JP2000266621A - Pressure sensor using magnetostrictive element - Google Patents

Pressure sensor using magnetostrictive element

Info

Publication number
JP2000266621A
JP2000266621A JP11067787A JP6778799A JP2000266621A JP 2000266621 A JP2000266621 A JP 2000266621A JP 11067787 A JP11067787 A JP 11067787A JP 6778799 A JP6778799 A JP 6778799A JP 2000266621 A JP2000266621 A JP 2000266621A
Authority
JP
Japan
Prior art keywords
magnetostrictive element
pressure sensor
casing
coil
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11067787A
Other languages
Japanese (ja)
Inventor
Takao Kashiwagi
孝夫 柏木
Koichi Kobayashi
光一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11067787A priority Critical patent/JP2000266621A/en
Publication of JP2000266621A publication Critical patent/JP2000266621A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the stability of temperature characteristics and output characteristics satisfactorily by improving the impression of a bias field and an internal structure and suppressing the amount of change in inductance which occurs due to changes in temperature. SOLUTION: In the pressure sensor, an ultra magnetostrictive element 3, at least one coil 6 arranged around the ultra magnetostrictive element 3, and permanent magnets 7 and 8 to impress bias fields approximately parallelly with the direction of the exertion of weight on the magnetostrictive element 3 are housed in a casing 1 to detect changes in the magnetic permeability of the magnetostrictive element 3 due to the exertion of weight as changes in the inductance of the coil 6. The ultra magnetostrictive element 3 is formed in a column shape out of a magnetic body including a lanthanoid element system and an iron family element system. In addition, a pre-load is exerted on the ultra magnetostrictive element 3, and a pre-load mechanism to absorb expansion and contraction is provided in the casing 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧力、トルク等の
測定用途に使用される磁歪素子を用いた圧力センサに係
り、とくに温度特性を安定化し、温度による測定誤差の
少ない磁歪素子を用いた圧力センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor using a magnetostrictive element used for measuring pressure, torque, and the like, and particularly to a magnetostrictive element which stabilizes temperature characteristics and has a small measurement error due to temperature. It relates to a pressure sensor.

【0002】[0002]

【従来の技術】一般に、磁歪素子を用いた圧力センサ
は、磁歪素子の外部応力による透磁率の変化をコイルに
発生する誘起電圧の変化として測定することにより、圧
力を検出するものである。本発明と技術分野の類似する
従来例として、例えば、特開平8−320337号公報
がある。
2. Description of the Related Art In general, a pressure sensor using a magnetostrictive element detects a pressure by measuring a change in magnetic permeability due to an external stress of the magnetostrictive element as a change in an induced voltage generated in a coil. As a conventional example similar to the present invention in the technical field, there is JP-A-8-320337, for example.

【0003】[0003]

【発明が解決しようとする課題】ところで、特開平8−
320337号公報の磁歪素子を用いた圧力センサは、
渦電流抑制を主目的とするものであり、従来の磁歪素子
を用いた圧力センサで測定精度を悪化させる大きな要因
となっている温度特性の改善については、特に配慮がな
されていない。
By the way, Japanese Patent Application Laid-Open No. Hei 8-
The pressure sensor using the magnetostrictive element disclosed in Japanese Patent No.
The main purpose is to suppress eddy currents, and no particular consideration is given to the improvement of temperature characteristics, which is a major factor that deteriorates measurement accuracy in a conventional pressure sensor using a magnetostrictive element.

【0004】本発明は、上記の点に鑑み、磁歪素子を利
用したコイルのインダクタンスの温度変化を少なくし
て、温度変化に伴う検出圧力値の変動を抑制した磁歪素
子を用いた圧力センサを提供することを目的とする。さ
らに詳述すれば、本発明は、磁歪素子へのバイアス磁界
の印加と内部構造の改良により温度変化によって生じる
インダクタンス変化量を抑えることができ、良好な温度
特性を有し、出力特性の安定度を増した磁歪素子を用い
た圧力センサを提供することを目的とする。
[0004] In view of the above, the present invention provides a pressure sensor using a magnetostrictive element in which the temperature change of the inductance of a coil using the magnetostrictive element is reduced and the fluctuation of the detected pressure value due to the temperature change is suppressed. The purpose is to do. More specifically, the present invention can suppress the amount of inductance change caused by a temperature change by applying a bias magnetic field to the magnetostrictive element and improving the internal structure, has a good temperature characteristic, and has a stable output characteristic. It is an object of the present invention to provide a pressure sensor using a magnetostrictive element having an increased number.

【0005】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0005] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の磁歪素子を用いた圧力センサは、磁歪素子
と該磁歪素子の周囲に配設された少なくとも1つのコイ
ルと前記磁歪素子の加重方向に略平行にバイアス磁界を
印加する永久磁石とをケーシング内に収納し、加重によ
る前記磁歪素子の透磁率変化を前記コイルのインダクタ
ンス変化として検出することを特徴としている。
In order to achieve the above object, a pressure sensor using a magnetostrictive element according to the present invention comprises: a magnetostrictive element; at least one coil disposed around the magnetostrictive element; And a permanent magnet that applies a bias magnetic field substantially parallel to the load direction is housed in a casing, and a change in the magnetic permeability of the magnetostrictive element due to the load is detected as a change in the inductance of the coil.

【0007】前記磁歪素子を用いた圧力センサにおい
て、前記磁歪素子はランタノイド元素系及び鉄族元素系
を含む磁性体により柱状に形成されてなる超磁歪素子で
あるとよい。
In the pressure sensor using the magnetostrictive element, it is preferable that the magnetostrictive element is a giant magnetostrictive element formed of a magnetic material containing a lanthanoid element system and an iron group element system in a columnar shape.

【0008】前記磁歪素子に予圧を加えるとともに膨張
収縮を吸収する予圧機構を前記ケーシング内に設けると
よい。
It is preferable that a preload mechanism that applies a preload to the magnetostrictive element and absorbs expansion and contraction is provided in the casing.

【0009】加重方向と前記磁歪素子の中心軸方向とが
一致するように、前記磁歪素子の両端側の加重受け部材
に球面状又は半球面状部材をそれぞれ当接させて加重を
印加する構成にするとよい。
In a configuration in which a spherical or hemispherical member is brought into contact with each of the weight receiving members on both ends of the magnetostrictive element so that the load direction coincides with the center axis direction of the magnetostrictive element, a load is applied. Good to do.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る磁歪素子を用
いた圧力センサの実施の形態を図面に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a pressure sensor using a magnetostrictive element according to the present invention will be described below with reference to the drawings.

【0011】図1乃至図3において、非磁性金属等の非
磁性ケーシング1内には鉄等の円筒状磁性体ヨーク2
と、超磁歪素子3と、この外周を囲む非磁性ボビン4に
巻線5を施した少なくとも1個のコイル6と、超磁歪素
子3の上下端面に当接して設けられた永久磁石7、8
と、一方の永久磁石7の下面側に対接する円板状の受け
板9と、他方の永久磁石8の上面側に対接する円板状の
受け板10と、超磁歪素子3に加圧力を与える為の予圧
機構の主要構成部品である皿ばね11と、それを受ける
円板状の受け板12が設けられている。前記受け板9,
10,12はステンレス板等を用いて形成され、弾性部
材としての皿ばね11はみがき特殊鋼等で形成される。
1 to 3, a cylindrical magnetic yoke 2 made of iron or the like is provided in a non-magnetic casing 1 made of a non-magnetic metal or the like.
A giant magnetostrictive element 3, at least one coil 6 in which a non-magnetic bobbin 4 surrounding the outer periphery is wound with a coil 5, and permanent magnets 7 and 8 provided in contact with upper and lower end surfaces of the giant magnetostrictive element 3.
A pressing force is applied to the disc-shaped receiving plate 9 in contact with the lower surface of one of the permanent magnets 7, the disc-shaped receiving plate 10 in contact with the upper surface of the other permanent magnet 8, and the giant magnetostrictive element 3. A disc spring 11, which is a main component of the preload mechanism for applying the pressure, and a disc-shaped receiving plate 12 for receiving the disc spring 11 are provided. The receiving plate 9,
Reference numerals 10 and 12 are formed using a stainless steel plate or the like, and disc springs 11 as elastic members are formed by brushing special steel or the like.

【0012】前記超磁歪素子3は、ランタノイド元素系
及び鉄族元素系の磁性体により円柱状に構成された極め
て磁歪の大きな素子である。超磁歪素子3、その外周の
コイル6、超磁歪素子両端の永久磁石7,8、下側の受
け板9、皿ばね11、受け板12及び上側の受け板10
は前記円筒状ヨーク2内に配置され、上下面が磁極とな
った永久磁石7,8により超磁歪素子3の軸方向に略平
行にバイアス磁界を印加する磁気回路構成である。つま
り、超磁歪素子3の一方の端面に一方の永久磁石のN極
が、他方の端面に他方の永久磁石のS極が対向する配置
である。
The giant magnetostrictive element 3 is an element having an extremely large magnetostriction formed of a lanthanoid element-based and iron group element-based magnetic material in a columnar shape. Giant magnetostrictive element 3, coil 6 on its outer periphery, permanent magnets 7, 8 at both ends of giant magnetostrictive element, lower receiving plate 9, disc spring 11, receiving plate 12, and upper receiving plate 10.
Is a magnetic circuit configuration which is disposed in the cylindrical yoke 2 and applies a bias magnetic field substantially parallel to the axial direction of the giant magnetostrictive element 3 by the permanent magnets 7 and 8 whose upper and lower surfaces are magnetic poles. In other words, the arrangement is such that the N pole of one permanent magnet faces one end face of the giant magnetostrictive element 3 and the S pole of the other permanent magnet faces the other end face.

【0013】さらに、前記ケーシング1内には、外部か
らの圧力による加重が超磁歪素子3の中心軸に働くよう
作用させるために、超磁歪素子3の上下両端側に球面状
部材としての上部球体13、下部球体14が配置されて
おり、上部球体13に加重を加えるためのステンレス等
の予圧調整用螺子部材15を固持した支持部材16が固
定部材18(ケーシング1に対する蓋)により螺子部材
19にてケーシング1に固定されている。ここで、前記
下部球体14はケーシング1内側底面に形成された円錐
状凹面1aに当たって線接触するとともに加重受け部材
としての受け板12下面に点接触している。また、上部
球体13は加重受け部材としての受け板10上面に形成
された円錐状凹面10aに当たって線接触するとともに
予圧調整用螺子部材15先端面に点接触している。
Further, in the casing 1, an upper sphere as a spherical member is provided on both upper and lower ends of the giant magnetostrictive element 3 so that a weight due to an external pressure acts on the central axis of the giant magnetostrictive element 3. 13, a lower sphere 14 is disposed, and a support member 16 holding a preload adjusting screw member 15 such as stainless steel for applying a load to the upper sphere 13 is fixed to the screw member 19 by a fixing member 18 (a lid for the casing 1). And is fixed to the casing 1. Here, the lower sphere 14 is in line contact with the conical concave surface 1a formed on the inner bottom surface of the casing 1 and is in point contact with the lower surface of the receiving plate 12 as a weight receiving member. The upper sphere 13 is in line contact with the conical concave surface 10a formed on the upper surface of the receiving plate 10 as a weight receiving member, and is in point contact with the tip surface of the preload adjusting screw member 15.

【0014】なお、支持部材16、固定部材18間の防
水、防塵のため密着性を良くするようにOリング17が
支持部材16に嵌め込まれている。
An O-ring 17 is fitted into the supporting member 16 so as to improve the adhesion between the supporting member 16 and the fixing member 18 for waterproofing and dustproofing.

【0015】このように、本例の磁歪素子を用いた圧力
センサは、ケーシング1、固定部材18等で覆われ密封
状態に構成され、図3のようにコイル6の巻線5に接続
された信号出力用の導線20が外部に導出されている。
As described above, the pressure sensor using the magnetostrictive element according to the present embodiment is covered with the casing 1, the fixing member 18 and the like, is sealed, and is connected to the winding 5 of the coil 6 as shown in FIG. A signal output conductor 20 is led out.

【0016】なお、前記支持部材16は固定部材18に
対して超磁歪素子3の軸方向に摺動自在に支持されてお
り、ケーシング1底面と支持部材16間に外部からの被
測定圧力を印加することで、超磁歪素子3の軸方向に圧
力が伝達されるようになっている。
The support member 16 is slidably supported in the axial direction of the giant magnetostrictive element 3 with respect to the fixed member 18, and applies an external pressure to be measured between the bottom surface of the casing 1 and the support member 16. By doing so, the pressure is transmitted in the axial direction of the giant magnetostrictive element 3.

【0017】また、前記受け板9と受け板12間に介在
するみがき特殊鋼等の皿ばね11とにより、外部からの
圧力が加わらない場合においても中間部にある超磁歪素
子3へ、予圧を与える為の予圧機構が構成されている。
この予圧機構は皿ばね11の弾性変位により超磁歪素子
3及びこれに直列な各部材(受け板等)の熱収縮を吸収
する機能も有する。また、螺子部材15を回転すること
で、支持部材16からの先端面突出量を変化させ、超磁
歪素子3両端の遊びを無くするとともに、超磁歪素子両
端に加わる予圧を調整可能であり、予圧調整機構を成し
ている。
The preload is applied to the giant magnetostrictive element 3 in the intermediate portion even when no external pressure is applied by the disc spring 11 made of special steel or the like interposed between the receiving plate 9 and the receiving plate 12. A preload mechanism for applying the pressure is configured.
The preload mechanism also has a function of absorbing the thermal contraction of the giant magnetostrictive element 3 and each member (such as a receiving plate) in series with the giant magnetostrictive element 3 by the elastic displacement of the disc spring 11. Further, by rotating the screw member 15, the amount of protrusion of the distal end surface from the support member 16 is changed, play of both ends of the giant magnetostrictive element 3 is eliminated, and preload applied to both ends of the giant magnetostrictive element can be adjusted. It forms an adjustment mechanism.

【0018】この実施の形態に係る超磁歪素子を用いた
圧力センサにおいて、ケーシング1底面と支持部材16
間に外部からの被測定圧力を印加すれば、超磁歪素子3
の軸方向に圧力が加わり、超磁歪素子3にかかる応力に
よる当該超磁歪素子の透磁率変化を、コイル6によりイ
ンダクタンスの変化として検出することができる。
In the pressure sensor using the giant magnetostrictive element according to this embodiment, the bottom surface of the casing 1 and the supporting member 16
If a pressure to be measured is applied from the outside during the
A change in the magnetic permeability of the giant magnetostrictive element due to a stress applied to the giant magnetostrictive element 3 due to the application of pressure in the axial direction can be detected by the coil 6 as a change in inductance.

【0019】なお、各永久磁石7,8として、一般的な
磁性材料であるフェライト磁石を用いることができる。
しかし、超磁歪素子3の透磁率変化に起因するインダク
タンスの温度変化低減を得るためには、希土類金属等の
強い磁場を持つ素材による希土類磁石の方が適してい
る。これらの永久磁石7、8は、超磁歪素子3の温度変
によるインダクタンス値の変化量を抑えるために、超磁
歪素子3の圧力印加軸方向に対して直列(略平行)に磁
界がかかるように超磁歪素子3を挟み込んだバイアス磁
石として設けられる。
As each of the permanent magnets 7 and 8, a ferrite magnet which is a general magnetic material can be used.
However, a rare-earth magnet made of a material having a strong magnetic field, such as a rare-earth metal, is more suitable for reducing the temperature change of the inductance caused by the change in the magnetic permeability of the giant magnetostrictive element 3. These permanent magnets 7 and 8 are applied with a magnetic field in series (substantially parallel) with respect to the direction of the pressure application axis of the giant magnetostrictive element 3 in order to suppress a change in inductance value due to a temperature change of the giant magnetostrictive element 3. It is provided as a bias magnet sandwiching the giant magnetostrictive element 3.

【0020】本発明の実施の形態に係る磁歪素子を用い
た圧力センサの特性について図4及び表1、図5及び表
2を参照して説明する。但し図4及び表1は比較例であ
って磁界を印加しない場合の温度特性、図5及び表2は
バイアス磁界を印加した実施の形態の場合の温度特性で
ある。
The characteristics of the pressure sensor using the magnetostrictive element according to the embodiment of the present invention will be described with reference to FIG. 4 and Tables 1, 5 and 2. However, FIG. 4 and Table 1 are comparative examples and temperature characteristics when no magnetic field is applied, and FIGS. 5 and 2 show temperature characteristics when the bias magnetic field is applied in the embodiment.

【0021】まず、図4及び表1のバイアス磁界の無い
場合のインダクタンス値の温度変化を考察する。図4で
は横軸にセンサの周囲温度、縦軸はインダクタンス値
(μH)とした。超磁歪素子にかけた荷重は、それぞれ
0kgf、50kgf、100kgf、150kgf、
200kgfとし、それぞれに対する測定結果及び温度
係数は以下の表1に示す結果となった。この表1の結果
を図化したものが図4の特性曲線A〜Eである。
First, the temperature change of the inductance value without the bias magnetic field shown in FIG. 4 and Table 1 will be considered. In FIG. 4, the horizontal axis represents the ambient temperature of the sensor, and the vertical axis represents the inductance value (μH). The loads applied to the giant magnetostrictive element were 0 kgf, 50 kgf, 100 kgf, 150 kgf,
At 200 kgf, the measurement results and temperature coefficient for each were the results shown in Table 1 below. Characteristic curves A to E in FIG. 4 show the results of Table 1.

【表1】 [Table 1]

【0022】図5及び表2については、外径5.6mm、
高さ15.2mmの超磁歪素子3を用い、磁石はネオジウ
ム磁石で残留磁束密度1,240(ミリテスラ)にて外
径12mm、高さ2mmを用いた。かけたバイアス磁石の磁
石間の中心でギャップ磁束密度は64.6(ミリテス
ラ)となった
Referring to FIG. 5 and Table 2, the outer diameter is 5.6 mm,
A giant magnetostrictive element 3 having a height of 15.2 mm was used. The magnet was a neodymium magnet having a residual magnetic flux density of 1,240 (millitesla), an outer diameter of 12 mm, and a height of 2 mm. The gap magnetic flux density at the center between the applied bias magnets was 64.6 (millitesla).

【0023】超磁歪素子にかけた荷重は、それぞれ0k
gf、50kgf、100kgf、150kgf、20
0kgfとし、それぞれに対する測定結果及び温度係数
は以下の表2に示す結果となった。この表2の結果を図
化したものが図5の特性曲線a〜eである。
Each of the loads applied to the giant magnetostrictive elements is 0 k
gf, 50kgf, 100kgf, 150kgf, 20
0 kgf, and the measurement results and temperature coefficients for each were as shown in Table 2 below. The characteristic curves a to e in FIG. 5 are obtained by plotting the results in Table 2.

【表2】 [Table 2]

【0024】本実施の形態とバイアス磁界の無い比較例
の温度に対するインダクタンスの変化量を比較してみる
と、バイアス磁石が有る場合には無い場合に対し温度係
数が各荷重において均一化されていて温度特性が大幅向
上していることが判る。このことにより、測定圧力の精
度向上が可能で、インダクタンス値を電圧値に変換する
等の処理を行うための電気信号の処理がし易くなる(例
えば温度補償が容易となる等)。
A comparison of the amount of change in inductance with respect to temperature between the present embodiment and a comparative example having no bias magnetic field shows that the temperature coefficient is uniform at each load with and without the bias magnet. It can be seen that the temperature characteristics have been significantly improved. As a result, the accuracy of the measured pressure can be improved, and the processing of an electric signal for performing processing such as converting an inductance value to a voltage value becomes easier (for example, temperature compensation becomes easier).

【0025】この実施の形態によれば、次の通りの効果
を得ることができる。
According to this embodiment, the following effects can be obtained.

【0026】(1) 超磁歪素子3とこの周囲に配設され
た少なくとも1つのコイル6と超磁歪素子3の加重方向
に略平行にバイアス磁界を印加する永久磁石7,8とを
ケーシング1内に収納し、加重による超磁歪素子3の透
磁率変化を前記コイル6のインダクタンス変化として検
出する構成であり、超磁歪素子3の加重方向に略平行に
バイアス磁界を印加したことで、周囲温度変化に伴うコ
イル6のインダクタンス変化が少なくなり、測定精度の
向上、ひいては後段の電気回路の温度補償を容易とする
ことができる。
(1) The giant magnetostrictive element 3, at least one coil 6 disposed around the giant magnetostrictive element 3, and permanent magnets 7, 8 for applying a bias magnetic field substantially parallel to the weighting direction of the giant magnetostrictive element 3 And the change in the magnetic permeability of the giant magnetostrictive element 3 due to the load is detected as a change in the inductance of the coil 6. By applying a bias magnetic field substantially parallel to the load direction of the giant magnetostrictive element 3, the ambient temperature change Accordingly, a change in inductance of the coil 6 due to this is reduced, so that measurement accuracy can be improved, and temperature compensation of a subsequent electric circuit can be facilitated.

【0027】(2) 磁歪素子がランタノイド元素系及び
鉄族元素系を含む磁性体により柱状に形成されてなる超
磁歪素子であり、高感度の圧力検出が可能である。
(2) The magnetostrictive element is a giant magnetostrictive element formed of a magnetic material containing a lanthanoid element system and an iron group element system in a columnar shape, and enables highly sensitive pressure detection.

【0028】(3) 超磁歪素子3に予圧を加えるととも
に膨張収縮を吸収する予圧機構をケーシング1内に設け
ており、この点でも温度変化に対する信頼性を確保でき
る。
(3) A preload mechanism for applying a preload to the giant magnetostrictive element 3 and absorbing expansion and contraction is provided in the casing 1, and in this respect, reliability against temperature changes can be ensured.

【0029】(4) 加重方向と超磁歪素子3の中心軸方
向とが一致するように、超磁歪素子3の両端側の凹面形
状部を持つ受け板10、ケーシング1内側底面に対し
て、球体13,14をそれぞれ接触させて加重を印加す
る構成であり、超磁歪素子3にせん断方向の力が加わっ
て損傷する事故を防止できる。
(4) A receiving plate 10 having concave portions on both ends of the giant magnetostrictive element 3 and a spherical body with respect to the inner bottom surface of the casing 1 so that the load direction and the central axis direction of the giant magnetostrictive element 3 coincide with each other. In this configuration, the load is applied by bringing the members 13 and 14 into contact with each other, and an accident in which the shear force is applied to the giant magnetostrictive element 3 to damage it can be prevented.

【0030】なお、超磁歪素子3の両側の受け板10,
12に外部の加重を印加するために当接する1対の球面
状部材として球体13,14を用いたが、相手側の円錐
状等の凹面に接する半球面状部材としてもよい。
The receiving plates 10 on both sides of the giant magnetostrictive element 3
Although the spheres 13 and 14 are used as a pair of spherical members abutting to apply an external load to 12, a semispherical member contacting a concave surface such as a conical shape on the other side may be used.

【0031】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0032】[0032]

【発明の効果】以上説明したように、本発明に係る磁歪
素子を用いた圧力センサによれば、磁歪素子と該磁歪素
子の周囲に配設された少なくとも1つのコイルと前記磁
歪素子の加重方向に略平行にバイアス磁界を印加する永
久磁石とをケーシング内に収納し、加重による前記磁歪
素子の透磁率変化を前記コイルのインダクタンス変化と
して検出する構成としたので、前記バイアス磁界の前記
磁歪素子への印加により温度特性を改善し、出力特性の
安定度を増した磁歪素子を用いた被測定荷重量の検出値
を取得可能である。
As described above, according to the pressure sensor using the magnetostrictive element according to the present invention, the magnetostrictive element, at least one coil disposed around the magnetostrictive element, and the weighting direction of the magnetostrictive element. And a permanent magnet that applies a bias magnetic field substantially in parallel to the casing, and a change in the magnetic permeability of the magnetostrictive element due to the load is detected as a change in the inductance of the coil, so that the bias magnetic field is applied to the magnetostrictive element. , The temperature characteristic is improved, and the detected value of the measured load amount using the magnetostrictive element having the increased stability of the output characteristic can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁歪素子を用いた圧力センサの実施の
形態を示す正断面図である。
FIG. 1 is a front sectional view showing an embodiment of a pressure sensor using a magnetostrictive element of the present invention.

【図2】実施の形態の外観を示す側面図である。FIG. 2 is a side view showing the appearance of the embodiment.

【図3】同平面図である。FIG. 3 is a plan view of the same.

【図4】バイアス磁界を印加しない比較例の場合の温度
特性図である。
FIG. 4 is a temperature characteristic diagram in a comparative example in which no bias magnetic field is applied.

【図5】バイアス磁界を印加した実施の形態の場合の温
度特性図である。
FIG. 5 is a temperature characteristic diagram in the case of an embodiment in which a bias magnetic field is applied.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 ヨーク 3 超磁歪素子 4 ボビン 5 巻線 6 コイル 7,8 永久磁石 9,10,12 受け板 11 皿ばね 13 上部球体 14 下部球体 15,19 螺子部材 16 支持部材 17 Oリング 18 固定部材 20 導線 DESCRIPTION OF SYMBOLS 1 Casing 2 Yoke 3 Giant magnetostrictive element 4 Bobbin 5 Winding 6 Coil 7,8 Permanent magnet 9,10,12 Receiving plate 11 Disc spring 13 Upper sphere 14 Lower sphere 15,19 Screw member 16 Support member 17 O-ring 18 Fixing member 20 conductors

フロントページの続き Fターム(参考) 2F055 AA40 BB20 CC11 DD01 EE21 EE29 FF01 5E041 AA11 AA14 AA17 AA19 BD00 CA10 Continued on the front page F term (reference) 2F055 AA40 BB20 CC11 DD01 EE21 EE29 FF01 5E041 AA11 AA14 AA17 AA19 BD00 CA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁歪素子と該磁歪素子の周囲に配設され
た少なくとも1つのコイルと前記磁歪素子の加重方向に
略平行にバイアス磁界を印加する永久磁石とをケーシン
グ内に収納し、加重による前記磁歪素子の透磁率変化を
前記コイルのインダクタンス変化として検出することを
特徴とする磁歪素子を用いた圧力センサ。
1. A magnetostrictive element, at least one coil disposed around the magnetostrictive element, and a permanent magnet for applying a bias magnetic field substantially parallel to a weighting direction of the magnetostrictive element are housed in a casing. A pressure sensor using a magnetostrictive element, wherein a change in magnetic permeability of the magnetostrictive element is detected as a change in inductance of the coil.
【請求項2】 前記磁歪素子はランタノイド元素系及び
鉄族元素系を含む磁性体により柱状に形成されてなる超
磁歪素子である請求項1記載の磁歪素子を用いた圧力セ
ンサ。
2. A pressure sensor using a magnetostrictive element according to claim 1, wherein said magnetostrictive element is a giant magnetostrictive element formed in a columnar shape from a magnetic material containing a lanthanoid element system and an iron group element system.
【請求項3】 前記磁歪素子に予圧を加えるとともに膨
張収縮を吸収する予圧機構を前記ケーシング内に設けた
請求項1又は2記載の磁歪素子を用いた圧力センサ。
3. A pressure sensor using a magnetostrictive element according to claim 1, wherein a preload mechanism for applying a preload to the magnetostrictive element and absorbing expansion and contraction is provided in the casing.
【請求項4】 加重方向と前記磁歪素子の中心軸方向と
が一致するように、前記磁歪素子の両側の加重受け部材
に球面状又は半球面状部材をそれぞれ当接させて加重を
印加する請求項1,2又は3記載の磁歪素子を用いた圧
力センサ。
4. A load is applied by bringing a spherical or hemispherical member into contact with weight receiving members on both sides of the magnetostrictive element, respectively, such that the load direction coincides with the center axis direction of the magnetostrictive element. Item 7. A pressure sensor using the magnetostrictive element according to Item 1, 2, or 3.
JP11067787A 1999-03-15 1999-03-15 Pressure sensor using magnetostrictive element Withdrawn JP2000266621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11067787A JP2000266621A (en) 1999-03-15 1999-03-15 Pressure sensor using magnetostrictive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11067787A JP2000266621A (en) 1999-03-15 1999-03-15 Pressure sensor using magnetostrictive element

Publications (1)

Publication Number Publication Date
JP2000266621A true JP2000266621A (en) 2000-09-29

Family

ID=13355025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11067787A Withdrawn JP2000266621A (en) 1999-03-15 1999-03-15 Pressure sensor using magnetostrictive element

Country Status (1)

Country Link
JP (1) JP2000266621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121862A (en) * 2007-11-13 2009-06-04 Komatsu Ltd Force sensor
CN102163937A (en) * 2010-12-31 2011-08-24 航天时代电子技术股份有限公司 Driving mechanism for giant magnetostrictive materials
JP2012510631A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using magnetic characteristics
JP2012510632A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using filled tube
CN108845278A (en) * 2018-07-02 2018-11-20 中国计量科学研究院 A kind of measuring device and method of magnetostriction material in large
CN114802552A (en) * 2022-02-21 2022-07-29 上海钧正网络科技有限公司 Two-wheeled vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121862A (en) * 2007-11-13 2009-06-04 Komatsu Ltd Force sensor
JP2012510631A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using magnetic characteristics
JP2012510632A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using filled tube
CN102163937A (en) * 2010-12-31 2011-08-24 航天时代电子技术股份有限公司 Driving mechanism for giant magnetostrictive materials
CN108845278A (en) * 2018-07-02 2018-11-20 中国计量科学研究院 A kind of measuring device and method of magnetostriction material in large
CN114802552A (en) * 2022-02-21 2022-07-29 上海钧正网络科技有限公司 Two-wheeled vehicle

Similar Documents

Publication Publication Date Title
US5437197A (en) Magnetostrictive sensor structures
US4986137A (en) Strain detector with magnetostrictive elements
JP2002542477A (en) Magneto-elastic load cell
KR20060044483A (en) Torque sensor
CA1219633A (en) Magnetic transducer
JP2000266621A (en) Pressure sensor using magnetostrictive element
EP1279938B1 (en) Load sensing by partial magnetic saturation
JP2641741B2 (en) Mechanical quantity sensor
JP2005207841A (en) Magnetostriction detection type force sensor
JP5119880B2 (en) Magnetostrictive stress sensor
JP5440946B2 (en) Magnetostrictive force sensor
JP3652444B2 (en) Stress measuring device
JPH06241920A (en) Load detection method and load sensor
JPH0476422B2 (en)
JP2518001B2 (en) Magnetic circuit for electromagnetic balance
JPH0261530A (en) Dynamic quantity sensor
Rafferty et al. Calibration and characterisation with a new laser-based magnetostriction measurement system
CN201965149U (en) Accelerometer
EP0371244A2 (en) Magnetostrictive pressure sensor
JP2003302293A (en) Load sensor
JPS61170627A (en) Load detector
SU1486816A1 (en) Pressure transducer for loose media
JPH11183515A (en) Acceleration sensor
JPH08178950A (en) Acceleration sensor
JPH0833333B2 (en) Pressure sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606