用すること
により、充放電特性にすぐれて、高い充放電効率が得ら
れる、信頼性の高い上記二次電池を提供することを目的
とする。In view of such circumstances, the present invention provides a lithium ion secondary battery and the like using graphite as a negative electrode active material and dimethoxyethane as an organic solvent for an electrolytic solution, which contributes to improvement of load characteristics and storage characteristics. In the non-aqueous electrolyte secondary battery of the above, by using a specific graphite as the above, excellent charge and discharge characteristics, high charge and discharge efficiency is obtained, to provide a highly reliable secondary battery With the goal.
【0007】[0007]
【課題を解決するための手段】黒鉛は天然黒鉛と人造黒
鉛に大きく分類され、人造黒鉛は原料によってコークス
焼成品やメソフェーズ成分を黒鉛化したメソカーボンマ
イクロビーズがあり、最近では低結晶カーボンを被覆し
たコアシェルタイプのものもある。同じ人造黒鉛や天然
黒鉛でも、最近のリチウムイオン二次電池用途として、
黒鉛粒子の形状を改良するため、粉砕方法の異なる多様
な黒鉛が開発されている。[Means for Solving the Problems] Graphite is largely classified into natural graphite and artificial graphite. Artificial graphite includes coke fired products and mesocarbon microbeads obtained by graphitizing mesophase components depending on the raw material. There is also a core-shell type. The same artificial graphite and natural graphite have recently been used for lithium-ion secondary batteries.
In order to improve the shape of graphite particles, various graphites having different grinding methods have been developed.
【0008】本発明者らは、これら種々の黒鉛を負極活
物質とし、電解液の有機溶媒としてジメトキシエタンを
使用した二次電池について、その充放電特性を調べた結
果、ラマン散乱によるR値が0.150以下である黒鉛
によると、初回充電時のジメトキシエタンのコインター
カレートによる0.6V付近のショルダーがなくなっ
て、すぐれた充放電効率が得られることがわかった。The inventors of the present invention have examined the charge and discharge characteristics of a secondary battery using these various graphites as a negative electrode active material and dimethoxyethane as an organic solvent for an electrolytic solution. According to the graphite of 0.150 or less, it was found that the shoulder near 0.6 V due to the co-intercalate of dimethoxyethane at the time of the first charge disappeared, and excellent charge / discharge efficiency was obtained.
【0009】黒鉛のラマン散乱では、通常六方晶の空間
群ではE2gがラマン活性となり、1,580cm-1にピ
ークが現れる。これに加えて、低結晶性に依存するラマ
ン不活性な1,360cm-1のピークが存在し、上記1,
580cm-1のピーク強度に対する上記1,360cm-1の
ピーク強度比をR値として定義しており(たとえば、
J.Electrochem.Soc.vol.14
2,No.1,p.20)、このR値が小さいほど結晶
性が高いことが知られている。In Raman scattering of graphite, E2g has Raman activity in a normal hexagonal space group, and a peak appears at 1,580 cm -1 . In addition to this, there is a Raman-inactive peak at 1,360 cm −1 depending on the low crystallinity.
Defines a peak intensity ratio of the 1,360Cm -1 as R value to the peak intensity of 580 cm -1 (e.g.,
J. Electrochem. Soc. vol. 14
2, No. 1, p. 20) It is known that the smaller the R value, the higher the crystallinity.
【0010】黒鉛の結晶性は、一般に、X線回折法(以
下、XRD)を用いて評価するが、XRDはエネルギー
値が高いため、容易に黒鉛粒子を透過し、黒鉛全体の結
晶性を反映している。これに対し、上記のラマン散乱で
は、粒子表面近傍の結晶性、つまり層構造を有する黒鉛
のエッジ構造を反映しており、この点がXRDとは異な
っている。たとえば、ラマン散乱によるR値が0.3で
ある黒鉛と0.1である黒鉛とを、XRDで比較して
も、層間距離〔d002 〕やLc(002 )が全く同じ値を
示し、結晶性に差異がみられないことがある。The crystallinity of graphite is generally evaluated using an X-ray diffraction method (hereinafter referred to as XRD). However, since XRD has a high energy value, it easily penetrates graphite particles and reflects the crystallinity of the entire graphite. are doing. On the other hand, the above-mentioned Raman scattering reflects the crystallinity near the particle surface, that is, the edge structure of graphite having a layer structure, and this point is different from XRD. For example, graphite having an R value of 0.3 by Raman scattering and graphite having an R value of 0.1 also show exactly the same interlayer distance [d 002 ] and Lc ( 002 ) when compared by XRD. There may be no difference in gender.
【0011】本発明者らは、ジメトキシエタンのコイン
ターカレートは黒鉛の粒子表面近傍の結晶性に左右さ
れ、この結晶性を反映するラマン散乱によるR値が0.
150以下となる高い結晶性を示す黒鉛を用いたとき
に、上記のコインターカレートがなくなり、充放電特性
にすぐれ、高い充放電効率を示す、高性能で高信頼性の
二次電池が得られることをはじめて見い出したものであ
る。The present inventors have found that the co-intercalate of dimethoxyethane depends on the crystallinity near the particle surface of graphite, and the R value by Raman scattering reflecting this crystallinity is not more than 0.1.
When graphite having a high crystallinity of 150 or less is used, the above-mentioned cointercalate is eliminated, and a high-performance, highly-reliable secondary battery having excellent charge-discharge characteristics and high charge-discharge efficiency is obtained. It is the first time that it has been found.
【0012】すなわち、本発明は、黒鉛を活物質とする
負極、ジメトキシエタンを含有する有機電解液および正
極を有する非水電解液二次電池において、上記の黒鉛
は、ラマン散乱法により測定される1,350cm-1のピ
ーク強度〔I’〕と1,580cm-1のピーク強度〔I〕
との比であるR値〔I’/I〕が0.150以下である
ことを特徴とする非水電解液二次電池に係るものであ
る。さらに、本発明は、上記の黒鉛において、充放電を
少なくとも1回行ったのちの層間距離〔d002 〕が0.
45nm以下である上記構成の非水電解液二次電池と、
上記の有機電解液において、ジメトキシエタンの有機溶
媒中の体積比率が5〜80%である上記構成の非水電解
液二次電池と、充放電時の正極電位(対Li/Li+ )
が4.0V以下である上記構成の非水電解液二次電池と
に係るものである。That is, the present invention relates to a nonaqueous electrolyte secondary battery having a negative electrode using graphite as an active material, an organic electrolyte containing dimethoxyethane, and a positive electrode, wherein the graphite is measured by a Raman scattering method. peak intensity of 1,350Cm -1 peak intensity [I '] and 1,580Cm -1 [I]
The non-aqueous electrolyte secondary battery has an R value [I '/ I] of 0.150 or less. Further, according to the present invention, in the above graphite, the interlayer distance [d 002 ] after the charge / discharge is performed at least once is 0.1 mm .
A non-aqueous electrolyte secondary battery having the above-described configuration of 45 nm or less;
In the above organic electrolyte, the non-aqueous electrolyte secondary battery having the above structure in which the volume ratio of dimethoxyethane in the organic solvent is 5 to 80%, and the positive electrode potential during charging and discharging (vs. Li / Li + )
Is 4.0 V or less.
【0013】[0013]
【発明の実施の形態】本発明において、ラマン散乱によ
り測定されるR値が0.150以下である黒鉛には、天
然黒鉛やエッジ構造の発達したラメラ構造をもつメソフ
ェーズ黒鉛化品などが挙げられる。天然黒鉛でも低結晶
カーボンを薄く被覆したものはR値が大きくなり、本発
明には適さない。R値が0.15以下であると、高い充
放電効率が得られるが、このR値は低ければ低いほどよ
く、とくに0.11以下であるのが望ましい。なお、R
値が0.15を超える黒鉛であっても、この黒鉛の粒子
表面をR値が0.15以下である黒鉛で被覆すると、ジ
メトキシエタンを含有する電解液に対し、高い充放電効
率を期待することができる。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, examples of graphite having an R value of 0.150 or less measured by Raman scattering include natural graphite and mesophase graphitized products having a lamellar structure with a well-developed edge structure. . Even natural graphite coated with low-crystalline carbon thinly has a large R value and is not suitable for the present invention. When the R value is 0.15 or less, high charge / discharge efficiency can be obtained. However, the lower the R value, the better, and particularly preferably, the R value is 0.11 or less. Note that R
Even with graphite having a value exceeding 0.15, high charge / discharge efficiency can be expected for an electrolytic solution containing dimethoxyethane by coating the particle surface of the graphite with graphite having an R value of 0.15 or less. be able to.
【0014】このような黒鉛を負極活物質とすると、ジ
メトキシエタンを含有する電解液に対し、充放電を少な
くとも1回行ったのちでも、層間距離〔d002 〕が0.
45nm以下となる。つまり、通常の黒鉛では、上記層
間距離〔d002 〕が約0.36nmからLiのインター
カレートにより10%程度広がり、ジメトキシエタンの
コインターカレートにより数倍にも広がるのに対し、上
記本発明の黒鉛では、ジメトキシエタンのコインターカ
レートがなく、Liのみのインターカレートにより0.
45nm以下の層間距離を示すのである。その結果、通
常の黒鉛では、初回充放電容量の差である不可逆容量が
100mAh/g付近またはそれ以上となるが、上記本
発明の黒鉛では、50mAh/g以下に抑制される。When such a graphite is used as a negative electrode active material, the interlayer distance [d 002 ] is not less than 0.1 even after charging and discharging the electrolyte containing dimethoxyethane at least once.
It becomes 45 nm or less. That is, in the case of ordinary graphite, the interlayer distance [d 002 ] is increased by about 10% from about 0.36 nm by intercalation of Li and several times by co-intercalation of dimethoxyethane. In the graphite of the present invention, there is no co-intercalate of dimethoxyethane, and the intercalate of Li alone is used for 0.1%.
It indicates an interlayer distance of 45 nm or less. As a result, the irreversible capacity, which is the difference between the initial charge / discharge capacities, is about 100 mAh / g or more in ordinary graphite, but is suppressed to 50 mAh / g or less in the graphite of the present invention.
【0015】本発明において、電解液の有機溶媒として
は、ジメトキシエタンを必須とし、通常はこれと高効率
充放電に寄与するエチレンカーボネート、プロピレンカ
ーボネートなどの環状カーボネートとが併用されるが、
これらのみに限定されない。ジメトキシエタンは、有機
溶媒中の体積比率が5〜80%であるのが望ましい。5
%未満では、ジメトキシエタンの使用による負荷特性や
貯蔵特性の改善効果が得られにくく、80%を超える
と、前記特定の黒鉛を使用したときでも、充放電効率が
低下する傾向がみられる。環状カーボネートとして、と
くにエチレンカーボネートを併用するときは、比誘電率
や粘度特性の点より、ジメトキシエタンの有機溶媒中の
体積比率が50%以下となるようにするのがよい。この
ような有機溶媒に対して、Li2 CF3 SO3 などのL
i塩をはじめとした公知の電解質を所定量溶解させるこ
とにより、有機電解液が調製される。In the present invention, dimethoxyethane is indispensable as an organic solvent for the electrolytic solution. Usually, dimethoxyethane is used in combination with a cyclic carbonate such as ethylene carbonate or propylene carbonate which contributes to high-efficiency charge / discharge.
However, it is not limited to these. The volume ratio of dimethoxyethane in the organic solvent is desirably 5 to 80%. 5
%, The effect of using dimethoxyethane to improve the load characteristics and storage characteristics is hardly obtained, and if it exceeds 80%, the charge / discharge efficiency tends to decrease even when the specific graphite is used. When ethylene carbonate is used in combination as the cyclic carbonate, the volume ratio of dimethoxyethane in the organic solvent is preferably 50% or less from the viewpoint of the relative dielectric constant and the viscosity characteristics. For such an organic solvent, L such as Li 2 CF 3 SO 3
An organic electrolyte is prepared by dissolving a predetermined amount of a known electrolyte such as i-salt.
【0016】本発明において、正極としては、正極電位
が4.0V以上の現行リチウムイオン電池では、ジメト
キシエタンの分解が起こるため、充放電時の正極電位
(対Li/Li+ )が4.0V以下、つまり充放電電圧
が4.0V以下となるように、たとえば、Li4 Ti5
O12、LiNbO、NaV3 O8 などが用いられるが、
もちろん、LiCoO2 、LiNiO2 、LiMn
O2 、LiMn2 O4 などを使用し、4.0V以下で駆
動させるようにすれば、とくに問題はない。In the present invention, in the current lithium ion battery having a positive electrode potential of 4.0 V or more, the decomposition of dimethoxyethane occurs, so that the positive electrode potential (vs. Li / Li + ) at the time of charging and discharging is 4.0 V. Or less, for example, Li 4 Ti 5 so that the charge / discharge voltage is 4.0 V or less.
