JP2005158627A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2005158627A
JP2005158627A JP2003398385A JP2003398385A JP2005158627A JP 2005158627 A JP2005158627 A JP 2005158627A JP 2003398385 A JP2003398385 A JP 2003398385A JP 2003398385 A JP2003398385 A JP 2003398385A JP 2005158627 A JP2005158627 A JP 2005158627A
Authority
JP
Japan
Prior art keywords
battery
lithium ion
separator
positive electrode
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003398385A
Other languages
Japanese (ja)
Other versions
JP4026587B2 (en
Inventor
Takayuki Mitani
貴之 三谷
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003398385A priority Critical patent/JP4026587B2/en
Publication of JP2005158627A publication Critical patent/JP2005158627A/en
Application granted granted Critical
Publication of JP4026587B2 publication Critical patent/JP4026587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion battery which is superior in safety, along with being a large-capacity and high-output battery. <P>SOLUTION: In a lithium ion secondary battery, a spinel lithium manganese composite oxide is used for the positive-electrode active material, and amorphous carbon is used for the negative-electrode active material. In a positive-electrode mixture, a predetermined quantity of Fe-Cu alloy powder is intentionally made contained. A separator is made of polyethylene and has a thickness of 40μm. By dividing the alloy powder which depends according to the particle size, the ratio a / b is made 0.75 or larger, when the diameter size of the alloy powder is represented by (a), and the thickness of the separator is represented by b. The alloy powder desorbs or is eluted from the positive-electrode mixture by being overcharged, deposits as dendrites on the negative electrode, and penetrates the separator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリチウムイオン電池に係り、特に、リチウム遷移金属複合酸化物を含む正極合剤を有する正極と、負極とをセパレータを介して配置し非水電解液に浸潤させたリチウムイオン電池に関する。   The present invention relates to a lithium ion battery, and more particularly to a lithium ion battery in which a positive electrode having a positive electrode mixture containing a lithium transition metal composite oxide and a negative electrode are disposed via a separator and infiltrated with a non-aqueous electrolyte.

リチウムイオン電池は高エネルギー密度であるメリットを活かして、主にVTRカメラやノート型パソコン、携帯電話などのポータブル機器に使用されている。一方、自動車産業界においては環境問題に対応すべく、動力源としてモータを用いる方式の電気自動車や、内燃機関エンジンとモータとの両方を用いるハイブリッド方式の電気自動車の開発が進められており、その一部はすでに実用化されている。また、電力需要が増加する中で、昼夜間や季節間の需要格差が拡大しており、これを緩和するために電力貯蔵技術の開発も進められている。特に、近年では、電気自動車用や電力貯蔵用を目的とする大型のリチウムイオン電池の研究開発が活発化している。   Lithium ion batteries are mainly used in portable devices such as VTR cameras, notebook computers and mobile phones, taking advantage of the high energy density. On the other hand, in the automobile industry, in order to cope with environmental problems, development of electric vehicles using a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor is underway. Some have already been put to practical use. In addition, as the demand for electric power increases, the demand gap between daytime and nighttime and seasons is widening, and the development of electric power storage technology is being promoted to alleviate this. In particular, in recent years, research and development of large-sized lithium ion batteries intended for use in electric vehicles and power storage have become active.

リチウムイオン電池の場合、高容量、高出力になればなるほど安全性が低下する傾向にあるため、大型のリチウムイオン電池には、高容量、高出力であると共に、安全性の向上が要求されている。例えば、大型のリチウム二次電池を電気自動車用電源として使用する場合には、電池の充電状態を監視するための充電制御システムが故障して過充電状態に陥ったときの電池異常時でも、安全性の確保、すなわち、電池異常時の挙動が人体に被害を与えないことは当然のことながら、自動車への損害を最小限に抑えることが重要な課題となってきている。   In the case of lithium ion batteries, the higher the capacity and output, the lower the safety. Therefore, large lithium ion batteries are required to have high capacity and high output, as well as improved safety. Yes. For example, when a large lithium secondary battery is used as a power source for an electric vehicle, safety can be ensured even when the battery is abnormal when the charge control system for monitoring the charge state of the battery fails and becomes overcharged. As a matter of course, it has become an important issue to minimize damage to automobiles by ensuring the safety, that is, the behavior when the battery is abnormal does not damage the human body.

ところが、自動車用電源に用いられる電池では、大電流充電、大電流放電がなされるため、一般に小型(例えば、18650型)のリチウムイオン電池に採用されているような、電池の内圧上昇に応じて作動する電流遮断機構(電流切断スイッチ)を電池内部に設けると、その機構自体が電気抵抗となって充放電時の電圧降下につながる。このため、内部抵抗の低減を重視する大型のリチウムイオン電池に電流遮断機構を採用することは実質的に不可能である。リチウムイオン電池の安全性を確保するために、例えば、正負極の少なくとも一方にフレーク状の金属を含有させる技術が開示されている(特許文献1参照)。   However, since a battery used for a power source for automobiles is charged with a large current and discharged with a large current, in response to a rise in the internal pressure of the battery, which is generally adopted for a small (for example, 18650 type) lithium ion battery. When an operating current interrupting mechanism (current disconnecting switch) is provided inside the battery, the mechanism itself becomes an electrical resistance, leading to a voltage drop during charging and discharging. For this reason, it is practically impossible to employ a current interruption mechanism in a large-sized lithium ion battery that places importance on reducing internal resistance. In order to ensure the safety of a lithium ion battery, for example, a technique in which at least one of positive and negative electrodes contains a flaky metal is disclosed (see Patent Document 1).

特開2001−273902号公報JP 2001-273902 A

しかしながら、特許文献1の電池では、フレーク状の金属が電極内でのイオン伝導を妨げ、活物質の反応を抑制することにより電池異常時の発熱を防止するため、小型のリチウムイオン電池には有効であるものの、大型のリチウムイオン電池では電極自体が大きく電池異常時の反応が急激なため、十分な効果は期待できない。特に、大型のリチウムイオン電池が過充電された場合には、高電圧下での非水電解液と活物質との反応により急激かつ大量のガスが発生するため、電池の挙動が激しくなる可能性がある。   However, in the battery of Patent Document 1, the flaky metal prevents ionic conduction in the electrode and suppresses the reaction of the active material to prevent heat generation when the battery is abnormal. Therefore, it is effective for a small lithium ion battery. However, since a large lithium ion battery has a large electrode itself and a rapid reaction when the battery is abnormal, a sufficient effect cannot be expected. In particular, when a large lithium-ion battery is overcharged, the reaction of the non-aqueous electrolyte and active material under high voltage generates a rapid and large amount of gas, which may cause the battery behavior to become severe. There is.

本発明は上記事案に鑑み、高容量、高出力であるとともに安全性に優れたリチウムイオン電池を提供することを課題とする。   An object of the present invention is to provide a lithium-ion battery that has a high capacity, a high output, and an excellent safety.

上記課題を解決するために、本発明は、リチウム遷移金属複合酸化物を含む正極合剤を有する正極と、負極とをセパレータを介して配置し非水電解液に浸潤させたリチウムイオン電池において、前記正極合剤中に、過充電で前記負極にデンドライト状に析出するFe、Cu、Ag及びAuの元素のうち少なくとも1種を含む金属又は合金の粒子を所定量含有しており、前記粒子の粒径をa、前記セパレータの厚さをbとしたときに、a/b≧0.75を満たすことを特徴とする。   In order to solve the above problems, the present invention provides a lithium ion battery in which a positive electrode having a positive electrode mixture containing a lithium transition metal composite oxide and a negative electrode are disposed via a separator and infiltrated into a non-aqueous electrolyte. The positive electrode mixture contains a predetermined amount of metal or alloy particles containing at least one of elements of Fe, Cu, Ag, and Au, which are deposited in a dendrite shape on the negative electrode due to overcharge, When the particle diameter is a and the thickness of the separator is b, a / b ≧ 0.75 is satisfied.

本発明では、正極合剤中に意図的に含有されたFe、Cu、Ag及びAuの元素のうち少なくとも1種を含む金属又は合金の粒子が過充電で正極合剤から脱離乃至溶出し負極にデンドライト状に析出してセパレータを貫通するため、過充電時に正負極間の微小短絡が促進される。粒子の粒径をa、セパレータの厚さをbとしたときに、a/b≧0.75とすることで、セパレータを貫通し正負極間の微小短絡を促進するデンドライト析出を生じさせることができる。従って、本発明によれば、過充電時にリチウムイオン電池の安全性を確保することができる。この場合において、セパレータの材質はポリオレフィン系とすることが好ましい。   In the present invention, particles of metal or alloy containing at least one element of Fe, Cu, Ag, and Au intentionally contained in the positive electrode mixture are desorbed or eluted from the positive electrode mixture by overcharging, and the negative electrode Since it deposits in a dendrite form and penetrates the separator, a minute short circuit between the positive and negative electrodes is promoted during overcharge. When the particle diameter is a and the separator thickness is b, a / b ≧ 0.75 may cause dendrite precipitation that penetrates the separator and promotes a micro short circuit between the positive and negative electrodes. it can. Therefore, according to the present invention, the safety of the lithium ion battery can be ensured during overcharge. In this case, the separator is preferably made of a polyolefin material.

本発明によれば、正極合剤中に意図的に含有されたFe、Cu、Ag及びAuの元素のうち少なくとも1種を含む金属又は合金の粒子が過充電で正極合剤から脱離乃至溶出し負極にデンドライト状に析出してセパレータを貫通するため、過充電時に正負極間の微小短絡が促進され、粒子の粒径をa、セパレータの厚さをbとしたときに、a/b≧0.75とすることで、セパレータを貫通し正負極間の微小短絡を促進するデンドライト析出を生じさせることができるので、過充電時にリチウムイオン電池の安全性を確保することができる、という効果を得ることができる。   According to the present invention, metal or alloy particles containing at least one of the elements of Fe, Cu, Ag, and Au intentionally contained in the positive electrode mixture are desorbed or eluted from the positive electrode mixture by overcharging. In addition, since it deposits in the form of dendrites on the negative electrode and penetrates the separator, a minute short-circuit between the positive and negative electrodes is promoted during overcharge, and when a particle diameter is a and a separator thickness is b, a / b ≧ By setting 0.75, it is possible to cause dendrite precipitation that penetrates the separator and promotes a micro short circuit between the positive and negative electrodes, so that the safety of the lithium ion battery can be ensured during overcharge. Can be obtained.

以下、図面を参照して、本発明を適用した大型の円筒型リチウムイオン二次電池の実施の形態について説明する。   Embodiments of a large cylindrical lithium ion secondary battery to which the present invention is applied will be described below with reference to the drawings.

(負極)
負極活物質の非晶質炭素粉末90重量部に、結着剤としてポリフッ化ビニリデン(PVDF)10重量部を添加し、これに分散溶媒としてN−メチルピロリドン(NMP)を添加、混練したスラリを厚さ10μmの圧延銅箔の両面に塗布した。このとき、負極長寸方向の一方の側縁に未塗布部を残した。その後、乾燥、プレス、裁断して負極を得た。側縁に残した未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。
(Negative electrode)
A slurry obtained by adding 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder to 90 parts by weight of the amorphous carbon powder of the negative electrode active material, and adding and kneading N-methylpyrrolidone (NMP) as a dispersion solvent thereto. It apply | coated on both surfaces of the 10-micrometer-thick rolled copper foil. At this time, an uncoated part was left on one side edge in the negative electrode longitudinal direction. Then, the negative electrode was obtained by drying, pressing, and cutting. A notch was left in the uncoated part left on the side edge, and the remaining notch was used as a lead piece.

(正極)
正極活物質のスピネル系リチウムマンガン複合酸化物の粉末90重量部に対して、導電材として炭素粉末5重量部と、結着剤としてPVDF5重量部と、を添加し、これに分散溶媒としてNMPを添加、混練した。更に、Fe、Cu、Ag、Auの元素のうち少なくとも1種を含む金属粉末又は合金粉末の所定量(例えば、1ppm)を添加し、ほぼ均一に混練して正極合剤スラリを作製した。金属粉末又は合金粉末は、粒径をa、後述するセパレータの厚さをbとしたときに、比a/bが0.75以上(a/b≧0.75)となるように分級して用いた。得られた正極合剤スラリを厚さ20μmのアルミニウム箔の両面にほぼ均一に塗布した。このとき、正極長寸方向の一方の側縁に未塗布部を残した。その後、乾燥、プレス、裁断して正極を得た。側縁に残した未塗布部に切り欠きを入れ、切り欠き残部をリード片とした。なお、金属粉末又は合金粉末の添加量は、正極合剤の厚さ、大きさにより定めた。
(Positive electrode)
5 parts by weight of carbon powder as a conductive material and 5 parts by weight of PVDF as a binder are added to 90 parts by weight of the spinel-based lithium manganese composite oxide powder of the positive electrode active material, and NMP is added thereto as a dispersion solvent. Added and kneaded. Furthermore, a predetermined amount (for example, 1 ppm) of a metal powder or alloy powder containing at least one element of Fe, Cu, Ag, and Au was added and kneaded almost uniformly to prepare a positive electrode mixture slurry. The metal powder or alloy powder is classified so that the ratio a / b is 0.75 or more (a / b ≧ 0.75), where a is the particle size and b is the thickness of the separator described later. Using. The obtained positive electrode mixture slurry was applied almost uniformly on both sides of an aluminum foil having a thickness of 20 μm. At this time, an uncoated part was left on one side edge in the positive electrode longitudinal direction. Thereafter, drying, pressing and cutting were performed to obtain a positive electrode. A notch was left in the uncoated part left on the side edge, and the remaining notch was used as a lead piece. The amount of metal powder or alloy powder added was determined by the thickness and size of the positive electrode mixture.

(電池組立)
図1に示すように、作製した正負極を、これら両極が直接接触しないようにポリエチレン製で微多孔性の厚さbが40μmのセパレータを介して、捲回中心となる軸芯11の周りに捲回して捲回群6を作製した。このとき、正極及び負極のリード片9が、それぞれ捲回群6の互いに反対側の両端面に位置するようにした。捲回群6の最内周では捲回方向に正極が負極からはみ出すことがなく、また、最外周でも捲回方向に正極が負極からはみ出すことがないように、負極の長さは正極の長さよりも18cm長くなるようにした。捲回方向に直交する方向においても正極活物質塗布部が負極活物質塗布部からはみ出すことがないように、負極活物質塗布部の幅を、正極活物質塗布部の幅よりも5mm長くした。
(Battery assembly)
As shown in FIG. 1, the prepared positive and negative electrodes are placed around an axis 11 serving as a winding center through a separator made of polyethylene and having a microporous thickness b of 40 μm so that the two electrodes do not directly contact each other. The wound group 6 was produced by winding. At this time, the lead pieces 9 for the positive electrode and the negative electrode were respectively positioned on the opposite end surfaces of the wound group 6. The length of the negative electrode is the length of the positive electrode so that the positive electrode does not protrude from the negative electrode in the winding direction at the innermost periphery of the winding group 6 and the positive electrode does not protrude from the negative electrode in the winding direction at the outermost periphery. 18 cm longer than the length. The width of the negative electrode active material application part was made 5 mm longer than the width of the positive electrode active material application part so that the positive electrode active material application part did not protrude from the negative electrode active material application part even in the direction orthogonal to the winding direction.

正極から導出されているリード片9を変形させ、その全てを、軸芯11のほぼ延長線上にある正極外部端子1周囲から一体に張り出している鍔部7周面付近に集合、接触させた後、リード片9と鍔部7周面とを超音波溶接してリード片9を鍔部7周面に接続し固定した。また、負極外部端子1’と負極から導出されているリード片9との接続操作も、正極外部端子1と正極から導出されているリード片9との接続操作と同様に行った。   After the lead pieces 9 led out from the positive electrode are deformed and all of them are gathered and brought into contact with the vicinity of the peripheral surface of the flange 7 integrally projecting from the periphery of the positive electrode external terminal 1 substantially on the extension line of the shaft core 11 The lead piece 9 and the flange 7 peripheral surface were ultrasonically welded to connect and fix the lead piece 9 to the flange 7 peripheral surface. Further, the connection operation between the negative electrode external terminal 1 ′ and the lead piece 9 led out from the negative electrode was performed in the same manner as the connection operation between the positive electrode external terminal 1 and the lead piece 9 led out from the positive electrode.

正極外部端子1及び負極外部端子1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁被覆8は、捲回群6外周面全周にも及ぼした。絶縁被覆8には、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いた。この粘着テープを鍔部7周面から捲回群6外周面に亘って何重にも巻いて絶縁被覆8とした。捲回群6の最大径部が絶縁被覆8存在部となるように巻き数を調整し、直径65mm、高さ390mmの円筒状でSUS製の電池容器5の内径よりも僅かに小さくして、捲回群6を電池容器5内に挿入した。   An insulating coating 8 was applied to the entire circumference of the collar 7 peripheral surface of the positive external terminal 1 and the negative external terminal 1 ′. This insulating coating 8 also exerted on the entire outer periphery of the wound group 6. For the insulating coating 8, an adhesive tape in which the base material was polyimide and an adhesive made of hexamethacrylate was applied on one side thereof was used. This adhesive tape was wound several times from the peripheral surface of the collar portion 7 to the outer peripheral surface of the wound group 6 to form an insulating coating 8. Adjust the number of turns so that the maximum diameter portion of the wound group 6 is the insulation coating 8 existing portion, and make it a cylindrical shape with a diameter of 65 mm and a height of 390 mm and slightly smaller than the inner diameter of the battery container 5 made of SUS, The wound group 6 was inserted into the battery container 5.

アルミナ製で円盤状電池蓋4裏面と当接する部分の厚さ2mm、内径16mm、外径25mmの第2のセラミックワッシャ3’を、先端が正極外部端子1を構成する極柱、先端が負極外部端子1’を構成する極柱にそれぞれ嵌め込んだ。また、アルミナ製で厚さ2mm、内径16mm、外径28mmの平板状の第1のセラミックワッシャ3を電池蓋4に載置し、正極外部端子1、負極外部端子1’をそれぞれ第1のセラミックワッシャ3に通した。その後、電池蓋4周端面を電池容器5開口部に嵌合し、双方の接触部全域をレーザ溶接した。このとき、正極外部端子1、負極外部端子1’は、電池蓋4の中心に形成された穴を貫通して電池蓋4外部に突出している。そして、第1のセラミックワッシャ3、金属製ナット2底面よりも平滑な金属ワッシャ14を、この順に正極外部端子1、負極外部端子1’にそれぞれ嵌め込んだ。なお、電池蓋4には電池の内圧上昇に応じて開裂するアルミニウム合金製で板状の開裂弁10が設けられている。開裂弁10の開裂圧は、約9×10Paとした。 A second ceramic washer 3 ′ made of alumina having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm at the portion in contact with the back surface of the disk-shaped battery lid 4 is formed as a pole column constituting the positive electrode external terminal 1 and the tip is disposed outside the negative electrode. Each was fitted into a pole column constituting the terminal 1 ′. Further, a flat plate-like first ceramic washer 3 made of alumina and having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm is placed on the battery lid 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ are respectively connected to the first ceramic. Passed through washer 3. Thereafter, the peripheral end surface of the battery lid 4 was fitted into the opening of the battery container 5 and the entire contact portions were laser welded. At this time, the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ pass through a hole formed in the center of the battery cover 4 and protrude outside the battery cover 4. Then, the first ceramic washer 3 and the metal washer 14 smoother than the bottom surface of the metal nut 2 were fitted into the positive external terminal 1 and the negative external terminal 1 ′ in this order. The battery lid 4 is provided with a plate-shaped cleavage valve 10 made of an aluminum alloy that is cleaved in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 was about 9 × 10 5 Pa.

次いで、ナット2を正極外部端子1、負極外部端子1’にそれぞれ螺着し、第2のセラミックワッシャ3’、第1のセラミックワッシャ3、金属ワッシャ14を介して電池蓋4を鍔部7とナット2の間で締め付けにより固定した。このときの締め付けトルク値は7N・mとした。なお、締め付け作業が終了するまで金属ワッシャ14は回転しなかった。この状態で、電池蓋4裏面と鍔部7との間に介在させたゴム(EPDM)製Oリング16の圧縮により電池容器5内部の発電要素は外気から遮断される。   Next, the nut 2 is screwed to the positive electrode external terminal 1 and the negative electrode external terminal 1 ′, and the battery lid 4 is connected to the flange portion 7 via the second ceramic washer 3 ′, the first ceramic washer 3, and the metal washer 14. The nut 2 was fixed by tightening. The tightening torque value at this time was 7 N · m. Note that the metal washer 14 did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is blocked from the outside air by the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the flange portion 7.

電池蓋4に設けた注液口15から非水電解液を所定量電池容器5内に注液して、その後注液口15を封止することにより容量90Ah、出力1000W以上の円筒型リチウムイオン二次電池20を組み立てた。非水電解液には、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートの体積比1:1:1の混合溶媒に6フッ化リン酸リチウムの1モル/リットルを溶解させたものを用いた。   Cylindrical lithium ions having a capacity of 90 Ah and an output of 1000 W or more are injected by injecting a predetermined amount of non-aqueous electrolyte into the battery container 5 from the injection port 15 provided in the battery lid 4 and then sealing the injection port 15. The secondary battery 20 was assembled. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1 was used.

次に、本実施形態に従い、金属粉末又は合金粉末の材質と粒径aとを変えて作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。   Next, an example of the lithium ion secondary battery 20 produced by changing the material of the metal powder or alloy powder and the particle size a according to the present embodiment will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、材質がCu−Feで粒径30μmの合金粉末を用いた。このとき、比a/bは0.75である。
(Example 1)
As shown in Table 1 below, in Example 1, an alloy powder with a material of Cu—Fe and a particle size of 30 μm was used. At this time, the ratio a / b is 0.75.

(実施例2〜実施例7)
表1に示すように、実施例2〜実施例7では、金属粉末又は合金粉末の材質を変える以外は実施例1と同様にした。実施例2ではAu粉末、実施例3ではFe−Ni合金粉末、実施例4ではFe−Cr−Ni合金粉末、実施例5ではFe−Mn−Ni合金粉末、実施例6ではFe−Al−Si合金粉末、実施例7ではAg粉末、をそれぞれ用いた。
(Example 2 to Example 7)
As shown in Table 1, Examples 2 to 7 were the same as Example 1 except that the material of the metal powder or alloy powder was changed. Example 2 is Au powder, Example 3 is Fe—Ni alloy powder, Example 4 is Fe—Cr—Ni alloy powder, Example 5 is Fe—Mn—Ni alloy powder, and Example 6 is Fe—Al—Si. Alloy powder, Ag powder in Example 7, was used.

(実施例8〜実施例9)
表1に示すように、実施例8〜実施例9では、Cu−Fe粉末の粒径を変える以外は実施例1と同様にした。実施例8では粒径32μm、実施例9では粒径38μmとした。比a/bは、実施例8では0.80、実施例9では0.95である。
(Example 8 to Example 9)
As shown in Table 1, Examples 8 to 9 were the same as Example 1 except that the particle size of the Cu-Fe powder was changed. In Example 8, the particle size was 32 μm, and in Example 9, the particle size was 38 μm. The ratio a / b is 0.80 in Example 8 and 0.95 in Example 9.

(実施例10)
表1に示すように、実施例10では、Ag粉末の粒径を36μmとする以外は実施例7と同様にした。比a/bは0.90である。
(Example 10)
As shown in Table 1, in Example 10, it carried out similarly to Example 7 except the particle size of Ag powder having been 36 micrometers. The ratio a / b is 0.90.

(比較例1)
表1に示すように、比較例1では、正極合剤に金属粉末及び合金粉末を含有させずに円筒型リチウムイオン二次電池を組み立てた。
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, a cylindrical lithium ion secondary battery was assembled without including the metal powder and the alloy powder in the positive electrode mixture.

(比較例2〜比較例3)
表1に示すように、比較例2〜比較例3では、Cu−Fe粉末の粒径を変える以外は実施例1と同様にした。比較例2では粒径20μm、比較例3では粒径28μmとした。比a/bは、比較例2では0.50、比較例3では0.70である。
(Comparative Example 2 to Comparative Example 3)
As shown in Table 1, Comparative Examples 2 to 3 were the same as Example 1 except that the particle size of the Cu-Fe powder was changed. In Comparative Example 2, the particle size was 20 μm, and in Comparative Example 3, the particle size was 28 μm. The ratio a / b is 0.50 in Comparative Example 2 and 0.70 in Comparative Example 3.

(比較例4〜比較例5)
表1に示すように、比較例4〜比較例5では、Ag粉末の粒径を変える以外は実施例7と同様にした。比較例4では粒径16μm、比較例5では粒径24μmとした。比a/bは、比較例4では0.40、比較例5では0.60である。
(Comparative Example 4 to Comparative Example 5)
As shown in Table 1, Comparative Examples 4 to 5 were the same as Example 7 except that the particle size of the Ag powder was changed. In Comparative Example 4, the particle diameter was 16 μm, and in Comparative Example 5, the particle diameter was 24 μm. The ratio a / b is 0.40 in Comparative Example 4 and 0.60 in Comparative Example 5.

(比較例6)
表1に示すように、比較例6では、Fe−Ni粉末の粒径を28μmとする以外は実施例3と同様にした。比a/bは0.70である。
(Comparative Example 6)
As shown in Table 1, Comparative Example 6 was the same as Example 3 except that the particle size of the Fe—Ni powder was 28 μm. The ratio a / b is 0.70.

(比較例7)
表1に示すように、比較例7では、Fe−Al−Si粉末の粒径を26μmとする以外は実施例6と同様にした。比a/bは0.65である。
(Comparative Example 7)
As shown in Table 1, Comparative Example 7 was the same as Example 6 except that the particle size of the Fe—Al—Si powder was 26 μm. The ratio a / b is 0.65.

(過充電試験)
実施例及び比較例の各リチウムイオン二次電池を、25°Cにて、以下の充電条件で充電状態(SOC)100%まで充電した。その後、25°C、40Aの定電流で連続的に充電する過充電試験を実施し、異常現象を観察すると共に電池表面の最高到達温度を測定した。なお、異常が発生したときは、そのときの電池表面温度を最高到達温度とした。下表2に過充電試験の試験結果を示す。
充電条件:4.2V定電圧、制限電流80A、3.5h
(Overcharge test)
Each lithium ion secondary battery of an Example and a comparative example was charged to a charge condition (SOC) 100% on the following charge conditions at 25 degreeC. Thereafter, an overcharge test was performed in which the battery was continuously charged at a constant current of 25 ° C. and 40 A, the abnormal phenomenon was observed, and the highest temperature reached on the battery surface was measured. When an abnormality occurred, the battery surface temperature at that time was defined as the highest temperature reached. Table 2 below shows the test results of the overcharge test.
Charging conditions: 4.2V constant voltage, limiting current 80A, 3.5h

表2に示すように、正極合剤に金属粉末及び合金粉末を含有させずに作製した比較例1の電池では、破裂、発火の異常現象が見られ、異常発生時の最高到達温度は500°C以上であった。また、正極合剤に金属粉末又は合金粉末を含有させたものの、比a/bが0.75未満の比較例2〜比較例7の各電池では、異常現象は見られなかったが、最高到達温度が93〜188°Cと高くなった。これに対して、比a/bが0.75以上の実施例1〜実施例10の各電池では、異常現象が見られず、最高到達温度も62〜66°Cと低い温度であった。従って、SOC100%の電池を充電し続けた場合でも、挙動が穏やかであり、安全性に優れた電池であることが判明した。   As shown in Table 2, in the battery of Comparative Example 1 produced without containing the metal powder and the alloy powder in the positive electrode mixture, an abnormal phenomenon of rupture and ignition was observed, and the maximum temperature reached when the abnormality occurred was 500 °. C or higher. Further, although the positive electrode mixture contained metal powder or alloy powder, no abnormal phenomenon was observed in each of the batteries of Comparative Examples 2 to 7 where the ratio a / b was less than 0.75, but it reached the highest level. The temperature increased to 93-188 ° C. On the other hand, in each battery of Examples 1 to 10 in which the ratio a / b was 0.75 or more, no abnormal phenomenon was observed, and the maximum temperature reached was as low as 62 to 66 ° C. Therefore, even when the SOC 100% battery is continuously charged, it has been found that the battery has a gentle behavior and excellent safety.

本実施形態のリチウムイオン二次電池20では、正極合剤中に、過充電で脱離乃至溶出して負極にデンドライト状に析出する金属粉末又は合金粉末が意図的に含有されている。このため、リチウムイオン二次電池20が過充電されると、金属粉末又は合金粉末がデンドライト析出してセパレータを貫通するので、正負極間の微小短絡が促進される。これにより、本来電池に過充電される電荷が一定以上に蓄積されず、過充電時の非水電解液と活物質との反応の促進が抑制されるので、電池表面の温度上昇を抑制しリチウムイオン二次電池の安全性を確保することができる。従って、電池を過充電したときの安全性に優れるので、高出力と共に、安全性が要求される電気自動車用の電源に適している。   In the lithium ion secondary battery 20 of the present embodiment, the positive electrode mixture intentionally contains a metal powder or an alloy powder that is desorbed or eluted by overcharging and precipitates in a dendrite form on the negative electrode. For this reason, when the lithium ion secondary battery 20 is overcharged, the metal powder or the alloy powder deposits dendrites and penetrates the separator, thereby facilitating a minute short circuit between the positive and negative electrodes. As a result, the charge that is originally overcharged to the battery is not accumulated beyond a certain level, and the promotion of the reaction between the non-aqueous electrolyte and the active material during overcharge is suppressed. The safety of the ion secondary battery can be ensured. Therefore, since it is excellent in safety when the battery is overcharged, it is suitable for a power source for an electric vehicle that requires high output and safety.

また、比a/bが0.75未満では、過充電で金属粉末又は合金粉末が正極合剤から脱離乃至溶出しても負極でのデンドライト析出が不十分なため、セパレータを貫通するには至らなくなる。本実施形態のリチウムイオン二次電池20では、比a/bが0.75以上とされるので、セパレータを貫通して微小短絡を促進するデンドライト析出を生じさせることができる。   Further, when the ratio a / b is less than 0.75, even if the metal powder or alloy powder is detached or eluted from the positive electrode mixture due to overcharge, the dendrite deposition on the negative electrode is insufficient, so that the separator can be penetrated. It will not be reached. In the lithium ion secondary battery 20 of this embodiment, since the ratio a / b is set to 0.75 or more, it is possible to cause dendrite precipitation that penetrates the separator and promotes a micro short circuit.

更に、本実施形態では、ポリエチレン製で微多孔性の厚さ40μmのセパレータが用いられる。このため、通常の充放電時にはリチウムイオンの通過を許容すると共に、正負極を近接配置することができるので、電池の単位体積当たりのエネルギー密度を高めることができる。一方、過充電時には、セパレータが樹脂製であるため、金属粉末又は合金粉末のデンドライト析出で破損し正負極間の微小短絡を起こすことができる。   Furthermore, in the present embodiment, a polyethylene microporous separator having a thickness of 40 μm is used. For this reason, while allowing the passage of lithium ions during normal charging and discharging, the positive and negative electrodes can be arranged close to each other, so that the energy density per unit volume of the battery can be increased. On the other hand, at the time of overcharge, since the separator is made of resin, it can be damaged by dendrite precipitation of metal powder or alloy powder, and a minute short circuit between the positive and negative electrodes can be caused.

また更に、本実施形態のリチウムイオン二次電池20では、金属粒子又は合金粒子に、少なくともFe、Cu、Ag、Auのうち1種類の元素が含まれている。これらの元素はリチウムイオン二次電池が過充電されたときの高電圧により溶出しデンドライト状に析出するのに対して、通常の充放電時には過充電時より低電圧のためデンドライト析出が抑制されるので、リチウムイオン二次電池の充放電を支障なく行うことができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the metal particles or alloy particles contain at least one element of Fe, Cu, Ag, and Au. These elements elute due to the high voltage when the lithium ion secondary battery is overcharged and precipitate in a dendrite shape, whereas dendrite precipitation is suppressed during normal charging and discharging because the voltage is lower than during overcharging. Therefore, charging / discharging of a lithium ion secondary battery can be performed without trouble.

なお、本実施形態では、容量90Ah、出力1000W以上の円筒型リチウムイオン二次電池を例示したが、本発明は、電池の形状に制限されるものではない。例えば、角形や多角形状としてもよく、電池の内部構造についても捲回型の電極群ではなく積層型の電極群としてもよい。また、容量、出力についても特に制限はなく、一般的な容量、出力のリチウムイオン二次電池に適用することができる。   In the present embodiment, a cylindrical lithium ion secondary battery having a capacity of 90 Ah and an output of 1000 W or more is exemplified, but the present invention is not limited to the shape of the battery. For example, a rectangular or polygonal shape may be used, and the internal structure of the battery may be a stacked electrode group instead of a wound electrode group. Moreover, there is no restriction | limiting in particular also about a capacity | capacitance and an output, It can apply to the lithium ion secondary battery of a general capacity | capacitance and an output.

また、本実施形態では、セパレータに厚さ40μmのポリエチレン製フィルムを例示したが、本発明はこれに限定されるものではない。本実施形態以外に用いられるセパレータの材質としては、例えば、ポリプロピレン製等のポリオレフィン系材質を挙げることができ、ポリエチレン製フィルムとポリプロピレン製フィルムとを積層して用いてもよい。また、厚さについても特に制限されるものではない。   In the present embodiment, a polyethylene film having a thickness of 40 μm is exemplified as the separator, but the present invention is not limited to this. Examples of the material of the separator used other than the present embodiment include a polyolefin-based material such as polypropylene, and a polyethylene film and a polypropylene film may be laminated and used. Further, the thickness is not particularly limited.

更に、本実施形態では、正極活物質としてスピネル系リチウムマンガン複合酸化物を用いた例を示したが、本発明はこれに限定されるものではない。例えば、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物等を使用してもよく、また、リチウムマンガン複合酸化物(LiMn)のリチウムサイト又はマンガンサイトの一部を他の金属元素で置換又はドープした、例えば、化学式Li1+xMn2−x−y(MはLi、Co、Ni、Fe、Cu、Al、Cr、Mg、Zn、V、Ga、B、F)で表される材料を用いてもよい。更に、結晶構造についてもスピネル系の結晶構造に限定されるものではなく、層状型結晶構造であってもよい。 Furthermore, in this embodiment, although the example using spinel type lithium manganese complex oxide as a positive electrode active material was shown, this invention is not limited to this. For example, lithium cobalt composite oxide or lithium nickel composite oxide may be used, and a part of lithium site or manganese site of lithium manganese composite oxide (LiMn 2 O 4 ) is replaced with another metal element. Or doped, for example, represented by the chemical formula Li 1 + x M y Mn 2−xy O 4 (M is Li, Co, Ni, Fe, Cu, Al, Cr, Mg, Zn, V, Ga, B, F). The material to be used may be used. Further, the crystal structure is not limited to the spinel crystal structure, and may be a layered crystal structure.

また更に、負極活物質として非晶質炭素を例示したが、本発明はこれに限定されるものではなく、リチウムを吸蔵放出可能な材料又は金属リチウムを用いてもよい。本実施形態以外に用いられる負極活物質としては、例えば、天然黒鉛、人造黒鉛、コークスなどの炭素質材料等を挙げることができ、また、粒子形状においても特に制限されるものではない。   Furthermore, although amorphous carbon is exemplified as the negative electrode active material, the present invention is not limited to this, and a material capable of occluding and releasing lithium or metallic lithium may be used. Examples of the negative electrode active material other than the present embodiment include carbonaceous materials such as natural graphite, artificial graphite, and coke, and the particle shape is not particularly limited.

更にまた、本実施形態では結着剤としてポリフッ化ビニリデンを例示したが、本発明はこれに限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン・ブタジエンゴム、多硫化ゴム、二トロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体やこれらの混合物も使用できる。   Furthermore, in the present embodiment, polyvinylidene fluoride is exemplified as the binder, but the present invention is not limited to this. For example, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile Polymers such as rubber, styrene / butadiene rubber, polysulfide rubber, ditrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof can also be used.

また、本実施形態では非水電解液として、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートの体積比1:1:1の混合溶媒にLiPFを溶解させたものを例示したが、本発明はこれに限定されるものではない。例えば、カーボネート系、スルホラン系、エーテル系、ラクトン系等の有機溶媒を単体又は混合して用いた溶媒中に一般的なリチウム塩を溶解させたものを用いることができる。本実施形態以外で用いることができるリチウム塩としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等これらの混合物を挙げることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルを挙げることができる。 In the present embodiment, the nonaqueous electrolytic solution is exemplified by a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1. However, the present invention is limited to this. Is not to be done. For example, a solution obtained by dissolving a general lithium salt in a solvent in which an organic solvent such as carbonate, sulfolane, ether, or lactone is used alone or in combination can be used. Examples of lithium salts that can be used in other embodiments include LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, and CF 3 SO 3 Li. Can do. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Mention may be made of diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile.

本発明に係るリチウムイオン電池によれば、高容量、高出力であるとともに安全性に優れるため、製造、販売に寄与し、産業上利用可能である。   The lithium ion battery according to the present invention has high capacity, high output, and excellent safety, and thus contributes to production and sales and can be used industrially.

本発明を適用した実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

符号の説明Explanation of symbols

6 捲回群
20 円筒型リチウムイオン二次電池(リチウムイオン電池)
6 Winding group 20 Cylindrical lithium ion secondary battery (lithium ion battery)

Claims (2)

リチウム遷移金属複合酸化物を含む正極合剤を有する正極と、負極とをセパレータを介して配置し非水電解液に浸潤させたリチウムイオン電池において、前記正極合剤中に、過充電で前記負極にデンドライト状に析出するFe、Cu、Ag及びAuの元素のうち少なくとも1種を含む金属又は合金の粒子を所定量含有しており、前記粒子の粒径をa、前記セパレータの厚さをbとしたときに、a/b≧0.75を満たすことを特徴とするリチウムイオン電池。   In a lithium ion battery in which a positive electrode having a positive electrode mixture containing a lithium transition metal composite oxide and a negative electrode are disposed via a separator and infiltrated into a non-aqueous electrolyte, the negative electrode is overcharged in the positive electrode mixture. Contains a predetermined amount of metal or alloy particles containing at least one of the elements Fe, Cu, Ag and Au that are precipitated in a dendritic form, wherein the particle size of the particles is a, and the thickness of the separator is b. A lithium ion battery that satisfies a / b ≧ 0.75. 前記セパレータは材質がポリオレフィン系であることを特徴とする請求項1に記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the separator is made of a polyolefin material.
JP2003398385A 2003-11-28 2003-11-28 Lithium ion battery Expired - Fee Related JP4026587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398385A JP4026587B2 (en) 2003-11-28 2003-11-28 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398385A JP4026587B2 (en) 2003-11-28 2003-11-28 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2005158627A true JP2005158627A (en) 2005-06-16
JP4026587B2 JP4026587B2 (en) 2007-12-26

Family

ID=34723248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398385A Expired - Fee Related JP4026587B2 (en) 2003-11-28 2003-11-28 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP4026587B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032006A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolytic solution battery
US8797000B2 (en) 2010-06-16 2014-08-05 Hitachi, Ltd. Charging control system
WO2021015157A1 (en) * 2019-07-24 2021-01-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN112885990A (en) * 2019-11-29 2021-06-01 宁德时代新能源科技股份有限公司 Secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797000B2 (en) 2010-06-16 2014-08-05 Hitachi, Ltd. Charging control system
WO2013032006A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolytic solution battery
JP2013054891A (en) * 2011-09-02 2013-03-21 Ntt Facilities Inc Nonaqueous electrolyte battery
WO2021015157A1 (en) * 2019-07-24 2021-01-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN114175348A (en) * 2019-07-24 2022-03-11 三洋电机株式会社 Nonaqueous electrolyte secondary battery
EP4007010A4 (en) * 2019-07-24 2023-04-12 SANYO Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN112885990A (en) * 2019-11-29 2021-06-01 宁德时代新能源科技股份有限公司 Secondary battery
WO2021103934A1 (en) * 2019-11-29 2021-06-03 宁德时代新能源科技股份有限公司 Composite material having core-shell structure for battery, secondary battery, battery module, battery pack and apparatus
US11923536B2 (en) 2019-11-29 2024-03-05 Contemporary Amperex Technology Co., Limited Composite material with core-shell structure for battery, secondary battery, battery module, battery pack and apparatus

Also Published As

Publication number Publication date
JP4026587B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
JP3368877B2 (en) Cylindrical lithium-ion battery
JP4305111B2 (en) Battery pack and electric vehicle
KR101836043B1 (en) Nonaqueous electrolyte secondary battery
JP2000311676A (en) Cylindrical lithium ion battery
JP2007059230A (en) Nonaqueous electrolyte secondary battery and battery pack using it
JP2004006264A (en) Lithium secondary battery
US11764405B2 (en) Lithium ion secondary battery element including negative electrode with negative electrode active material layer tapered part having smaller density than negative electrode active material layer flat part
JP4305035B2 (en) Winding cylindrical lithium-ion battery
CN106558725B (en) Lithium ion secondary battery
JP5232751B2 (en) Lithium ion secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP4026587B2 (en) Lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP6493766B2 (en) Lithium ion secondary battery
JP4688527B2 (en) Lithium secondary battery
JP2003243037A (en) Lithium ion battery
JP5639903B2 (en) Lithium ion secondary battery
JP2014060009A (en) Method for manufacturing nonaqueous electrolyte battery, method for manufacturing battery pack, and use of nonaqueous electrolyte battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery
JP2004319308A (en) Lithium secondary battery
JP2005327516A (en) Charging method of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees