JP2005156207A - Method and instrument for precisely measuring group refractive index of optical material - Google Patents

Method and instrument for precisely measuring group refractive index of optical material Download PDF

Info

Publication number
JP2005156207A
JP2005156207A JP2003391702A JP2003391702A JP2005156207A JP 2005156207 A JP2005156207 A JP 2005156207A JP 2003391702 A JP2003391702 A JP 2003391702A JP 2003391702 A JP2003391702 A JP 2003391702A JP 2005156207 A JP2005156207 A JP 2005156207A
Authority
JP
Japan
Prior art keywords
optical path
mirror
optical
interferometer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003391702A
Other languages
Japanese (ja)
Other versions
JP3985045B2 (en
Inventor
Akiko Hirai
亜紀子 平井
Koichi Matsumoto
弘一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003391702A priority Critical patent/JP3985045B2/en
Publication of JP2005156207A publication Critical patent/JP2005156207A/en
Application granted granted Critical
Publication of JP3985045B2 publication Critical patent/JP3985045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise measuring method of the group refractive index of an optical material, capable of easily and accurately measuring the group refractive index, without requiring the thickness data of a sample to be measured and capable of simplifying and miniaturizing a measuring instrument, and a precise measuring instrument therefor. <P>SOLUTION: The incident light from a low-coherence light source is separated into a first optical path 5 and a second optical path 6 by a beam splitter 2, and the reflected light from the first mirror 11 of the first optical path 5 and the reflected light from the second mirror 9 of the second optical path 6 are guided to a retroreflector 3 from the beam splitter 2; while the optical axes of both reflected lights are made to coincide with each other. The reflected light from the retroreflector 3 is separated into a third optical path 8 and a fourth optical path 7 by the beam splitter 2, and the optical axis of the reflected light from the third mirror 10 of the third optical path 8 is allowed to coincide with that of the reflected light from the second mirror 9 of the fourth optical path 7 to detect the reflected light from the beam splitter 2 by a photodetector 4. An interferometer, constituted so that the same functions as those of an interferometer consisting of the series connection of two interferometers are performed by one interferometer, is used. The sample 13 to be measured is arranged to the first optical path 5 and compensation plates 14 and 15 comprising the same material as that of the sample 13 to be measured are arranged to the second and fourth optical paths 6 and 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光学材料開発、光学部品、光学装置の維持管理等における屈折率評価装置や分散評価装置に用いられ、光学材料の厚さ情報無しで群屈折率を精密計測することができる光学材料の群屈折率精密計測方法及びその方法を実施する装置に関する。   The present invention is used for a refractive index evaluation apparatus and dispersion evaluation apparatus in optical material development, optical components, optical device maintenance management, etc., and an optical material capable of precisely measuring a group refractive index without thickness information of the optical material The present invention relates to a group refractive index precise measurement method and an apparatus for performing the method.

従来より光学材料の屈折率を計測する手法は種々のものが提案されており、例えばM.D. Hopler et al., "Interferometric measurement of group and phase refractive index," Appl. Opt. 30, 735(1991)に示されているような、低コヒーレンス干渉計に試料を挿入し、干渉縞が発生する位置のずれから光学的厚さ(試料の厚さ×屈折率)を求め、試料の厚さを別の方法で求めて屈折率を計算する手法(第1の手法)が存在する。   Various methods for measuring the refractive index of optical materials have been proposed, for example, in MD Hopler et al., “Interferometric measurement of group and phase refractive index,” Appl. Opt. 30, 735 (1991). Insert the sample into a low-coherence interferometer as shown, determine the optical thickness (sample thickness x refractive index) from the misalignment where the interference fringes occur, and determine the sample thickness by another method. There is a method (first method) for calculating the refractive index obtained in step (1).

また、D.F. Murphy et al., "Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry," Appl. Opt. 39, 4607(2000)に示されているような、低コヒーレンス干渉計に試料を挿入し、試料後方に基準平面を導入し、厚さと屈折率の同時測定を行い、その際に干渉縞をフーリエ解析して屈折率の波長依存性も求める手法(第2の手法)も提案されている。   In addition, a sample was applied to a low coherence interferometer as shown in DF Murphy et al., “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607 (2000). Is inserted, a reference plane is introduced behind the sample, and the thickness and refractive index are measured simultaneously. At that time, the interference fringes are Fourier analyzed to determine the wavelength dependence of the refractive index (second method). Has been.

更に、板谷他、"低コヒーレンス光干渉による屈折率と厚さの2次元プロファイル同時測定、基準面を用いた測定法と測定例、"第29回光波センシング技術研究会論文集, 119、(2002.6)に示されているように、低コヒーレンス干渉計に試料を挿入し、試料後方に基準平面を導入し、厚さと屈折率の同時測定を行う手法(第3の手法)も提案されている。   Furthermore, Itaya et al., “Simultaneous measurement of refractive index and thickness by low coherence interference, two-dimensional profile measurement, measurement method and example using reference plane,” Proceedings of the 29th Lightwave Sensing Technology Study Group, 119, (2002.6 ), A method (third method) is proposed in which a sample is inserted into a low coherence interferometer, a reference plane is introduced behind the sample, and thickness and refractive index are measured simultaneously.

一方、光学材料の屈折率は位相屈折率と群屈折率があり、二つを結びつける関係式がある。広く用いられている屈折率測定法は、位相屈折率を測定するもので、被測定試料をプリズム形状に加工して屈折角を測定する。これは試料を加工する必要があるため、非破壊性が求められる場合にはこの手法を用いることはできない。   On the other hand, the refractive index of an optical material has a phase refractive index and a group refractive index, and there is a relational expression that connects the two. A widely used refractive index measurement method measures a phase refractive index, and measures a refraction angle by processing a sample to be measured into a prism shape. Since it is necessary to process the sample, this method cannot be used when non-destructive properties are required.

また、最近はブロードバンド光通信や超短パルスレーザーの応用、光医療計測など、群屈折率が求められる場合も多い。非破壊で精密に群屈折率を測定するために低コヒーレンス干渉計を利用する方法がある。ここで測定されるのは光学的厚さ(試料の厚さ×群屈折率)であり、前記第1の手法のように試料の厚さを既知として群屈折率を求める方法が多い。しかし、試料の厚さを精密に計測し、正しく光学系に配置することは困難である。また、試料が厚くなると、波長毎に群屈折率が異なるため、光学的厚さが波長によって異なる。そのため、干渉縞が拡がり、また非対称になる等により、発生位置を精密に決定することができない。   Recently, group refractive index is often required for broadband optical communication, application of ultrashort pulse laser, optical medical measurement, and the like. There is a method using a low coherence interferometer to measure the group refractive index accurately and nondestructively. Here, the optical thickness (sample thickness × group refractive index) is measured, and there are many methods for obtaining the group refractive index with the sample thickness known as in the first method. However, it is difficult to accurately measure the thickness of the sample and correctly place it in the optical system. Further, when the sample is thick, the group refractive index is different for each wavelength, so the optical thickness is different depending on the wavelength. For this reason, the generation position cannot be accurately determined due to the spread of interference fringes and asymmetricality.

また、前記第2の手法及び第3の手法は、試料の厚さと光学的厚さを同時に測定するため、群屈折率を求めることができる。しかし、第3の手法は試料が厚くなると干渉縞が歪み、発生位置の決定が不正確になる点は前記第1の手法と同じである。また、前記第2の手法は干渉縞をフーリエ解析することにより波長毎の発生位置を求めるため、干渉縞の歪みの影響は無視できるが、原理的に測定中に試料の出し入れが必要となるため、試料の位置や傾きの調整等の高い再現性が要求されるという問題を生じる。   Further, since the second method and the third method measure the thickness and optical thickness of the sample at the same time, the group refractive index can be obtained. However, the third method is the same as the first method in that the interference fringes are distorted and the generation position is not accurately determined when the sample is thick. In addition, since the second method obtains the generation position for each wavelength by performing Fourier analysis of the interference fringes, the influence of the distortion of the interference fringes can be ignored, but in principle, the sample needs to be taken in and out during the measurement. This causes a problem that high reproducibility such as adjustment of the position and inclination of the sample is required.

上記のような従来の技術を解決するため、本発明者等は先に特願2003−078612号において、厚い試料でも精密に群屈折率を測定することができ、測定中に試料の出し入れを行わずに、且つ試料の厚さ情報を知ること無しに群屈折率を測定することができる光学材料の群屈折率精密計測方法、及びその方法を実施するための装置を提供している(第4の手法)。   In order to solve the conventional techniques as described above, the present inventors previously disclosed in Japanese Patent Application No. 2003-078612 that the group refractive index can be accurately measured even with a thick sample, and the sample is taken in and out during the measurement. And a method for accurately measuring the group refractive index of an optical material capable of measuring the group refractive index without knowing the thickness information of the sample, and an apparatus for carrying out the method are provided (No. 4). Method).

図6〜図9にはその原理図を示している。図6に示すように二つの干渉計を直列に接続する。つまり、第1干渉計2aの出射光が第2干渉計3aの入射光となるようにする。低コヒーレンス光1aは干渉計の光路差がゼロ付近のとき光検出器4a上で干渉し、干渉信号が観測される。最初に、二つの干渉計の光路差をそれぞれゼロにする。即ち、光路5aと6a、光路7aと8aとが同じ長さになるように鏡9aと10a、 鏡11aと12aの位置を調整する。   6 to 9 show the principle diagrams. As shown in FIG. 6, two interferometers are connected in series. That is, the emitted light from the first interferometer 2a is made to be the incident light from the second interferometer 3a. The low-coherence light 1a interferes on the photodetector 4a when the optical path difference of the interferometer is near zero, and an interference signal is observed. First, the optical path difference between the two interferometers is set to zero. That is, the positions of the mirrors 9a and 10a and the mirrors 11a and 12a are adjusted so that the optical paths 5a and 6a and the optical paths 7a and 8a have the same length.

次に、図7に示すように被測定試料13aと、試料と同じ材質の補償板14aを第1干渉計2aに挿入し、補償板15aは第2干渉計3aに挿入する。被測定試料13aと二枚の補償板14a、15aの群屈折率をn、幾何学的厚さをそれぞれ、L、LC1、LC2とする。図7に示すように第1干渉計2aの光路51aと光路61aとの光路差がゼロになるように鏡10aの位置を調節し、このときの鏡10aの移動量をdとすると、
=(n−1)(LC1−L) (1a)
である。このとき、余分な光が光検出器4aに到達しないよう、補償板15aを入れた光路をシャッター16aで閉じておく。
Next, as shown in FIG. 7, the sample 13a to be measured and the compensation plate 14a made of the same material as the sample are inserted into the first interferometer 2a, and the compensation plate 15a is inserted into the second interferometer 3a. The group refractive index of the sample to be measured 13a and the two compensators 14a and 15a is ng , and the geometric thicknesses are L s , L C1 , and L C2 , respectively. When the optical path difference between the optical path 51a and optical path 61a of the first interferometer 2a as shown in FIG. 7 by adjusting the position of the mirror 10a to be zero, the amount of movement of the mirror 10a at this time is d 1,
d 1 = (n g -1) (L C1 -L S) (1a)
It is. At this time, the optical path including the compensation plate 15a is closed by the shutter 16a so that excess light does not reach the photodetector 4a.

次に、図8に示すように光路を制御する。即ち、第1干渉計2aの、被測定試料13aを入れた光路はシャッター17aで閉じる。補償板14aの表面で反射する光路62aと裏面で反射する光路63aの間の光路差は2nC1である。このとき、補償板14aを透過して鏡10aで反射する光は不要なのでこれを除去するため、シャッター18aを閉じる。第2干渉計3aでは、鏡11aが最初の位置からd移動したとすると、光路8aと光路71aとの光路差は2{(n−1)LC2−d}である。これら二つの光路差が一致するとき、光路62aを通って光路71aを通った光と、光路63aを通って光路8aを通った光の光路差がゼロとなり、光検出器4a上で干渉信号を生じる。このとき、
=(n−1)LC2−nC1 (2a)
である。
Next, the optical path is controlled as shown in FIG. That is, the optical path of the first interferometer 2a containing the sample 13a to be measured is closed by the shutter 17a. Optical path difference between the optical path 63a reflected by the optical path 62a and the back reflected by the surface of the compensation plate 14a is 2n g L C1. At this time, since the light transmitted through the compensation plate 14a and reflected by the mirror 10a is unnecessary, the shutter 18a is closed to remove it. In the second interferometer 3a, when the mirror 11a is d 2 moves from the initial position, the optical path difference between the optical path 8a and the optical path 71a is 2 {(n g -1) L C2 -d 2}. When these two optical path differences match, the optical path difference between the light passing through the optical path 71a through the optical path 62a and the light passing through the optical path 8a through the optical path 63a becomes zero, and an interference signal is generated on the photodetector 4a. Arise. At this time,
d 2 = (n g -1) L C2 -n g L C1 (2a)
It is.

最後に図9のように第1干渉計の光路を切り換える。即ち、補償板14aの入った光路をシャッター20aで閉じる。そして被測定試料13aの表面で反射する光路52aを通って第2干渉計の光路71aを通った光と、被測定試料13aの裏面で反射する光路53aを通って第2干渉計の光路8aを通った光の光路差がゼロとなり、干渉縞が生じるように鏡11aの位置を調節する。干渉縞が生じるときの鏡11aの移動量をdとすると、
=(n−1)LC2−n (3a)
である。このとき、被測定試料13aを透過し、鏡9aで反射する光を除去するためシャッター19aを閉じる。
式(2a)から式(3a)を引くと、
−d=n(L−LC1) (4a)
となり、式(4a)に式(1a)を足すと、
−d+d=L−LC1 (5a)
となる。式(4a)を式(5a)で割ると、
(d−d)/(d−d+d)=n (6a)
となり、群屈折率nが求められる。
なお、上記のように群屈折率nはd、d、dを求めることにより得られるので、これらの計測順は任意に行うことができる。
Finally, the optical path of the first interferometer is switched as shown in FIG. That is, the optical path containing the compensation plate 14a is closed by the shutter 20a. Then, the light that has passed through the optical path 71a of the second interferometer through the optical path 52a reflected by the surface of the sample 13a to be measured and the optical path 8a of the second interferometer through the optical path 53a that is reflected by the back surface of the sample 13a to be measured. The position of the mirror 11a is adjusted so that the optical path difference of the light passing through becomes zero and interference fringes are generated. When the amount of movement of the mirror 11a when the interference fringes occur, and d 3,
d 3 = (n g -1) L C2 -n g L S (3a)
It is. At this time, the shutter 19a is closed to remove light transmitted through the sample 13a to be measured and reflected by the mirror 9a.
Subtracting equation (3a) from equation (2a)
d 2 -d 3 = n g ( L S -L C1) (4a)
Then, when formula (1a) is added to formula (4a),
d 2 -d 3 + d 1 = L S -L C1 (5a)
It becomes. When equation (4a) is divided by equation (5a),
(D 2 −d 3 ) / (d 2 −d 3 + d 1 ) = ng (6a)
Thus, the group refractive index ng is obtained.
Since the group refractive index ng is obtained by obtaining d 1 , d 2 , and d 3 as described above, the measurement order can be arbitrarily performed.

ここで、式(6a)のnの計算に必要なのは、鏡の移動量d、d、dだけであり、試料等の幾何学的厚さの値は不要である。また、式(1a)〜(3a)では、群屈折率nの係数が、幾何学的厚さの差であるので、これを小さくすれば、試料の厚さそのものは厚くても干渉縞は歪まない。また幾何学的厚さの差の値も計算には不要となる。
特願2003−078612号 M.D. Hopler et al., "Interferometric measurement of group and phase refractive index," Appl. Opt. 30, 735(1991) D.F. Murphy et al., "Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry," Appl. Opt. 39, 4607(2000) 板谷他、"低コヒーレンス光干渉による屈折率と厚さの2次元プロファイル同時測定、基準面を用いた測定法と測定例、"第29回光波センシング技術研究会論文集, 119、(2002.6)
Here, only the mirror movement amounts d 1 , d 2 , and d 3 are necessary for the calculation of ng in the equation (6a), and the value of the geometric thickness of the sample or the like is not necessary. Further, in the formulas (1a) to (3a), the coefficient of the group refractive index ng is a difference in geometric thickness. Therefore, if this is reduced, the interference fringes will not occur even if the thickness of the sample itself is thick. Does not distort. Also, the value of the geometric thickness difference is not necessary for the calculation.
Japanese Patent Application No. 2003-078612 MD Hopler et al., "Interferometric measurement of group and phase refractive index," Appl. Opt. 30, 735 (1991) DF Murphy et al., "Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry," Appl. Opt. 39, 4607 (2000) Itaya et al., "Simultaneous measurement of refractive index and thickness by low coherence interference, measurement method and example using reference plane," Proc. 29th Lightwave Sensing Technology Research Group, 119, (2002.6)

本発明者等が提案した上記のような第4の手法によって、厚さ情報無しで群屈折率を求めることができるようにしたものであるが、ここに提示した技術においては干渉計を2個直列に実際に接続しているため、装置全体が大型化する問題があるとともに、各干渉計を構成する光学素子数が多く、複雑となると共に高価にならざるを得ない。また、第一干渉計と第二干渉計の気温や試料温度が異なる等の問題がある。   The group refractive index can be obtained without thickness information by the above-described fourth method proposed by the present inventors. In the technique presented here, two interferometers are used. Since they are actually connected in series, there is a problem that the entire apparatus becomes large, and the number of optical elements constituting each interferometer is large, which is complicated and expensive. In addition, there are problems such as the difference in temperature and sample temperature between the first interferometer and the second interferometer.

したがって本発明は、一つの干渉計で直列に接続された二つの干渉計に相当させることにより、コンパクトで安価、安定、精密な装置を構成することができ、また、測定結果から試料の厚さ情報を求めることができるようにした、光学材料の厚さ情報不要な群屈折率と厚さ精密計測方法及びその方法を実施する装置を提供することを目的としている。   Therefore, according to the present invention, a compact, inexpensive, stable and precise apparatus can be configured by corresponding to two interferometers connected in series with one interferometer, and the thickness of the sample can be determined from the measurement result. It is an object of the present invention to provide a method for accurately measuring a group refractive index and a thickness that do not require information on the thickness of an optical material, and an apparatus for carrying out the method, in which information can be obtained.

本発明による光学材料の群屈折率精密計測方法は、上記課題を解決するため、光源に低コヒーレンス光源を用い二つの干渉計を直列に接続してなる干渉計に対して、被測定試料と二枚の補償板を用い、光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して、群屈折率を計算する方法において、一つの干渉計に光を二回通すことにより、前記一つの干渉計を上記の直列に接続された二つの干渉計に相当させるようにしたものである。   In order to solve the above problems, the method for accurately measuring the group refractive index of an optical material according to the present invention uses a low-coherence light source as a light source and connects two interferometers in series to a sample to be measured. Using a single compensator, the mirror of the interferometer is scanned in the optical axis direction while switching the optical path, the position where the low coherence interference fringes are measured, and the group refractive index is calculated. By passing light twice, the one interferometer is made to correspond to the two interferometers connected in series.

また、本発明による他の光学材料の群屈折率精密計測方法は、入射光をビームスプリッタ2で第1光路5と第2光路6の2つの光路に分離し、第1光路5に配置した第1鏡11からの反射光と第2光路6に配置した第2鏡9からの反射光の光軸を一致させて前記ビームスプリッタ2からリトロリフレクター3に導き、前記リトロリフレクター3による反射光を前記ビームスプリッタ2で第3光路8と第4光路7の2つの光路に分離し、第3光路8に配置した第3鏡10からの反射光と第4光路7に配置した第2鏡9からの反射光の光軸を一致させて前記ビームスプリッタ2から光検出器4で受光することにより、一つの干渉計で二つの干渉計を直列に接続してなる干渉計と同一機能を行うようにした干渉計を用い、第1光路5と第2光路6、第3光路8と第4光路7とが同じ長さになるように各鏡の位置を調整して前記二つの干渉計の光路差をそれぞれゼロにし、被測定試料13をビームスプリッタ2と第1鏡11との間の第1光路5に配置し、前記被測定試料13と同じ材質の第1補償板14をビームスプリッタ2と第2鏡9との間の第2光路6に配置するとともに、第4光路7をシャッターで閉じ、前記第1光路5に対応する被測定試料13を含む光路51と、前記第2光路6に対応する第1補償板14を含む光路61との光路差がゼロになるように第2鏡9の位置を調節して、このときの第2鏡9の移動量dを計測し、次いで前記被測定試料13と同じ材質の第2補償板15をビームスプリッタ2と第2鏡9との間の第4光路に配置して前記第4光路7のシャッターを開き、被測定試料13の光路をシャッターで閉じるとともに、第1補償板14と第2鏡9との間の光路をシャッターで閉じ、前記第1補償板14の表面で反射する光路62を通るとともに、第2補償板15を透過し第2鏡9で反射する光路71からなる光路と、第1補償板14の裏面で反射する光路63を通るとともに、前記第3光路8からなる光路との光路差がゼロとなるように第2鏡9の位置を調節して、このときの第2鏡9の移動量dを計測し、次いで前記第2光路をシャッターで閉じ、被測定試料13と第1鏡11との間の光路をシャッターで閉じ、前記被測定試料13の表面で反射する光路52を通るとともに、第2補償板15を透過し第2鏡9で反射する光路71からなる光路と、被測定試料13の裏面で反射する光路53を通るとともに、前記第3光路8からなる光路との光路差がゼロとなるように第2鏡の位置を調節して、このときの第2鏡の移動量dを計測し、
群屈折率n=(d−d)/(d−d+d
の式により群屈折率を求めるようにしたものである。
Further, in the method for accurately measuring the group refractive index of another optical material according to the present invention, the incident light is separated into two optical paths of the first optical path 5 and the second optical path 6 by the beam splitter 2, and the first optical path 5 is arranged in the first optical path 5. The reflected light from one mirror 11 and the optical axis of the reflected light from the second mirror 9 arranged in the second optical path 6 are made to coincide with each other and guided from the beam splitter 2 to the retroreflector 3, and the reflected light from the retroreflector 3 is The beam splitter 2 separates the optical path from the third mirror 10 disposed in the third optical path 8 into the two optical paths 8 and 7, and the reflected light from the third mirror 10 disposed in the third optical path 8 and the second mirror 9 disposed in the fourth optical path 7. By making the optical axis of the reflected light coincide with each other and receiving light from the beam splitter 2 with the photodetector 4, the same function as an interferometer in which two interferometers are connected in series with one interferometer is performed. Using an interferometer, the first optical path 5 and the second optical path 6, The position of each mirror is adjusted so that the three optical paths 8 and the fourth optical path 7 have the same length, so that the optical path difference between the two interferometers becomes zero, and the sample 13 to be measured is placed on the beam splitter 2 and the first mirror. The first compensator 14 made of the same material as the sample to be measured 13 is arranged in the second optical path 6 between the beam splitter 2 and the second mirror 9, and The optical path difference between the optical path 51 including the sample 13 to be measured corresponding to the first optical path 5 and the optical path 61 including the first compensator 14 corresponding to the second optical path 6 is zero. The position of the second mirror 9 is adjusted so that the amount of movement d 1 of the second mirror 9 at this time is measured, and then the second compensator 15 made of the same material as the sample 13 to be measured is attached to the beam splitter 2 Arranged in the fourth optical path between the second mirror 9 and open the shutter of the fourth optical path 7 The optical path of the sample 13 to be measured is closed with a shutter, the optical path between the first compensator 14 and the second mirror 9 is closed with a shutter, passes through an optical path 62 that is reflected by the surface of the first compensator 14, and the first The optical path difference between the optical path consisting of the optical path 71 transmitted through the second compensation plate 15 and reflected by the second mirror 9 and the optical path 63 reflected by the back surface of the first compensation plate 14 and the optical path consisting of the third optical path 8 is as follows. as becomes zero by adjusting the position of the second mirror 9, a second mirror 9 the movement amount d 2 is measured, and then the second optical path closed by the shutter, the measurement sample 13 first mirror at this time 11 is closed by a shutter, passes through an optical path 52 that is reflected by the surface of the sample 13 to be measured, and passes through the second compensator 15 and is reflected by the second mirror 9; It passes through an optical path 53 that is reflected from the back surface of the measurement sample 13. Both by adjusting the position of the second mirror so that the optical path difference between the optical path consisting of the third optical path 8 becomes zero, and measuring a moving amount d 3 of the second lens at this time,
Group index n g = (d 2 -d 3 ) / (d 2 -d 3 + d 1)
The group refractive index is obtained by the following formula.

また、本発明による他の光学材料の群屈折率精密計測方法は、前記第1の補償板と第2の補償板を1枚の補償板としたものである。   In the method for accurately measuring the group refractive index of another optical material according to the present invention, the first compensator and the second compensator are used as a single compensator.

また、本発明による光学材料の群屈折率精密計測装置は、光源に低コヒーレンス光源を用い、一つの干渉計に光を二回通すことにより、直列に接続された二つの干渉計に相当させる干渉計を形成し、群屈折率を測定したい被測定試料と二枚の補償板を前記干渉計に組み込み、光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して、群屈折率を計算するように構成したものである。   The optical material group refractive index precise measurement apparatus according to the present invention uses a low-coherence light source as a light source, and passes light through one interferometer twice, thereby causing interference corresponding to two interferometers connected in series. A sample to be measured and two compensators are built into the interferometer, and the mirror of the interferometer is scanned in the direction of the optical axis while switching the optical path to generate low coherence interference fringes. The position is measured and the group refractive index is calculated.

また、本発明による他の光学材料の群屈折率精密計測装置は、前記第1の補償板と第2の補償板を1枚の補償板としたものである。   In addition, in the group refractive index precision measuring apparatus for another optical material according to the present invention, the first compensation plate and the second compensation plate are formed as a single compensation plate.

本発明は一つの干渉計によって直列に接続された二つの干渉計と実質的に同一作用をなすことができるため、前記のような本発明者等が提案した第4の手法における、二つの干渉計を直列に配置するに際して、その二つの干渉計が別個の干渉計として構成していたものにおける、装置が大型化すると共に光学素子数が多くなるためコストが高くなり、しかも第一干渉計と第二干渉計の雰囲気温度差による影響や試料温度との相違が大きくなる等の問題点を解消し、コンパクトで安価であり、安定した作動を行う精密な装置を構成することができるという利点がある。   Since the present invention can perform substantially the same operation as two interferometers connected in series by one interferometer, two interferences in the fourth method proposed by the present inventors as described above. When the meters are placed in series, the two interferometers are configured as separate interferometers, and the cost increases due to the increase in the size of the device and the number of optical elements. This eliminates the problems such as the influence of the difference in ambient temperature of the second interferometer and the large difference from the sample temperature, and is advantageous in that it is compact, inexpensive, and can construct a precise device that operates stably. is there.

二つの干渉計を直列に接続し、光源に低コヒーレンス光源を用いた干渉計において、群屈折率を測定したい被測定試料と二枚の補償板を用いる。光路を切り換えながら干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して、群屈折率を計算する方法において、一つの干渉計に光を二回通すことにより、上記の直列に接続された二つの干渉計に相当させる。   In an interferometer in which two interferometers are connected in series and a low-coherence light source is used as a light source, a sample to be measured whose group refractive index is to be measured and two compensators are used. By scanning the mirror of the interferometer in the optical axis direction while switching the optical path, measuring the position where the low coherence interference fringe occurs, and calculating the group refractive index, by passing light through one interferometer twice This corresponds to the two interferometers connected in series.

図1〜図4は、本発明の第1実施例の原理図である。図1にはこの第1実施例の干渉計自体の光学機器構成のみを示しており、光源から入射する低コヒーレンス光1をビームスプリッタ2により第1光路5と第2光路6に分け、第1光路5の光は第1鏡の11で反射させ、第2光路6の光は第2鏡9で反射させる。第1光路5と第2光路6からビームスプリッタ2に戻ってきた光は共にリトロリフレクター3によって折り返され、ビームスプリッタ2において第3光路8と第4光路7に分けられる。第4光路7の光は前記第2光路6に光を反射させる鏡と同一の鏡である第2鏡9で反射させ、第3光路8の光は第3鏡10で反射させる。第3光路8と第4光路7からビームスプリッタ2に戻ってきた光は共に光検出器4で受光される。   1 to 4 show the principle of the first embodiment of the present invention. FIG. 1 shows only the optical equipment configuration of the interferometer itself of the first embodiment. The low-coherence light 1 incident from the light source is divided into a first optical path 5 and a second optical path 6 by a beam splitter 2, and the first The light in the optical path 5 is reflected by the first mirror 11, and the light in the second optical path 6 is reflected by the second mirror 9. The light that has returned to the beam splitter 2 from the first optical path 5 and the second optical path 6 is both folded back by the retroreflector 3 and divided into a third optical path 8 and a fourth optical path 7 in the beam splitter 2. The light in the fourth optical path 7 is reflected by the second mirror 9, which is the same mirror that reflects the light in the second optical path 6, and the light in the third optical path 8 is reflected by the third mirror 10. Both the light beams returned from the third optical path 8 and the fourth optical path 7 to the beam splitter 2 are received by the photodetector 4.

本発明は上記のようにリトロリフレクター3を用いて、干渉計の出射光を再び同じ干渉計に入射させ、一つの干渉計を二つの干渉計として用いており、光源から入射する低コヒーレンス光1は干渉計の光路差がゼロ付近のとき光検出器4上で干渉し、干渉信号が観測されることとなる。   The present invention uses the retroreflector 3 as described above to cause the outgoing light of the interferometer to enter the same interferometer again, and uses one interferometer as two interferometers. Causes interference on the photodetector 4 when the optical path difference of the interferometer is near zero, and an interference signal is observed.

このような干渉計を用いて光学材料の厚さ測定を行うに際しては、最初に、前記二つの干渉計の光路差をそれぞれゼロにする。即ち、第1光路5と第2光路6、第3光路8と第4光路7とが同じ長さになるように第1鏡11と第2鏡9、第1鏡11と第3鏡10の位置を調整する。   When measuring the thickness of an optical material using such an interferometer, first, the optical path difference between the two interferometers is set to zero. That is, the first mirror 11 and the second mirror 9, and the first mirror 11 and the third mirror 10 are set so that the first optical path 5 and the second optical path 6, the third optical path 8 and the fourth optical path 7 have the same length. Adjust the position.

次に、図2に示すように光学材料である被測定試料13をビームスプリッタ2と第1鏡11との間の前記第1光路5に対応する光路51中に配置する。また、同様に前記被測定試料13と同じ材質の第1補償板14をビームスプリッタ2と第1鏡9との間の前記第2光路6の位置に対応する光路61中に配置する。また、被測定試料13と同じ材質の第2補償板15をビームスプリッタ2と第1鏡9との間の前記第4光路7の中に配置するが、ここではシャッター16で光路を閉じておく。
Next, as shown in FIG. 2, the sample 13 to be measured, which is an optical material, is disposed in the optical path 51 corresponding to the first optical path 5 between the beam splitter 2 and the first mirror 11. Similarly, the first compensator 14 made of the same material as the sample 13 to be measured is disposed in the optical path 61 corresponding to the position of the second optical path 6 between the beam splitter 2 and the first mirror 9. A second compensation plate 15 made of the same material as the sample 13 to be measured is disposed in the fourth optical path 7 between the beam splitter 2 and the first mirror 9. Here, the optical path is closed by the shutter 16. .

上記干渉計において、被測定試料13と第1補償板14及び第2補償板15の群屈折率をn、 幾何学的厚さをそれぞれ、L、Lc1、Lc2とすると、図2のように第1光路5に対応する光路51と第2光路6に対応する光路61との光路差がゼロになるように干渉信号を観測することによって第2鏡9の位置を調節し、このときの第2鏡9の移動量をdとすると、
=(n−1)(LC1−L) (1)
である。このとき、余分な光が光検出器4に到達しないよう、第2補償板15を入れた第4光路7に対応する光路71をシャッター16で閉じておく。
In the above interferometer, when the group refractive index of the sample 13 to be measured, the first compensation plate 14 and the second compensation plate 15 is ng and the geometric thicknesses are L s , L c1 and L c2 , respectively, FIG. The position of the second mirror 9 is adjusted by observing the interference signal so that the optical path difference between the optical path 51 corresponding to the first optical path 5 and the optical path 61 corresponding to the second optical path 6 becomes zero as shown in FIG. When the movement amount of the second mirror 9 is d 1 ,
d 1 = (n g -1) (L C1 -L s) (1)
It is. At this time, the optical path 71 corresponding to the fourth optical path 7 including the second compensation plate 15 is closed by the shutter 16 so that excess light does not reach the photodetector 4.

次に図3に示すように、被測定試料13を入れた第1光路5に対応する光路51はシャッター17で閉じる。このとき、第1補償板14の表面で反射する前記第2光路6に対応する光路62と、裏面で反射する前記第2光路6に対応する光路63の間の光路差は2nc1である。このとき、第1補償板14を透過して第2鏡9で反射する光は不要なのでこれを除去するため、第1補償板14と第2鏡9との間の第2光路6に対応する光路61上に配置したシャッター18を閉じる。 Next, as shown in FIG. 3, the optical path 51 corresponding to the first optical path 5 containing the sample 13 to be measured is closed by the shutter 17. In this case, the optical path 62 corresponding to the second optical path 6 reflected by the surface of the first compensator 14, the optical path difference between the optical path 63 corresponding to the second optical path 6 reflected by the back surface is 2n g L c1 is there. At this time, since the light transmitted through the first compensation plate 14 and reflected by the second mirror 9 is unnecessary, it is removed, so that it corresponds to the second optical path 6 between the first compensation plate 14 and the second mirror 9. The shutter 18 disposed on the optical path 61 is closed.

上記のように各光路上で鏡や補償板で反射して戻ってくる、2回目に通る光に対する干渉計としての第2干渉計では、第1鏡9が最初の位置からd移動したとすると、第3光路8と第4光路に対応する光路71との光路差は2{(n−1)Lc2−d}である。これら二つの光路差が一致するとき、第2光路6に対応する光路62を通って第4光路7に対応する光路71を通った光と、第2光路6に対応する光路63を通り光路8を通った光の光路差がゼロとなり、光検出器4上で干渉信号を生じる。このとき、
=(n−1)LC2−nc1 (2)
である。
As described above, in the second interferometer as the interferometer for the light passing through the second time, which is reflected by the mirror or the compensation plate on each optical path, the first mirror 9 has moved d 2 from the first position. Then, the optical path difference between the optical path 71 corresponding to the third optical path 8 to the fourth optical path is 2 {(n g -1) L c2 -d 2}. When these two optical path differences coincide with each other, the optical path 8 passes through the optical path 71 corresponding to the fourth optical path 7 through the optical path 62 corresponding to the second optical path 6 and the optical path 63 corresponding to the second optical path 6. The optical path difference of the light passing through becomes zero, and an interference signal is generated on the photodetector 4. At this time,
d 2 = (n g -1) L C2 -n g L c1 (2)
It is.

最後に図4に示すように、第1干渉計の光路を切り換える。即ち、第1補償板14の入った光路をシャッター20で閉じ、また被測定試料13を透過し鏡11で反射する光を除去するため被測定試料13と第3鏡11との間の光路をシャッター19で閉じる。次いで、被測定試料13の表面で反射する第1光路に対応する光路52を通って第2干渉計の第4光路に対応する光路71を通った光と、被測定試料13の裏面で反射する第1光路に対応する光路53を通って第2干渉計の光路8を通った光の光路差がゼロとなり、干渉縞が生じるように第1鏡9の位置を調節する。干渉縞が生じるときの第1鏡9の移動量をdとすると、
=(n−1)LC2−n (3)
である。
Finally, as shown in FIG. 4, the optical path of the first interferometer is switched. That is, the optical path containing the first compensation plate 14 is closed by the shutter 20, and the optical path between the sample 13 to be measured and the third mirror 11 is removed in order to remove the light that passes through the sample 13 to be measured and is reflected by the mirror 11. Close with shutter 19. Next, the light that has passed through the optical path 71 corresponding to the fourth optical path of the second interferometer through the optical path 52 corresponding to the first optical path reflected on the surface of the sample 13 to be measured and the back surface of the sample 13 to be measured are reflected. The position of the first mirror 9 is adjusted so that the optical path difference of the light passing through the optical path 53 of the second interferometer through the optical path 53 corresponding to the first optical path becomes zero and interference fringes are generated. If the amount of movement of the first mirror 9 when the interference fringes occur is d 3 ,
d 3 = (n g -1) L C2 -n g L s (3)
It is.

上記式(2)−(3)より d−d=n(L−LC1) となり、
また、式(1)+(2)−(3)より d+d−d=(L−LC1) となるので、結局、上記式(1)から式(3)より、
(d−d)/(d−d+d)=n (4)
となり、前記本発明者等が提案した第4の手法と同様に被測定試料や補償板の厚さ情報無しに群屈折率nが求められる。なお、より厳密には空気の群屈折率を考慮しなければならないが、空気の群屈折率は、気温、気圧、湿度、二酸化炭素濃度から経験式で求める方法があるので、必要に応じてこれらの環境条件を測定し、前記経験式を用いて容易に求めることができる。
From the above formulas (2)-(3), d 2 -d 3 = ng (L s -L C1 )
Also, equation (1) + (2) - Since the (3) from d 1 + d 2 -d 3 = (L s -L C1), after all, the equation (3) from the above equation (1),
(D 2 -d 3 ) / (d 2 -d 3 + d 1 ) = ng (4)
Thus, similarly to the fourth method proposed by the present inventors, the group refractive index ng is obtained without the thickness information of the sample to be measured and the compensation plate. Strictly speaking, the group refractive index of air must be taken into account, but the group refractive index of air can be obtained from empirical formulas based on the temperature, atmospheric pressure, humidity, and carbon dioxide concentration. It can be easily obtained by measuring the environmental conditions of the above and using the empirical formula.

このように本発明においては、本発明者等が提案した前記第4の手法と同様に、試料等の幾何学的厚さの値を測定することが不要であって、試料の厚さそのものは厚くても干渉縞は歪まない利点があり、被測定試料13と第1補償板14の群屈折率が同じであれば、第2補償板15の群屈折率は少々違っていても計算値に影響はない、などの利点も同様に得られる。それに加え、一つの干渉計の構造で直列に接続された二つの干渉計に実質的に相当させることにより、コンパクトで安価であり、安定して作動し、精密な測定を行うことができるという効果を奏することができる。   As described above, in the present invention, as in the fourth method proposed by the present inventors, it is not necessary to measure the value of the geometric thickness of the sample, and the thickness of the sample itself is Even if it is thick, there is an advantage that the interference fringes are not distorted. If the group refractive index of the sample 13 to be measured and the first compensation plate 14 are the same, the calculated value is obtained even if the group refractive index of the second compensation plate 15 is slightly different. Advantages such as no effect are also obtained. In addition, the effect is that it is compact and inexpensive, operates stably, and can perform precise measurements by making it substantially equivalent to two interferometers connected in series with one interferometer structure. Can be played.

図5は本発明の第2実施例の原理図である。ここでは、前記第1実施例の第1補償板14と第2補償板15を一枚の補償板140で代用している。補償板140の群屈折率と幾何学的厚さをそれぞれn、Lc1とすると、前記第1実施例と同様の手順で干渉縞の発生する位置を計測すると、式(1)から(3)で、Lc2=Lc1とすればよく、
=(n−1)(LC1−L) (5)
=−Lc1 (6)
=(n−1)LC1−n (7)
となる。これらのd、d、dに対しても同様に式(4)は成り立つため、低コヒーレンス干渉縞が発生する位置を計測することにより、群屈折率が求められる。
FIG. 5 shows the principle of the second embodiment of the present invention. Here, the first compensation plate 14 and the second compensation plate 15 of the first embodiment are replaced with a single compensation plate 140. Assuming that the group refractive index and the geometric thickness of the compensation plate 140 are n g and L c1 , respectively, when the position where the interference fringes are generated is measured in the same procedure as in the first embodiment, the equations (1) to (3 ) And L c2 = L c1 ,
d 1 = (n g -1) (L C1 -L s) (5)
d 2 = −L c1 (6)
d 3 = (n g -1) L C1 -n g L s (7)
It becomes. Since the equation (4) is similarly established for these d 1 , d 2 , and d 3 , the group refractive index is obtained by measuring the position where the low coherence interference fringes are generated.

このとき、式(5)、(7)より、
−d=L (8)
となり、試料の厚さも同時に求めることができる。
At this time, from the equations (5) and (7),
d 1 −d 3 = L s (8)
Thus, the thickness of the sample can be obtained at the same time.

本発明は、光学材料開発、光学部品、光学装置の維持管理等における屈折率評価装置や分散評価装置に対して有効に適用できる。   The present invention can be effectively applied to a refractive index evaluation device and a dispersion evaluation device in optical material development, optical component, optical device maintenance and management.

本発明の第一実施例の干渉計において、干渉計のみの第1の状態を示す光路図である。In the interferometer of the first embodiment of the present invention, it is an optical path diagram showing a first state of only the interferometer. 同実施例の干渉計において、第2の状態を示す光路図である。It is an optical path figure which shows a 2nd state in the interferometer of the Example. 同実施例の干渉計において、第3の状態を示す光路図である。In the interferometer of the same Example, it is an optical path diagram which shows a 3rd state. 同実施例の干渉計において、第4の状態を示す光路図である。In the interferometer of the same Example, it is an optical path diagram which shows a 4th state. 本発明の第二実施例の干渉計の光路図である。It is an optical path diagram of the interferometer of the second embodiment of the present invention. 本発明者等が先に提案した干渉計において、干渉計のみの第1の状態を示す光路図である。In the interferometer which the present inventors proposed previously, it is an optical path diagram which shows the 1st state only of an interferometer. 同干渉計において、第2の状態を示す光路図である。FIG. 6 is an optical path diagram showing a second state in the interferometer. 同干渉計において、第3の状態を示す光路図である。FIG. 6 is an optical path diagram showing a third state in the interferometer. 同干渉計において、第4の状態を示す光路図である。FIG. 6 is an optical path diagram showing a fourth state in the interferometer.

符号の説明Explanation of symbols

1 低コヒーレンス光
2 ビームスプリッタ
3 リトロリフレクター
4 光検出器
5 第1光路
6 第2光路
7 第4光路
8 第3光路
9 第2鏡
10 第3鏡
11 第1鏡
13 被測定試料
14 第1補償板
15 第2補償板
16 シャッター
17 シャッター
18 シャッター
19 シャッター
20 シャッター
51 光路
52 光路
53 光路
61 光路
62 光路
63 光路
71 光路
140 補償板
DESCRIPTION OF SYMBOLS 1 Low coherence light 2 Beam splitter 3 Retroreflector 4 Photo detector 5 1st optical path 6 2nd optical path 7 4th optical path 8 3rd optical path 9 2nd mirror 10 3rd mirror 11 1st mirror 13 Test sample 14 1st compensation Plate 15 Second compensator 16 Shutter 17 Shutter 18 Shutter 19 Shutter 20 Shutter 51 Optical path 52 Optical path 53 Optical path 61 Optical path 62 Optical path 63 Optical path 71 Optical path 140 Compensation plate

Claims (5)

光源に低コヒーレンス光源を用い二つの干渉計を直列に接続してなる干渉計に対して、被測定試料と二枚の補償板を用い、光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して、群屈折率を計算する方法において、一つの干渉計に光を二回通すことにより、前記一つの干渉計を上記の直列に接続された二つの干渉計に相当させることを特徴とする光学材料の群屈折率精密計測方法。   Compared to an interferometer that uses a low-coherence light source as the light source and two interferometers connected in series, the sample to be measured and two compensators are used, and the mirror of the interferometer is scanned in the optical axis direction while switching the optical path. In the method of measuring the position where the low coherence interference fringes occur and calculating the group refractive index, the one interferometer is connected in series by passing light through one interferometer twice. A method for accurately measuring a group refractive index of an optical material, characterized in that it corresponds to two interferometers. 入射光をビームスプリッタ2で第1光路5と第2光路6の2つの光路に分離し、第1光路5に配置した第1鏡11からの反射光と第2光路6に配置した第2鏡9からの反射光の光軸を一致させて前記ビームスプリッタ2からリトロリフレクター3に導き、前記リトロリフレクター3による反射光を前記ビームスプリッタ2で第3光路8と第4光路7の2つの光路に分離し、第3光路8に配置した第3鏡10からの反射光と第4光路7に配置した第2鏡9からの反射光の光軸を一致させて前記ビームスプリッタ2から光検出器4で受光することにより、一つの干渉計で二つの干渉計を直列に接続してなる干渉計と同一機能を行うようにした干渉計を用い、
第1光路5と第2光路6、第3光路8と第4光路7とが同じ長さになるように各鏡の位置を調整して前記二つの干渉計の光路差をそれぞれゼロにし、
被測定試料13をビームスプリッタ2と第1鏡11との間の第1光路5に配置し、前記被測定試料13と同じ材質の第1補償板14をビームスプリッタ2と第2鏡9との間の第2光路6に配置するとともに、第4光路7をシャッターで閉じ、
前記第1光路5に対応する被測定試料13を含む光路51と、前記第2光路6に対応する第1補償板14を含む光路61との光路差がゼロになるように第2鏡9の位置を調節して、このときの第2鏡9の移動量dを計測し、
次いで前記被測定試料13と同じ材質の第2補償板15をビームスプリッタ2と第2鏡9との間の第4光路に配置して前記第4光路7のシャッターを開き、被測定試料13の光路をシャッターで閉じるとともに、第1補償板14と第2鏡9との間の光路をシャッターで閉じ、
前記第1補償板14の表面で反射する光路62を通るとともに、第2補償板15を透過し第2鏡9で反射する光路71からなる光路と、第1補償板14の裏面で反射する光路63を通るとともに、前記第3光路8からなる光路との光路差がゼロとなるように第2鏡9の位置を調節して、このときの第2鏡9の移動量dを計測し、
次いで前記第2光路をシャッターで閉じ、被測定試料13と第1鏡11との間の光路をシャッターで閉じ、
前記被測定試料13の表面で反射する光路52を通るとともに、第2補償板15を透過し第2鏡9で反射する光路71からなる光路と、被測定試料13の裏面で反射する光路53を通るとともに、前記第3光路8からなる光路との光路差がゼロとなるように第2鏡の位置を調節して、このときの第2鏡の移動量dを計測し、
群屈折率n=(d−d)/(d−d+d
の式により群屈折率を求めることを特徴とする光学材料の群屈折率精密計測方法。
The incident light is separated by the beam splitter 2 into two optical paths, a first optical path 5 and a second optical path 6, and the reflected light from the first mirror 11 disposed in the first optical path 5 and the second mirror disposed in the second optical path 6. The optical axis of the reflected light from 9 is made coincident and guided from the beam splitter 2 to the retro-reflector 3, and the reflected light from the retro-reflector 3 is passed through the beam splitter 2 to two optical paths of the third optical path 8 and the fourth optical path 7. The optical beam of the reflected light from the third mirror 10 arranged in the third optical path 8 and the reflected light from the second mirror 9 arranged in the fourth optical path 7 are made to coincide with each other so that the beam splitter 2 to the photodetector 4 By using an interferometer that performs the same function as an interferometer formed by connecting two interferometers in series with one interferometer,
Adjust the position of each mirror so that the first optical path 5 and the second optical path 6, the third optical path 8 and the fourth optical path 7 are the same length, respectively, the optical path difference of the two interferometers, respectively,
A sample to be measured 13 is arranged in the first optical path 5 between the beam splitter 2 and the first mirror 11, and a first compensation plate 14 made of the same material as the sample to be measured 13 is placed between the beam splitter 2 and the second mirror 9. Between the second optical path 6 and the fourth optical path 7 with a shutter,
The second mirror 9 is designed such that the optical path difference between the optical path 51 including the measured sample 13 corresponding to the first optical path 5 and the optical path 61 including the first compensator 14 corresponding to the second optical path 6 is zero. Adjust the position, measure the amount of movement d 1 of the second mirror 9 at this time,
Next, the second compensator 15 made of the same material as the sample to be measured 13 is arranged in the fourth optical path between the beam splitter 2 and the second mirror 9, and the shutter of the fourth optical path 7 is opened. The optical path is closed with a shutter, and the optical path between the first compensator 14 and the second mirror 9 is closed with a shutter,
An optical path consisting of an optical path 71 passing through the second compensation plate 15 and reflected by the second mirror 9 while passing through an optical path 62 reflected by the surface of the first compensation plate 14 and an optical path reflected by the back surface of the first compensation plate 14 together through 63, the optical path difference between the optical path including the third optical path 8 by adjusting the position of the second mirror 9 so that the zero, and measuring a moving amount d 2 of the second mirror 9 in this case,
Next, the second optical path is closed with a shutter, the optical path between the sample 13 to be measured and the first mirror 11 is closed with a shutter,
An optical path consisting of an optical path 71 passing through the second compensating plate 15 and reflected by the second mirror 9 and an optical path 53 reflecting from the back surface of the measured sample 13 are passed along the optical path 52 reflected by the surface of the measured sample 13. And adjusting the position of the second mirror so that the optical path difference from the optical path consisting of the third optical path 8 is zero, and measuring the movement amount d 3 of the second mirror at this time,
Group index n g = (d 2 -d 3 ) / (d 2 -d 3 + d 1)
A method for precisely measuring a group refractive index of an optical material, wherein the group refractive index is obtained by the formula:
前記第1の補償板と第2の補償板を1枚の補償板としたことを特徴とする請求項1または請求項2記載の光学材料の群屈折率精密計測方法。   3. The method for accurately measuring the group refractive index of an optical material according to claim 1, wherein the first compensator and the second compensator are a single compensator. 光源に低コヒーレンス光源を用い、一つの干渉計に光を二回通すことにより、直列に接続された二つの干渉計に相当させる干渉計を形成し、
群屈折率を測定したい被測定試料と二枚の補償板を前記干渉計に組み込み、
光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して、群屈折率を計算することを特徴とする光学材料の群屈折率精密計測装置。
Using a low-coherence light source as the light source and passing light through one interferometer twice, an interferometer corresponding to two interferometers connected in series is formed,
A sample to be measured whose group refractive index is to be measured and two compensators are incorporated into the interferometer,
An apparatus for accurately measuring the group refractive index of an optical material, which scans a mirror of an interferometer in the optical axis direction while switching an optical path, measures a position where a low coherence interference fringe is generated, and calculates a group refractive index.
前記第1の補償板と第2の補償板を1枚の補償板としたことを特徴とする請求項4記載の光学材料の群屈折率精密計測装置。   5. The group refractive index precise measurement apparatus for an optical material according to claim 4, wherein the first compensation plate and the second compensation plate are formed as a single compensation plate.
JP2003391702A 2003-11-21 2003-11-21 Precision measurement method for group refractive index of optical materials Expired - Lifetime JP3985045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391702A JP3985045B2 (en) 2003-11-21 2003-11-21 Precision measurement method for group refractive index of optical materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391702A JP3985045B2 (en) 2003-11-21 2003-11-21 Precision measurement method for group refractive index of optical materials

Publications (2)

Publication Number Publication Date
JP2005156207A true JP2005156207A (en) 2005-06-16
JP3985045B2 JP3985045B2 (en) 2007-10-03

Family

ID=34718640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391702A Expired - Lifetime JP3985045B2 (en) 2003-11-21 2003-11-21 Precision measurement method for group refractive index of optical materials

Country Status (1)

Country Link
JP (1) JP3985045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389112A (en) * 2019-07-22 2019-10-29 浙江理工大学 A kind of high-precision laser interferometric modulator air refraction absolute measurement device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4912504B1 (en) * 2010-09-16 2012-04-11 キヤノン株式会社 Refractive index measurement method and measurement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218016A (en) * 1995-12-08 1997-08-19 Kagaku Gijutsu Shinko Jigyodan Simultaneous measuring method of refractive index and thickness of subject by light interference method and apparatus therefor
JPH10232204A (en) * 1996-12-16 1998-09-02 Seitai Hikari Joho Kenkyusho:Kk Device for measuring refractive index
JP2001141652A (en) * 1999-11-18 2001-05-25 Japan Science & Technology Corp Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
JP2002107118A (en) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology Length-information transmission method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09218016A (en) * 1995-12-08 1997-08-19 Kagaku Gijutsu Shinko Jigyodan Simultaneous measuring method of refractive index and thickness of subject by light interference method and apparatus therefor
JPH10232204A (en) * 1996-12-16 1998-09-02 Seitai Hikari Joho Kenkyusho:Kk Device for measuring refractive index
JP2001141652A (en) * 1999-11-18 2001-05-25 Japan Science & Technology Corp Method and apparatus for simultaneous measurement of refractive index and thickness of object to be measured by light interference method
JP2002107118A (en) * 2000-10-03 2002-04-10 National Institute Of Advanced Industrial & Technology Length-information transmission method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389112A (en) * 2019-07-22 2019-10-29 浙江理工大学 A kind of high-precision laser interferometric modulator air refraction absolute measurement device and method

Also Published As

Publication number Publication date
JP3985045B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US6822745B2 (en) Optical systems for measuring form and geometric dimensions of precision engineered parts
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
TWI269022B (en) Phase-shifting interferometry method and system
US5721615A (en) Sensor system for measurement of temperature or strain
CN104154869B (en) White light interference lens center thickness measuring system and method
CN105044035B (en) Refractive index and thickness method for synchronously measuring and system based on spectral domain interferometer
KR20060102127A (en) Apparatus for measuring a differential mode delay of a multimode optical fiber
KR20120029329A (en) Measuring method of refractive index and measuring apparatus of refractive index
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
CN104215176A (en) High accuracy optical interval measurement device and method
CN107339943B (en) The total optical path self calibration apparatus for measuring thickness of thin film and measurement method of palarization multiplexing
CN108426530B (en) Device and method for simultaneously measuring thickness and refractive index of thin film
CN105737733A (en) Air refractive index correction method in large-range absolute distance measurement
CN108562241A (en) The apparatus and method of digital hologram flexible measuring based on fiber optic bundle
JP2892075B2 (en) Measuring method of refractive index distribution and transmitted wavefront and measuring device used for this method
Lu et al. Self-calibrated absolute thickness measurement of opaque specimen based on differential white light interferometry
CN205003080U (en) Refracting index and thickness synchronous measurement system based on spectral domain interferometer
US4747688A (en) Fiber optic coherence meter
JP3985045B2 (en) Precision measurement method for group refractive index of optical materials
JP4203831B2 (en) Precision measurement method for group refractive index of optical materials
JP4051443B2 (en) Method and apparatus for accurately measuring group refractive index of optical material
JP2018534547A (en) Apparatus and method for measuring phase element parameters and optical fiber dispersion
JP2007183297A (en) Method and device for precisely measuring group refractive index of optical material
CN105841720B (en) Use the optical fiber white light interference (FBG) demodulator of two parallel reflective faces
Hines et al. Micro-arcsecond metrology (MAM) testbed overview

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

R150 Certificate of patent or registration of utility model

Ref document number: 3985045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term