O 12 , LiNbO, NaV 3 O 8 and the like are used,
Of course, LiCoO 2 , LiNiO 2 , LiMn
There is no particular problem if O 2 , LiMn 2 O 4 or the like is used and driven at 4.0 V or less.
【0017】本発明の非水電解液二次電池は、上記した
特定の黒鉛を活物質とする負極と、ジメトキシエタンを
含有する有機電解液と、正極とを有する以外は、従来の
電池と異なるところはなく、たとえば、上記の負極や正
極の作製などについても常法に準じて行えばよく、また
この両極間に適宜のセパレータを介して電池缶に装入し
常法に準じて封口するなどして、電池を作製することが
できる。The nonaqueous electrolyte secondary battery of the present invention is different from a conventional battery except that it has a negative electrode using the above-mentioned specific graphite as an active material, an organic electrolyte containing dimethoxyethane, and a positive electrode. However, for example, the preparation of the negative electrode and the positive electrode may be performed according to a conventional method, and the battery can is inserted into a battery can through an appropriate separator between the two electrodes and sealed according to a conventional method. Thus, a battery can be manufactured.
【0018】[0018]
【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。なお、以下において、部とあるのは重
量部を意味するものとする。Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”.
【0019】実施例1 負極活物質としてR値が0.111である天然黒鉛を使
用し、この黒鉛を重量比で5〜10重量%のポリフツ化
ビニリデンを結着剤としてペレツト電極を作製した。こ
の電極を導電性接着剤でリード線となる銅箔に固定し、
対極、参照極をLi箔とする3極セルを作製した。この
セルの電解液には、エチレンカーボネート(以下、EC
という):プロピレンカーボネート(以下、PCとい
う):ジメトキシエタン(以下、DMEという)=2:
2:1(体積比)の混合有機溶媒に電解質であるLi2
CF3 SO3 を1.2モル/リットル溶解させた有機電
解液を用いた。充放電条件は、上記のセル作製後、電流
値100μA/g、0.01V定電流定電圧充電し、同
じ電流値で1.5Vまで定電流放電した。Example 1 A natural graphite having an R value of 0.111 was used as a negative electrode active material, and a pellet electrode was prepared using this graphite as a binder with polyvinylidene fluoride at a weight ratio of 5 to 10% by weight. This electrode is fixed to the copper foil that will be the lead wire with a conductive adhesive,
A three-electrode cell in which the counter electrode and the reference electrode were Li foils was manufactured. Ethylene carbonate (hereinafter referred to as EC)
): Propylene carbonate (hereinafter, referred to as PC): dimethoxyethane (hereinafter, referred to as DME) = 2:
Li 2 as an electrolyte is added to a 2: 1 (volume ratio) mixed organic solvent.
An organic electrolyte in which CF 3 SO 3 was dissolved at 1.2 mol / L was used. The charge and discharge conditions were as follows: after the above-mentioned cell was produced, the cell was charged at a current value of 100 μA / g, a constant current and a constant voltage of 0.01 V, and discharged at a constant current of the same current value to 1.5 V.
【0020】実施例2 負極活物質として、メソフェーズピッチを黒鉛化してR
値が0.085とした黒鉛を使用した以外は、実施例1
と同様にして、3極セルを作製し、実施例1と同様にし
て、定電流定電圧充電および定電流放電した。Example 2 As a negative electrode active material, mesophase pitch was graphitized to obtain R
Example 1 except that graphite having a value of 0.085 was used.
In the same manner as in Example 1, a three-electrode cell was prepared, and constant-current and constant-voltage charging and constant-current discharging were performed in the same manner as in Example 1.
【0021】実施例3 負極活物質として、R値が0.145であるコークス黒
鉛化品を使用し、かつ電解液として、EC:DME=
3:1(体積比)の混合有機溶媒にLi2 CF3SO3
を1.2モル/リットル溶解させた有機電解液を使用し
た以外は、実施例1と同様にして、3極セルを作製し、
実施例1と同様にして、定電流定電圧充電および定電流
放電した。Example 3 A coke graphitized product having an R value of 0.145 was used as a negative electrode active material, and EC: DME =
Li 2 CF 3 SO 3 was added to a 3: 1 (volume ratio) mixed organic solvent.
Was prepared in the same manner as in Example 1 except that an organic electrolytic solution in which was dissolved 1.2 mol / L was used.
In the same manner as in Example 1, constant-current constant-voltage charging and constant-current discharging were performed.
【0022】比較例1 負極活物質として、R値が0.289であるコークス黒
鉛化品を使用した以外は、実施例1と同様にして、3極
セルを作製し、実施例1と同様にして、定電流定電圧充
電および定電流放電した。Comparative Example 1 A three-electrode cell was prepared in the same manner as in Example 1 except that a coke graphitized product having an R value of 0.289 was used as the negative electrode active material. Then, constant current and constant voltage charging and constant current discharging were performed.
【0023】比較例2 負極活物質として、R値が0.352であるメソカーボ
ンマイクロビーズを使用した以外は、実施例1と同様に
して、3極セルを作製し、実施例1と同様にして、定電
流定電圧充電および定電流放電した。Comparative Example 2 A three-electrode cell was prepared in the same manner as in Example 1 except that mesocarbon microbeads having an R value of 0.352 were used as the negative electrode active material. Then, constant current and constant voltage charging and constant current discharging were performed.
【0024】比較例3 負極活物質として、R値が0.192である表面に低結
晶カーボンを被覆した天然黒鉛を使用した以外は、実施
例1と同様にして、3極セルを作製し、実施例1と同様
にして、定電流定電圧充電および定電流放電した。Comparative Example 3 A three-electrode cell was prepared in the same manner as in Example 1, except that natural graphite having an R value of 0.192 and coated with low-crystalline carbon was used as the negative electrode active material. In the same manner as in Example 1, constant-current constant-voltage charging and constant-current discharging were performed.
【0025】比較例4 負極活物質として、R値が0.313であるコークス黒
鉛化品を使用し、かつ電解液として、実施例3と同じ有
機電解液を使用した以外は、実施例1と同様にして、3
極セルを作製し、実施例1と同様にして、定電流定電圧
充電および定電流放電した。Comparative Example 4 The same procedure as in Example 1 was carried out except that a coke graphitized product having an R value of 0.313 was used as the negative electrode active material and the same organic electrolytic solution as in Example 3 was used as the electrolytic solution. Similarly, 3
A pole cell was prepared and charged and discharged at a constant current and a constant voltage in the same manner as in Example 1.
【0026】上記の実施例1〜3および比較例1〜4の
各3極セルについて、充放電特性を調べた結果は、表1
に示されるとおりであった。なお、表1には、参考のた
め、使用した負極活物質のR値と有機電解液の構成を併
記した。The charging and discharging characteristics of the triode cells of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1.
Was as shown in FIG. In Table 1, the R value of the negative electrode active material used and the configuration of the organic electrolyte are also shown for reference.
【0027】表1 Table 1
【0028】上記表1の結果から明らかなように、DM
Eを含有する有機電解液に対して、実施例1〜3のよう
に、負極活物質として、R値が0.150以下である黒
鉛を使用することにより、90%以上という高い充放電
効率が得られており、非水電解液二次電池の高容量化に
大きく寄与できるものであることがわかる。As is clear from the results in Table 1, the DM
By using graphite having an R value of 0.150 or less as a negative electrode active material with respect to the organic electrolyte containing E as in Examples 1 to 3, a high charge / discharge efficiency of 90% or more can be obtained. It can be seen that it is possible to greatly contribute to increasing the capacity of the nonaqueous electrolyte secondary battery.
【0029】[0029]
【発明の効果】以上説明したように、黒鉛を負極活物質
とし、電解液の有機溶媒として負荷特性や貯蔵特性の向
上に寄与するジメトキシエタンを使用した非水電解液二
次電池において、上記の黒鉛として、ラマン散乱法によ
り測定されるR値が0.150以下である黒鉛を使用す
ることにより、充放電特性にすぐれて、高い充放電効率
が得られる、信頼性の高い上記二次電池を提供すること
ができる。As described above, in the non-aqueous electrolyte secondary battery using graphite as a negative electrode active material and dimethoxyethane as an organic solvent of an electrolyte, which contributes to improvement of load characteristics and storage characteristics, By using graphite having an R value of 0.150 or less as measured by a Raman scattering method, the secondary battery having excellent charge-discharge characteristics and high charge-discharge efficiency can be obtained. Can be provided.
フロントページの続き Fターム(参考) 5H029 AJ02 AJ05 AJ07 AK03 AL06 AM03 AM04 AM05 AM07 DJ09 DJ17 HJ00 HJ18 5H030 AA03 AA10 BB01 FF43 5H050 AA02 AA07 AA09 AA13 BA17 CA07 CA08 CA09 CB07 DA13 FA19 HA00 HA07 HA13 HA18Continued on the front page F-term (reference)
Claims (4)
タンを含有する有機電解液および正極を有する非水電解
液二次電池において、上記の黒鉛は、ラマン散乱法によ
り測定される1,350cm-1のピーク強度〔I’〕と
1,580cm-1のピーク強度〔I〕との比であるR値
〔I’/I〕が0.150以下であることを特徴とする
非水電解液二次電池。1. A negative electrode for a graphite as an active material, 1,350Cm organic electrolyte containing dimethoxyethane and the non-aqueous electrolyte secondary battery having a positive electrode, the above graphite, measured by Raman scattering - nonaqueous secondary to 'R value which is the ratio of the peak intensity of 1,580Cm -1 [I] [I 1 of the peak intensity (I)' / I] is characterized in that it is 0.150 or less Next battery.
のちの層間距離〔d 002 〕が0.45nm以下である請
求項1に記載の非水電解液二次電池。2. The graphite was charged and discharged at least once.
Later interlayer distance [d 002Is less than 0.45 nm.
The non-aqueous electrolyte secondary battery according to claim 1.
の有機溶媒中の体積比率が5〜80%である請求項1ま
たは2に記載の非水電解液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a volume ratio of dimethoxyethane in the organic solvent in the organic electrolyte is 5 to 80%.
が4.0V以下である請求項1〜3のいずれかに記載の
非水電解液二次電池。4. Positive electrode potential during charging / discharging (vs. Li / Li + )
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, which has a voltage of 4.0 V or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001022884A JP2002231308A (en) | 2001-01-31 | 2001-01-31 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001022884A JP2002231308A (en) | 2001-01-31 | 2001-01-31 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002231308A true JP2002231308A (en) | 2002-08-16 |
Family
ID=18888231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001022884A Withdrawn JP2002231308A (en) | 2001-01-31 | 2001-01-31 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002231308A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005158719A (en) * | 2003-10-30 | 2005-06-16 | Yuasa Corp | Lithium ion secondary battery |
-
2001
- 2001-01-31 JP JP2001022884A patent/JP2002231308A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005158719A (en) * | 2003-10-30 | 2005-06-16 | Yuasa Corp | Lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3269396B2 (en) | Non-aqueous electrolyte lithium secondary battery | |
JP3978881B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP5078334B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2008034368A (en) | Lithium ion storage battery containing contains tio2-b as anode active substance | |
JPH1140156A (en) | Nonaqueous electrolyte secondary battery | |
JP3281819B2 (en) | Non-aqueous electrolyte secondary battery | |
EP3016197B1 (en) | Lithium secondary battery | |
JP5036121B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH07122296A (en) | Non-aqueous electrolyte secondary battery | |
JP2008091236A (en) | Nonaqueous electrolyte secondary battery | |
KR20100106242A (en) | Nonaqueous secondary battery | |
JP2004095426A (en) | Negative electrode and positive electrode for lithium secondary battery and lithium secondary battery | |
CN105830268A (en) | Nonaqueous electrolyte secondary battery | |
RU2307430C1 (en) | Lithium-ion battery characterized in improved storage properties at high temperature | |
JP2004119350A (en) | Lithium secondary battery | |
JPH06215761A (en) | Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it | |
WO2013061922A1 (en) | Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery | |
JP3546566B2 (en) | Non-aqueous electrolyte secondary battery | |
US7174207B2 (en) | Implantable defibrillator having reduced battery volume | |
JPH10261406A (en) | Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode | |
JP2005142004A (en) | Non-aqueous electrolyte secondary battery | |
JP2009129632A (en) | Nonaqueous electrolyte battery | |
JPH10247495A (en) | Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material | |
JP2000040510A (en) | Nonaqueous electrolyte secondary battery | |
JPH05174872A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |