JP2005146230A - Membrane-forming stock solution and membrane for separation - Google Patents

Membrane-forming stock solution and membrane for separation Download PDF

Info

Publication number
JP2005146230A
JP2005146230A JP2003390292A JP2003390292A JP2005146230A JP 2005146230 A JP2005146230 A JP 2005146230A JP 2003390292 A JP2003390292 A JP 2003390292A JP 2003390292 A JP2003390292 A JP 2003390292A JP 2005146230 A JP2005146230 A JP 2005146230A
Authority
JP
Japan
Prior art keywords
membrane
stock solution
forming stock
weight
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003390292A
Other languages
Japanese (ja)
Other versions
JP4572531B2 (en
JP2005146230A5 (en
Inventor
Masayuki Hanakawa
正行 花川
Masahiro Henmi
昌弘 辺見
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003390292A priority Critical patent/JP4572531B2/en
Publication of JP2005146230A publication Critical patent/JP2005146230A/en
Publication of JP2005146230A5 publication Critical patent/JP2005146230A5/en
Application granted granted Critical
Publication of JP4572531B2 publication Critical patent/JP4572531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane for separation, having high strength, high water permeability, high blocking property and excellent soil resistance, inexpensively and easily by using a thermoplastic resin having high chemical resistance. <P>SOLUTION: This membrane for separation is obtained by using a membrane-forming stock solution containing a thermoplastic resin, a solvent dissolving the resin, a surfactant and a substance incompatible with the solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、飲料水製造、浄水処理、排水処理などの水処理、食品工業分野に好適な分離膜の製膜原液に関する。   The present invention relates to a membrane-forming stock solution of a separation membrane suitable for water treatment such as drinking water production, water purification treatment, wastewater treatment, and the food industry.

近年、分離膜は、飲料水製造、浄水処理、排水処理などの水処理分野、食品工業分野等様々な方面で利用されている。飲料水製造、浄水処理、排水処理などの水処理分野においては、分離膜が従来の砂濾過、凝集沈殿過程の代替として水中の不純物を除去するために用いられるようになってきている。また、食品工業分野においては、発酵に用いた酵母の分離除去や液体の濃縮を目的として、分離膜が用いられている。   In recent years, separation membranes have been used in various fields such as water treatment fields such as drinking water production, water purification, and wastewater treatment, and food industry. In the water treatment field such as drinking water production, water purification treatment, wastewater treatment, etc., separation membranes have been used to remove impurities in water as an alternative to conventional sand filtration and coagulation sedimentation processes. In the food industry field, separation membranes are used for the purpose of separating and removing yeasts used for fermentation and concentrating liquids.

上述のように多様に用いられる分離膜は、浄水処理や排水処理などの水処理分野においては処理水量が大きいため、透水性能の向上が求められている。透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費を節約でき、膜交換費や設置面積の点からも有利である。   As described above, separation membranes that are used in various ways have a large amount of treated water in the field of water treatment such as water purification treatment and wastewater treatment. If the water permeation performance is excellent, the membrane area can be reduced, and the equipment becomes compact, so that the equipment cost can be saved, which is advantageous from the viewpoint of membrane replacement cost and installation area.

また、浄水処理では透過水の殺菌や膜のバイオファウリング防止の目的で、次亜塩素酸ナトリウムなどの殺菌剤を膜モジュール部分に添加したり、酸、アルカリ、塩素、界面活性剤などで膜そのものを洗浄するため、分離膜には耐薬品性能が求められる。   In addition, in the water purification treatment, a disinfectant such as sodium hypochlorite is added to the membrane module part for the purpose of sterilizing the permeated water and preventing biofouling of the membrane, or the membrane with acid, alkali, chlorine, surfactant, etc. In order to clean itself, the separation membrane is required to have chemical resistance.

さらに、水道水製造では、家畜の糞尿などに由来するクリプトスポリジウムなどの塩素に対して耐性のある病原性微生物が浄水場で処理しきれず、処理水に混入する事故が1990年代から顕在化していることから、このような事故を防ぐため、分離膜には、原水が処理水に混入しないよう十分な分離特性と高い物理的強度が要求されている。   Furthermore, in tap water production, pathogenic microorganisms resistant to chlorine such as Cryptosporidium derived from livestock manure cannot be treated at the water purification plant, and accidents mixed into the treated water have become apparent since the 1990s. Therefore, in order to prevent such an accident, the separation membrane is required to have sufficient separation characteristics and high physical strength so that the raw water is not mixed into the treated water.

このように、分離膜には、優れた分離特性、化学的強度(耐薬品性)、物理的強度、耐汚れ性および透過性能が求められる。そこで、化学的強度(耐薬品性)と物理的強度を併せ有するポリフッ化ビニリデン系樹脂を用いた分離膜が使用されるようになってきた。   Thus, the separation membrane is required to have excellent separation characteristics, chemical strength (chemical resistance), physical strength, stain resistance, and permeation performance. Therefore, a separation membrane using a polyvinylidene fluoride resin having both chemical strength (chemical resistance) and physical strength has been used.

例えば、特許文献1にはポリフッ化ビニリデン系樹脂と種々の界面活性剤を良溶媒に溶解してポリマー溶液を調製し、ポリマー溶液を口金から押し出したり、ガラズ板上にキャストしたりして成形した後、ポリフッ化ビニリデン系樹脂の非溶媒を含む溶液に接触させて非溶媒誘起相分離により非対称多孔構造を形成させる方法が開示されている。この方法では、安価に分離膜を得ることができるが、十分な表面細孔数と十分大きい表面細孔径を両立するのが困難であり、高透水性と優れた耐汚れ性を両立することは困難であった。特に、ポリフッ化ビニリデン系樹脂は疎水性であるため、水などの非溶媒を含む溶液に接触させて分離膜を製造する方法では、緻密な膜が形成しやすく、十分大きい表面細孔径を達成するのは困難であった。   For example, in Patent Document 1, a polyvinylidene fluoride resin and various surfactants are dissolved in a good solvent to prepare a polymer solution, and the polymer solution is extruded from a die or cast on a glass plate. Subsequently, a method of forming an asymmetric porous structure by contact with a solution containing a polyvinylidene fluoride resin in a non-solvent and non-solvent-induced phase separation is disclosed. With this method, it is possible to obtain a separation membrane at a low cost, but it is difficult to achieve both a sufficient number of surface pores and a sufficiently large surface pore diameter, and it is possible to achieve both high water permeability and excellent stain resistance. It was difficult. In particular, since the polyvinylidene fluoride resin is hydrophobic, the method for producing a separation membrane by contacting with a solution containing a non-solvent such as water easily forms a dense membrane and achieves a sufficiently large surface pore diameter. It was difficult.

また、比較的近年では特許文献2にポリフッ化ビニリデン系樹脂に無機微粒子と有機液状体を溶融混練し、ポリフッ化ビニリデン系樹脂の融点以上の温度で口金から押し出したり、プレス機でプレスしたりして成形した後、冷却固化し、その後無機微粒子と有機液状体を抽出することにより多孔構造を形成する方法が開示されている。この方法では、空孔性の制御が容易で、マクロボイドが形成せず比較的均質で高強度の膜が得られるものの、無機微粒子の分散性が悪いとピンホールのような欠点を生じる可能性があった。さらに、この方法では、製造コストが極めて高くなる欠点を有していた。
特公平1−22003号公報 特許第2899903号公報
In relatively recent years, Patent Document 2 discloses melting and kneading inorganic fine particles and an organic liquid in a polyvinylidene fluoride resin, and extruding it from a die at a temperature equal to or higher than the melting point of the polyvinylidene fluoride resin, or pressing it with a press. And a method of forming a porous structure by cooling and solidifying, and then extracting inorganic fine particles and an organic liquid. In this method, the porosity can be easily controlled, and a macro-void can be formed and a relatively homogeneous and high-strength film can be obtained. However, if the dispersibility of the inorganic fine particles is poor, a defect such as a pinhole may occur. was there. Furthermore, this method has a drawback that the manufacturing cost is extremely high.
Japanese Patent Publication No. 1-2003 Japanese Patent No. 2899903

本発明は、従来の技術の上述した問題点に鑑み、耐薬品性の高い熱可塑性樹脂を用いて、高強度、高透水性、高阻止性能および優れた耐汚れ性を有する分離膜を安価かつ容易に製造できる製膜原液を提供することを目的とするものである。   In view of the above-described problems of the prior art, the present invention uses a highly chemical-resistant thermoplastic resin to produce a separation membrane having high strength, high water permeability, high blocking performance and excellent stain resistance at low cost. An object of the present invention is to provide a film-forming stock solution that can be easily manufactured.

上記課題を解決するための本発明は、下記(1)〜(7)を特徴とするものによって達成される。
(1)熱可塑性樹脂、該熱可塑性樹脂を溶解する溶媒、界面活性剤および該溶媒と非混和性の物質を含有することを特徴とする製膜原液。
(2)熱可塑性樹脂、該熱可塑性樹脂を溶解するオクタノール/水分配係数がaである溶媒、界面活性剤およびオクタノール/水分配係数がbである物質を含有する製膜原液であって、不等式log10b−log10a>2.5を満足することを特徴とする製膜原液。
(3)前記溶媒と非混和性の物質またはオクタノール/水分配係数がbである物質が、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、高級アルコール、高級脂肪酸およびエーテルからなる群から選ばれる少なくとも1種であることを特徴とする上記(1)または(2)に記載の製膜原液。
(4)前記熱可塑性樹脂が、ポリフッ化ビニリデン系樹脂であることを特徴とする上記(1)〜(3)のいずれかに記載の製膜原液。
(5)粘度が0.01Pa・s〜5Pa・sの範囲内であることを特徴とする上記(1)〜(4)のいずれかに記載の製膜原液。
(6)上記(1)〜(5)のいずれかに記載の製膜原液を用いて得られた分離膜。
The present invention for solving the above-described problems is achieved by the following features (1) to (7).
(1) A film-forming stock solution comprising a thermoplastic resin, a solvent for dissolving the thermoplastic resin, a surfactant, and a substance immiscible with the solvent.
(2) A film-forming stock solution containing a thermoplastic resin, a solvent that dissolves the thermoplastic resin with an octanol / water partition coefficient a, a surfactant, and a substance with an octanol / water partition coefficient b, log 10 b-log 10 a> 2.5
(3) The substance immiscible with the solvent or the substance having an octanol / water partition coefficient of b is selected from the group consisting of saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, higher alcohols, higher fatty acids and ethers. The film-forming stock solution as described in (1) or (2) above, which is at least one kind.
(4) The film-forming stock solution as described in any one of (1) to (3) above, wherein the thermoplastic resin is a polyvinylidene fluoride resin.
(5) The film-forming stock solution as described in any one of (1) to (4) above, wherein the viscosity is in the range of 0.01 Pa · s to 5 Pa · s.
(6) A separation membrane obtained using the membrane-forming stock solution described in any of (1) to (5) above.

本発明の製膜原液によれば、十分大きい表面細孔数、表面細孔径を有する分離膜を安価かつ容易に製造することができ、フミン酸などの有機物の汚れによる透水量低下の小さい耐汚れ性の高い分離膜を提供することができる。これによって、膜の洗浄間隔が長くなり、ろ過寿命も長くなるため、造水コストの低減が可能になる。   According to the membrane-forming stock solution of the present invention, a separation membrane having a sufficiently large number of surface pores and surface pore diameter can be produced inexpensively and easily, and the stain resistance is small with a decrease in water permeability due to organic matter such as humic acid. A highly reliable separation membrane can be provided. As a result, the cleaning interval of the membrane becomes longer and the filtration life becomes longer, so that the water production cost can be reduced.

本発明の製膜原液は、熱可塑性樹脂と、その熱可塑性樹脂を溶解する溶媒と、界面活性剤と、熱可塑性樹脂を溶解する溶媒と非混和性の物質(以下、非混和性物質という)とを含有することを特徴とするが、製膜原液に界面活性剤とともに非混和性物質を添加することにより、未添加時に比べて十分大きい表面細孔径を有する分離膜を安価かつ容易に製造することができる。   The film-forming stock solution of the present invention comprises a thermoplastic resin, a solvent that dissolves the thermoplastic resin, a surfactant, and a substance that is immiscible with the solvent that dissolves the thermoplastic resin (hereinafter referred to as immiscible substance). However, by adding a non-miscible substance together with a surfactant to the membrane forming stock solution, a separation membrane having a sufficiently large surface pore diameter can be produced inexpensively and easily. be able to.

この理由の詳細は不明であるが、次の理由によると考えられる。すなわち、本発明の製膜原液中で、非混和性物質は、界面活性剤によって製膜原液中に可溶化または分散している。界面活性剤は非混和性物質を内部に取り込むことによって肥大化しているものと考えられる。界面活性剤は開孔剤としても作用し、該製膜原液を用いて製造される膜の多孔化を促す。従って、界面活性剤が非混和性物質を多く取り込むほどその肥大化が進行し、該原液が固化するときに大きな孔を穿つことになる。   Although the details of this reason are unknown, it is thought to be due to the following reason. That is, in the film-forming stock solution of the present invention, the immiscible substance is solubilized or dispersed in the film-forming stock solution by the surfactant. It is considered that the surfactant is enlarged by incorporating an immiscible substance into the inside. The surfactant also acts as a pore-opening agent, and promotes the porosity of the membrane produced using the membrane-forming stock solution. Therefore, as the surfactant takes in more immiscible substances, the enlargement of the surfactant proceeds, and a large hole is formed when the stock solution solidifies.

なお、高透水性と優れた耐汚れ性を有する膜を得るためには、十分な表面細孔数と十分大きい表面細孔径を両立する必要があるが、表面細孔径が大きすぎると分離性能が悪くなる。従って、分離対象によって表面細孔径を制御する必要があり、界面活性剤濃度、非混和性物質濃度、界面活性剤と非混和性物質の組み合わせで制御する。界面活性剤と非混和性物質の濃度は特に限定されないが、安価かつ容易に膜を製造するために、界面活性剤濃度が0.1重量%以上15%重量以下で、かつ、非混和性物質濃度が0.01重量%以上10%重量以下であることが好ましく、さらには界面活性剤濃度が1%重量以上10%重量以下で、かつ、非混和性物質濃度が0.1%重量以上5%重量以下であることが好ましい。   In order to obtain a membrane having high water permeability and excellent stain resistance, it is necessary to achieve both a sufficient number of surface pores and a sufficiently large surface pore diameter. Deteriorate. Therefore, it is necessary to control the surface pore diameter depending on the separation target, and it is controlled by the surfactant concentration, the immiscible substance concentration, and the combination of the surfactant and the immiscible substance. The concentration of the surfactant and the immiscible substance is not particularly limited, but the surfactant concentration is 0.1% by weight or more and 15% by weight or less and the immiscible substance in order to produce a film easily and inexpensively. The concentration is preferably 0.01% by weight or more and 10% by weight or less, more preferably the surfactant concentration is 1% by weight or more and 10% by weight or less, and the immiscible substance concentration is 0.1% by weight or more and 5% or less. % Weight or less is preferred.

また、熱可塑性樹脂、その熱可塑性樹脂を溶解する溶媒、界面活性剤および非混和性物質は、たとえば室温で溶解または加熱溶解して製膜原液となる。   Further, the thermoplastic resin, the solvent for dissolving the thermoplastic resin, the surfactant and the immiscible substance are dissolved or heated at room temperature, for example, to form a film forming stock solution.

ここで、本発明における熱可塑性樹脂とは、鎖状高分子物質からできており、加熱すると外力によって変形・流動する性質を有する樹脂のことをいう。熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン、アクリロニトリル−スチレン(AS)樹脂、塩化ビニル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変形ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリフッ化ビニリデン、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンおよびこれらの混合物や共重合体が挙げられる。そして、これら熱可塑性樹脂の中でも、耐薬品性が高い分離膜を得るためにはポリフッ化ビニリデン系樹脂が好ましい。   Here, the thermoplastic resin in the present invention refers to a resin made of a chain polymer substance and having a property of being deformed / flowed by an external force when heated. Examples of thermoplastic resins include polyethylene, polypropylene, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, acrylonitrile-styrene (AS) resin, vinyl chloride resin, polyethylene terephthalate, polyamide, polyacetal, polycarbonate , Modified polyphenylene ether, polyphenylene sulfide, polyvinylidene fluoride, polyamideimide, polyetherimide, polysulfone, polyethersulfone, and mixtures and copolymers thereof. Among these thermoplastic resins, a polyvinylidene fluoride resin is preferable in order to obtain a separation membrane having high chemical resistance.

本発明におけるポリフッ化ビニリデン系樹脂とは、ポリフッ化ビニリデンホモポリマーおよび/またはポリフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のポリフッ化ビニリデン共重合体を含有しても構わない。ポリフッ化ビニリデン共重合体としては、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上とフッ化ビニリデンとの共重合体が挙げられる。また、ポリフッ化ビニリデン系樹脂の重量平均分子量は、要求される分離膜の強度と透水性能によって適宜選択すれば良いが、重量平均分子量が低いと強度が低く、重量平均分子量が高いと透水性が低くなり易いので、高強度と高透水性能を併せ有する分離膜を得るためには5万以上100万以下が好ましい。そして、分離膜への加工性を考慮した場合は10万以上70万以下が好ましく、さらに15万以上60万以下が好ましい。   The polyvinylidene fluoride resin in the present invention is a resin containing a polyvinylidene fluoride homopolymer and / or a polyvinylidene fluoride copolymer. A plurality of types of polyvinylidene fluoride copolymers may be contained. Examples of the polyvinylidene fluoride copolymer include a copolymer of vinylidene fluoride and one or more selected from tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride. Further, the weight average molecular weight of the polyvinylidene fluoride resin may be appropriately selected depending on the required strength and water permeability of the separation membrane, but the strength is low when the weight average molecular weight is low, and the water permeability is high when the weight average molecular weight is high. Since it tends to be low, in order to obtain a separation membrane having both high strength and high water permeability, 50,000 to 1,000,000 is preferable. And when the workability to a separation membrane is considered, 100,000 or more and 700,000 or less are preferable, and 150,000 or more and 600,000 or less are more preferable.

また、ポリフッ化ビニリデン系樹脂には、最大で50重量%の混和可能な樹脂を含んでいてもよい。例えば、アクリル樹脂やセルロースエステル樹脂を最大で50重量%含んだ状態である。アクリル樹脂とは、主としてアクリル酸、メタクリル酸およびこれらの誘導体、例えばアクリルアミド、アクリロニトリルなどの重合体を包含する高分子化合物をいうが、特にアクリル酸エステル樹脂やメタクリル酸エステル樹脂が、ポリフッ化ビニリデン系樹脂との混和性が高いことから、好ましく用いられる。また、セルロースエステル樹脂とは、セルロースアセテート、セルロースプロピオネート、セルロースブチレートなどのセルロースのエステル化体を含有する高分子化合物をいうが、セルロースエステル樹脂のエステル化度はポリフッ化ビニリデン樹脂とともに溶媒に溶解する程度であれば特に限定されない。   Further, the polyvinylidene fluoride resin may contain up to 50% by weight of a miscible resin. For example, the acrylic resin or cellulose ester resin is contained in a maximum amount of 50% by weight. The acrylic resin refers to a polymer compound mainly including a polymer such as acrylic acid, methacrylic acid and derivatives thereof such as acrylamide and acrylonitrile. In particular, an acrylic ester resin or a methacrylic ester resin is a polyvinylidene fluoride type. It is preferably used because of its high miscibility with the resin. The cellulose ester resin refers to a polymer compound containing an esterified cellulose such as cellulose acetate, cellulose propionate, and cellulose butyrate. The degree of esterification of the cellulose ester resin is a solvent together with the polyvinylidene fluoride resin. If it is a grade melt | dissolved in this, it will not specifically limit.

また、本発明において熱可塑性樹脂を溶解する溶媒とは、上述の熱可塑性樹脂の融点以下の温度でその熱可塑性樹脂を5〜60重量%溶解できるものであれば特に限定されないが、好ましくは、10〜50重量%溶解できるものである。この熱可塑性樹脂を溶解する溶媒としては、シクロヘキサノン、イソホロン、γ−ブチロラクトン、メチルイソアミルケトン、フタル酸ジメチル、プロピレングリコールメチルエーテル、プロピレンカーボネート、ジアセトンアルコール、グリセロールトリアセテート等の中鎖長のアルキルケトン、エステル、グリコールエステルおよび有機カーボネート、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等が好ましく用いられる。これらの溶媒は1種類で用いても2種類以上の混合物として用いても良い。   In the present invention, the solvent that dissolves the thermoplastic resin is not particularly limited as long as it can dissolve 5 to 60% by weight of the thermoplastic resin at a temperature equal to or lower than the melting point of the thermoplastic resin. 10 to 50% by weight can be dissolved. As a solvent for dissolving this thermoplastic resin, medium chain length alkyl ketones such as cyclohexanone, isophorone, γ-butyrolactone, methyl isoamyl ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, diacetone alcohol, glycerol triacetate, Preferred are lower alkyl ketones such as esters, glycol esters and organic carbonates, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, trimethyl phosphate, esters and amides. Used. These solvents may be used alone or as a mixture of two or more.

さらに、本発明における界面活性剤としては、上述の熱可塑性樹脂の融点以下の温度でその熱可塑性樹脂を溶解する溶媒に溶解または分散し、後述する非混和性物質を可溶化または分散させることができるものであれば特に限定されるものではなく、非混和性物質を可溶化または分散させうる範囲で任意に添加される。界面活性剤としては、ソルビタン脂肪酸エステル等の多価アルコールのエステル体、ソルビタン脂肪酸エステルのエチレンオキサイド低モル付加物、ノニルフェノールのエチレンオキサイド低モル付加物、プルロニック型エチレンオキサイド低モル付加物等のエチレンオキサイド低モル付加物、ポリオキシエチレンアルキルエステル、アルキルアミン塩、ポリアクリル酸ソーダ等が好ましく用いられる。   Further, as the surfactant in the present invention, it is possible to dissolve or disperse the thermoplastic resin in a solvent that dissolves the thermoplastic resin at a temperature not higher than the melting point of the thermoplastic resin described above, and solubilize or disperse the immiscible substance described later. It is not particularly limited as long as it can be used, and it is arbitrarily added within a range in which the immiscible substance can be solubilized or dispersed. Surfactants include ethylene oxides such as polyhydric alcohol esters such as sorbitan fatty acid esters, ethylene oxide low molar adducts of sorbitan fatty acid esters, ethylene oxide low molar adducts of nonylphenol, and pluronic ethylene oxide low molar adducts. Low molar adducts, polyoxyethylene alkyl esters, alkylamine salts, sodium polyacrylate, and the like are preferably used.

さらにまた、本発明における熱可塑性樹脂を溶解する溶媒と非混和性の物質(非混和性物質)とは、熱可塑性樹脂を溶解する溶媒に対する溶解度が5重量%以下であれば良く、より好ましくは1重量%以下、さらに好ましくは0.1重量%以下が良い。熱可塑性樹脂や後述する開孔剤や非溶媒を溶解すると、熱可塑性樹脂を溶解する溶媒の非混和性物質に対する溶解力は大きく低下する。従って、非混和性物質は、界面活性剤によって可溶化または分散される範囲で任意に添加される。   Furthermore, the substance that is immiscible with the solvent that dissolves the thermoplastic resin in the present invention (immiscible substance) may have a solubility in the solvent that dissolves the thermoplastic resin of 5% by weight or less, and more preferably. It is 1% by weight or less, more preferably 0.1% by weight or less. When a thermoplastic resin, a pore-opening agent and a non-solvent described later are dissolved, the dissolving power of the solvent that dissolves the thermoplastic resin in the immiscible substance is greatly reduced. Accordingly, the immiscible substance is optionally added within a range that is solubilized or dispersed by the surfactant.

非混和性物質としては、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、高級アルコール、高級脂肪酸およびエーテル等が挙げられる。飽和脂肪族炭化水素としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、デカリン等が挙げられる。不飽和脂肪族炭化水素としては、例えば1−ペンテン、2−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン等が挙げられる。高級アルコールとしては、1−オクタノール、2−オクタノール、1−ノナノール、1−デカノール、1−ドデカノール、オレイルアルコール等が挙げられる。高級脂肪酸としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、イワシ酸等が挙げられる。エーテルとしては、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル等が挙げられる。   Examples of immiscible substances include saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, higher alcohols, higher fatty acids and ethers. Examples of the saturated aliphatic hydrocarbon include pentane, hexane, heptane, octane, nonane, decane, dodecane, decalin and the like. Examples of the unsaturated aliphatic hydrocarbon include 1-pentene, 2-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like. Examples of the higher alcohol include 1-octanol, 2-octanol, 1-nonanol, 1-decanol, 1-dodecanol, and oleyl alcohol. Examples of higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and sardine acid. Examples of the ether include diethyl ether, dipropyl ether, diisopropyl ether and the like.

このように、非混和性物質としては、安価である飽和脂肪族炭化水素、不飽和脂肪族炭化水素、高級アルコール、高級脂肪酸、エーテルなどが好ましく用いられるが、特に高温で用いる場合は、沸点が高い高級飽和脂肪族炭化水素、高級不飽和脂肪族炭化水素、高級アルコールなどが好ましく用いられる。これらの化合物は1種類で用いても2種類以上の混合物として用いても良い。   Thus, as the immiscible substance, inexpensive saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, higher alcohols, higher fatty acids, ethers and the like are preferably used. Highly higher saturated aliphatic hydrocarbons, higher unsaturated aliphatic hydrocarbons, higher alcohols and the like are preferably used. These compounds may be used alone or as a mixture of two or more.

熱可塑性樹脂を溶解する溶媒と非混和性物質との混和性は、オクタノール/水分配係数(以下、Powという。)を一つの指標にできる。一般に、混和性を考える時には、log10Powのように分配係数の対数を用いて考慮される。熱可塑性樹脂を溶解する溶媒のPowをaとし、非混和性物質のPowをbとした時、log10aおよびlog10bを用いて、log10b−log10aの値を求める。このlog10b−log10aの値が大きいほど、両者の混和性が低下する傾向を示す。本発明の場合、不等式log10b−log10a>2.5を満足するように該樹脂を溶解する溶媒と非混和性物質とを選択することが好ましく、より好ましくはlog10b−log10a>3.0が良く、さらに好ましくはlog10b−log10a>3.5が良い。 The miscibility between the solvent that dissolves the thermoplastic resin and the immiscible substance can be determined by using an octanol / water partition coefficient (hereinafter referred to as Pow) as one index. In general, when considering miscibility, the logarithm of the partition coefficient is used, such as log 10 Pow. When the Pow of the solvent for dissolving the thermoplastic resin is a and the Pow of the immiscible substance is b, the value of log 10 b-log 10 a is obtained using log 10 a and log 10 b. The larger the value of log 10 b-log 10 a, the lower the miscibility of both. In the case of the present invention, it is preferable to select a solvent and an immiscible substance that dissolve the resin so as to satisfy the inequality log 10 b-log 10 a> 2.5, and more preferably log 10 b-log 10. a> 3.0 is preferable, and log 10 b-log 10 a> 3.5 is more preferable.

なお、本発明におけるオクタノール/水分配係数とは、日本工業規格Z7260−107(2000)「分配係数(1−オクタノール/水)の測定方法−フラスコ振とう法」によって求める。この測定方法の概要は、一定量の被験物質を1−オクタノールに溶解し、1−オクタノールと水の二つの溶媒相中に加えて十分に混合した後、二相に分離し、各相中の被験物質濃度を測定し、分配係数を求めるというものである。   In addition, the octanol / water partition coefficient in this invention is calculated | required by Japanese Industrial Standard Z7260-107 (2000) "The measuring method of a partition coefficient (1-octanol / water)-Flask shaking method". The outline of this measurement method is that a certain amount of a test substance is dissolved in 1-octanol, added to two solvent phases of 1-octanol and water, mixed well, then separated into two phases, The test substance concentration is measured and the partition coefficient is obtained.

そして、本発明の製膜原液は、熱可塑性樹脂、該樹脂を溶解する溶媒、界面活性剤および非混和性物質の4種を含有するものであるが、必要に応じて開孔剤や非溶媒等の物質を含有していても良い。   The film-forming stock solution of the present invention contains a thermoplastic resin, a solvent that dissolves the resin, a surfactant, and a non-miscible substance. Or the like.

開孔剤とは、該製膜原液を用いて製造される膜の多孔化を促すものであれば特に限定されず、例えばポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、グリセリンなどの多価アルコール類、塩化リチウム、塩化マグネシウム、塩化カルシウム等の無機塩が好ましく用いられる。   The pore-opening agent is not particularly limited as long as it promotes the porosity of the membrane produced using the membrane-forming stock solution. For example, polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, glycerin, etc. Inorganic salts such as polyhydric alcohols, lithium chloride, magnesium chloride and calcium chloride are preferably used.

また、非溶媒とは、上述の熱可塑性樹脂を溶解しない溶媒であって、かつ、熱可塑性樹脂を溶解する溶媒と混和する溶媒であれば特に限定されない。具体的には、熱可塑性樹脂を溶解する溶媒に対する溶解度が5重量%以上であれば良く、より好ましくは10重量%以上、さらに好ましくは20重量%以上が良い。   The non-solvent is not particularly limited as long as it is a solvent that does not dissolve the above-described thermoplastic resin and is miscible with a solvent that dissolves the thermoplastic resin. Specifically, the solubility with respect to the solvent which melt | dissolves a thermoplastic resin should just be 5 weight% or more, More preferably, it is 10 weight% or more, More preferably, 20 weight% or more is good.

非溶媒の添加によって相分離を制御することは一般によく行われるが、多量に非溶媒を添加するとゲル化が生じたり、成形が困難になるため、熱可塑性樹脂や該樹脂を溶解する溶媒に応じて適宜添加量を調節する必要がある。非溶媒としては、水、メタノール、エタノール等が安価なため好ましく用いられる。   Control of phase separation by adding a non-solvent is generally performed, but if a large amount of non-solvent is added, gelation occurs or molding becomes difficult, so depending on the thermoplastic resin and the solvent in which the resin is dissolved. Therefore, it is necessary to adjust the addition amount appropriately. As the non-solvent, water, methanol, ethanol and the like are preferably used because they are inexpensive.

このように製造される本発明の分離膜は、中空糸膜でも平膜でも良く、その用途によって選択される。本発明の製膜原液は、熱可塑性樹脂、該樹脂を溶解する溶媒、界面活性剤および非混和性物質の4種を含有するが、これらの濃度や組み合わせによって製膜原液の粘度が大きく変化する。製膜原液の粘度は、低すぎると膜が形成されずに欠点が生じたり膜の強度が低下し、高すぎると厚みムラが生じたり膜の透水性が低くなり経済的でない。そこで、中空糸膜の場合、製膜原液の粘度は1Pa・s〜300Pa・sの範囲内とし、平膜の場合、製膜原液の粘度は0.1Pa・s〜10Pa・sの範囲内とすることが好ましい。より好ましくは中空糸膜の場合、10Pa・s〜200Pa・sの範囲内であり、平膜の場合、0.3Pa・s〜1Pa・sの範囲内である。このような粘度の製膜原液を用いることで、後述する寸法の膜で、透水性能、強度の高い膜を容易に得ることができる。また、後述するように支持材の上にポリマーをコーティングする場合、支持材が強度を補うため、分離膜自体には強度よりも透水性に重点を置いた設計がなされる。この場合、製膜原液の粘度は、平膜の場合でも中空糸膜の場合でも高透水性を発現させるためには、0.01Pa・s〜5Pa・sの範囲内とすることが好ましく、より好ましくは0.05Pa・s〜3Pa・sの範囲内とすることが好ましい
中空糸膜の場合、内径が150μm〜8mm、さらには100μm〜10mm、外径が200μm〜12mm、さらには120μm〜15mm、膜厚が50μm〜1mm、さらには20μm〜3mmの範囲になるように設計することが好ましい。また、中空糸膜の内外表面の細孔径は、分離対象によって自由に選択できるが、0.005μm(5nm)〜10μm、さらには0.008μm(8nm)〜8μmの範囲になるように設計することが好ましい。本発明の製膜原液で界面活性剤濃度、非混和性物質濃度、界面活性剤と非混和性物質の濃度や組み合わせを適宜選択することにより、十分な表面細孔数を保持しながら表面細孔径を0.005μm〜5μmに制御可能であり、さらに開孔剤を用いれば表面細孔径を0.005μm〜10μmに制御可能である。
The separation membrane of the present invention thus produced may be a hollow fiber membrane or a flat membrane, and is selected depending on its use. The film-forming stock solution of the present invention contains four types of thermoplastic resin, a solvent that dissolves the resin, a surfactant, and an immiscible substance. The viscosity of the film-forming stock solution varies greatly depending on the concentration and combination thereof. . If the viscosity of the film-forming stock solution is too low, a film is not formed and a defect is caused or the strength of the film is lowered. Therefore, in the case of a hollow fiber membrane, the viscosity of the membrane forming stock solution is in the range of 1 Pa · s to 300 Pa · s, and in the case of a flat membrane, the viscosity of the membrane forming stock solution is in the range of 0.1 Pa · s to 10 Pa · s. It is preferable to do. More preferably, in the case of a hollow fiber membrane, it is in the range of 10 Pa · s to 200 Pa · s, and in the case of a flat membrane, it is in the range of 0.3 Pa · s to 1 Pa · s. By using a film-forming stock solution having such a viscosity, a film having high water permeability and strength can be easily obtained with a film having dimensions as described later. Further, as described later, when a polymer is coated on a support material, since the support material supplements the strength, the separation membrane itself is designed with emphasis on water permeability rather than strength. In this case, the viscosity of the membrane forming stock solution is preferably within the range of 0.01 Pa · s to 5 Pa · s in order to develop high water permeability in both the case of a flat membrane and the case of a hollow fiber membrane. Preferably in the range of 0.05 Pa · s to 3 Pa · s In the case of a hollow fiber membrane, the inner diameter is 150 μm to 8 mm, further 100 μm to 10 mm, the outer diameter is 200 μm to 12 mm, further 120 μm to 15 mm, It is preferable to design the film thickness to be in the range of 50 μm to 1 mm, more preferably 20 μm to 3 mm. The pore diameter of the inner and outer surfaces of the hollow fiber membrane can be freely selected depending on the object to be separated, but is designed to be in the range of 0.005 μm (5 nm) to 10 μm, and further 0.008 μm (8 nm) to 8 μm. Is preferred. By appropriately selecting the surfactant concentration, immiscible substance concentration, surfactant and immiscible substance concentration and combination in the film-forming stock solution of the present invention, the surface pore diameter is maintained while maintaining a sufficient number of surface pores. Can be controlled to 0.005 μm to 5 μm, and if a pore-opening agent is used, the surface pore diameter can be controlled to 0.005 μm to 10 μm.

また、中空糸膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔を有する均質構造であっても良い。さらに、ポリエステル、ナイロン、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデンなどの中空糸繊維、ガラス繊維、金属繊維などを筒状に編んだものを支持材としてその上にポリマーをコーティングしたものや、その支持材の一部にポリマーを含浸させたものでも良い。   Further, the internal structure of the hollow fiber membrane is arbitrary, and a so-called macrovoid may exist or a homogeneous structure having pores of the same size in the film thickness direction may be used. In addition, hollow fiber fibers such as polyester, nylon, polysulfone, polyacrylonitrile, polyvinylidene fluoride, glass fibers, metal fibers, etc., which are knitted into a cylindrical shape, are coated with a polymer, and the support materials. A part of which may be impregnated with a polymer.

一方、平膜の場合は、厚みが10μm〜1mm、さらには30μm〜500μmの範囲内であることが好ましい。平膜の場合も、織物、編み物、不織布などの面状の支持材にポリマーをコーティング又は一部含浸させてもよく、その場合、この面状支持材を含む厚みが上述の範囲内にあることが好ましい。また、表面の細孔径は、分離対象によって自由に選択できるが、0.005μm(5nm)〜10μm、さらには0.008μm(8nm)〜8μmの範囲にあることが好ましい。本発明の製膜原液で界面活性剤濃度、非混和性物質濃度、界面活性剤と非混和性物質の組み合わせを適宜選択することにより、十分な表面細孔数を保持しながら表面細孔径を0.005μm〜5μmに制御可能であり、さらに開孔剤を用いれば表面細孔径を0.005μm〜10μmに制御可能である。   On the other hand, in the case of a flat membrane, the thickness is preferably in the range of 10 μm to 1 mm, more preferably 30 μm to 500 μm. Also in the case of a flat membrane, a surface support material such as woven fabric, knitted fabric, and non-woven fabric may be coated or partially impregnated with a polymer, and in this case, the thickness including the surface support material is within the above range. Is preferred. The pore diameter on the surface can be freely selected depending on the separation target, but is preferably in the range of 0.005 μm (5 nm) to 10 μm, more preferably 0.008 μm (8 nm) to 8 μm. By appropriately selecting the surfactant concentration, the immiscible substance concentration, and the combination of the surfactant and the immiscible substance in the film-forming stock solution of the present invention, the surface pore diameter is reduced to 0 while maintaining a sufficient number of surface pores. 0.005 μm to 5 μm can be controlled, and if a pore-opening agent is used, the surface pore diameter can be controlled to 0.005 μm to 10 μm.

平膜の内部構造は任意であり、いわゆるマクロボイドが存在していても、膜厚方向に同じような大きさの孔のあいた均質構造であっても良い。   The internal structure of the flat film is arbitrary, and so-called macro voids may be present or a homogeneous structure having holes of the same size in the film thickness direction may be used.

そして、本発明の製膜原液を用いて得られる分離膜は、例えば次のような方法で製造される。まず、熱可塑性樹脂、該樹脂を溶解する溶媒、界面活性剤および非混和性物質を室温溶解または加熱溶解して製膜原液とする。次に、製膜溶液を、該樹脂の融点よりかなり低い温度で口金から押出したり、中空糸や筒状あるいは面状支持体にコーティングしたり、ガラス板上にキャストしたりして成形した後、該樹脂の非溶媒を含む液体に接触させて非溶媒誘起相分離により分離膜を製造する。また、室温では熱可塑性樹脂を溶解しにくい溶媒を、該樹脂を溶解する溶媒として用いた場合は、熱可塑性樹脂、該樹脂を溶解する溶媒、界面活性剤および非混和性物質を高温溶解して製膜溶液を製造し、製膜溶液を口金から吐出した後、冷却して相分離及び固化せしめる熱誘起相分離法により分離膜を製造する。   And the separation membrane obtained using the membrane-forming stock solution of the present invention is produced, for example, by the following method. First, a thermoplastic resin, a solvent for dissolving the resin, a surfactant, and an immiscible substance are dissolved at room temperature or heated to form a film forming stock solution. Next, after the film forming solution is extruded from the die at a temperature considerably lower than the melting point of the resin, coated on a hollow fiber or cylindrical or planar support, or cast on a glass plate, A separation membrane is produced by contact with a liquid containing a non-solvent of the resin by non-solvent-induced phase separation. In addition, when a solvent that hardly dissolves the thermoplastic resin at room temperature is used as a solvent that dissolves the resin, the thermoplastic resin, the solvent that dissolves the resin, the surfactant, and the immiscible substance are dissolved at high temperature. A membrane-forming solution is produced, and after the membrane-forming solution is discharged from the die, a separation membrane is produced by a heat-induced phase separation method in which the membrane is cooled to cause phase separation and solidification.

このようにして得られた本発明の分離膜は、原液流入口や透過液流出口などを備えたケーシングに収容され膜モジュールとして使用される。膜モジュールは、膜が中空糸膜である場合には、中空糸膜を複数本束ねて円筒状の容器に納め、両端または片端をポリウレタンやエポキシ樹脂等で固定し、透過液を回収できるようにしたり、平板状に中空糸膜の両端を固定して透過液を回収できるようにする。分離膜が平膜である場合には、平膜を集液管の周りに封筒状に折り畳みながらスパイラル状に巻き取り、円筒状の容器に納め、透過液をできるようにしたり、集液板の両面に平膜の配置して周囲を水密に固定し、透過液を回収できるようにする。   The separation membrane of the present invention thus obtained is housed in a casing having a raw solution inlet and a permeate outlet and used as a membrane module. When the membrane module is a hollow fiber membrane, bundle a plurality of hollow fiber membranes and store them in a cylindrical container, and fix both ends or one end with polyurethane or epoxy resin so that the permeate can be collected. Alternatively, both ends of the hollow fiber membrane are fixed in a flat plate shape so that the permeate can be collected. When the separation membrane is a flat membrane, the flat membrane is wound around in an envelope shape around the liquid collection tube and wound into a spiral shape and stored in a cylindrical container so that the permeate can be produced. Flat membranes are arranged on both sides to fix the periphery in a watertight manner so that the permeate can be collected.

そして、膜モジュールは、少なくとも原液側に加圧手段もしくは透過液側に吸引手段を設け、造水を行う液体分離装置として用いられる。加圧手段としてはポンプを用いてもよいし、また水位差による圧力を利用してもよい。また、吸引手段としては、ポンプやサイフォンを利用すればよい。   The membrane module is used as a liquid separation device for forming water by providing at least a pressurizing means on the stock solution side or a suction means on the permeate side. A pump may be used as the pressurizing means, or a pressure due to a water level difference may be used. Moreover, what is necessary is just to utilize a pump and a siphon as a suction means.

実施例、比較例における膜の透水性能は、次のように測定した。   The water permeability of the membranes in the examples and comparative examples were measured as follows.

膜が中空糸膜の場合には、中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製し、温度25℃、ろ過差圧16kPaの条件下に、純水の透水量を測定し圧力(50kPa)換算する(Q0、単位=m3/m2・h)。次に、20ppmのフミン酸(試薬、和光純薬工業株式会社製)水溶液をろ過差圧16kPa、温度25℃の条件下に外圧全ろ過で2m3/m2になるようにろ過する。さらに150kPaの逆洗圧力で透過水を1分間供給し、その直後の純水透水量を測定する(Q1)。耐汚れ性の指標としてA=Q1/Q0を用いる。 When the membrane is a hollow fiber membrane, a miniature module having a length of 200 mm consisting of four hollow fiber membranes is prepared, and the water permeation rate of pure water is measured under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. 50 kPa) (Q0, unit = m 3 / m 2 · h). Next, a 20 ppm aqueous solution of humic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.) is filtered to 2 m 3 / m 2 by total external pressure filtration under conditions of a filtration differential pressure of 16 kPa and a temperature of 25 ° C. Further, permeated water is supplied for 1 minute at a backwash pressure of 150 kPa, and the pure water permeation amount immediately after that is measured (Q1). A = Q1 / Q0 is used as an index of stain resistance.

膜が平膜の場合には、直径50mmの円形に切り出し、円筒型のろ過ホルダーにセットし、その他は中空糸膜と同様の操作をする。   When the membrane is a flat membrane, it is cut into a circle with a diameter of 50 mm, set in a cylindrical filtration holder, and the other operations are the same as those for the hollow fiber membrane.

また、分離膜の表面細孔数は、走査電子顕微鏡を用いて写真を撮り、観察される細孔を数えて求める。走査型電子顕微鏡の写真の倍率は5万倍で撮影する。分離膜の表面細孔径は、同じ走査型電子顕微鏡の写真から、20個の任意の細孔の直径を測定し、平均を求める。細孔が楕円形状の場合、短径aと長径bを測定し、(a×b)0.5を等価円直径とする。この場合、表面細孔径は、20個の任意の細孔の等価円直径の平均とする。
<実施例1>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを25重量%、ジメチルホルムアミド(log10Pow=−0.87)を64重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社、商品名イオネットT−20C)を5重量%、デカン(log10Pow=5.98)を3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:10Pa・s)を調製した。この製膜原液をジメチルホルムアミド50重量%水溶液を中空部形成液体として随伴させながら口金から吐出し、温度20℃のジメチルホルムアミド50重量%水溶液からなる凝固浴中で凝固して中空糸膜を作製した。ジメチルホルムアミドとデカンのlog10Powの差は、6.85であった。
The number of surface pores of the separation membrane is obtained by taking a photograph using a scanning electron microscope and counting the number of observed pores. The photo of the scanning electron microscope is taken at a magnification of 50,000 times. The surface pore diameter of the separation membrane is determined by measuring the diameters of 20 arbitrary pores from the same scanning electron microscope photograph and calculating the average. When the pore is elliptical, the minor axis a and the major axis b are measured, and (a × b) 0.5 is taken as the equivalent circular diameter. In this case, the surface pore diameter is the average of the equivalent circular diameters of 20 arbitrary pores.
<Example 1>
25% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 64% by weight of dimethylformamide (log 10 Pow = −0.87), polyoxyethylene coconut oil fatty acid sorbitan (Sanyo Chemical Co., Ltd., trade name) 5% by weight of Ionette T-20C), 3% by weight of decane (log 10 Pow = 5.98) and 3% by weight of water were mixed and dissolved at a temperature of 95 ° C. to form a film-forming stock solution (viscosity: 10 Pa · s) was prepared. The membrane-forming stock solution was discharged from the die while accompanying a 50% by weight aqueous solution of dimethylformamide as a hollow portion forming liquid, and solidified in a coagulation bath comprising a 50% by weight aqueous solution of dimethylformamide at a temperature of 20 ° C. to produce a hollow fiber membrane. . The difference in log 10 Pow between dimethylformamide and decane was 6.85.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は2.45m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.05 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 2.45 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、2.30m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。また、中空糸膜の表面細孔径を求めるにあたって撮影した走査型電子顕微鏡写真を図1に示す。
<実施例2>
デカンをヘキサン(log10Pow=3.61)にかえた以外は実施例1と同様にして製膜原液(粘度:10Pa・s)を調製し、同様にして中空糸膜を作製した。ジメチルホルムアミドとヘキサンのlog10Powの差は、4.48であった。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 2.30 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1. Moreover, the scanning electron micrograph image | photographed when calculating | requiring the surface pore diameter of a hollow fiber membrane is shown in FIG.
<Example 2>
A membrane-forming stock solution (viscosity: 10 Pa · s) was prepared in the same manner as in Example 1 except that decane was changed to hexane (log 10 Pow = 3.61), and a hollow fiber membrane was produced in the same manner. The difference in log 10 Pow between dimethylformamide and hexane was 4.48.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は2.22m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.05 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 2.22 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、2.15m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例3>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを25重量%、ジメチルホルムアミドを61重量%、T−20Cを5重量%、デカンを3重量%、塩化リチウムを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:20Pa・s)を調製した。この製膜原液をジメチルホルムアミド50重量%水溶液を中空部形成液体として随伴させながら口金から吐出し、温度20℃のジメチルホルムアミド50重量%水溶液からなる凝固浴中で凝固して中空糸膜を作製した。ジメチルホルムアミドとデカンのlog10Powの差は、6.85であった。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 2.15 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 3>
25% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 61% by weight of dimethylformamide, 5% by weight of T-20C, 3% by weight of decane, 3% by weight of lithium chloride and 3% by weight of water A film-forming stock solution (viscosity: 20 Pa · s) was prepared by mixing and dissolving at a temperature of 95 ° C. The membrane-forming stock solution was discharged from the die while accompanying a 50% by weight aqueous solution of dimethylformamide as a hollow portion forming liquid, and solidified in a coagulation bath comprising a 50% by weight aqueous solution of dimethylformamide at a temperature of 20 ° C. to produce a hollow fiber membrane. . The difference in log 10 Pow between dimethylformamide and decane was 6.85.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.2μmであった。50kPa、25℃における純水透水量は2.60m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.2 μm. The pure water permeability at 50 kPa and 25 ° C. was 2.60 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、2.45m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<比較例1>
デカンを製膜原液に加えず、その重量%分をジメチルホルムアミドとした以外は実施例1と同様にして製膜原液(粘度:10Pa・s)を調製し、同様にして中空糸膜を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 2.45 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Comparative Example 1>
A membrane-forming stock solution (viscosity: 10 Pa · s) was prepared in the same manner as in Example 1 except that decane was not added to the membrane-forming stock solution and the weight percent thereof was dimethylformamide, and a hollow fiber membrane was produced in the same manner. .

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.023μmであった。50kPa、25℃における純水透水量は2.20m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.023 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 2.20 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.55m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。また、中空糸膜の表面細孔径を求めるにあたって撮影した走査型電子顕微鏡写真を図2に示す。
<比較例2>
デカンを製膜原液に加えず、その重量%分をジメチルホルムアミドとした以外は実施例3と同様にして製膜原液(粘度:20Pa・s)を調製し、同様にして中空糸膜を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.55 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1. Moreover, the scanning electron micrograph image | photographed when calculating | requiring the surface pore diameter of a hollow fiber membrane is shown in FIG.
<Comparative example 2>
A membrane-forming stock solution (viscosity: 20 Pa · s) was prepared in the same manner as in Example 3 except that decane was not added to the membrane-forming stock solution and its weight% was changed to dimethylformamide, and a hollow fiber membrane was produced in the same manner. .

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.03μmであった。50kPa、25℃における純水透水量は2.30m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.03 μm. The pure water permeability at 50 kPa and 25 ° C. was 2.30 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.60m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例4>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、ジメチルアセトアミド(log10Pow=0.77)を76重量%、T−20Cを5重量%、デカンを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:1Pa・s)を調製した。ジメチルアセトアミドとデカンのlog10Powの差は、5.21であった。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.60 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 4>
13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 76% by weight of dimethylacetamide (log 10 Pow = 0.77), 5% by weight of T-20C, 3% by weight of decane and water A film-forming stock solution (viscosity: 1 Pa · s) was prepared by mixing and dissolving at a temperature of 95 ° C. at a rate of 3 wt%. The difference in log 10 Pow between dimethylacetamide and decane was 5.21.

次に、製膜原液を25℃に冷却した後、外径1730μm、内径900μmのポリエステル製筒状支持体に塗布し、塗布後、直ちに25℃の純水中に5分間浸漬し、さらに80℃の熱水に3回浸漬して洗浄し、ポリエステル製筒状支持体表面に多孔質膜を形成させた中空糸膜を作製した。   Next, after the film-forming stock solution is cooled to 25 ° C., it is applied to a polyester cylindrical support having an outer diameter of 1730 μm and an inner diameter of 900 μm. A hollow fiber membrane in which a porous membrane was formed on the surface of a polyester cylindrical support was prepared by immersing it in hot water three times and washing it.

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.12m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.05 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.12 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.03m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例5>
デカンをヘキサンにかえた以外は実施例4と同様にして製膜原液(粘度:1Pa・s)を調製し、同様にして中空糸膜を作製した。ジメチルアセトアミドとヘキサンのlog10Powの差は、2.84であった。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.03 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 5>
A membrane-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 4 except that decane was changed to hexane, and a hollow fiber membrane was produced in the same manner. The difference in log 10 Pow between dimethylacetamide and hexane was 2.84.

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.04m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.05 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.04 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.94m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<比較例3>
デカンをヘキサノールにかえた以外は実施例4と同様にして製膜原液(粘度:1Pa・s)を調製し、同様にして中空糸膜を作製した。ジメチルアセトアミドとヘキサノールのlog10Powの差は、1.26であった。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.94 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Comparative Example 3>
A membrane-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 4 except that decane was changed to hexanol, and a hollow fiber membrane was produced in the same manner. The difference in log 10 Pow between dimethylacetamide and hexanol was 1.26.

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は1.03m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.03 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.80m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.80 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.

log10b−log10a=1.26<2.5の条件では、フミン酸水溶液に対する耐汚れ性を向上させることができなかった。
<比較例4>
デカンを製膜原液に加えず、その重量%分をジメチルアセトアミドとした以外は実施例4と同様にして製膜原液(粘度:1Pa・s)を調製し、同様にして中空糸膜を作製した。
Under the condition of log 10 b-log 10 a = 1.26 <2.5, the stain resistance against the humic acid aqueous solution could not be improved.
<Comparative example 4>
A membrane-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 4 except that decane was not added to the membrane-forming stock solution and the weight percent was changed to dimethylacetamide, and a hollow fiber membrane was produced in the same manner. .

得られた中空糸膜は、外径1.8mm、内径0.9mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は1.00m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.8 mm, an inner diameter of 0.9 mm, and an average pore diameter of 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.00 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.74m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例6>
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。この樹脂溶液をγ−ブチロラクトンを中空部形成液体として随伴させながら口金から吐出し、温度20℃のγ−ブチロラクトン80重量%水溶液からなる冷却浴中で固化してベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.74 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 6>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. This resin solution was discharged from the die while accompanying γ-butyrolactone as a hollow portion forming liquid, and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 20 ° C. to prepare a base hollow fiber.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、N−メチル−2−ピロリドン(log10Pow=−0.11)を76重量%、T−20Cを5重量%、デカンを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:1Pa・s)を調製した。この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。N−メチル−2−ピロリドンとデカンのlog10Powの差は、6.09であった。 Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 76% by weight of N-methyl-2-pyrrolidone (log 10 Pow = −0.11), 5% by weight of T-20C, A film-forming stock solution (viscosity: 1 Pa · s) was prepared by mixing and dissolving decane at 3 wt% and water at 3 wt% at a temperature of 95 ° C. This membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous membrane was formed on the surface of the base hollow fiber. The difference in log 10 Pow between N-methyl-2-pyrrolidone and decane was 6.09.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.05m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.05 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.05 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.99m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例7>
実施例6と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.99 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 7>
A base hollow fiber was produced in the same manner as in Example 6.

デカンをオレイルアルコール(log10Pow=3.5)にかえた以外は実施例4と同様にして製膜原液(粘度:1Pa・s)を調製し、この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。N−メチル−2−ピロリドンとオレイルアルコールのlog10Powの差は、3.61であった。 A membrane-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 4 except that decane was changed to oleyl alcohol (log 10 Pow = 3.5), and this membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber. And hollowed immediately in a water bath to produce a hollow fiber membrane having a porous membrane formed on the surface of the base hollow fiber. The difference in log 10 Pow between N-methyl-2-pyrrolidone and oleyl alcohol was 3.61.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.08μmであった。50kPa、25℃における純水透水量は1.10m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.08 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 1.10 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.05m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例8>
実施例6と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.05 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 8>
A base hollow fiber was produced in the same manner as in Example 6.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、N−メチル−2−ピロリドンを73重量%、T−20Cを5重量%、デカンを3重量%、塩化リチウムを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:5Pa・s)を調製した。この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。N−メチル−2−ピロリドンとデカンのlog10Powの差は、6.09であった。 Next, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 73% by weight of N-methyl-2-pyrrolidone, 5% by weight of T-20C, 3% by weight of decane, 3% of lithium chloride A film-forming stock solution (viscosity: 5 Pa · s) was prepared by mixing and dissolving 3% by weight of water and water at a temperature of 95 ° C. This membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous membrane was formed on the surface of the base hollow fiber. The difference in log 10 Pow between N-methyl-2-pyrrolidone and decane was 6.09.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.2μmであった。50kPa、25℃における純水透水量は1.26m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.2 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 1.26 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.17m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例9>
実施例6と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.17 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 9>
A base hollow fiber was produced in the same manner as in Example 6.

次いで、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、N−メチル−2−ピロリドンを73重量%、T−20Cを5重量%、デカンを3重量%、重量平均分子量2万のポリエチレングリコールを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:1Pa・s)を調製した。この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。N−メチル−2−ピロリドンとデカンのlog10Powの差は、6.09であった。 Subsequently, 13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 73% by weight of N-methyl-2-pyrrolidone, 5% by weight of T-20C, 3% by weight of decane, and a weight average molecular weight of 2 A film-forming stock solution (viscosity: 1 Pa · s) was prepared by mixing and dissolving 3% by weight of polyethylene glycol at 3% by weight and 3% by weight of water at a temperature of 95 ° C. This membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous membrane was formed on the surface of the base hollow fiber. The difference in log 10 Pow between N-methyl-2-pyrrolidone and decane was 6.09.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.1μmであった。50kPa、25℃における純水透水量は1.22m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.1 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 1.22 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.10m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例10>
実施例6と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.10 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 10>
A base hollow fiber was produced in the same manner as in Example 6.

T−20Cをモノステアリン酸ポリオキシエチレンソルビタン(三洋化成株式会社、商品名イオネットT−60C)にかえた以外は実施例1と同様にして製膜原液(粘度:1Pa・s)を調製し、この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。N−メチル−2−ピロリドンとデカンのlog10Powの差は、6.09であった。 A film-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 1 except that T-20C was replaced with polyoxyethylene sorbitan monostearate (Sanyo Kasei Co., Ltd., trade name Ionette T-60C). This membrane-forming stock solution was uniformly applied to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous membrane was formed on the surface of the base hollow fiber. The difference in log 10 Pow between N-methyl-2-pyrrolidone and decane was 6.09.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.05μmであった。50kPa、25℃における純水透水量は1.16m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.05 μm. The pure water permeability at 50 kPa and 25 ° C. was 1.16 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、1.05m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<比較例5>
実施例6と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 1.05 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Comparative Example 5>
A base hollow fiber was produced in the same manner as in Example 6.

デカンを製膜原液に加えず、その重量%分をN−メチル−2−ピロリドンとした以外は実施例6と同様にして製膜原液(粘度:1Pa・s)を調製し、この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。   A film-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 6 except that decane was not added to the film-forming stock solution and its weight% was changed to N-methyl-2-pyrrolidone. Was applied uniformly to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane having a porous membrane formed on the surface of the base hollow fiber.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は0.75m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeability at 50 kPa and 25 ° C. was 0.75 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.51m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<比較例6>
実施例10と同様にしてベース中空糸を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.51 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Comparative Example 6>
A base hollow fiber was produced in the same manner as in Example 10.

デカンを製膜原液に加えず、その重量%分をN−メチル−2−ピロリドンとした以外は実施例10と同様にして製膜原液(粘度:1Pa・s)を調製し、この製膜原液をベース中空糸表面に均一に塗布し、すぐに水浴中で凝固させてベース中空糸表面に多孔質膜を形成させた中空糸膜を作製した。   A film-forming stock solution (viscosity: 1 Pa · s) was prepared in the same manner as in Example 10 except that decane was not added to the film-forming stock solution and its weight% was changed to N-methyl-2-pyrrolidone. Was applied uniformly to the surface of the base hollow fiber and immediately solidified in a water bath to produce a hollow fiber membrane having a porous membrane formed on the surface of the base hollow fiber.

得られた中空糸膜は、外径1.4mm、内径0.8mm、平均細孔径0.02μmであった。50kPa、25℃における純水透水量は0.70m3/m2・hであった(Q0)。 The obtained hollow fiber membrane had an outer diameter of 1.4 mm, an inner diameter of 0.8 mm, and an average pore diameter of 0.02 μm. The pure water permeation rate at 50 kPa and 25 ° C. was 0.70 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、0.47m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例11>
重量平均分子量28.4万のフッ化ビニリデンホモポリマーを13重量%、ジメチルアセトアミドを76重量%、T−20Cを5重量%、デカンを3重量%および水を3重量%の割合で95℃の温度で混合溶解して製膜原液(粘度:0.3Pa・s)を調製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 0.47 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 11>
13% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 76% by weight of dimethylacetamide, 5% by weight of T-20C, 3% by weight of decane and 3% by weight of water at 95 ° C. A film-forming stock solution (viscosity: 0.3 Pa · s) was prepared by mixing and dissolving at a temperature.

次に、製膜原液を25℃に冷却した後、密度が0.48g/cm3、厚みが220μmのポリエステル繊維製不織布に塗布し、塗布後、直ちに25℃の純水中に5分間浸漬し、さらに80℃の熱水に3回浸漬して洗浄し、平膜を得た。ジメチルアセトアミドとデカンのlog10Powの差は、5.21であった
得られた平膜の平均細孔径は、0.05μmであった。50kPa、25℃における純水透水量は6.66m3/m2・hであった(Q0)。
Next, after the film-forming stock solution is cooled to 25 ° C., it is applied to a non-woven fabric made of polyester fiber having a density of 0.48 g / cm 3 and a thickness of 220 μm. Immediately after application, it is immersed in pure water at 25 ° C. for 5 minutes. Further, the film was immersed in hot water at 80 ° C. three times for washing to obtain a flat film. The difference in log 10 Pow between dimethylacetamide and decane was 5.21. The average pore diameter of the obtained flat membrane was 0.05 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 6.66 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、6.20m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<実施例12>
デカンをヘプタン(log10Pow=4.66)にかえた以外は実施例11と同様にして製膜原液(粘度:0.3Pa・s)を調製し、同様にして平膜を作製した。ジメチルアセトアミドとヘプタンのlog10Powの差は、3.89であった
得られた平膜の平均細孔径は、0.04μmであった。50kPa、25℃における純水透水量は6.48m3/m2・hであった(Q0)。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeation rate was 6.20 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Example 12>
A film-forming stock solution (viscosity: 0.3 Pa · s) was prepared in the same manner as in Example 11 except that decane was changed to heptane (log 10 Pow = 4.66), and a flat membrane was produced in the same manner. The difference in log 10 Pow between dimethylacetamide and heptane was 3.89. The average pore diameter of the obtained flat membrane was 0.04 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 6.48 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、6.10m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。
<比較例7>
デカンを製膜原液に加えず、その重量%分をジメチルアセトアミドとした以外は実施例11と同様にして製膜原液(粘度:0.3Pa・s)を調製し、同様にして平膜を作製した。
The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 6.10 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.
<Comparative Example 7>
A film-forming stock solution (viscosity: 0.3 Pa · s) was prepared in the same manner as in Example 11 except that decane was not added to the film-forming stock solution and its weight% was changed to dimethylacetamide. did.

得られた平膜の平均細孔径は、0.02μmであった。50kPa、25℃における純水透水量は6.35m3/m2・hであった(Q0)。 The average pore diameter of the obtained flat membrane was 0.02 μm. The pure water permeation amount at 50 kPa and 25 ° C. was 6.35 m 3 / m 2 · h (Q0).

フミン酸水溶液を温度25℃、ろ過差圧16kPaの条件下に、2m3/m2になるようにろ過し、逆洗した。純水透水量は、5.35m3/m2・hであった(Q1)。なお、評価結果を表1にまとめた。 The aqueous humic acid solution was filtered to 2 m 3 / m 2 under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and backwashed. The pure water permeability was 5.35 m 3 / m 2 · h (Q1). The evaluation results are summarized in Table 1.

本発明の製膜原液によって製造される分離膜は、水処理分野であれば浄水処理、上水処理、排水処理、工業用水製造などで利用でき、河川水、湖沼水、地下水、海水、下水、排水などを被処理水とすることができる。   Separation membranes produced by the membrane-forming stock solution of the present invention can be used in water treatment fields such as water purification, water treatment, wastewater treatment, industrial water production, river water, lake water, groundwater, seawater, sewage, Waste water or the like can be treated water.

実施例1の方法により製造した中空糸膜の外表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the outer surface of a hollow fiber membrane produced by the method of Example 1. FIG. 比較例1の方法により製造した中空糸膜の外表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the outer surface of a hollow fiber membrane produced by the method of Comparative Example 1.

Claims (6)

熱可塑性樹脂、該熱可塑性樹脂を溶解する溶媒、界面活性剤および該溶媒と非混和性の物質を含有することを特徴とする製膜原液。   A film-forming stock solution comprising a thermoplastic resin, a solvent for dissolving the thermoplastic resin, a surfactant, and a substance immiscible with the solvent. 熱可塑性樹脂、該熱可塑性樹脂を溶解するオクタノール/水分配係数がaである溶媒、界面活性剤およびオクタノール/水分配係数がbである物質を含有する製膜原液であって、不等式log10b−log10a>2.5を満足することを特徴とする製膜原液。 A film-forming stock solution containing a thermoplastic resin, a solvent that dissolves the thermoplastic resin with an octanol / water partition coefficient of a, a surfactant, and a substance with an octanol / water partition coefficient of b, the inequality log 10 b A film-forming stock solution satisfying -log 10 a> 2.5. 前記溶媒と非混和性物質またはオクタノール/水分配係数がbである物質が、飽和脂肪族炭化水素、不飽和脂肪族炭化水素、高級アルコール、高級脂肪酸およびエーテルからなる群から選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の製膜原液。   The solvent immiscible substance or the substance having an octanol / water partition coefficient b is at least one selected from the group consisting of saturated aliphatic hydrocarbons, unsaturated aliphatic hydrocarbons, higher alcohols, higher fatty acids and ethers. The film-forming stock solution according to claim 1 or 2, wherein 前記熱可塑性樹脂が、ポリフッ化ビニリデン系樹脂であることを特徴とする請求項1〜3のいずれかに記載の製膜原液。   The said thermoplastic resin is a polyvinylidene fluoride resin, The film forming undiluted | stock solution in any one of Claims 1-3 characterized by the above-mentioned. 粘度が0.01Pa・s〜5Pa・sの範囲内であることを特徴とする請求項1〜4のいずれかに記載の製膜原液。   Viscosity is in the range of 0.01 Pa · s to 5 Pa · s, the film-forming stock solution according to any one of claims 1 to 4. 請求項1〜5のいずれかに記載の製膜原液を用いて得られた分離膜。   A separation membrane obtained using the membrane-forming stock solution according to claim 1.
JP2003390292A 2003-11-20 2003-11-20 Membrane stock solution for separation membrane and separation membrane Expired - Fee Related JP4572531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390292A JP4572531B2 (en) 2003-11-20 2003-11-20 Membrane stock solution for separation membrane and separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390292A JP4572531B2 (en) 2003-11-20 2003-11-20 Membrane stock solution for separation membrane and separation membrane

Publications (3)

Publication Number Publication Date
JP2005146230A true JP2005146230A (en) 2005-06-09
JP2005146230A5 JP2005146230A5 (en) 2009-06-04
JP4572531B2 JP4572531B2 (en) 2010-11-04

Family

ID=34696722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390292A Expired - Fee Related JP4572531B2 (en) 2003-11-20 2003-11-20 Membrane stock solution for separation membrane and separation membrane

Country Status (1)

Country Link
JP (1) JP4572531B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185562A (en) * 2006-01-11 2007-07-26 Toyobo Co Ltd Polyvinylidene fluoride based hollow fiber type fine porous membrane and its manufacturing method
JP2007283287A (en) * 2006-03-24 2007-11-01 Toray Ind Inc Poly(vinylidene fluoride) based porous separating membrane
WO2008012872A1 (en) * 2006-07-25 2008-01-31 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
WO2009050850A1 (en) * 2007-10-19 2009-04-23 Kawasaki Jukogyo Kabushiki Kaisha Separation membrane comprising polyethersulfone, process for production thereof, and stock solution for production of film
JP2010526885A (en) * 2006-11-21 2010-08-05 アーケマ・インコーポレイテッド Caustic resistant film
KR101068437B1 (en) 2008-12-30 2011-09-28 웅진케미칼 주식회사 Porous pvdf membranes with improved water permeability and chemical resistance and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214904A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Process of turning surface of hydrophobic microporous filter membrane hydrophilic
JPH03186324A (en) * 1989-12-15 1991-08-14 Nok Corp Preparation of porous hollow yarn membrane
JPH0523557A (en) * 1991-07-24 1993-02-02 Asahi Chem Ind Co Ltd Hydrophilic heat-resistant film and its manufacture
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
JP2003138422A (en) * 2001-11-02 2003-05-14 Toray Ind Inc Method for producing hollow fiber membrane and hollow fiber membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214904A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Process of turning surface of hydrophobic microporous filter membrane hydrophilic
JPH03186324A (en) * 1989-12-15 1991-08-14 Nok Corp Preparation of porous hollow yarn membrane
JPH0523557A (en) * 1991-07-24 1993-02-02 Asahi Chem Ind Co Ltd Hydrophilic heat-resistant film and its manufacture
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
JP2003138422A (en) * 2001-11-02 2003-05-14 Toray Ind Inc Method for producing hollow fiber membrane and hollow fiber membrane module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185562A (en) * 2006-01-11 2007-07-26 Toyobo Co Ltd Polyvinylidene fluoride based hollow fiber type fine porous membrane and its manufacturing method
US8708161B2 (en) 2006-01-11 2014-04-29 Toyo Boseki Kabushiki Kaisha Polyvinylidene fluoride hollow fiber microporous membrane and process for production of the same
JP2007283287A (en) * 2006-03-24 2007-11-01 Toray Ind Inc Poly(vinylidene fluoride) based porous separating membrane
US8205754B2 (en) 2006-07-25 2012-06-26 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
AU2006346599B8 (en) * 2006-07-25 2011-06-09 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
AU2006346599A8 (en) * 2006-07-25 2011-06-09 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
KR101292485B1 (en) 2006-07-25 2013-08-01 도레이 카부시키가이샤 Fluororesin polymer separation membrane and process for producing the same
WO2008012872A1 (en) * 2006-07-25 2008-01-31 Toray Industries, Inc. Fluororesin polymer separation membrane and process for producing the same
JP2010526885A (en) * 2006-11-21 2010-08-05 アーケマ・インコーポレイテッド Caustic resistant film
US9327247B2 (en) 2006-11-21 2016-05-03 Arkema Inc. Caustic resistant membrane
JP2009095812A (en) * 2007-10-19 2009-05-07 Kawasaki Heavy Ind Ltd Separation membrane consisting of polyethersulfone, method for manufacturing the same, and undiluted solution of deposition
WO2009050850A1 (en) * 2007-10-19 2009-04-23 Kawasaki Jukogyo Kabushiki Kaisha Separation membrane comprising polyethersulfone, process for production thereof, and stock solution for production of film
CN101790413B (en) * 2007-10-19 2013-05-08 川崎重工业株式会社 Separation membrane comprising polyethersulfone, process for production thereof, and stock solution for production of film
US8505746B2 (en) 2007-10-19 2013-08-13 Kawasaki Jukogyo Kabushiki Kaisha Separation membrane comprising polyethersulfone, process for producing thereof, and dope solution for membrane production
KR101068437B1 (en) 2008-12-30 2011-09-28 웅진케미칼 주식회사 Porous pvdf membranes with improved water permeability and chemical resistance and manufacturing method thereof

Also Published As

Publication number Publication date
JP4572531B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR100980571B1 (en) Porous Membrane and Method for Manufacturing the Same
TW567089B (en) Porous hollow fiber membranes and method of making the same
JP5066810B2 (en) Polymer separation membrane and production method thereof
WO2008018181A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
JP6484171B2 (en) Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
JP2014076446A (en) Highly durable pvdf porous membrane and method of producing the same, and washing method and filtration method using the same
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
WO2008012872A1 (en) Fluororesin polymer separation membrane and process for producing the same
JP4572531B2 (en) Membrane stock solution for separation membrane and separation membrane
JP5109263B2 (en) Fluororesin polymer separation membrane and method for producing the same
JP2006231274A (en) Hollow fiber membrane, hollow fiber membrane module using it, membrane filtering device and water treating method
JP2005194461A (en) Fluorinated vinylidene resin porous film and method for producing the same
JP6839766B2 (en) Filtration method using a porous membrane
JP2008036559A (en) Method of oxidization processing fluororesin-based polymer separation membrane
WO2019045069A1 (en) Porous hollow fiber membrane, production method for porous hollow fiber membrane, and filtration method
JP4380380B2 (en) Method for producing liquid separation membrane
US11471834B2 (en) Filtration method using porous membrane
JP2018144006A (en) Porous hollow fiber membrane and manufacturing method of the same
JP3979751B2 (en) Method for filtering oxidant-containing water
JP2017001029A (en) Multilayer separation film
JP2005193201A (en) Hydrophilic hollow fiber membrane and its production method
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP2005193200A (en) Hollow fiber membrane having excellent mechanical strength and its production method
JP2018015734A (en) Adsorbent-containing separation membrane and method for manufacturing the same
US11492577B2 (en) Method for manufacturing brewed alcoholic beverage using porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees