JP2007183297A - Method and device for precisely measuring group refractive index of optical material - Google Patents

Method and device for precisely measuring group refractive index of optical material Download PDF

Info

Publication number
JP2007183297A
JP2007183297A JP2007102208A JP2007102208A JP2007183297A JP 2007183297 A JP2007183297 A JP 2007183297A JP 2007102208 A JP2007102208 A JP 2007102208A JP 2007102208 A JP2007102208 A JP 2007102208A JP 2007183297 A JP2007183297 A JP 2007183297A
Authority
JP
Japan
Prior art keywords
interferometer
optical path
optical
sample
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007102208A
Other languages
Japanese (ja)
Inventor
Akiko Hirai
亜紀子 平井
Koichi Matsumoto
弘一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007102208A priority Critical patent/JP2007183297A/en
Publication of JP2007183297A publication Critical patent/JP2007183297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and accurately measuring a group refractive index without requiring thickness information of a sample to be measured. <P>SOLUTION: An interferometer is constituted by serially connecting a first interferometer 2 of a Michelson type or the like and a second interferometer 3 of the same type by using a low-coherence light source as its light source. Then, an optical material to be measured 13 whose group refractive index is to be measured, and a first compensating plate 14 made of the same material are disposed on the first interferometer 2, and a second compensating plate 15 is disposed on the second interferometer. A mirror in the interferometer is scanned in the direction of its optical axis, while switching optical paths, and positions where low-coherence interference fringes appear are measured in a plurality of times, and the group refractive index is calculated based on the positions. In another method, the optical material to be measured whose group refractive index is to be measured, and one compensating plate made of the same material are employed to a triangular optical path interferometer. While the optical material to be measured is operated together with one compensating plate in the direction of its optical axis, the positions where the low-coherence interference fringes appear are measured, and the group refractive index is calculated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学材料開発における屈折率評価装置や分散評価装置に用い、また、光学部品、光学装置の維持管理における屈折率測定装置、分散評価装置に用いられ、光学材料の厚さ情報無しで群屈折率を精密計測することができる光学材料の群屈折率精密計測方法及びその方法を実施する装置に関する。   The present invention is used in a refractive index evaluation apparatus and dispersion evaluation apparatus in optical material development, and is used in a refractive index measurement apparatus and dispersion evaluation apparatus in the maintenance of optical components and optical apparatuses, without the thickness information of the optical material. The present invention relates to a method for accurately measuring a group refractive index of an optical material capable of precisely measuring a group refractive index, and an apparatus for performing the method.

従来より光学材料の屈折率を計測する手法は種々のものが提案されており、例えばM.D. Hopler et al., ”Interferometric measurement of group and phase refractive index,” Appl. Opt. 30, 735(1991)に示されているような、低コヒーレンス干渉計に試料を挿入し、干渉縞が発生する位置のずれから光学的厚さ(試料の厚さ×屈折率)を求め、試料の厚さを別の方法で求めて屈折率を計算する手法(第1の手法)が存在する。   Conventionally, various methods for measuring the refractive index of optical materials have been proposed. D. Hopler et al. , “Interferometric measurement of group and phase reflexive index,” Appl. Opt. 30, 735 (1991), a sample is inserted into a low-coherence interferometer, and the optical thickness (sample thickness × refractive index) is obtained from the displacement of the position where interference fringes are generated. There is a technique (first technique) for calculating the refractive index by obtaining the thickness of the film by another method.

また、D.F. Murphy et al., ”Dispersion−insensitive measurement of thickness and group refractive index by low−coherence interferometry,” Appl. Opt. 39, 4607(2000)に示されているような、低コヒーレンス干渉計に試料を挿入し、試料後方に基準平面を導入し、厚さと屈折率の同時測定を行い、その際に干渉縞をフーリエ解析して屈折率の波長依存性も求める手法(第2の手法)も提案されている。   D. F. Murphy et al. , “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607 (2000), a sample is inserted into a low coherence interferometer, a reference plane is introduced at the back of the sample, and thickness and refractive index are measured simultaneously. A method (second method) for analyzing and calculating the wavelength dependence of the refractive index has also been proposed.

更に、板谷他、”低コヒーレンス光干渉による屈折率と厚さの2次元プロファイル同時測定、基準面を用いた測定法と測定例、”第29回光波センシング技術研究会論文集, 119、(2002.6)に示されているように、低コヒーレンス干渉計に試料を挿入し、試料後方に基準平面を導入し、厚さと屈折率の同時測定を行う手法(第3の手法)も提案されている。   Furthermore, Itaya et al., "Simultaneous measurement of refractive index and thickness by low coherence light interference, measurement method and measurement example using reference plane," Proceedings of the 29th Lightwave Sensing Technology Study Group, 119, (2002 (6), a method (third method) has been proposed in which a sample is inserted into a low-coherence interferometer, a reference plane is introduced behind the sample, and thickness and refractive index are measured simultaneously. Yes.

M.D. Hopler et al., ”Interferometric measurement of group and phase refractive index,” Appl. Opt. 30, 735(1991)M.M. D. Hopler et al. , “Interferometric measurement of group and phase reflexive index,” Appl. Opt. 30, 735 (1991) D.F. Murphy et al., ”Dispersion−insensitive measurement of thickness and group refractive index by low−coherence interferometry,” Appl. Opt. 39, 4607(2000)D. F. Murphy et al. , “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt. 39, 4607 (2000) 板谷他、”低コヒーレンス光干渉による屈折率と厚さの2次元プロファイル同時測定、基準面を用いた測定法と測定例、”第29回光波センシング技術研究会論文集, 119、(2002.6)Itaya et al., “Simultaneous measurement of refractive index and thickness by low coherence light interference, measurement method and measurement example using reference plane,” Proceedings of the 29th Lightwave Sensing Technology Research Group, 119, (2002. 6) )

光学材料の屈折率は位相屈折率と群屈折率があり、二つを結びつける関係式がある。広く用いられている屈折率測定法は、位相屈折率を測定するもので、被測定試料をプリズム形状に加工して屈折角を測定する。これは試料を加工する必要があるため、非破壊性が求められる場合にはこの手法を用いることはできない。   The refractive index of an optical material has a phase refractive index and a group refractive index, and there is a relational expression that connects the two. A widely used refractive index measurement method measures a phase refractive index, and measures a refraction angle by processing a sample to be measured into a prism shape. Since it is necessary to process the sample, this method cannot be used when non-destructive properties are required.

また、最近はブロードバンド光通信や超短パルスレーザーの応用、光医療計測など、群屈折率が求められる場合も多い。非破壊で精密に群屈折率を測定するために低コヒーレンス干渉計を利用する方法がある。ここで測定されるのは光学的厚さ(試料の厚さ×群屈折率)であり、前記第1の手法のように試料の厚さを既知として群屈折率を求める方法が多い。しかし、試料の厚さを精密に計測し、正しく光学系に配置することは困難である。また、試料が厚くなると、波長毎に群屈折率が異なるため、光学的厚さが波長によって異なる。そのため、干渉縞が拡がり、また非対称になる等により、発生位置を精密に決定することができない。   Recently, group refractive index is often required for broadband optical communication, application of ultrashort pulse laser, optical medical measurement, and the like. There is a method using a low coherence interferometer to measure the group refractive index accurately and nondestructively. Here, the optical thickness (sample thickness × group refractive index) is measured, and there are many methods for obtaining the group refractive index with the sample thickness known as in the first method. However, it is difficult to accurately measure the thickness of the sample and correctly place it in the optical system. Further, when the sample is thick, the group refractive index is different for each wavelength, so the optical thickness is different depending on the wavelength. For this reason, the generation position cannot be accurately determined due to the spread of interference fringes and asymmetricality.

また、前記第2の手法及び第3の手法は、試料の厚さと光学的厚さを同時に測定するため、群屈折率を求めることができる。しかし、第3の手法は試料が厚くなると干渉縞が歪み、発生位置の決定が不正確になる点は前記第1の手法と同じである。また、前記第2の手法は干渉縞をフーリエ解析することにより波長毎の発生位置を求めるため、干渉縞の歪みの影響は無視できるが、原理的に測定中に試料の出し入れが必要となるため、試料の位置や傾きの調整等の高い再現性が要求されるという問題を生じる。   Further, since the second method and the third method measure the thickness and optical thickness of the sample at the same time, the group refractive index can be obtained. However, the third method is the same as the first method in that the interference fringes are distorted and the generation position is not accurately determined when the sample is thick. In addition, since the second method obtains the generation position for each wavelength by performing Fourier analysis of the interference fringes, the influence of the distortion of the interference fringes can be ignored, but in principle, the sample needs to be taken in and out during the measurement. This causes a problem that high reproducibility such as adjustment of the position and inclination of the sample is required.

したがって本発明は、厚い試料でも精密に群屈折率を測定することができ、測定中に試料の出し入れを行わずに、且つ試料の厚さ情報を知ること無しに群屈折率を測定することができる光学材料の群屈折率精密計測方法、及びその方法を実施するための装置を提供することを目的としている。   Therefore, the present invention can accurately measure the group refractive index even with a thick sample, and can measure the group refractive index without knowing the thickness information of the sample without taking in and out of the sample during the measurement. An object of the present invention is to provide a method for accurately measuring the group refractive index of an optical material, and an apparatus for carrying out the method.

本発明に係る光学材料の群屈折率精密計測方法は上記課題を解決するため、低コヒーレンス光源を用い、ビームスプリッタで分離した入射光を鏡で反射させて同一光軸で出射する二つの干渉計を直列に接続し、片方の干渉計の分離した光路の一つに群屈折率を測定したい被測定試料を配置し、該分離光路の他方に該試料と同一材質の第1の補償板を配置し、他方の干渉計の分離光路の一つに第2の補償板を配置し、前記各光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して群屈折率を計算するようにしたものである。   In order to solve the above-described problem, the method for accurately measuring the group refractive index of an optical material according to the present invention uses a low-coherence light source, reflects the incident light separated by the beam splitter by a mirror, and emits it on the same optical axis. Are connected in series, a sample to be measured whose group refractive index is to be measured is placed in one of the separated optical paths of one interferometer, and a first compensator made of the same material as the sample is placed in the other of the separated optical paths Then, a second compensator is arranged in one of the separation optical paths of the other interferometer, and the position of the low coherence interference fringe is measured by scanning the mirror of the interferometer in the optical axis direction while switching each optical path. Thus, the group refractive index is calculated.

また、より具体的には、入射光をビームスプリッタで2つの光路に分離し、各光路に配置した鏡からの反射光の光軸を一致させて出射する第1干渉計と、同様の構成をなす第2干渉計とを直列に接続し、低コヒーレンス光を第1干渉計に入射し、第2干渉計から出射する光を光検出器で受光する干渉計を用い、前記第1干渉計と第2干渉計の光路差をゼロにし、第1干渉計におけるビームスプリッタで分離した2つの光路に試料と該試料と同一材質の補償板を別個に配置すると共に、前記2つの光路の光路差がゼロになるように、前記補償板を配置した光路の鏡を移動して移動量dを計測し、前記第1干渉計の被測定試料を配置した光路を閉じ、該干渉計の補償板を配置した光路の鏡を閉じ、第2干渉計におけるビームスプリッタで分離した光路の1つに補償板を配置し、第1干渉計中の補償板の表面で反射し第2干渉計の補償板を配置した光路を通った光と、第1干渉計中の補償板の裏面で反射し第2干渉計の補償板を配置しない光路を通った光との光路差がゼロとなるように第2干渉計の補償板を配置した光路の鏡を移動して移動量dを計測し、第1干渉計の補償板を配置した光路を閉じ、試料を配置した光路の鏡を閉じた状態で、被測定試料の表面で反射し第2干渉計の補償板を配置した光路を通った光と、被測定試料の裏面で反射し第2干渉計の補償板を配置しない光路を通った光との光路差がゼロとなるように第2干渉計の補償板を配置した光路の鏡を移動して移動量dを計測し、群屈折率n=(d−d)/(d−d+d)の式により群屈折率を求めるようにしたものである。 More specifically, the incident light is separated into two optical paths by a beam splitter, and the same configuration as that of the first interferometer that emits light with the optical axes of the reflected light from the mirrors arranged in the respective optical paths aligned. A first interferometer connected in series, an interferometer that receives low-coherence light into the first interferometer and receives light emitted from the second interferometer with a photodetector, and The optical path difference of the second interferometer is made zero, and a sample and a compensation plate made of the same material as the sample are separately disposed on the two optical paths separated by the beam splitter in the first interferometer, and the optical path difference between the two optical paths is The distance d 1 is measured by moving the mirror of the optical path in which the compensation plate is arranged so as to be zero, the optical path in which the sample to be measured of the first interferometer is arranged is closed, and the compensation plate of the interferometer is Close the mirror of the placed optical path and separate it with the beam splitter in the second interferometer A compensation plate disposed in one of the optical paths, the light reflected by the surface of the compensation plate in the first interferometer and passing through the optical path in which the compensation plate of the second interferometer is disposed, and the compensation plate in the first interferometer The amount of movement d is determined by moving the mirror of the optical path in which the compensation plate of the second interferometer is arranged so that the optical path difference with the light reflected by the back surface of the light and passing through the optical path in which the compensation plate of the second interferometer is not arranged is zero. 2 was measured, the optical path on which the compensation plate of the first interferometer was placed was closed, the mirror of the optical path on which the sample was placed was closed, and the compensation plate of the second interferometer was placed on the surface of the sample to be measured. The compensation plate of the second interferometer is arranged so that the optical path difference between the light passing through the optical path and the light reflected by the back surface of the sample to be measured and passing through the optical path where the compensation plate of the second interferometer is not arranged is zero. move the mirror of the optical path to measure the amount of movement d 3, Gun屈by equation group index n g = (d 2 -d 3 ) / (d 2 -d 3 + d 1) It is obtained so as to determine the rate.

また、本発明に係る他の光学材料の群屈折率精密計測装置は、低コヒーレンス光源を用い、ビームスプリッタで分離した入射光を鏡で反射させて同一光軸で出射する二つの干渉計を直列に接続し、片方の干渉計の分離した光路の一つに群屈折率を測定したい被測定試料を配置し、該分離光路の他方に該試料と同一材質の第1の補償板を配置し、他方の干渉計の分離光路の一つに第2の補償板を配置し、前記各光路に開閉自在なシャッターと、前記干渉計の鏡を光軸方向に移動し移動量を測定する手段を備え、前記シャッターにより光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して群屈折率を計算するようにしたものである。   In addition, the group refractive index precision measuring apparatus for other optical materials according to the present invention uses a low-coherence light source, and in series two interferometers that reflect the incident light separated by the beam splitter by a mirror and emit it on the same optical axis. And a sample to be measured whose group refractive index is to be measured is arranged in one of the separated optical paths of one interferometer, and a first compensator made of the same material as the sample is arranged on the other of the separated optical paths, A second compensator is arranged in one of the separation optical paths of the other interferometer, and includes a shutter that can be opened and closed in each optical path, and a means for moving the mirror of the interferometer in the optical axis direction to measure the amount of movement. The group refractive index is calculated by scanning the mirror of the interferometer in the optical axis direction while switching the optical path by the shutter, and measuring the position where the low coherence interference fringes are generated.

従来の群屈折率測定手法においては試料の厚さを事前に知る必要があるが、本発明の手法では必要とせず、容易に、且つ正確に群屈折率を測定することができる。また、従来より提案されている、厚さと屈折率を同時に測定する技術は、厚さを事前に知る必要はないものの、試料が厚くなると干渉縞が歪むため測定が不正確になるのに対して、本発明においてはこのようなことが無くなる。   In the conventional group refractive index measurement method, it is necessary to know the thickness of the sample in advance, but this is not necessary in the method of the present invention, and the group refractive index can be measured easily and accurately. In addition, while the technique for measuring the thickness and refractive index simultaneously proposed in the past does not require the thickness to be known in advance, the measurement becomes inaccurate because the interference fringes are distorted when the sample is thick. This is not the case in the present invention.

更に、厚さの限界は光源のスペクトル幅に依存するが、従来の技術では10mm厚の試料が精密に測定できる方法がほとんど存在しない。本発明による手法は補償板を用いることによって、それらの厚さの差が影響するのみであるため、試料の厚さそのものはどれだけ厚くても良い。且つ、厚さの差の値も知る必要もない。また、フーリエ解析によって波長毎に群屈折率を求める従来技術においては、試料の出し入れが必要で位置や傾きの再現性が必要であるが、本発明の手法によれば一度全体の機器を設定すると、後はシャッターによる光路の開閉のみで計測できるので、試料の出し入れは必要なく、再現性向上や短時間測定が可能となる。   Furthermore, although the thickness limit depends on the spectral width of the light source, there are few methods that can accurately measure a 10 mm thick sample in the prior art. Since the method according to the present invention only affects the difference in thickness by using the compensation plate, the thickness of the sample itself may be any thickness. In addition, it is not necessary to know the thickness difference value. In addition, in the conventional technique for obtaining the group refractive index for each wavelength by Fourier analysis, it is necessary to put in and out of the sample and reproducibility of the position and inclination, but according to the method of the present invention, once the entire device is set After that, since the measurement can be performed only by opening and closing the optical path by the shutter, it is not necessary to put in and out of the sample, and the reproducibility can be improved and the measurement can be performed in a short time.

本発明は、被測定試料の厚さ情報を必要とせず、容易に、且つ正確に群屈折率を測定する手法を提供するという課題を、低コヒーレンス光源を用い、ビームスプリッタで分離した入射光を鏡で反射させて同一光軸で出射する二つの干渉計を直列に接続し、片方の干渉計の分離した光路の一つに群屈折率を測定したい被測定試料を配置し、該分離光路の他方に該試料と同一材質の第1の補償板を配置し、他方の干渉計の分離光路の一つに第2の補償板を配置し、前記各光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して群屈折率を計算することによって実現した。   The present invention aims to provide a method for easily and accurately measuring a group refractive index without requiring thickness information of a sample to be measured. The present invention aims to provide an incident light separated by a beam splitter using a low coherence light source. Two interferometers that are reflected by a mirror and output on the same optical axis are connected in series, and a sample to be measured whose refractive index is to be measured is placed in one of the separated optical paths of one interferometer. A first compensation plate made of the same material as that of the sample is arranged on the other side, a second compensation plate is arranged on one of the separation optical paths of the other interferometer, and the mirror of the interferometer is placed on the optical axis while switching the optical paths. It was realized by scanning in the direction and calculating the group refractive index by measuring the position where the low coherence interference fringes occur.

図1〜図4には本発明の第1実施例の原理図を示している。図1に示すように二つの干渉計を直列に接続する。つまり、第1干渉計2の出射光が第2干渉計3の入射光となるようにする。低コヒーレンス光1は干渉計の光路差がゼロ付近のとき光検出器4上で干渉し、干渉信号が観測される。最初に、二つの干渉計の光路差をそれぞれゼロにする。即ち、光路5と6、光路7と8とが同じ長さになるように鏡9と10、 鏡11と12の位置を調整する。   1 to 4 show the principle of the first embodiment of the present invention. As shown in FIG. 1, two interferometers are connected in series. That is, the light emitted from the first interferometer 2 is made incident light from the second interferometer 3. The low-coherence light 1 interferes on the photodetector 4 when the optical path difference of the interferometer is near zero, and an interference signal is observed. First, the optical path difference between the two interferometers is set to zero. That is, the positions of the mirrors 9 and 10 and the mirrors 11 and 12 are adjusted so that the optical paths 5 and 6 and the optical paths 7 and 8 have the same length.

次に、図2に示すように被測定試料13と、試料と同じ材質の補償板14を第1干渉計2に挿入し、補償板15は第2干渉計3に挿入する。被測定試料13と二枚の補償板14、15の群屈折率をn、幾何学的厚さをそれぞれ、L、LC1、LC2とする。図2に示すように第1干渉計2の光路51と光路61との光路差がゼロになるように鏡10の位置を調節し、このときの鏡10の移動量をdとすると、
=(n−1)(LC1−L) (1)
である。このとき、余分な光が光検出器4に到達しないよう、補償板15を入れた光路をシャッター16で閉じておく。
Next, as shown in FIG. 2, the sample to be measured 13 and the compensation plate 14 made of the same material as the sample are inserted into the first interferometer 2, and the compensation plate 15 is inserted into the second interferometer 3. The group refractive index of the sample to be measured 13 and the two compensators 14 and 15 is ng , and the geometric thicknesses are L s , L C1 , and L C2 , respectively. As shown in FIG. 2, when the position of the mirror 10 is adjusted so that the optical path difference between the optical path 51 and the optical path 61 of the first interferometer 2 becomes zero, and the movement amount of the mirror 10 at this time is d 1 ,
d 1 = (n g -1) (L C1 -L S) (1)
It is. At this time, the optical path including the compensation plate 15 is closed by the shutter 16 so that excess light does not reach the photodetector 4.

次に,図3に示すように光路を制御する。即ち、第1干渉計2の、被測定試料13を入れた光路はシャッター17で閉じる。補償板14の表面で反射する光路62と裏面で反射する光路63の間の光路差は2nC1である。このとき、補償板14を透過して鏡10で反射する光は不要なのでこれを除去するため、シャッター18を閉じる。第2干渉計3では、鏡11が最初の位置からd移動したとすると、光路8と光路71との光路差は2{(n−1)LC2−d}である。これら二つの光路差が一致するとき、光路62を通って光路71を通った光と、光路63を通って光路8を通った光の光路差がゼロとなり、光検出器4上で干渉信号を生じる。このとき、
=(n−1)LC2−nC1 (2)
である。
Next, the optical path is controlled as shown in FIG. That is, the optical path of the first interferometer 2 including the sample 13 to be measured is closed by the shutter 17. The optical path difference between the optical path 62 reflected on the front surface of the compensation plate 14 and the optical path 63 reflected on the back surface is 2 ng L C1 . At this time, since the light transmitted through the compensation plate 14 and reflected by the mirror 10 is unnecessary, the shutter 18 is closed to remove it. In the second interferometer 3, if the mirror 11 has moved d 2 from the initial position, the optical path difference between the optical path 8 and the optical path 71 is 2 {( ng −1) L C2 −d 2 }. When these two optical path differences match, the optical path difference between the light passing through the optical path 71 through the optical path 62 and the light passing through the optical path 63 through the optical path 63 becomes zero, and an interference signal is generated on the photodetector 4. Arise. At this time,
d 2 = (n g -1) L C2 -n g L C1 (2)
It is.

最後に図4のように第1干渉計の光路を切り換える。即ち、補償板14の入った光路をシャッター20で閉じる。そして被測定試料13の表面で反射する光路52を通って第2干渉計の光路71を通った光と、被測定試料13の裏面で反射する光路53を通って第2干渉計の光路8を通った光の光路差がゼロとなり、干渉縞が生じるように鏡11の位置を調節する。干渉縞が生じるときの鏡11の移動量をdとすると、
=(n−1)LC2−n (3)
である。このとき、被測定試料13を透過し、鏡9で反射する光を除去するためシャッター19を閉じる。
式(2)から式(3)を引くと、
−d=n(L−LC1) (4)
となり、式(4)に式(1)を足すと、
−d+d=L−LC1 (5)
となる。式(4)を式(5)で割ると、
(d−d)/(d−d+d)=n (6)
となり、群屈折率nが求められる。
なお、上記のように群屈折率nはd、d、dを求めることにより得られるので、これらの計測順は任意に行うことができる。
Finally, the optical path of the first interferometer is switched as shown in FIG. That is, the optical path containing the compensation plate 14 is closed by the shutter 20. Then, the light that has passed through the optical path 71 of the second interferometer through the optical path 52 reflected from the surface of the sample 13 to be measured, and the optical path 8 of the second interferometer through the optical path 53 reflected from the back surface of the sample to be measured 13. The position of the mirror 11 is adjusted so that the optical path difference of the light passing through becomes zero and interference fringes are generated. When the amount of movement of the mirror 11 when the interference fringe is generated and d 3,
d 3 = (n g -1) L C2 -n g L S (3)
It is. At this time, the shutter 19 is closed in order to remove light transmitted through the sample 13 to be measured and reflected by the mirror 9.
Subtracting equation (3) from equation (2),
d 2 -d 3 = n g ( L S -L C1) (4)
Then, when equation (1) is added to equation (4),
d 2 −d 3 + d 1 = L S −L C1 (5)
It becomes. Dividing equation (4) by equation (5) gives
(D 2 −d 3 ) / (d 2 −d 3 + d 1 ) = ng (6)
Thus, the group refractive index ng is obtained.
Since the group refractive index ng is obtained by obtaining d 1 , d 2 , and d 3 as described above, the measurement order can be arbitrarily performed.

ここで、式(6)のnの計算に必要なのは、鏡の移動量d、d、dだけであり、試料等の幾何学的厚さの値は不要である。また、式(1)〜(3)では、群屈折率ngの係数が、幾何学的厚さの差であるので、これを小さくすれば、試料の厚さそのものは厚くても干渉縞は歪まない。幾何学的厚さの差の値も計算には不要である。 Here, only the mirror movement amounts d 1 , d 2 , and d 3 are necessary for calculating ng in Equation (6), and the value of the geometric thickness of the sample or the like is not necessary. In the formulas (1) to (3), since the coefficient of the group refractive index ng is a difference in geometric thickness, if this is reduced, the interference fringes are distorted even if the sample itself is thick. Absent. The value of the geometric thickness difference is also not necessary for the calculation.

さらに、第1干渉計中の試料13と補償板14の群屈折率が同じであれば、第2干渉計中の補償板15の群屈折率は少々違っていても計算値に影響はないという利点もある。以下でこれを証明する。   Furthermore, if the sample 13 and the compensation plate 14 in the first interferometer have the same group refractive index, the calculated value is not affected even if the group refractive index of the compensation plate 15 in the second interferometer is slightly different. There are also advantages. This is proved below.

第1干渉計中の被測定試料13と補償板14の群屈折率をng1、第2干渉計中の補償板15の群屈折率をng2とすると、式(1)〜(3)は、
=(ng1−1)(LC1−L) (7)
=(ng2−1)LC2−ng1C1 (8)
=(ng2−1)LC2−ng1 (9)
となり、式(8)から式(9)を引くと、
−d=ng1(L−LC1) (10)
となり、式(10)に式(7)を足すと、
−d+d=L−LC1 (11)
となる。式(10)を式(11)で割ると、
(d−d)/(d−d+d)=ng1 (12)
となり、被測定試料の群屈折率ng1が求められる。群屈折率の値は、履歴や温度によってわずかに異なる可能性もあるが、本手法では、第1干渉計中の被測定試料と補償板の群屈折率が同じであれば良い。
N g1 the group refractive index of the compensating plate 14 and the sample to be measured 13 in the first interferometer, when the group refractive index of the compensator 15 in the second interferometer and n g2, equation (1) to (3) ,
d 1 = (n g1 -1) (L C1 -L S) (7)
d 2 = (n g2 −1) L C2 −n g1 L C1 (8)
d 3 = (n g2 −1) L C2 −n g1 L s (9)
And subtracting equation (9) from equation (8),
d 2 -d 3 = n g1 ( L S -L C1) (10)
Then, when equation (7) is added to equation (10),
d 2 −d 3 + d 1 = L S −L C1 (11)
It becomes. When equation (10) is divided by equation (11),
(D 2 -d 3) / ( d 2 -d 3 + d 1) = n g1 (12)
Thus, the group refractive index ng1 of the sample to be measured is obtained. The value of the group refractive index may be slightly different depending on the history and temperature, but in this method, the group refractive index of the sample to be measured and the compensation plate in the first interferometer may be the same.

次に、図5および図6は本発明の第2実施例の原理図である。被測定試料104も補償板105も配置されていないとき、三角光路干渉計を一周する光路長をDとする。また、ビームスプリッター103から右回り、左回りの光路が等しくなる場所を干渉計の原点とする。図5のように三角光路干渉計中に被測定試料104と補償板105を配置する。光路を詳しく示したものが図6である。被測定試料104の幾何学的厚さをL、補償板105の幾何学的厚さをL、被測定試料と補償板の群屈折率をnとする。また、被測定試料と補償板は平行に配置されているとし、それらの間の距離をΔとする。被測定試料の中心位置が三角光路干渉計の原点から光軸に沿ってdだけ移動したときの、光路106から111の光路長は、
光路106:D−L+2d (13)
光路107:D−L+2n+2d (14)
光路108:D+L+2Δ+2d (15)
光路109:D−L−2d (16)
光路110:D−L−2Δ−2L+2n−2d (17)
光路111:D−L−2Δ−2L−2d (18)
となる。光路106を通った光と光路111を通った光が干渉するときの、被測定試料の中心位置をdとすると、式(13)と式(18)が等しくなるときなので、
=(−Δ−L)/2 (19)
となる。光路107を通った光と光路110を通った光が干渉するときの、被測定試料の中心位置をdとすると、式(14)と式(17)が等しくなるときなので、
={−Δ−L−n(L−L)}/2 (20)
となる。光路108を通った光と光路109を通った光が干渉するときの、被測定試料の中心位置をdとすると、式(15)と式(16)が等しくなるときなので、
=(−Δ−L)/2 (21)
となる。式(19)から式(20)を引くと、
−d=n(L−L)/2 (22)
となる。式(19)から式(21)を引くと、
−d=(L−L)/2 (23)
となる。式(22)を式(23)で割ると、
(d−d)/(d−d)=n (24)
となり、群屈折率ngが求められる。
Next, FIG. 5 and FIG. 6 are principle diagrams of the second embodiment of the present invention. When neither the sample 104 to be measured nor the compensation plate 105 is arranged, the optical path length that goes around the triangular optical path interferometer is D. Further, the place where the clockwise and counterclockwise optical paths from the beam splitter 103 are equal is set as the origin of the interferometer. As shown in FIG. 5, the sample 104 to be measured and the compensation plate 105 are arranged in a triangular optical path interferometer. FIG. 6 shows the optical path in detail. The geometric thickness of the sample 104 to be measured is L S , the geometric thickness of the compensation plate 105 is L C , and the group refractive index of the sample to be measured and the compensation plate is ng . The sample to be measured and the compensation plate are arranged in parallel, and the distance between them is Δ. When the center position of the sample to be measured moves by d along the optical axis from the origin of the triangular optical path interferometer, the optical path lengths of the optical paths 106 to 111 are as follows:
Optical path 106: D-L S + 2d (13)
Optical path 107: D-L S + 2n g L s + 2d (14)
Optical path 108: D + L S + 2Δ + 2d (15)
Optical path 109: D-L S -2d ( 16)
Optical path 110: D-L S -2Δ-2L C +2 ng L C -2d (17)
Optical path 111: D-L S -2Δ-2L C -2d (18)
It becomes. When the center position of the sample to be measured when the light passing through the optical path 106 interferes with the light passing through the optical path 111 is d 1 , the expressions (13) and (18) are equal,
d 1 = (− Δ−L C ) / 2 (19)
It becomes. When the center position of the sample to be measured when the light passing through the optical path 107 interferes with the light passing through the optical path 110 is d 2 , the expression (14) and the expression (17) are equal.
d 2 = {- Δ-L C -n g (L S -L C)} / 2 (20)
It becomes. When the center position of the sample to be measured when the light passing through the optical path 108 interferes with the light passing through the optical path 109 is d 3 , the expression (15) and the expression (16) are equal.
d 3 = (− Δ−L S ) / 2 (21)
It becomes. Subtracting equation (20) from equation (19),
d 1 -d 2 = n g ( L S -L C) / 2 (22)
It becomes. Subtracting equation (21) from equation (19)
d 1 −d 3 = (L S −L C ) / 2 (23)
It becomes. Dividing equation (22) by equation (23) gives
(D 1 -d 2 ) / (d 1 -d 3 ) = ng (24)
Thus, the group refractive index ng is obtained.

ここで、式(24)のnの計算に必要なのは、被測定試料と補償板の移動量d、d、dだけであり、試料等の幾何学的厚さの値は不要である。また、式(22)の群屈折率nの係数は、厚さの差なのでこれを小さくすれば、試料の厚さそのものは厚くても干渉縞は歪まない。幾何学的厚さの差の値も計算には不要である。 Here, the calculation of ng in equation (24) requires only the movement amounts d 1 , d 2 , and d 3 of the sample to be measured and the compensation plate, and the value of the geometric thickness of the sample and the like is not necessary. is there. Further, since the coefficient of the group refractive index ng in the equation (22) is a difference in thickness, if this is reduced, the interference fringes are not distorted even if the thickness of the sample itself is thick. The value of the geometric thickness difference is also not necessary for the calculation.

上記のような本発明による群屈折率計測手法について、前記のように数式によって解析的に証明することができるものであるが、計算機シミュレーションによっても原理確認を行った。光源は中心波長680nm、スペクトル幅10nmとした。材料はBK7とし、メーカーのカタログ記載の位相屈折率の波長依存性の近似式を用いた。位相屈折率の値から群屈折率の定義式を用いて群屈折率を計算した。   The group refractive index measurement method according to the present invention as described above can be proved analytically by the mathematical formula as described above, but the principle was confirmed also by computer simulation. The light source had a center wavelength of 680 nm and a spectral width of 10 nm. The material was BK7, and the approximate expression of the wavelength dependence of the phase refractive index described in the manufacturer's catalog was used. The group refractive index was calculated from the value of the phase refractive index using the group refractive index definition formula.

上記手法で、試料厚さが1mm、補償板厚さが0.9mm、0.8mmから、試料厚さが11mm、補償板厚さが6.1mmの組み合わせまで数通りの組み合わせを計算したが、いずれも元の屈折率の近似式の精度の範囲内で理論値と一致し、本発明による手法が正しいものであることがわかった。   With the above technique, several combinations were calculated from the sample thickness of 1 mm and the compensation plate thickness of 0.9 mm and 0.8 mm to the combination of the sample thickness of 11 mm and the compensation plate thickness of 6.1 mm. All of these agreed with the theoretical value within the accuracy range of the original approximate expression of refractive index, and it was found that the method according to the present invention was correct.

本発明による第1実施例の干渉計において、第1の状態を示す光路図である。In the interferometer of 1st Example by this invention, it is an optical path figure which shows a 1st state. 同実施例の干渉計において、第2の状態を示す光路図である。It is an optical path figure which shows a 2nd state in the interferometer of the Example. 同実施例の干渉計において、第3の状態を示す光路図である。In the interferometer of the same Example, it is an optical path diagram which shows a 3rd state. 同実施例の干渉計において、第4の状態を示す光路図である。In the interferometer of the same Example, it is an optical path diagram which shows a 4th state. 本発明による第2実施例の干渉計の光路図である。It is an optical path figure of the interferometer of 2nd Example by this invention. 同実施例の干渉計において、被測定試料と補償板部分の詳細な光路図である。In the interferometer of the same Example, it is a detailed optical path diagram of a to-be-measured sample and a compensation board part.

符号の説明Explanation of symbols

1 低コヒーレンス光
2 第1干渉計
3 第2干渉計
4 光検出器
5 光路
6 光路
7 光路
8 光路
9 鏡
10 鏡
11 鏡
12 鏡
13 被測定試料
14 補償板
15 補償板
16 シャッター
17 シャッター
18 シャッター
19 シャッター
20 シャッター
51 光路
52 光路
53 光路
61 光路
62 光路
63 光路
71 光路
101 低コヒーレンス光
102 光検出器
103 ビームスプリッター
104 被測定試料
105 補償板
106 光路
107 光路
108 光路
109 光路
110 光路
111 光路
DESCRIPTION OF SYMBOLS 1 Low coherence light 2 1st interferometer 3 2nd interferometer 4 Optical detector 5 Optical path 6 Optical path 7 Optical path 8 Optical path 9 Mirror 10 Mirror 11 Mirror 12 Mirror 13 Sample to be measured 14 Compensation plate 15 Compensation plate 16 Shutter 17 Shutter 18 Shutter DESCRIPTION OF SYMBOLS 19 Shutter 20 Shutter 51 Optical path 52 Optical path 53 Optical path 61 Optical path 62 Optical path 63 Optical path 71 Optical path 101 Low coherence light 102 Photo detector 103 Beam splitter 104 Sample to be measured 105 Compensation plate 106 Optical path 107 Optical path 108 Optical path 109 Optical path 110 Optical path 111 Optical path

Claims (3)

低コヒーレンス光源を用い、ビームスプリッタで分離した入射光を鏡で反射させて同一光軸で出射する二つの干渉計を直列に接続し、
片方の干渉計の分離した光路の一つに群屈折率を測定したい被測定試料を配置し、該分離光路の他方に該試料と同一材質の第1の補償板を配置し、
他方の干渉計の分離光路の一つに第2の補償板を配置し、
前記各光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して群屈折率を計算することを特徴とする光学材料の群屈折率精密計測方法。
Using a low coherence light source, two interferometers that reflect the incident light separated by the beam splitter with a mirror and emit it with the same optical axis are connected in series.
A sample to be measured whose refractive index is to be measured is arranged in one of the separated optical paths of one interferometer, and a first compensator made of the same material as the sample is arranged in the other of the separated optical paths,
Placing a second compensator in one of the separation optical paths of the other interferometer;
A method for accurately measuring the group refractive index of an optical material, wherein the optical axis direction of the interferometer is scanned while switching the optical paths, and the group refractive index is calculated by measuring a position where a low coherence interference fringe is generated. .
入射光をビームスプリッタで2つの光路に分離し、各光路に配置した鏡からの反射光の光軸を一致させて出射する第1干渉計と、同様の構成をなす第2干渉計とを直列に接続し、低コヒーレンス光を第1干渉計に入射し、第2干渉計から出射する光を光検出器で受光する干渉計を用い、
前記第1干渉計と第2干渉計の光路差をゼロにし、
第1干渉計におけるビームスプリッタで分離した2つの光路に試料と該試料と同一材質の補償板を別個に配置すると共に、前記2つの光路の光路差がゼロになるように、前記補償板を配置した光路の鏡を移動して移動量dを計測し、
前記第1干渉計の被測定試料を配置した光路を閉じ、該干渉計の補償板を配置した光路の鏡を閉じ、第2干渉計におけるビームスプリッタで分離した光路の1つに補償板を配置し、第1干渉計中の補償板の表面で反射し第2干渉計の補償板を配置した光路を通った光と、第1干渉計中の補償板の裏面で反射し第2干渉計の補償板を配置しない光路を通った光との光路差がゼロとなるように第2干渉計の補償板を配置した光路の鏡を移動して移動量dを計測し、
第1干渉計の補償板を配置した光路を閉じ、試料を配置した光路の鏡を閉じた状態で、被測定試料の表面で反射し第2干渉計の補償板を配置した光路の鏡を、被測定試料の表面で反射し第2干渉計の補償板を配置した光路を通った光と、被測定試料の裏面で反射し第2干渉計の補償板を配置しない光路を通った光との光路差がゼロとなるように第2干渉計の補償板を配置した鏡を移動して移動量dを計測し、
群屈折率n=(d−d)/(d−d+d
の式により群屈折率を求めることを特徴とする光学材料の群屈折率精密計測方法。
A first interferometer that divides incident light into two optical paths by a beam splitter and emits the optical axes of reflected light from mirrors arranged in the respective optical paths and a second interferometer having the same configuration are connected in series. A low coherence light is incident on the first interferometer, and the light emitted from the second interferometer is received by a photodetector.
The optical path difference between the first interferometer and the second interferometer is set to zero,
A sample and a compensation plate made of the same material as the sample are separately arranged on the two optical paths separated by the beam splitter in the first interferometer, and the compensation plate is arranged so that the optical path difference between the two optical paths becomes zero. a movement amount d 1 measures the optical path of lens moves,
Close the optical path where the sample to be measured of the first interferometer is placed, close the mirror of the optical path where the compensation plate of the interferometer is placed, and place the compensation plate in one of the optical paths separated by the beam splitter in the second interferometer The light reflected by the surface of the compensation plate in the first interferometer and passed through the optical path on which the compensation plate of the second interferometer is arranged, and reflected by the back surface of the compensation plate in the first interferometer and reflected by the second interferometer Moving the mirror of the optical path in which the compensation plate of the second interferometer is arranged so that the optical path difference with the light passing through the optical path in which no compensation plate is arranged is zero, and measuring the movement amount d 2 ;
With the optical path where the compensation plate of the first interferometer is placed closed and the mirror of the optical path where the sample is placed is closed, the mirror of the optical path where the compensation plate of the second interferometer is placed and reflected from the surface of the sample to be measured. The light reflected by the surface of the sample to be measured and passed through the optical path where the compensation plate of the second interferometer is arranged, and the light reflected by the back surface of the sample to be measured and passed through the optical path where the compensation plate of the second interferometer is not arranged move the mirror optical path difference is arranged compensator second interferometer such that the zero and measuring a moving amount d 3,
Group index n g = (d 2 -d 3 ) / (d 2 -d 3 + d 1)
A method for precisely measuring a group refractive index of an optical material, wherein the group refractive index is obtained by the formula:
低コヒーレンス光源を用い、ビームスプリッタで分離した入射光を鏡で反射させて同一光軸で出射する二つの干渉計を直列に接続し、
片方の干渉計の分離した光路の一つに群屈折率を測定したい被測定試料を配置し、該分離光路の他方に該試料と同一材質の第1の補償板を配置し、
他方の干渉計の分離光路の一つに第2の補償板を配置し、
前記各光路に開閉自在なシャッターと、前記干渉計の鏡を光軸方向に移動し移動量を測定する手段を備え、
前記シャッターにより光路を切り換えつつ干渉計の鏡を光軸方向に走査し、低コヒーレンス干渉縞の発生する位置を測定して群屈折率を計算することを特徴とする光学材料の群屈折率精密計測装置。
Using a low coherence light source, two interferometers that reflect the incident light separated by the beam splitter with a mirror and emit it with the same optical axis are connected in series.
A sample to be measured whose refractive index is to be measured is arranged in one of the separated optical paths of one interferometer, and a first compensator made of the same material as the sample is arranged in the other of the separated optical paths,
Placing a second compensator in one of the separation optical paths of the other interferometer;
A shutter that can be opened and closed in each optical path, and means for moving the mirror of the interferometer in the direction of the optical axis and measuring the amount of movement;
Precise measurement of the group index of refraction of an optical material by scanning the mirror of the interferometer in the optical axis direction while switching the optical path by the shutter, and measuring the position where the low coherence interference fringe occurs and calculating the group index of refraction apparatus.
JP2007102208A 2007-04-09 2007-04-09 Method and device for precisely measuring group refractive index of optical material Pending JP2007183297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102208A JP2007183297A (en) 2007-04-09 2007-04-09 Method and device for precisely measuring group refractive index of optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102208A JP2007183297A (en) 2007-04-09 2007-04-09 Method and device for precisely measuring group refractive index of optical material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003078612A Division JP4051443B2 (en) 2003-03-20 2003-03-20 Method and apparatus for accurately measuring group refractive index of optical material

Publications (1)

Publication Number Publication Date
JP2007183297A true JP2007183297A (en) 2007-07-19

Family

ID=38339486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102208A Pending JP2007183297A (en) 2007-04-09 2007-04-09 Method and device for precisely measuring group refractive index of optical material

Country Status (1)

Country Link
JP (1) JP2007183297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208572A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method for measuring refractive index, refractive index measuring device, and method for producing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208572A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method for measuring refractive index, refractive index measuring device, and method for producing optical element
JP2015010921A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
CN105339778A (en) * 2013-06-28 2016-02-17 佳能株式会社 Method for measuring refractive index, refractive index measuring device, and method for producing optical element

Similar Documents

Publication Publication Date Title
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
US8520218B2 (en) Measuring method of refractive index and measuring apparatus of refractive index
CN102564318B (en) High precision absolute displacement measurement system based on optical fiber composite interference
CN104215176B (en) High accuracy optical interval measurement device and method
Park et al. Simultaneous measurements of refractive index and thickness by spectral-domain low coherence interferometry having dual sample probes
JP2002107118A (en) Length-information transmission method
JP2015105850A (en) Refractive index measurement method, refractive index measurement device, and method for manufacturing optical element
TWI524062B (en) Method and apparatus for measuring refractive index and method for manufacturing optical element
JP4203831B2 (en) Precision measurement method for group refractive index of optical materials
JP4051443B2 (en) Method and apparatus for accurately measuring group refractive index of optical material
JP2017198613A (en) Refractive index measurement method, refractive index measurement device, and optical element manufacturing method
JP2017090259A (en) Method for correcting refractive index, and method and device for measuring distance
JP2007183297A (en) Method and device for precisely measuring group refractive index of optical material
JP4810693B2 (en) Lightwave interference measurement device
JP3985045B2 (en) Precision measurement method for group refractive index of optical materials
KR102079588B1 (en) Method measuring thickness and refractive index of planar samples based on fabry-perot interferometer
JP4100663B2 (en) Absolute thickness measuring device
Wilhelm et al. A novel low coherence fibre optic interferometer for position and thickness measurements with unattained accuracy
CN105841720B (en) Use the optical fiber white light interference (FBG) demodulator of two parallel reflective faces
Courteville et al. Contact-free on-axis metrology for the fabrication and testing of complex optical systems
JP2008286598A (en) Wavelength estimation method of tracking laser interferometer
JPH0781819B2 (en) High precision interferometer
Matsumoto et al. In situ measurement of group refractive index using tandem low-coherence interferometer
JP2015010920A (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
JP5177566B2 (en) Refractive index measuring method and refractive index measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324