JP2005154889A - 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法 - Google Patents

転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法 Download PDF

Info

Publication number
JP2005154889A
JP2005154889A JP2004168622A JP2004168622A JP2005154889A JP 2005154889 A JP2005154889 A JP 2005154889A JP 2004168622 A JP2004168622 A JP 2004168622A JP 2004168622 A JP2004168622 A JP 2004168622A JP 2005154889 A JP2005154889 A JP 2005154889A
Authority
JP
Japan
Prior art keywords
mass
quenching
less
ring
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168622A
Other languages
English (en)
Inventor
Akihiro Nishida
明弘 西田
Shigeru Okita
滋 沖田
Hideki Kokubu
秀樹 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004168622A priority Critical patent/JP2005154889A/ja
Publication of JP2005154889A publication Critical patent/JP2005154889A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】空気焼入れによって表層部の硬さをHRC60以上にできる鋼を特定して、変形量の少ない空気焼入れを採用できるようにする。
【解決手段】転がり軸受の軌道輪を、炭素0.60〜1.20質量%、珪素0.70〜2.00質量%、マンガン0.80〜2.00質量%、クロム0.80〜1.50質量%、モリブデン0.10〜1.00質量%であり、下記の(1)式により算出されるDI 値が13.0以上40.0以下である合金鋼により形成する。
I =(0.2〔C〕+0.14)×(0.64〔Si〕+1)×(4.1〔Mn〕+1)×(2.33〔Cr〕+1)×(3.14〔Mo〕+1)‥‥(1)
【選択図】 図1

Description

この発明は、転がり軸受の軌道輪(内輪および外輪)に関する。
一般的な転がり軸受の軌道輪(内輪および外輪)は、SUJ2等の高炭素クロム軸受鋼からなるリング状素材を所定形状に加工した後、焼入れおよび焼戻しを施すことにより製造されている。ここで、外径(a)に対する厚さ(t)の比(t/a)が小さい軌道輪や、外径(a)に対する軸方向の寸法(c)の比(c/a)が大きい軌道輪は、焼入れ時に変形が生じ易い。
焼入れは、鋼材(所定形状に加工後の素材)を高温に加熱した後に適当な速度で冷却する熱処理であり、一般的には、冷却剤として油を使用し、油中に鋼材を浸漬して所定時間保持する「油焼入れ」が行われている。この油焼入れでは、冷却の初期段階で鋼材の表面に蒸気膜が形成される。これに起因して均一な冷却が行われ難くなるため、変形量が大きくなる。
下記の特許文献1には、このような焼入れ時の変形量を小さくするための提案が記載されている。この提案は、焼入れ剤(冷却剤)としてガスと油を使用し、初期段階の高温時はガスで冷却し、鋼材の温度が焼入れ油の特性温度(蒸気膜段階および沸騰段階に相当する温度域)より低くなった時点で油焼入れに切り換えるというものであり、蒸気膜の形成段階がないため焼入れ時の変形量を小さくできると記載されている。なお、この文献1には、高圧ガスを使用した例のみが記載されており、空気焼入れについては記載されていない。
下記の特許文献2には、焼入れ時の冷却を空気で行う「空気焼入れ」に適した鋼の組成が記載されている。また、この鋼の一例で形成された中実棒材を用いて、冷却速度と硬さとの関係を調べる試験を行ったところ、表層部の硬さがロックウエルC硬度(HRC)で57以下であったことが記載されている。
下記の非特許文献1には、鋼材の焼入れ性を示す理想臨界直径(DI 値)について、以下のように記載されている。いろいろな直径の丸棒試験片を用いて中心まで焼きの入る直径(臨界直径)を調べることにより、臨界直径の大小で鋼の焼入れ性を定量的に表すことができる。この理想臨界直径は焼入れ液の冷却能によって異なる。鋼材を焼入れ液に入れた瞬間にその表面が焼入れ液の温度になる時の臨界直径を、理想臨界直径と呼ぶ。この理想臨界直径は焼入れ液の冷却能に無関係で、鋼特有の値となる。この理想臨界直径は下記の(2)式で計算できる。
I =(基本〔C鋼〕のDI )×fSi×fMn×fNi×fCr‥‥(2)
ここで、fX は合金元素Xの焼入れ倍数である。
特開2002−38214号公報 特開2001−131688号公報 日本鉄鋼協会編、「鋼の熱処理 改定5版」、丸善株式会社、1989年 p.24〜28
転がり軸受の軌道輪は、軌道面の表層部の硬さがHRC60以上になっている必要があり、上記特許文献2の鋼は転がり軸受の軌道輪用としては適していない。空気焼入れによって表層部の硬さをHRC60以上にできる鋼があれば、その鋼を用い、空気焼入れを採用することによって、外径に対する厚さの比が小さい軌道輪や、外径に対する軸方向の寸法の比が大きい軌道輪であっても、焼入れ時に変形を生じ難くすることができる。
本発明は、この点に着目してなされたものであり、空気焼入れによって表層部の硬さをHRC60以上にできる鋼を特定することにより、変形量の少ない空気焼入れを採用できるようにし、その鋼を用い、空気焼入れを採用することによって、外径に対する厚さの比が小さい軌道輪や、外径に対する軸方向の寸法の比が大きい軌道輪の、焼入れ時の変形を小さくすることを課題とする。
上記課題を解決するために、本発明は、炭素(C)の含有率が0.60質量%以上1.20質量%以下、珪素(Si)の含有率が0.70質量%以上2.00質量%以下、マンガン(Mn)の含有率が0.80質量%以上2.00質量%以下、クロム(Cr)の含有率が0.80質量%以上1.50質量%以下、モリブデン(Mo)の含有率が0.10質量%以上1.00質量%以下(好ましくは0.60質量%以下)で、残部が鉄および不可避成分であり、且つ、下記の(1)式により算出されるDI 値が13.0以上40.0以下(好ましくは35以下)であることを特徴とする転がり軸受の軌道輪用の合金鋼を提供する。
I =(0.2〔C〕+0.14)×(0.64〔Si〕+1)×(4.1〔Mn〕+1)×(2.33〔Cr〕+1)×(3.14〔Mo〕+1)‥‥(1)
本発明はまた、鋼製のリング状素材を所定形状に加工した後、焼入れおよび焼戻しを施すことにより、転がり軸受の軌道輪を製造する方法において、前記鋼として、上述の合金鋼を使用し、焼入れ時の冷却を気体を用いて行うことを特徴とする軌道輪の製造方法を提供する。冷却に用いる気体としては、空気または不活性ガス等が挙げられる。空気を用いると、コストを低く抑えられる利点がある。不活性ガスを用いると、脱炭を少なくできるため、研磨工程での取り代を少なくできる利点がある。また、本発明の方法において、焼入れ時の冷却は連続的に大気圧下で行うことが好ましい。
本発明の軌道輪の製造方法によれば、外径(a)に対する厚さ(t)の比(t/a)が0.100以下あるいは0.080以下であるリング状素材を用いた場合でも、焼入れ時の変形を小さくすることができる。
本発明の軌道輪の製造方法によれば、外径(a)に対する軸方向の寸法(c)の比(c/a)が0.11を超えるリング状素材を用いた場合でも、焼入れ時の変形を小さくすることができる。
<炭素および合金元素の含有率の特定理由について>
[C:0.60質量%以上1.20質量%以下]
軸受として必要な硬さ(HRC60以上)を得るためには、軌道面の表層部での炭素含有率は0.60質量%以上である必要がある。一方、炭素含有率が1.20質量%を超えると、製鋼過程で巨大炭化物が析出し、この炭化物を起点とした欠陥により軸受の転がり疲れ寿命が低下する。なお、寿命の向上という点で好ましい炭素含有率は、0.80質量%を超え1.20質量%以下の範囲である。
[Si:0.70質量%以上2.00質量%以下]
珪素は、焼入れ性および焼戻し軟化抵抗性を向上させる作用を有するが、珪素の含有率が0.70質量%未満であるとこれらの作用が実質的に得られない。一方、珪素の含有率が2.00質量%を超えると、冷間加工性が低下する。
[Mn:0.80質量%以上2.00質量%以下]
マンガンは、焼入れ性を向上させる作用とフェライト組織を強化する作用を有する。マンガンの含有率が0.80質量%未満であると、焼入れ性を向上させる作用が実質的に得られない。一方、マンガンの含有率が2.00質量%を超えると、フェライト組織の強化作用により、鍛造で脆性破壊が生じる可能性が高くなる。
[Cr:0.80質量%以上1.50質量%以下]
クロムは、焼入れ性および焼戻し軟化抵抗性を向上させる作用を有するが、クロムの含有率が0.80質量%未満であると、これらの作用が実質的に得られない。一方、クロムの含有率が1.50質量%を超えると、製鋼過程で巨大炭化物が析出し、この炭化物を起点とした欠陥により軸受の転がり疲れ寿命が低下する。
[Mo:0.10質量%以上1.00質量%以下(好ましくは0.60質量%以下)]
モリブデンは、焼入れ性および焼戻し軟化抵抗性を向上させる作用を有するが、モリブデンの含有率が0.10質量%未満であると、これらの作用が実質的に得られない。高温焼戻し軟化抵抗性の向上の点から好ましいモリブデン含有率の範囲は、0.35質量%以上である。
一方、モリブデンは高価な材料であるため、材料コストを抑えるという観点からその含有率を低くしたい。また、モリブデンはクロムとともに製鋼過程で炭化物を析出させる。この炭化物が巨大化すると欠陥の起点となる。そのために、モリブデンの含有率の上限を1.00質量%以下、好ましくは0.60質量%とした。
<DI 値について>
本発明では、鋼材の焼入れ性を示す理想臨界直径(DI 値)として、独自に定義した下記の(1)式により算出されるDI 値を使用する。
I =(0.2〔C〕+0.14)×(0.64〔Si〕+1)×(4.1〔Mn〕+1)×(2.33〔Cr〕+1)×(3.14〔Mo〕+1)‥‥(1)
このDI 値が13.0以上であって、炭素および合金元素の含有率が前述の範囲である合金鋼材を使用することによって、焼入れ時の冷却を気体を用いて行った場合に、この鋼材の表層部の硬さをHRC60以上にすることができる。DI 値が40.0を超えると、材料コストが上昇するだけで、硬さの向上効果は飽和する。DI 値の好ましい範囲は13.0以上35.0以下であり、より好ましい範囲は13.0以上20.0以下である。
本発明の合金鋼を使用することで、焼入れ時の冷却を気体を用いて行っても、軌道輪の表層部の硬さをHRC60以上にできる。
また、本発明の方法によれば、この合金鋼を用い、焼入れ時の冷却を気体を用いて行うため、外径に対する厚さの比が小さい軌道輪や、外径に対する軸方向の寸法の比が大きい軌道輪であっても、焼入れ時の変形を小さくすることができる。さらに、油焼入れの場合に必要な洗浄作業が必要ないため、熱処理工程にかかる時間を短縮できる。
以下、本発明の実施形態について説明する。
[第1実施形態]
呼び番号6810の単列深溝玉軸受(転がり軸受)は、図1に示すように、内輪1と外輪2と玉3と保持器4とからなる。また、図2に示すように、この玉軸受の外輪2の外径aは65mmであり、内径bは60.5mmであり、幅cは7mmである。この外輪2の厚さtは(65−60.5)/2=2.25mmであり、外径(a)に対する厚さ(t)の比(t/a)は、2.25/65=0.0346≒0.035である。この外輪2用のリング状素材を、下記の表1に示す各組成の合金鋼で形成した。
各リング状素材に対して以下の方法で熱処理を行った。なお、この熱処理は、後述する図10に示す焼入れ装置を用いて行った。
先ず、真空(13Pa以下)とした後、大気圧まで窒素にて復圧し、窒素雰囲気にて840℃に30分間保持した後に、空気または油で冷却することによる焼入れを行った。次に、170℃で2時間保持した後に空冷する焼戻しを行った。
焼入れ時の冷却を空気で行う空気焼入れでは、この冷却を、大気圧と同程度の1.0×105 Pa(750〜760Torr)の雰囲気で、常温(25〜35℃)の空気を20分間処理品に吹き付けることにより行った。焼入れ時の冷却を油で行う油焼入れでは、この冷却を、60℃に保持された油に10分間浸漬することにより行った。
熱処理後の各リング状素材について、表層部の硬さ(HRC)と変形率を測定した。変形率は以下の方法で測定した。先ず、熱処理後のリング状素材の最大径と最小径を測定し、その差(真円度)を算出する。次に、この算出された真円度を熱処理前のリング状素材の外径で除算する。
これらの結果も表1に併せて示す。表1の「変形率」は、この算出値を「%」で示した値である。
Figure 2005154889
この表に示すように、No. 1−1〜1−12は、使用した合金鋼の炭素と合金元素の含有率、および(1)式により算出されるDI 値が本発明の範囲内であり、No. 1−2では油焼入れを行っているが、それ以外では空気焼入れを行っている。いずれも表層部の硬さはHRC60以上となった。変形率は、No. 1−2では0.22%と大きかったが、それ以外では0.09〜0.15%と小さかった。
No. 1−13〜1−15は、使用した合金鋼の合金元素含有率および前記DI 値が本発明の範囲から外れる例であり、空気焼入れを行ったNo. 1−13と1−15では、表層部の硬さがHRC60未満であった。油焼入れを行ったNo. 1−14では、表層部の硬さがHRC60以上であったが、変形率が0.23%と大きかった。
以上のことから、本発明の合金鋼を用い空気焼入れを行うことで、比(t/a)が0.035であるリング状素材について、表層部の硬さをHRC60以上としながら焼入れ時の変形を小さくできることが分かる。
また、前記DI 値が5、10、13、15、20である合金鋼からなる素材を用い、油焼入れを行った場合と空気焼入れを行った場合とによる表層部の硬さの違いを調べた。各焼入れおよび焼戻しは、上記と同じ条件で行った。その結果を図3にグラフで示す。このグラフから、空気焼入れを行って表層部の硬さがHRC60以上となるのは、前記DI 値が13以上の場合であることが分かる。
また、No. 1−1と同じ合金鋼を用いて比(t/a)を変化させたリング状素材を形成し、こららのリング状素材に上記と同じ条件で空気焼入れを行った。No. 1−13と同じ合金鋼(SUJ2)を用いて比(t/a)を変化させたリング状素材を形成し、これらのリング状素材に上記と同じ条件で油焼入れを行った。熱処理後の各リング状素材の変形率を上記と同じ方法で測定した。その結果を、比(t/a)と変形率との関係を示すグラフにまとめた。これを図4に示す。
このグラフから、比(t/a)が小さいほどNo. 1−1と同じ合金鋼を用いて空気焼入れすることによる変形率低減効果が大きいこと、および比(t/a)が0.08を超えるとSUJ2を用いて油焼入れした場合でも変形率が0.1%程度と小さいことが分かる。すなわち、本発明の範囲内の合金鋼を用い空気焼入れをすることは、比(t/a)が0.08以下の場合に有効であることが分かる。
[第2実施形態]
呼び番号6810の単列深溝玉軸受(転がり軸受)は、図1に示すように、内輪1と外輪2と玉3と保持器4とからなる。また、図2に示すように、この玉軸受の外輪2の外径aは65mmであり、内径bは60.5mmであり、幅cは7mmである。この外輪2の厚さtは(65−60.5)/2=2.25mmであり、外径(a)に対する厚さ(t)の比(t/a)は、2.25/65=0.0346≒0.035である。この外輪2用のリング状素材を、下記の表2に示す各組成の合金鋼で形成した。
各リング状素材に対して以下の方法で熱処理を行った。なお、この熱処理は、後述する図11に示す焼入れ装置を用いて行った。
焼入れ時の冷却を空気で行う空気焼入れでは、大気圧下で空気雰囲気にて820〜880℃に30分間保持した後に、大気圧下で常温(25〜35℃)の空気を20分間処理品に吹き付けた。次いで、160〜180℃で2時間保持した後に空冷する焼戻しを行った。
焼入れ時の冷却を油で行う油焼入れでは、大気圧下で空気雰囲気にて840℃に30分間保持した後に、大気圧下で60℃に保持された油に10分間浸漬した。次いで、170℃で2時間保持した後に空冷する焼戻しを行った。
熱処理後の各リング状素材について、表層部の硬さ(HRC)と変形率を測定した。変形率は以下の方法で測定した。先ず、熱処理後のリング状素材の最大径と最小径を測定し、その差(真円度)を算出する。次に、この算出された真円度を熱処理前のリング状素材の外径で除算する。
これらの結果も表2に併せて示す。表2の「変形率」は、この算出値を「%」で示した値である。
Figure 2005154889
この表に示すように、No. 2−1〜2−17は、使用した合金鋼の(1)式により算出されるDI 値が本発明の範囲内である。使用した合金鋼の各成分の含有率は、炭素(C)が0.80質量%以上1.20質量%以下、珪素(Si)が0.70質量%以上2.00質量%以下、マンガン(Mn)が0.80質量%以上2.00質量%以下、クロム(Cr)が0.80質量%以上1.50質量%以下、モリブデン(Mo)が0.35質量%以上1.00質量%以下の範囲内である。
また、これらのうち、No. 2−2,2−4,2−10,2−13,2−16では油焼入れを行っているが、それ以外では空気焼入れを行っている。いずれも表層部の硬さはHRC60以上となった。変形率は、No. 2−2,2−4,2−10,2−13,2−16では0.24〜0.34%と大きかったが、それ以外では0.09〜0.15%と小さかった。
No. 2−18〜2−23は、使用した合金鋼の合金元素含有率および前記DI 値が本発明の範囲から外れる例であり、空気焼入れを行ったNo. 2−18,2−20,2−22では、表層部の硬さがHRC60未満であった。油焼入れを行ったNo. 2−19,2−21,2−23では、表層部の硬さがHRC60以上であったが、変形率が0.25〜0.33%と大きかった。
以上のことから、本発明の合金鋼を用い空気焼入れを行うことで、比(t/a)が0.035であるリング状素材について、表層部の硬さをHRC60以上としながら焼入れ時の変形を小さくできることが分かる。
また、No. 2−1〜2−4,2−9,2−10,2−15,2−16,2−18〜2−23の結果を、油焼入れを行った場合と空気焼入れを行った場合とに分け、横軸をDI 値とし縦軸を表層部の硬さとしたグラフを作成した。これを図5に示す。このグラフから、空気焼入れを行って表層部の硬さがHRC60以上となるのは、前記DI 値が13.1以上の場合であることが分かる。
また、No. 2−3と同じ合金鋼を用いて比(t/a)を変化させたリング状素材を形成し、これらのリング状素材に上記と同じ条件で空気焼入れを行った。No. 2−18と同じ合金鋼(SUJ2)を用いて比(t/a)を変化させたリング状素材を形成し、これらのリング状素材に上記と同じ条件で油焼入れを行った。熱処理後の各リング状素材の変形率を上記と同じ方法で測定した。その結果を表3に示すとともに、比(t/a)と変形率との関係を示すグラフ(図6)にまとめた。
Figure 2005154889
この結果から、比(t/a)が小さいほどNo. 2−3と同じ合金鋼を用いて空気焼入れすることによる変形率低減効果が大きいこと、および比(t/a)が0.09を超えるとSUJ2を用いて油焼入れした場合でも変形率が0.1%程度と小さいことが分かる。すなわち、本発明の範囲内の合金鋼を用い空気焼入れをすることは、比(t/a)が0.08以下の場合に有効であることが分かる。
また、No. 2−3と同じ合金鋼を用いて比(t/a)を変化させたリング状素材を形成し、これらのリング状素材に上記と同じ条件で空気焼入れを行った。熱処理後の各リング状素材について、リング端面の表層部の硬さ(HRC)を測定した。なお、比(t/a)が同じ素材を10個ずつ用意して同じ熱処理を行い、それぞれについて前記表層部の硬さを測定して、その平均値を算出した。その結果を表4に示すとともに、この算出値と比(t/a)との関係を図7のグラフにまとめた。
Figure 2005154889
この結果から、比(t/a)が0.11以下であると、表層部の硬さがHRC60以上となるが、比(t/a)が0.13以上であると、表層部の硬さがHRC58以下となっていることが分かる。
次に、No. 2−3と同じ合金鋼を用いて、リング状素材の外径(a)に対する軸方向の寸法(c)の比(c/a)を変化させたリング状素材を形成し、これらのリング状素材に上記と同じ条件で熱処理(空気焼入れ、油焼入れ)を行った。そして、熱処理後の各リング状素材の傾斜率(d/c)を調べた。先ず、熱処理後の素材の両端面の直径を測定し、図8に示すように、大きい方の直径a1 と小さい方の直径a2 を用いて、d=(a1 −a2 )/2を計算した。次に、この値を軸方向の寸法(c)で除算することにより、傾斜率(d/c)を得た。
その結果を表5に示す。また、得られたデータを、油焼入れを行った場合と空気焼入れを行った場合とに分けて、比(c/a)と傾斜率との関係を示すグラフにまとめた。これを図9に示す。
Figure 2005154889
図9のグラフから、比(c/a)が0.11以下であると、油焼入れを行った場合と空気焼入れを行った場合で傾斜率の差がほとんどないのに対して、比(c/a)が0.15以上であると、油焼入れを行った場合と空気焼入れを行った場合で傾斜率の差がはっきりとあることが分かる。また、比(c/a)が0.25〜0.45であると、空気焼入れを行った場合の傾斜率は油焼入れを行った場合の半分以下となっている。
[焼入れ装置について]
バッチ処理の際の空気焼入れは、図10や図11に示す焼入れ装置を用いて行うことができる。
図10の焼入れ装置は、加熱室11と冷却室12とを備えている。加熱室11と冷却室12は、開閉可能な中間扉13により仕切られている。加熱室11および冷却室12は、それぞれ真空ポンプ14により内部の圧力を所定の真空度にすることができる。加熱室11および冷却室12には、それぞれ窒素ガスボンベ15から窒素ガスを導入する配管が設置されている。
加熱室11内にはヒーター111と台112が設置され、台112の上にトレイ113が設置されている。このトレイ113の上に、処理品を入れたバスケット114が設置されている。処理品は、このバスケット114に入れた状態でトレイ113と共に搬送される。冷却室12内には、処理品を載せる台121が設置され、この台121の上方に冷却空気供給機122が設置されている。冷却室12内には、また、大気開放弁123を備えた配管が設置されている。
この焼入れ装置を用いた焼入れは、以下のようにして行う。先ず、処理品を入れたバスケット114とトレイ113を、ヒーター111により予熱された加熱室11内に搬入し、入口扉および中間扉13を閉じた状態で真空ポンプ14を稼働して、加熱室11内を真空状態とする。その後、窒素ガスボンベ15から窒素ガスを導入して、加熱室11内を大気圧まで復圧する。この状態でヒーター111による加熱を継続し、加熱室11内の温度が焼入れ温度に達したらその温度で所定時間保持する。
冷却室12も、この間に、真空ポンプ14を稼働して真空状態とした後に、窒素ガスボンベ15から窒素ガスを導入して大気圧まで復圧しておく。次に、中間扉13を開けて加熱室11と冷却室12を連通させて、処理品が入ったバスケット114とトレイ113を加熱室11から冷却室12へ移動する。次に、中間扉13を閉じて、冷却空気供給機122から処理品に向けて冷却空気を吹き付ける。
図11に示す焼入れ装置も、加熱室11と冷却室12とを備えている。加熱室11と冷却室12は、開閉可能な中間扉13により仕切られている。この中間扉13を収納する扉収納部13aが設けてある。加熱室11内には、ヒータ111とファン116が設置されている。冷却室12内の上方には、冷却用のファン126が設置されている。処理品Aは、搬送出入り口17から、バスケット114に入れた状態でトレイ113と共に出し入れされる。
連続処理の際の空気焼入れは、図12や図13に示す焼入れ装置を用いて行うことができる。図12の焼入れ装置は、ベルトコンベヤーにより処理品Bが搬送されながら、所定時間加熱された後に冷却されるように構成されている。加熱帯用と冷却帯用とで別々にベルト23,24が設置されている。加熱帯用のベルト23の上方の囲い内に、ヒーター25が設置されている。冷却帯用のベルト24の上方には冷却空気供給装置26が設置されている。
図13の焼入れ装置も、ベルトコンベヤーにより処理品Bが搬送されながら、所定時間加熱された後に冷却されるように構成され、加熱帯用と冷却帯用とで別々にベルト23,24が設置されている。また、加熱帯用のベルト23の囲い内に、ヒーター25が設置されている。冷却帯用のベルト24の上方には冷却ファン26が設置されている。この装置は、加熱帯へ処理品Bを搬入するシュート27と、加熱帯から冷却帯に処理品Bを移動するシュート28と、冷却帯から処理品Bを搬出するシュート29を備えている。
単列深溝玉軸受(転がり軸受)の一例を示す断面図である。 図1の軸受の外輪を示す断面図である。 油焼入れの場合と空気焼入れの場合について、DI 値と表層部の硬さとの関係を示すグラフである。 油焼入れの場合と空気焼入れの場合について、熱処理後の各リング状素材の変形率と比(t/a)との関係を示すグラフである。 油焼入れの場合と空気焼入れの場合について、DI 値と表層部の硬さとの関係を示すグラフである。 油焼入れの場合と空気焼入れの場合について、熱処理後の各リング状素材の変形率と比(t/a)との関係を示すグラフである。 空気焼入れの場合について、比(t/a)と表層部の硬さとの関係を示すグラフである。 傾斜率(d/c)を説明する図である。 油焼入れの場合と空気焼入れの場合について、熱処理後の各リング状素材の傾斜率と比(c/a)との関係を示すグラフである。 バッチ処理用の空気焼入れ装置の一例を示す概略構成図である。 バッチ処理用の空気焼入れ装置の一例を示す概略構成図である。 連続処理用の空気焼入れ装置の一例を示す概略構成図である。 連続処理用の空気焼入れ装置の一例を示す概略構成図である。
符号の説明
1 内輪
2 外輪
3 玉
4 保持器
11 加熱室
12 冷却室
13 中間扉
14 真空ポンプ
15 窒素ガスボンベ
17 搬送出入り口
23 加熱帯用のベルト
24 冷却帯用のベルト
25 ヒーター
26 冷却空気供給装置
27〜29 シュート
111 ヒーター
112 台
113 トレイ
114 バスケット
116 ファン
122 冷却空気供給機
123 大気開放弁
126 冷却ファン
A 処理品
B 処理品

Claims (5)

  1. 炭素(C)の含有率が0.60質量%以上1.20質量%以下、珪素(Si)の含有率が0.70質量%以上2.00質量%以下、マンガン(Mn)の含有率が0.80質量%以上2.00質量%以下、クロム(Cr)の含有率が0.80質量%以上1.50質量%以下、モリブデン(Mo)の含有率が0.10質量%以上1.00質量%以下で、残部が鉄および不可避成分であり、且つ、下記の(1)式により算出されるDI 値が13.0以上40.0以下であることを特徴とする転がり軸受の軌道輪用の合金鋼。
    I =(0.2〔C〕+0.14)×(0.64〔Si〕+1)×(4.1〔Mn〕+1)×(2.33〔Cr〕+1)×(3.14〔Mo〕+1)‥‥(1)
  2. 鋼製のリング状素材を所定形状に加工した後、焼入れおよび焼戻しを施すことにより、転がり軸受の軌道輪を製造する方法において、
    前記鋼として、炭素(C)の含有率が0.60質量%以上1.20質量%以下、珪素(Si)の含有率が0.70質量%以上2.00質量%以下、マンガン(Mn)の含有率が0.8質量%以上2.0質量%以下、クロム(Cr)の含有率が0.80質量%以上1.50質量%以下、モリブデン(Mo)の含有率が0.10質量%以上1.00質量%以下で、残部が鉄および不可避成分であり、且つ、下記の(1)式により算出されるDI 値が13.0以上40.0以下となるものを使用し、
    焼入れ時の冷却を気体を用いて行うことを特徴とする軌道輪の製造方法。
    I =(0.2〔C〕+0.14)×(0.64〔Si〕+1)×(4.1〔Mn〕+1)×(2.33〔Cr〕+1)×(3.14〔Mo〕+1)‥‥(1)
  3. 前記リング状素材の外径(a)に対する厚さ(t)の比(t/a)が0.100以下である請求項2記載の軌道輪の製造方法。
  4. 前記リング状素材の外径(a)に対する軸方向の寸法(c)の比(c/a)が0.11を超える請求項2記載の軌道輪の製造方法。
  5. 前記冷却を連続的に大気圧下で行う請求項2記載の軌道輪の製造方法。
JP2004168622A 2003-10-31 2004-06-07 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法 Pending JP2005154889A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168622A JP2005154889A (ja) 2003-10-31 2004-06-07 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003372850 2003-10-31
JP2004168622A JP2005154889A (ja) 2003-10-31 2004-06-07 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法

Publications (1)

Publication Number Publication Date
JP2005154889A true JP2005154889A (ja) 2005-06-16

Family

ID=34741291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168622A Pending JP2005154889A (ja) 2003-10-31 2004-06-07 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法

Country Status (1)

Country Link
JP (1) JP2005154889A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508073A (ja) * 2007-12-20 2011-03-10 ポスコ 軸受用鋼線材、軸受用鋼線材の製造方法、軸受の熱処理方法、軸受及び軸受用鋳片の均熱拡散処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508073A (ja) * 2007-12-20 2011-03-10 ポスコ 軸受用鋼線材、軸受用鋼線材の製造方法、軸受の熱処理方法、軸受及び軸受用鋳片の均熱拡散処理方法
US9593389B2 (en) 2007-12-20 2017-03-14 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel

Similar Documents

Publication Publication Date Title
JP5251868B2 (ja) 高温での面圧疲労強度に優れた浸炭窒化高周波焼入れ鋼部品及びその製造方法
JP5723233B2 (ja) 転動疲労寿命に優れた球状化熱処理軸受用鋼材
US20160251744A1 (en) Bearing steel
EP2514844B1 (en) Rolling sliding member, method of manufacturing the same, and rolling bearing
US8808470B2 (en) High-carbon chromium bearing steel and production method of the same
US9758849B2 (en) Bearing steel composition
CN101994120A (zh) 一种滚动轴承的热处理工艺方法
JP2005154889A (ja) 転がり軸受の軌道輪用の合金鋼、軌道輪の製造方法
JP2005113213A (ja) 熱処理システム
US20070194504A1 (en) Heat Treatment System
WO2016055098A1 (en) Steel alloy
JP2006045629A (ja) 転がり軸受の軌道輪の製造方法
JP2009084635A (ja) 連続焼入れ炉を用いた環状体の焼入れ方法
JP2005133212A (ja) 熱処理システム
JP2005133214A (ja) 熱処理システム
JP2005133211A (ja) 熱処理システム
JP6344495B1 (ja) 鋼材の減圧浸炭浸窒処理方法
JP2010043331A (ja) 高強度浸炭部品用継目無し鋼管の製造方法
TWI575170B (zh) Ball screw device
JP2005060760A (ja) ガス冷却による焼入れ方法
JPH11269630A (ja) 表面処理鋼部材
JP2006219725A (ja) 軸受軌道輪の製造方法
JP2006002194A (ja) 軸の製造方法
JPH0972342A (ja) ころがり軸受部材
JP2005113210A (ja) 熱処理システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070502

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090528

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027