JP2005147771A - Tension sensor - Google Patents

Tension sensor Download PDF

Info

Publication number
JP2005147771A
JP2005147771A JP2003383175A JP2003383175A JP2005147771A JP 2005147771 A JP2005147771 A JP 2005147771A JP 2003383175 A JP2003383175 A JP 2003383175A JP 2003383175 A JP2003383175 A JP 2003383175A JP 2005147771 A JP2005147771 A JP 2005147771A
Authority
JP
Japan
Prior art keywords
tension
transmission member
change
tension sensor
magnetostrictive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003383175A
Other languages
Japanese (ja)
Inventor
Teruo Mori
輝夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003383175A priority Critical patent/JP2005147771A/en
Priority to PCT/JP2004/014602 priority patent/WO2005045386A1/en
Publication of JP2005147771A publication Critical patent/JP2005147771A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tension sensor in a simple structure for detecting a change in tension precisely with high sensitivity regardless of the operation direction of tension. <P>SOLUTION: The tension sensor 10 comprises a transmission member 16 in which tension F is applied; and a supermagnetostrictive member 14 (tension detection member) for detecting a change in the tension F, based on stress received from the transmission member 16. Then, the transmission member 16 and the supermagnetostrictive member 14 are arranged so that each center axis L coincides, and the line of action of tension coincides with the center axis L of the transmission member 16 and the supermagnetostrictive member 14 by freely rocking a fixing ring 30 on the center axis L as a support. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、張力の変化を検出するための張力センサに関する。   The present invention relates to a tension sensor for detecting a change in tension.

従来、図8に示されるような、張力の変化を検出するための張力センサが広く知られている(例えば、特許文献1参照。)。   Conventionally, a tension sensor for detecting a change in tension as shown in FIG. 8 is widely known (see, for example, Patent Document 1).

この従来公知の張力センサ1は、2本の引張りロッド2A、2Bに固定され、且つ、センサハウジング3のセンサ室4内を摺動可能なプランジャ5と、このプランジャ5に設けられたスプリング6とセンサハウジング3との間に配設された円柱形状のビラリ効果センサ7と、を備えている(特許文献1参照。)。なお、2本の引張りロッド2A、2Bにおける反プランジャ5側は、引張りロッドヘッド8に連結されており、この引張りロッドヘッド8には、張力センサ1を固定するための据付ボルト穴8Aが形成されている。この張力センサ1の引張りロッドヘッド8側は、据付ボルト穴8Aを介して据付ボルト(図示略)によって固定され、センサハウジング3に張力F1が印加される構造となっている。   This conventionally known tension sensor 1 is fixed to two tension rods 2A, 2B, and is slidable in the sensor chamber 4 of the sensor housing 3, and a spring 6 provided on the plunger 5. A columnar barrier effect sensor 7 disposed between the sensor housing 3 and the sensor housing 3 (see Patent Document 1). The anti-plunger 5 side of the two tension rods 2A and 2B is connected to the tension rod head 8, and the tension rod head 8 is provided with a mounting bolt hole 8A for fixing the tension sensor 1. ing. The tension rod head 8 side of the tension sensor 1 is fixed by an installation bolt (not shown) through an installation bolt hole 8A, and a tension F1 is applied to the sensor housing 3.

センサハウジング3に張力F1が印加され、センサハウジング3が移動すると、ビラリ効果センサ7が軸方向の圧縮力を受ける。従って、この圧縮力に基づくビラリ効果センサ7の透磁率の変化を検出コイル(図示略)等で検出することによって、張力センサ1に印加される張力F1の変化を検出することができる。   When the tension F1 is applied to the sensor housing 3 and the sensor housing 3 moves, the billiary effect sensor 7 receives an axial compressive force. Therefore, a change in the tension F1 applied to the tension sensor 1 can be detected by detecting a change in the magnetic permeability of the barrier effect sensor 7 based on the compressive force with a detection coil (not shown) or the like.

特表2002−513475号公報Japanese translation of PCT publication No. 2002-513475

しかしながら、この従来公知の張力センサ1において、ビラリ効果センサ7の中心軸L1に対して角度θ1だけ傾斜した方向に張力F2が印加された場合、ビラリ効果センサ7には張力F2に伴う圧縮力及びトルクが作用するため、中心軸L1方向の変形に加えて捩れが発生する。そのため、ビラリ効果センサ7において張力の変化を正確に検出することができず、検出精度が悪くなってしまうといった問題点があった。   However, in this conventionally known tension sensor 1, when the tension F2 is applied in the direction inclined by the angle θ1 with respect to the central axis L1 of the billiary effect sensor 7, the billiary effect sensor 7 has a compressive force and a force accompanying the tension F2. Since torque acts, twist occurs in addition to deformation in the direction of the central axis L1. For this reason, there is a problem in that the change in tension cannot be accurately detected in the barrier effect sensor 7 and the detection accuracy is deteriorated.

本発明は、このような問題点を解決するためになされたものであって、張力の作用方向に関わらず、張力変化を高精度、高感度で検出することができる簡易構造の張力センサを提供することを目的とする。   The present invention has been made to solve such problems, and provides a tension sensor having a simple structure capable of detecting a change in tension with high accuracy and high sensitivity regardless of the direction of action of tension. The purpose is to do.

本発明の発明者は、研究の結果、張力の作用方向に関わらず、張力変化を高精度、高感度で検出することができる簡易構造の張力センサを見出した。   As a result of research, the inventors of the present invention have found a tension sensor having a simple structure capable of detecting a change in tension with high accuracy and high sensitivity regardless of the direction of action of tension.

即ち、次のような本発明により、上記目的を達成することができる。   That is, the above-described object can be achieved by the following present invention.

(1)張力が印加される伝達部材と、該伝達部材から受ける応力に基づいて前記張力の変化を検出するための張力検出部材を、それぞれの中心軸が一致するように配設し、且つ、該中心軸上の一点を支点として揺動自在とすることによって、前記張力の作用線が、前記伝達部材及び張力検出部材の中心軸と一致するようにしたことを特徴とする張力センサ。   (1) A transmission member to which a tension is applied and a tension detection member for detecting a change in the tension based on the stress received from the transmission member are arranged so that the respective central axes coincide with each other; and A tension sensor characterized in that the action line of tension coincides with the central axis of the transmission member and the tension detection member by making it swingable with one point on the central axis as a fulcrum.

(2)張力が印加される伝達部材と、該伝達部材から受ける応力に基づいて前記張力の変化を透磁率の変化として検出するための磁歪部材を、それぞれの中心軸が一致するように配設し、且つ、該中心軸上の一点を支点として揺動自在とすることによって、前記張力の作用線が、前記伝達部材及び磁歪部材の中心軸と一致するようにしたことを特徴とする張力センサ。   (2) A transmission member to which tension is applied, and a magnetostrictive member for detecting the change in tension as a change in permeability based on the stress received from the transmission member are arranged so that their central axes coincide. In addition, the tension sensor is characterized in that the action line of the tension coincides with the central axis of the transmission member and the magnetostrictive member by making it swingable with one point on the central axis as a fulcrum. .

(3)前記磁歪部材を略筒状に成形し、且つ、前記伝達部材を、前記磁歪部材の軸方向一端面に接触して配置された板状体及び該板状体を基端として前記磁歪部材の内側空間内を貫通して設けられた棒状体によって構成したことを特徴とする前記(2)記載の張力センサ。   (3) The magnetostrictive member is formed in a substantially cylindrical shape, and the transmission member is disposed in contact with one end surface in the axial direction of the magnetostrictive member, and the magnetostriction is based on the plate-like body. The tension sensor according to (2), wherein the tension sensor is constituted by a rod-like body provided so as to penetrate through the inner space of the member.

(4)前記磁歪部材は円筒形状からなり、且つ、前記伝達部材における前記板状体は、前記磁歪部材の軸方向一端面と同一の外径を有する円板形状からなることを特徴とする前記(3)記載の張力センサ。   (4) The magnetostrictive member has a cylindrical shape, and the plate-like body in the transmission member has a disk shape having the same outer diameter as one end surface in the axial direction of the magnetostrictive member. (3) The tension sensor described in the above.

(5)前記磁歪部材の軸方向に予荷重を印加可能としたことを特徴とする前記(2)乃至(4)のいずれかに記載の張力センサ。   (5) The tension sensor according to any one of (2) to (4), wherein a preload can be applied in an axial direction of the magnetostrictive member.

(6)前記磁歪部材を、超磁歪素子を材料とする超磁歪部材によって構成したことを特徴とする前記(2)乃至(5)のいずれかに記載の張力センサ。   (6) The tension sensor according to any one of (2) to (5), wherein the magnetostrictive member is a giant magnetostrictive member made of a giant magnetostrictive element.

本発明に係る簡易構造の張力センサは、張力の作用方向に関わらず、張力変化を高精度、高感度で検出することができるという優れた効果を有する。   The tension sensor having a simple structure according to the present invention has an excellent effect that a change in tension can be detected with high accuracy and high sensitivity regardless of the direction of action of tension.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図2に示されるように、本発明の実施形態に係る張力センサ10は、非磁性体からなる箱状のケース12を備えており、このケース12内には、図中Lを中心軸とする円筒形状の超磁歪部材14と、この超磁歪部材14の内側空間14Aに同軸的に配設された伝達部材16と、この伝達部材16の上部に配設された皿バネ18と、超磁歪部材14の外周を囲むように配設されたピックアップコイル20がそれぞれ収容されている。   As shown in FIGS. 1 and 2, a tension sensor 10 according to an embodiment of the present invention includes a box-shaped case 12 made of a non-magnetic material, and the case 12 is centered on L in the figure. A cylindrical giant magnetostrictive member 14 as a shaft, a transmission member 16 coaxially disposed in the inner space 14A of the giant magnetostrictive member 14, a disc spring 18 disposed at the top of the transmission member 16, A pickup coil 20 disposed so as to surround the outer periphery of the giant magnetostrictive member 14 is accommodated.

又、ケース12の上部には、皿バネ18を介して超磁歪部材14の軸方向Lに予荷重を印加するための予荷重ネジ22が取り付けられており、これによって超磁歪部材14に印加する予荷重が調整可能な構造となっている。なお、予荷重ネジ22による予荷重は、張力センサ10の諸元に合わせて最適な値に設定される。   A preload screw 22 for applying a preload in the axial direction L of the giant magnetostrictive member 14 via a disc spring 18 is attached to the upper portion of the case 12, thereby applying to the giant magnetostrictive member 14. The preload can be adjusted. The preload by the preload screw 22 is set to an optimum value according to the specifications of the tension sensor 10.

更に、予荷重ネジ22の上部には取付リング24が設けられており、この取付リング24は、更にワイヤ26を介して、超磁歪部材14及び伝達部材16の中心軸L上に位置し、且つ、ベース板28に固定された固定リング30に連結されている。即ち、ケース12は、中心軸L上に位置する固定リング30を支点として揺動自在な構造となっている。   Further, an attachment ring 24 is provided on the upper portion of the preload screw 22, and this attachment ring 24 is further located on the central axis L of the giant magnetostrictive member 14 and the transmission member 16 via a wire 26, and Are connected to a fixing ring 30 fixed to the base plate 28. That is, the case 12 has a swingable structure with the fixing ring 30 positioned on the central axis L as a fulcrum.

伝達部材16は、円板形状からなる板状体16Aと、棒状体16Bによって構成されている。板状体16Aは、超磁歪部材14の軸方向Lの一端面14Bに接触して配置され、且つ、この一端面14Bと同一の外径を有している。又、棒状体16Bは、この板状体16Aを基端として超磁歪部材14の内側空間14A内を貫通して設けられており、その先端部はケース12の外部に突出されている。   The transmission member 16 includes a plate-like body 16A having a disc shape and a rod-like body 16B. The plate-like body 16A is disposed in contact with the one end face 14B in the axial direction L of the giant magnetostrictive member 14, and has the same outer diameter as the one end face 14B. Further, the rod-like body 16B is provided penetrating through the inside space 14A of the giant magnetostrictive member 14 with the plate-like body 16A as a base end, and the distal end thereof protrudes outside the case 12.

超磁歪部材14は、超磁歪素子を材料として用いている。ここで、「超磁歪素子」とは、希土類元素および/または特定の遷移金属などを主成分(例えば、テルビウム、ジスプロシウム、鉄など)とする粉末焼結合金あるいは単結晶合金から作られた磁歪素子をいう。この(超)磁歪素子は、外部から応力を受けて変形すると大きな透磁率(又は残留磁化量)の変化を生じる特性を有している。即ち、(超)磁歪素子が引張り力を受けて伸長すると透磁率が上がり、(超)磁歪素子が圧縮力を受けて縮小すると透磁率が下がる。   The giant magnetostrictive member 14 uses a giant magnetostrictive element as a material. Here, the “super magnetostrictive element” is a magnetostrictive element made of a powder sintered alloy or a single crystal alloy containing a rare earth element and / or a specific transition metal as a main component (for example, terbium, dysprosium, iron, etc.). Say. This (super) magnetostrictive element has a characteristic that causes a large change in magnetic permeability (or residual magnetization) when deformed by receiving stress from the outside. That is, when the (super) magnetostrictive element is stretched by receiving a tensile force, the magnetic permeability is increased, and when the (super) magnetostrictive element is contracted by a compressive force, the magnetic permeability is decreased.

ピックアップコイル20は、このような超磁歪部材14の変形によって生じる透磁率又は残留磁化量の変化を、ピックアップコイル20のインダクタンスの変化として検出可能である。   The pickup coil 20 can detect a change in the magnetic permeability or the residual magnetization caused by the deformation of the giant magnetostrictive member 14 as a change in the inductance of the pickup coil 20.

次に、張力センサ10の作用について説明する。   Next, the operation of the tension sensor 10 will be described.

張力センサ10の伝達部材16に張力Fが印加されると、伝達部材16の板状体16Aを介して超磁歪部材14の一端面14Bに、軸方向Lの圧縮力が加えられる。そして、この伝達部材16からの圧縮力によって、超磁歪部材14に変形が生じ、超磁歪部材14は半径方向に伸長すると共に、軸方向に収縮する。その結果、ピックアップコイル20の内側空間に占める超磁歪部材14の容積が変化すると共に、この超磁歪部材14の透磁率又は残留磁化量が変化する。従って、この透磁率または残留磁化率の変化をピックアップコイル20のインダクタンス値の変化として検出することで、伝達部材16に印加される張力Fの変化を検出することができる。   When the tension F is applied to the transmission member 16 of the tension sensor 10, a compressive force in the axial direction L is applied to the one end surface 14B of the giant magnetostrictive member 14 via the plate-like body 16A of the transmission member 16. The super magnetostrictive member 14 is deformed by the compressive force from the transmission member 16, and the super magnetostrictive member 14 expands in the radial direction and contracts in the axial direction. As a result, the volume of the giant magnetostrictive member 14 occupying the inner space of the pickup coil 20 changes, and the permeability or residual magnetization of the giant magnetostrictive member 14 changes. Therefore, a change in the tension F applied to the transmission member 16 can be detected by detecting this change in magnetic permeability or residual magnetic susceptibility as a change in inductance value of the pickup coil 20.

又、図3に示されるように、張力センサ10に、鉛直方向Vに対して角度θだけ傾斜した方向に張力Fを印加した場合であっても、ケース12内の超磁歪部材14及び伝達部材16は、固定リング30を支点として揺動自在な構造となっているため、張力Fの作用線は、常に、超磁歪部材14及び伝達部材16の中心軸Lと一致する。従って、張力Fの作用方向に関わらず、張力Fを中心軸L方向の圧縮力として超磁歪部材14に伝達することができる。   Further, as shown in FIG. 3, even when the tension F is applied to the tension sensor 10 in the direction inclined by the angle θ with respect to the vertical direction V, the giant magnetostrictive member 14 and the transmission member in the case 12 are applied. 16 has a structure that is swingable with the fixing ring 30 as a fulcrum, so that the line of action of the tension F always coincides with the central axis L of the giant magnetostrictive member 14 and the transmission member 16. Therefore, the tension F can be transmitted to the giant magnetostrictive member 14 as a compressive force in the direction of the central axis L regardless of the direction of action of the tension F.

図4に示されるように、本発明の発明者らは、鉛直方向Vに固定された張力センサ40を用意した上で、鉛直方向Vに沿って張力Fを印加した場合(図4(A)の比較例1)と、上記図3と同様に鉛直方向Vに対して角度θだけ傾斜した方向に張力Fを印加した場合(図4(B)の比較例2)における、張力Fとピックアップコイル20のインダクタンス値Iとの関係についてデータを採取し、張力センサ10との比較を行った。なお、この例では、超磁歪部材14として、外径10mm、内径6mm、長さ6mmの素子を用いると共に、鉛直方向Vに対する角度θは19度に設定した。   As shown in FIG. 4, the inventors of the present invention prepare a tension sensor 40 fixed in the vertical direction V, and then apply a tension F along the vertical direction V (FIG. 4A). The tension F and the pickup coil in the case of applying the tension F in the direction inclined by the angle θ with respect to the vertical direction V (Comparative Example 2 in FIG. 4B) as in FIG. Data on the relationship with the inductance value I of 20 was collected and compared with the tension sensor 10. In this example, an element having an outer diameter of 10 mm, an inner diameter of 6 mm, and a length of 6 mm was used as the giant magnetostrictive member 14, and the angle θ with respect to the vertical direction V was set to 19 degrees.

その結果、図5に示されるように、張力センサ40において角度θの方向に張力Fを印加した場合(比較例2)には、比較例1のように鉛直方向Vに沿って張力Fを印加した場合に比べ、張力Fの検出精度が著しく低下した。一方、本実施形態に係る張力センサ10において角度θの方向に張力Fを印加した場合(実施例)には、比較例1と略同程度の検出精度が確保できることが確認された。   As a result, as shown in FIG. 5, when the tension F is applied in the direction of the angle θ in the tension sensor 40 (Comparative Example 2), the tension F is applied along the vertical direction V as in Comparative Example 1. Compared with the case, the detection accuracy of the tension F was remarkably lowered. On the other hand, when the tension F was applied in the direction of the angle θ in the tension sensor 10 according to the present embodiment (Example), it was confirmed that the detection accuracy substantially equal to that of Comparative Example 1 could be secured.

本発明に係る張力センサ10によれば、張力Fが印加される伝達部材16と、この伝達部材16から受ける圧縮力(応力)に基づいて張力Fの変化を検出するための超磁歪部材14(張力検出部材)を、それぞれの中心軸Lが一致するように配設し、且つ、該中心軸L上の固定リング30を支点として揺動自在とすることによって、張力Fの作用線が、伝達部材16及び超磁歪部材14の中心軸Lと一致するようにしたため、張力Fの作用方向に関わらず、伝達部材16によって、張力Fを中心軸L方向の圧縮力として超磁歪部材14に伝達することができ、張力変化を高精度、高感度で検出することができる。   According to the tension sensor 10 according to the present invention, the transmission member 16 to which the tension F is applied and the giant magnetostrictive member 14 (for detecting a change in the tension F based on the compression force (stress) received from the transmission member 16. The tension detection member) is arranged so that the respective central axes L coincide with each other, and the fixed ring 30 on the central axis L is swingable about the fulcrum, so that the action line of the tension F is transmitted. Since it is made to coincide with the central axis L of the member 16 and the giant magnetostrictive member 14, the tension F is transmitted to the giant magnetostrictive member 14 as a compressive force in the direction of the central axis L by the transmission member 16 regardless of the acting direction of the tension F. The change in tension can be detected with high accuracy and high sensitivity.

特に、略筒状の超磁歪部材14と、この超磁歪部材14の軸方向Lの一端面14Bに接触して配置された板状体16A及びこの板状体16Aを基端として超磁歪部材14の内側空間14A内を貫通して設けられた棒状体16Bによって構成された伝達部材16と、を有してなるため、構造が極めて簡易で、製造が容易である上に、伝達部材16に印加される張力を、超磁歪部材14に対して偏り無く、均一に伝達することができ、張力変化をより一層高精度、高感度で検出することができる。   In particular, the substantially cylindrical giant magnetostrictive member 14, the plate-like body 16A disposed in contact with the one end face 14B in the axial direction L of the giant magnetostrictive member 14, and the giant magnetostrictive member 14 with the plate-like body 16A as a base end. And the transmission member 16 constituted by the rod-like body 16B provided so as to penetrate through the inner space 14A of the inner space 14A. Therefore, the structure is extremely simple and easy to manufacture, and the transmission member 16 is applied. The applied tension can be uniformly transmitted to the giant magnetostrictive member 14 without deviation, and a change in tension can be detected with higher accuracy and sensitivity.

又、超磁歪部材14は円筒形状からなり、且つ、伝達部材16における板状体16Aは、超磁歪部材14の軸方向端面14Bと同一の外径を有する円板形状からなるため、伝達部材16に加えられる張力を、超磁歪部材14へ効率良く伝達することができ、張力変化の検出が更に高められている。   The giant magnetostrictive member 14 has a cylindrical shape, and the plate-like body 16A of the transmission member 16 has a disk shape having the same outer diameter as the axial end surface 14B of the giant magnetostrictive member 14. The tension applied to the magnetostrictive member 14 can be efficiently transmitted to the giant magnetostrictive member 14, and the detection of a change in tension is further enhanced.

更に、予荷重ネジ22によって超磁歪部材14の軸方向Lに予荷重を印加可能であるため、予荷重を張力センサ10の諸元に合わせて調整すれば、張力検出の特性(直線性やヒステリシス特性)を最適設計することができる。   Further, since the preload can be applied in the axial direction L of the giant magnetostrictive member 14 by the preload screw 22, if the preload is adjusted according to the specifications of the tension sensor 10, the tension detection characteristics (linearity and hysteresis) Characteristics) can be optimally designed.

なお、本発明に係る張力センサは、上記実施形態に係る張力センサ10の構造や形状等に限定されるものではなく、例えば、超磁歪部材14は円筒形状ではなく、角筒形状等であってもよい。又、伝達部材16の板状体16Aは、超磁歪部材14の軸方向一端面14Bと同一の外径を有する円板形状の部材に限定されるものではない。更に、検出感度をそれ程高める必要がない場合には、超磁歪部材14の代わりに磁歪素子からなる磁歪部材を適用してもよく、又、所望の張力検出特性が得られる場合には、予荷重ネジ22を取り付けなくてもよい。   The tension sensor according to the present invention is not limited to the structure, shape, and the like of the tension sensor 10 according to the above-described embodiment. For example, the giant magnetostrictive member 14 is not in a cylindrical shape but in a rectangular tube shape or the like. Also good. Further, the plate-like body 16A of the transmission member 16 is not limited to a disk-shaped member having the same outer diameter as the axial end surface 14B of the giant magnetostrictive member 14. Further, when it is not necessary to increase the detection sensitivity so much, a magnetostrictive member made of a magnetostrictive element may be applied instead of the super magnetostrictive member 14, and when a desired tension detection characteristic can be obtained, a preload is applied. The screw 22 may not be attached.

又、伝達部材16から受ける応力に基づいて張力Fの変化を検出するための張力検出部材は、(超)磁歪部材に限定されるものではなく、張力センサは、張力が印加される伝達部材と、該伝達部材から受ける応力に基づいて前記張力の変化を検出するための張力検出部材を、それぞれの中心軸が一致するように配設し、且つ、該中心軸上の一点を支点として揺動自在とすることによって、前記張力の作用線が、前記伝達部材及び張力検出部材の中心軸と一致するようにしたものであればよい。   Further, the tension detection member for detecting the change in the tension F based on the stress received from the transmission member 16 is not limited to the (super) magnetostrictive member, and the tension sensor includes the transmission member to which the tension is applied. The tension detection members for detecting the change in tension based on the stress received from the transmission member are arranged so that the respective central axes coincide with each other, and swing about one point on the central axis as a fulcrum It is only necessary that the action line of the tension coincides with the central axis of the transmission member and the tension detection member.

従って、例えば、図6に示される張力センサ50のように、超磁歪部材14に代えて、略円筒形状の導電性ゴム52を張力検出部材として適用してもよい。この導電性ゴム52の上端及び下端には、上端電極54A及び下端電極54Bが配設され、導電性ゴム52に所定の電流が流されていると共に、電流検出手段56によって電流値の変化が検出可能な構造となっている。   Therefore, for example, a substantially cylindrical conductive rubber 52 may be applied as the tension detecting member instead of the giant magnetostrictive member 14 as in the tension sensor 50 shown in FIG. An upper end electrode 54A and a lower end electrode 54B are disposed at the upper end and the lower end of the conductive rubber 52, and a predetermined current is passed through the conductive rubber 52, and a change in the current value is detected by the current detection means 56. It has a possible structure.

この張力センサ50では、伝達部材16に張力Fが印加されると、伝達部材16の板状体16Aを介して導電性ゴム52の上端に、軸方向Lの圧縮力が加えられる。そして、この伝達部材16からの圧縮力によって導電性ゴム52に変形(歪み)が生じ、この導電性ゴム52の抵抗値が変化する。従って、図7に示されるように、この抵抗値の変化を、電流検出手段56における電流値の変化として検出することで、伝達部材16に印加される張力Fの変化を検出することができる。   In the tension sensor 50, when a tension F is applied to the transmission member 16, a compressive force in the axial direction L is applied to the upper end of the conductive rubber 52 via the plate-like body 16 </ b> A of the transmission member 16. The compressive force from the transmission member 16 causes deformation (distortion) in the conductive rubber 52, and the resistance value of the conductive rubber 52 changes. Therefore, as shown in FIG. 7, by detecting this change in resistance value as a change in current value in the current detection means 56, a change in the tension F applied to the transmission member 16 can be detected.

又、張力センサ50においても、上述の張力センサ10と同様に、張力Fの作用方向に関わらず、伝達部材16によって、張力Fを中心軸L方向の圧縮力として導電性ゴム52に伝達することができ、張力変化を高精度、高感度で検出することができる。   Also in the tension sensor 50, similarly to the above-described tension sensor 10, the transmission member 16 transmits the tension F to the conductive rubber 52 as a compressive force in the direction of the central axis L, regardless of the direction in which the tension F acts. The tension change can be detected with high accuracy and high sensitivity.

なお、上記実施形態に係る張力センサ10においては、超磁歪部材14の透磁率の変化を検出するための検出手段としてピックアップコイル20を適用したが、本発明はこれに限定されるものではない。従って、例えば、検出手段としてMR、GMR、TMR等の磁気抵抗効果素子やホール素子を適用し、透磁率の変化を磁気抵抗効果素子やホール素子の起電力変化として検出してもよい。   In the tension sensor 10 according to the above embodiment, the pickup coil 20 is applied as detection means for detecting a change in the magnetic permeability of the giant magnetostrictive member 14, but the present invention is not limited to this. Therefore, for example, a magnetoresistive effect element such as MR, GMR, or TMR or a Hall element may be applied as the detecting means, and a change in magnetic permeability may be detected as a change in electromotive force of the magnetoresistive effect element or the Hall element.

本発明の実施形態に係る張力センサを示す概略側断面図Schematic side sectional view showing a tension sensor according to an embodiment of the present invention 図1におけるII−II線に沿った概略断面図Schematic cross-sectional view along line II-II in FIG. 図1における張力センサに所定方向の張力を印加した状態を示す概略側断面図Schematic side sectional view showing a state in which a tension in a predetermined direction is applied to the tension sensor in FIG. 図1における張力センサとの比較例を示す概略側断面図Schematic side sectional view showing a comparative example with the tension sensor in FIG. 図1及び図4における張力センサに印加する張力とピックアップコイルのインダクタンス値との関係を示すグラフFIG. 1 and FIG. 4 are graphs showing the relationship between the tension applied to the tension sensor and the inductance value of the pickup coil. 本発明の他の実施形態に係る張力センサを示す概略側断面図Schematic side sectional view showing a tension sensor according to another embodiment of the present invention. 図6における張力センサに印加する張力と、歪み率、抵抗、電流の関係を示す表Table showing the relationship between the tension applied to the tension sensor in FIG. 6 and the strain rate, resistance, and current. 従来の張力センサを示す概略側断面図Schematic side sectional view showing a conventional tension sensor

符号の説明Explanation of symbols

F、F1、F2…張力
L、L1…中心軸
I…インダクタンス
θ、θ1…角度
1、10、40、50…張力センサ
2A、2B…引張りロッド
3…センサハウジング
4…センサ室
5…プランジャ
6…スプリング
7…ビラリ効果センサ
8…引張りロッドヘッド
8A…据付ボルト穴
12…ケース
14…超磁歪部材
14A…内側空間
14B…軸方向端面
16…伝達部材
16A…板状体
16B…棒状体
18…皿バネ
20…ピックアップコイル
22…予荷重ネジ
24…取付リング
26…ワイヤ
28…ベース板
30…固定リング
52…導電性ゴム
54A…上端電極
54B…下端電極
56…電流検出手段
F, F1, F2 ... tension L, L1 ... central axis I ... inductance θ, θ1 ... angle 1, 10, 40, 50 ... tension sensor 2A, 2B ... tension rod 3 ... sensor housing 4 ... sensor chamber 5 ... plunger 6 ... Spring 7 ... Bilder effect sensor 8 ... Tensile rod head 8A ... Installation bolt hole 12 ... Case 14 ... Giant magnetostrictive member 14A ... Inner space 14B ... Axial end face 16 ... Transmission member 16A ... Plate-like body 16B ... Rod-like body 18 ... Conical spring DESCRIPTION OF SYMBOLS 20 ... Pick-up coil 22 ... Preload screw 24 ... Mounting ring 26 ... Wire 28 ... Base plate 30 ... Fixing ring 52 ... Conductive rubber 54A ... Upper end electrode 54B ... Lower end electrode 56 ... Current detection means

Claims (6)

張力が印加される伝達部材と、該伝達部材から受ける応力に基づいて前記張力の変化を検出するための張力検出部材を、それぞれの中心軸が一致するように配設し、且つ、該中心軸上の一点を支点として揺動自在とすることによって、前記張力の作用線が、前記伝達部材及び張力検出部材の中心軸と一致するようにしたことを特徴とする張力センサ。   A transmission member to which tension is applied and a tension detection member for detecting a change in the tension based on the stress received from the transmission member are arranged so that the respective central axes coincide with each other, and the central axis A tension sensor characterized in that the action line of tension coincides with the central axis of the transmission member and the tension detection member by making it swingable with the upper point as a fulcrum. 張力が印加される伝達部材と、該伝達部材から受ける応力に基づいて前記張力の変化を透磁率の変化として検出するための磁歪部材を、それぞれの中心軸が一致するように配設し、且つ、該中心軸上の一点を支点として揺動自在とすることによって、前記張力の作用線が、前記伝達部材及び磁歪部材の中心軸と一致するようにしたことを特徴とする張力センサ。   A transmission member to which tension is applied, and a magnetostrictive member for detecting the change in tension based on the stress received from the transmission member as a change in permeability, so that the respective central axes coincide, and A tension sensor characterized in that the action line of tension coincides with the central axis of the transmission member and the magnetostrictive member by making it swingable with one point on the central axis as a fulcrum. 請求項2において、
前記磁歪部材を略筒状に成形し、且つ、前記伝達部材を、前記磁歪部材の軸方向一端面に接触して配置された板状体及び該板状体を基端として前記磁歪部材の内側空間内を貫通して設けられた棒状体によって構成したことを特徴とする張力センサ。
In claim 2,
The magnetostrictive member is formed into a substantially cylindrical shape, and the transmission member is disposed in contact with one end surface in the axial direction of the magnetostrictive member, and the inner side of the magnetostrictive member with the plate-like body as a base end A tension sensor characterized by comprising a rod-like body provided through the space.
請求項3において、
前記磁歪部材は円筒形状からなり、且つ、前記伝達部材における前記板状体は、前記磁歪部材の軸方向一端面と同一の外径を有する円板形状からなることを特徴とする張力センサ。
In claim 3,
The tension sensor according to claim 1, wherein the magnetostrictive member has a cylindrical shape, and the plate-like body of the transmission member has a disc shape having the same outer diameter as one axial end surface of the magnetostrictive member.
請求項2乃至4のいずれかにおいて、
前記磁歪部材の軸方向に予荷重を印加可能としたことを特徴とする張力センサ。
In any of claims 2 to 4,
A tension sensor characterized in that a preload can be applied in the axial direction of the magnetostrictive member.
請求項2乃至5のいずれかにおいて、
前記磁歪部材を、超磁歪素子を材料とする超磁歪部材によって構成したことを特徴とする張力センサ。
In any of claims 2 to 5,
A tension sensor comprising the magnetostrictive member made of a giant magnetostrictive member made of a giant magnetostrictive element.
JP2003383175A 2003-11-11 2003-11-12 Tension sensor Withdrawn JP2005147771A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003383175A JP2005147771A (en) 2003-11-12 2003-11-12 Tension sensor
PCT/JP2004/014602 WO2005045386A1 (en) 2003-11-11 2004-10-04 Tension sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383175A JP2005147771A (en) 2003-11-12 2003-11-12 Tension sensor

Publications (1)

Publication Number Publication Date
JP2005147771A true JP2005147771A (en) 2005-06-09

Family

ID=34691969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383175A Withdrawn JP2005147771A (en) 2003-11-11 2003-11-12 Tension sensor

Country Status (1)

Country Link
JP (1) JP2005147771A (en)

Similar Documents

Publication Publication Date Title
US7225686B2 (en) Torque sensing apparatus
JP4993401B2 (en) Stress sensor
JP2005277471A (en) Speaker
JP3816514B2 (en) Pressure sensor
US7121154B2 (en) Load sensor having hourglass-shaped coil spring
US7148432B2 (en) Weight-measuring sensor
JP2005147771A (en) Tension sensor
JP4373816B2 (en) Load measuring device
JP2007278865A (en) Magnetostrictive torque detecting apparatus
JP2005274160A (en) Torque sensor
Garshelis et al. A torque transducer utilizing two oppositely polarized rings
JP2005147675A (en) Tension sensor
JP2005207841A (en) Magnetostriction detection type force sensor
CN109495009B (en) Self-sensing driver based on magnetostrictive material
WO2005045386A1 (en) Tension sensor
JP2005243929A (en) Super-magnetostrictive unit
JP2005241567A (en) Pressure sensor
JP2000266621A (en) Pressure sensor using magnetostrictive element
JP4327640B2 (en) Pressure sensor and magnetic hysteresis reduction method thereof
JP2006214995A (en) Vibration sensor
JP5119880B2 (en) Magnetostrictive stress sensor
JP2005274159A (en) Torque sensor
JP2006300902A (en) Stress detection method and device
JP5187099B2 (en) Magnetostrictive stress sensor
JP2005241563A (en) Torque sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206