JP2017001029A - Multilayer separation film - Google Patents

Multilayer separation film Download PDF

Info

Publication number
JP2017001029A
JP2017001029A JP2016115890A JP2016115890A JP2017001029A JP 2017001029 A JP2017001029 A JP 2017001029A JP 2016115890 A JP2016115890 A JP 2016115890A JP 2016115890 A JP2016115890 A JP 2016115890A JP 2017001029 A JP2017001029 A JP 2017001029A
Authority
JP
Japan
Prior art keywords
layer
porous
adsorption layer
porous adsorption
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016115890A
Other languages
Japanese (ja)
Inventor
皓一 高田
Koichi Takada
皓一 高田
花川 正行
Masayuki Hanakawa
正行 花川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017001029A publication Critical patent/JP2017001029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer separation film that is high in the ability to remove underwater suspended components and the ability to adsorb and remove metal ions and has high strength.SOLUTION: A multilayer separation film at least has a porous adsorption layer comprising a fine particle having a chelating functional group, and a porous support layer.SELECTED DRAWING: None

Description

本発明は、飲料水製造、工業用水製造、浄水処理、排水処理、海水淡水化、工業用水製造などの各種水処理に好適な濁質除去能と金属イオンなどの特定化合物除去能を併せ有する多層分離膜に関する。   The present invention is a multilayer having both turbidity removal ability suitable for various water treatment such as drinking water production, industrial water production, water purification treatment, wastewater treatment, seawater desalination, industrial water production and the removal of specific compounds such as metal ions. It relates to a separation membrane.

近年、分離膜は、浄水処理、排水処理などの水処理分野、血液浄化などの医療用途、食品工業分野、電池用セパレーター、荷電膜、燃料電池用電解質膜等様々な方面で利用されている。   In recent years, separation membranes have been used in various fields such as water treatment fields such as water purification treatment and wastewater treatment, medical applications such as blood purification, food industry fields, battery separators, charged membranes, fuel cell electrolyte membranes and the like.

とりわけ飲料水製造分野や工業用水製造分野、すなわち浄水処理用途や排水処理用途、海水淡水化用途などの水処理分野においては、従来の砂濾過、凝集沈殿、蒸発法の代替や、処理水質向上のために、分離膜が用いられるようになっている。これらの分野では処理水量が大きいため、分離膜の透水性能が優れていれば、膜面積を減らすことが可能となり、装置がコンパクトになるため設備費が節約でき、膜交換費や設置面積の点からも有利になってくる。   Especially in the field of drinking water production and industrial water production, i.e. water treatment such as water purification treatment, wastewater treatment, seawater desalination, etc., it is possible to replace conventional sand filtration, coagulation sedimentation, evaporation methods, and improve treatment water quality. Therefore, a separation membrane is used. Since the amount of treated water is large in these fields, if the water permeability of the separation membrane is excellent, it is possible to reduce the membrane area, and the equipment can be reduced because the equipment is compact, and the membrane replacement cost and installation area are reduced. Will also be advantageous.

水処理用の分離膜は、被処理水に含まれる分離対象物質の大きさに応じたものが用いられる。通常、自然水は濁質成分を多く含有するため、水中の濁質成分除去のための精密ろ過膜や限外ろ過膜が一般的に使用されている。ここで、被処理水によっては、有害な金属イオンを含有している場合があるが、イオン類は小さすぎて、精密濾過膜や限外濾過膜で除去することができない。このため、濁質成分除去のための除濁工程以外に、水中の金属イオン除去のための工程が必要であった。   As the separation membrane for water treatment, one according to the size of the separation target substance contained in the water to be treated is used. Usually, since natural water contains many turbid components, microfiltration membranes and ultrafiltration membranes for removing turbid components in water are generally used. Here, depending on the water to be treated, harmful metal ions may be contained, but the ions are too small to be removed by a microfiltration membrane or an ultrafiltration membrane. For this reason, in addition to the turbidity removal process for removing turbid components, a process for removing metal ions in water is required.

一方、水中の金属イオンの除去には、イオン交換樹脂による吸着除去、キレート樹脂による吸着除去、セリウム化合物などの無機吸着剤による吸着除去(特許文献1)が知られている。しかしながら、吸着塔などの設備費、樹脂の初期投資、樹脂の再生費などの経済性の問題だけでなく、水中の濁質成分が吸着剤に吸着することによる水路閉塞といった実用上の問題がある。このため、金属イオン除去のための吸着工程以外に、水中の濁質成分除去のための工程が必要であった。   On the other hand, for removal of metal ions in water, adsorption removal using an ion exchange resin, adsorption removal using a chelate resin, and adsorption removal using an inorganic adsorbent such as a cerium compound (Patent Document 1) are known. However, there are practical problems such as clogging of water channels due to adsorption of turbid components in water to the adsorbent as well as economic problems such as equipment costs such as adsorption tower, initial investment of resin, resin regeneration cost, etc. . For this reason, in addition to the adsorption process for removing metal ions, a process for removing turbid components in water is necessary.

この他、表面または表面層にのみグラフト重合でキレート性官能基を有する吸着層を設けた膜(特許文献2)、多孔質膜の表面や細孔内表面にグラフト重合でメタクリル酸グリシジルを導入後、ここに化学的にキレート性官能基を導入した膜(特許文献3)が知られている。これらの場合、多孔質膜を得た後にグラフト重合および修飾といった操作が必要であり、製造工程が煩雑になる他、水中の濁質成分による吸着や水路閉塞といった問題があった。キレート性官能基を設けた布状基材(特許文献4)、キレート性官能基含有繊維(特許文献5)も知られているが、いずれも水中の濁質成分による吸着や水路閉塞といった実用上の問題があり、金属イオン除去のための吸着工程以外に、水中の濁質成分除去のための工程が必要であった。   In addition to this, a membrane provided with an adsorption layer having a chelating functional group by graft polymerization only on the surface or surface layer (Patent Document 2), and after introducing glycidyl methacrylate by graft polymerization on the surface of the porous membrane or the surface in the pores A film (Patent Document 3) in which a chelating functional group is chemically introduced is known. In these cases, operations such as graft polymerization and modification are required after obtaining the porous membrane, which complicates the production process and causes problems such as adsorption by turbid components in water and blockage of water channels. A cloth-like base material provided with a chelating functional group (Patent Document 4) and a chelating functional group-containing fiber (Patent Document 5) are also known. In addition to the adsorption process for removing metal ions, a process for removing turbid components in water was necessary.

ここで、除濁除去と吸着除去を同時に行うための複合分離膜(特許文献6)が開示されている。三次元網目状構造を有する層と、吸着剤を含有する多孔質構造の層とを有する複合分離膜によるろ過によって、優れた耐ファウリング性の獲得と、海水からの濁質除去と金属イオン(ホウ素)除去が可能とされている。   Here, a composite separation membrane (Patent Document 6) for simultaneously performing turbidity removal and adsorption removal is disclosed. By filtration through a composite separation membrane having a layer with a three-dimensional network structure and a porous layer containing an adsorbent, it is possible to obtain excellent fouling resistance, remove turbidity from seawater, and metal ions ( Boron) can be removed.

特開2007−160271号公報JP 2007-160271 A 特開昭58−205543号公報JP 58-205543 A 特開平7−24314号公報Japanese Patent Laid-Open No. 7-24314 特開2005−74378号公報JP 2005-74378 A 特開平4−83532号公報JP-A-4-83532 特開2010―227757号公報JP 2010-227757 A

しかし、従来の膜では吸着効率が低く、吸着効率を上げようとして吸着剤を増量させると、膜の強度が低下するという問題がある。   However, the conventional membrane has a low adsorption efficiency, and there is a problem that the strength of the membrane decreases when the amount of adsorbent is increased in order to increase the adsorption efficiency.

本発明は、上記従来技術の課題に鑑み、膜の強度と吸着効率とを両立できる膜を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a film that can achieve both the strength of the film and the adsorption efficiency.

上記目的を達成するために、本発明は以下の構成を含む。
(1)キレート性官能基を有する微粒子およびベースポリマーを含有する多孔質吸着層と、
多孔質支持層と
を備える多層分離膜。
(2)前記キレート性官能基を有する微粒子の粒径が0.15μm〜3μmである、前記(1)に記載の多層分離膜。
(3)前記多孔質吸着層が三次元網目構造または球状構造の少なくとも一方を有する、
前記(1)または前記(2)に記載の多層分離膜。
(4)前記多孔質吸着層が、除濁を担う表面を有する、前記(1)〜(3)のいずれかに記載の多層分離膜。
(5)前記多孔質吸着層の断面をエネルギー分散型X線分析で元素分析した際のキレート性官能基由来原子の原子数(%)の平均値Xと標準偏差YがX≧3Yを満たす、
前記(1)〜(4)のいずれかに記載の多層分離膜。
(6)キレート性官能基由来原子が、N、O、P、S、Na、K、Cu、FeおよびBからなる群から選ばれる少なくとも一種である、前記(5)に記載の多層分離膜。
(7)前記多孔質吸着層の厚みが10μm以上500μm以下である、前記(1)〜(6)のいずれかに記載の多層分離膜。
(8)外径が800μm以上2000μm以下の中空糸膜である、前記(1)〜(7)のいずれかに記載の多層分離膜。
(9)50kPa、25℃における純水透過性能が0.01m/m・hr以上10m/m・hr以下、破断強度が6MPa以上、破断伸度が10%以上である、前記(1)〜(8)のいずれかに記載の多層分離膜。
(10)前記多孔質吸着層が、熱誘起相分離法および/または非溶媒誘起相分離法で得られた層である、前記(1)〜(9)のいずれかに記載の多層分離膜。
(11)前記多孔質支持層が、熱誘起相分離法および/または非溶媒誘起相分離法で得られた層である、前記(1)〜(10)のいずれかに記載の多層分離膜。
In order to achieve the above object, the present invention includes the following configurations.
(1) a porous adsorption layer containing fine particles having a chelating functional group and a base polymer;
A multilayer separation membrane comprising a porous support layer.
(2) The multilayer separation membrane according to (1), wherein the fine particles having a chelating functional group have a particle size of 0.15 μm to 3 μm.
(3) The porous adsorption layer has at least one of a three-dimensional network structure or a spherical structure,
The multilayer separation membrane according to (1) or (2).
(4) The multilayer separation membrane according to any one of (1) to (3), wherein the porous adsorption layer has a surface responsible for turbidity.
(5) The average value X of the number of atoms (%) of the chelating functional group-derived atoms and the standard deviation Y satisfy X ≧ 3Y when the cross section of the porous adsorption layer is subjected to elemental analysis by energy dispersive X-ray analysis.
The multilayer separation membrane according to any one of (1) to (4).
(6) The multilayer separation membrane according to (5), wherein the chelating functional group-derived atom is at least one selected from the group consisting of N, O, P, S, Na, K, Cu, Fe, and B.
(7) The multilayer separation membrane according to any one of (1) to (6), wherein the porous adsorption layer has a thickness of 10 μm or more and 500 μm or less.
(8) The multilayer separation membrane according to any one of (1) to (7), which is a hollow fiber membrane having an outer diameter of 800 μm or more and 2000 μm or less.
(9) The pure water permeation performance at 50 kPa and 25 ° C. is 0.01 m 3 / m 2 · hr or more and 10 m 3 / m 2 · hr or less, the breaking strength is 6 MPa or more, and the breaking elongation is 10% or more, The multilayer separation membrane according to any one of 1) to (8).
(10) The multilayer separation membrane according to any one of (1) to (9), wherein the porous adsorption layer is a layer obtained by a thermally induced phase separation method and / or a non-solvent induced phase separation method.
(11) The multilayer separation membrane according to any one of (1) to (10), wherein the porous support layer is a layer obtained by a thermally induced phase separation method and / or a non-solvent induced phase separation method.

本発明の多層分離膜は、キレート性官能基を有する微粒子を有する多孔質吸着層と支持層とを備える。その結果、多層分離膜は、金属イオンに対する極めて高い吸着効率と高い膜強度とを示すことができる。   The multilayer separation membrane of the present invention includes a porous adsorption layer having fine particles having a chelating functional group and a support layer. As a result, the multilayer separation membrane can exhibit extremely high adsorption efficiency for metal ions and high membrane strength.

[1.多層分離膜]
本発明の多層分離膜は、多孔質吸着層(以下、単に「吸着層」と称することがある)と、多孔質支持層(以下、単に「支持層」と称することがある)を含むことを特徴とする。
[1. Multilayer separation membrane]
The multilayer separation membrane of the present invention includes a porous adsorption layer (hereinafter sometimes simply referred to as “adsorption layer”) and a porous support layer (hereinafter sometimes simply referred to as “support layer”). Features.

(1−1)多孔質吸着層
多孔質吸着層は、多孔構造を有するベースポリマーと、キレート性官能基を有する微粒子(以下、単に「キレート微粒子」と称することがある)を少なくとも備える。
(1-1) Porous adsorption layer The porous adsorption layer includes at least a base polymer having a porous structure and fine particles having a chelating functional group (hereinafter sometimes simply referred to as “chelate fine particles”).

ベースポリマーとして、公知のポリマーを含有することができる。公知の種々のポリマーとしては、例えば、ポリエチレン、ポリプロピレン、アクリル樹脂、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリスチレン、アクリロニトリル−スチレン(AS)樹脂、塩化ビニル樹脂、セルロースエステル、ポリエチレンテレフタレート、ポリアミド、ポリアセタール、ポリカーボネート、変成ポリフェニレンエーテル、ポリフェニレンスルフィド、フッ素樹脂系ポリマー、ポリアミドイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホンおよびこれらの混合物や共重合体が挙げられる。これらと混和可能な他の樹脂を混和してもよい。   A known polymer can be contained as the base polymer. Examples of known various polymers include polyethylene, polypropylene, acrylic resin, polyacrylonitrile, acrylonitrile-butadiene-styrene (ABS) resin, polystyrene, acrylonitrile-styrene (AS) resin, vinyl chloride resin, cellulose ester, polyethylene terephthalate, Polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, fluororesin-based polymer, polyamideimide, polyetherimide, polysulfone, polyethersulfone, and mixtures and copolymers thereof can be mentioned. Other resins miscible with these may be mixed.

なお、本発明におけるフッ素樹脂系ポリマーとは、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことである。複数の種類のフッ化ビニリデン共重合体を含有していてもよい。フッ化ビニリデン共重合体としては、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれる少なくとも1種とフッ化ビニリデンとの共重合体が挙げられる。   The fluororesin-based polymer in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of the vinylidene fluoride copolymer include a copolymer of vinylidene fluoride and at least one selected from vinyl fluoride, tetrafluoroethylene, propylene hexafluoride, and ethylene trifluoride chloride.

また、フッ素樹脂系高分子の重量平均分子量は、要求される高分子分離膜の強度と透水性能によって適宜選択すればよいが、重量平均分子量が大きくなると透水性能が低下し、重量平均分子量が小さくなると強度が低下する。このため、重量平均分子量は5万以上100万以下が好ましい。高分子分離膜が薬液洗浄に晒される水処理用途の場合、重量平均分子量は10万以上70万以下が好ましく、さらに15万以上60万以下が好ましい。   The weight average molecular weight of the fluororesin-based polymer may be appropriately selected depending on the required strength and water permeability of the polymer separation membrane, but as the weight average molecular weight increases, the water permeability performance decreases and the weight average molecular weight decreases. As a result, the strength decreases. For this reason, the weight average molecular weight is preferably from 50,000 to 1,000,000. In the case of a water treatment application where the polymer separation membrane is exposed to chemical cleaning, the weight average molecular weight is preferably from 100,000 to 700,000, more preferably from 150,000 to 600,000.

キレート性官能基とは、特定の金属イオンと相互作用して選択的に吸着することができる官能基のことである。キレート性官能基に含まれる窒素、酸素、硫黄、リンなどの電子供与性原子が金属イオンに配位し5員環や6員環のような安定なキレートを形成することで特定の金属イオンを選択的に吸着する。キレート性官能基と除去対象となる金属イオンをこの項で例示するが、本発明はそれらの組み合わせに限定されるものではなく、除去対象金属イオンとの相性を元に適宜選択して用いることができる。例えば、窒素原子と酸素原子を含むキレート性官能基のイミノ二酢酸基は、鉄、銅、マンガン、鉛、カドミウム、水銀、クロム等の金属イオンを選択的に吸着するのに好適である。アミドキシム基は、鉄、マンガン、鉛、カドミウム、コバルト、ニッケル、バナジウム、チタン、銅、クロム等の金属イオンを選択的に吸着するのに好適である。また、N−メチル−グルカミン基はホウ素を選択的に吸着するのに好適である。硫黄原子を含むキレート性官能基として、例えば、メルカプト基は砒素、ジチオカルバミン酸基やチオ尿素基は水銀を選択的に吸着するのに好適である。アミノリン酸基は、リン原子を含むキレート性官能基であり、鉄、銅、鉛、亜鉛、アルミニウム、ニッケル、マンガン、チタン、コバルト、カドミウム等の金属イオンを選択的に吸着するのに好適である。イミノ二酢酸基やアミノリン酸基などカルボキシ基やリン酸基を有するキレート性官能基の場合、H型だけでなく、ナトリウム塩やカリウム塩などの塩型もあり、必要に応じてアルカリや酸で変換することができる。   The chelating functional group is a functional group that can selectively adsorb by interacting with a specific metal ion. Electron donating atoms such as nitrogen, oxygen, sulfur, and phosphorus contained in the chelating functional group coordinate to the metal ion to form a stable chelate such as a 5-membered ring or 6-membered ring. Adsorb selectively. The chelating functional group and the metal ion to be removed are exemplified in this section, but the present invention is not limited to the combination thereof, and may be appropriately selected and used based on the compatibility with the metal ion to be removed. it can. For example, an iminodiacetic acid group of a chelating functional group containing a nitrogen atom and an oxygen atom is suitable for selectively adsorbing metal ions such as iron, copper, manganese, lead, cadmium, mercury, and chromium. The amidoxime group is suitable for selectively adsorbing metal ions such as iron, manganese, lead, cadmium, cobalt, nickel, vanadium, titanium, copper, and chromium. Further, the N-methyl-glucamine group is suitable for selectively adsorbing boron. As a chelating functional group containing a sulfur atom, for example, a mercapto group is suitable for selectively adsorbing arsenic, and a dithiocarbamic acid group or a thiourea group. An aminophosphate group is a chelating functional group containing a phosphorus atom, and is suitable for selectively adsorbing metal ions such as iron, copper, lead, zinc, aluminum, nickel, manganese, titanium, cobalt, and cadmium. . In the case of chelating functional groups having a carboxy group or a phosphate group, such as an iminodiacetic acid group or an aminophosphate group, not only the H type but also a salt type such as a sodium salt or a potassium salt can be used with an alkali or acid as necessary. Can be converted.

キレート性官能基を有するポリマーとは、上述したキレート性官能基を主鎖および/または側鎖に有するポリマーである。キレート性官能基を有するポリマーは架橋構造を有していても良く、この場合、キレート性官能基を有するポリマーの溶出や膨潤を抑制する効果が得られる点で好ましい。   The polymer having a chelating functional group is a polymer having the above-described chelating functional group in the main chain and / or side chain. The polymer having a chelating functional group may have a crosslinked structure, and in this case, it is preferable in that an effect of suppressing elution and swelling of the polymer having a chelating functional group is obtained.

キレート性官能基をポリマーに導入する方法としては、公知の方法を用いればよく、例えばポリマーにキレート性官能基を化学反応で導入する方法、モノマーにキレート性官能基を化学反応で導入した後、同モノマーを重合してホモポリマーとする方法、他モノマーと共重合してコポリマーとする方法などが挙げられる。導入するキレート性官能基は一種類でもよいし、異なる複数種類のキレート性官能基でもよい。   As a method for introducing a chelating functional group into a polymer, a known method may be used, for example, a method of introducing a chelating functional group into a polymer by a chemical reaction, after introducing a chelating functional group into a monomer through a chemical reaction, Examples thereof include a method of polymerizing the monomer to make a homopolymer, and a method of copolymerizing with another monomer to make a copolymer. The chelating functional group to be introduced may be one kind or a plurality of different chelating functional groups.

キレート微粒子とは、キレート性官能基を有するポリマーを少なくとも含有する微粒子のことであり、表面にキレート性官能基を有するものや、空孔部にキレート性官能基が露出している多孔体が好ましく用いられる。   The chelate fine particles are fine particles containing at least a polymer having a chelating functional group, and those having a chelating functional group on the surface or a porous body having a chelating functional group exposed in the pores are preferable. Used.

キレート微粒子を得る方法としては、公知のナノ粒子調製方法などを用いればよく、分散重合、乳化重合、懸濁重合、シード重合、溶媒蒸発法などの他、上述のようにして得られたキレート性官能基を有するポリマーや、市販のキレートポリマーを破砕する方法、無機粒子またはポリマー微粒子へのキレート性官能基の表面修飾等が例示される。キレートポリマーを破砕する方法の具体例としては、ボールミル、遊星ボールミル、ビーズミル、ジェットミル、ローラーミル、凍結粉砕などが例示される。   As a method for obtaining chelate fine particles, a known nanoparticle preparation method or the like may be used. In addition to dispersion polymerization, emulsion polymerization, suspension polymerization, seed polymerization, solvent evaporation method, etc., chelating properties obtained as described above. Examples thereof include a polymer having a functional group, a method of crushing a commercially available chelate polymer, surface modification of a chelating functional group to inorganic particles or polymer fine particles, and the like. Specific examples of the method for crushing the chelate polymer include a ball mill, a planetary ball mill, a bead mill, a jet mill, a roller mill, and freeze pulverization.

キレート微粒子の粒子形状は球状、楕円状、突起などを有する異型状、多孔状のものなどが例示されるが、いずれの形状でも利用でき、複数の形状の粒子を混合して用いることも出来る。   Examples of the particle shape of the chelate fine particles include a spherical shape, an elliptical shape, an irregular shape having protrusions, and a porous shape. Any shape can be used, and a plurality of shapes of particles can be mixed and used.

本発明に用いるキレート微粒子の粒径は、平均粒径0.15〜3μmの範囲にあることが好ましい。粒径が0.15μm以上であることで、キレート性官能基の高い親水性に起因したマクロボイドの発生を低減することができ、均一な表面孔径を備えるので、吸着層が最外層となる場合に高い耐ファウリング性を得ることが出来る。上限が3μm以下であることで吸着層中にキレート性官能基を均一に分散させることが出来、良好な金属イオン除去性能を得る。好ましくは0.2〜1.5μm、より好ましくは0.3〜1.0μmである。なお、粒径分布が狭いとヘテロ凝集が起こりにくく、溶液中での分散安定性が向上するため好ましい。粒子径はSEM等を用いて膜中のキレート微粒子の写真を撮り、20個以上、好ましくは30個以上の粒子直径を測定し、数平均して求める。形状が円以外の場合には、その形状に内接する円の直径をa、外接する円の直径をbとすると、(a×b)0.5を等価円直径として求める。 The particle diameter of the chelate fine particles used in the present invention is preferably in the range of an average particle diameter of 0.15 to 3 μm. When the particle size is 0.15 μm or more, the generation of macrovoids due to the high hydrophilicity of the chelating functional group can be reduced, and since the uniform surface pore diameter is provided, the adsorption layer becomes the outermost layer High fouling resistance can be obtained. When the upper limit is 3 μm or less, the chelating functional group can be uniformly dispersed in the adsorption layer, and good metal ion removal performance can be obtained. Preferably it is 0.2-1.5 micrometers, More preferably, it is 0.3-1.0 micrometer. A narrow particle size distribution is preferable because heteroaggregation hardly occurs and the dispersion stability in the solution is improved. The particle diameter is obtained by taking a photograph of the chelate fine particles in the film using SEM or the like, measuring the particle diameter of 20 or more, preferably 30 or more, and averaging the number. When the shape is other than a circle, if the diameter of the circle inscribed in the shape is a and the diameter of the circumscribed circle is b, (a × b) 0.5 is obtained as the equivalent circle diameter.

多孔質吸着層は、上述した平均粒径を有するキレート微粒子が膜中に分散してすることで、キレート性官能基は多孔質吸着層に均一に分散できる。   In the porous adsorption layer, the chelate functional groups can be uniformly dispersed in the porous adsorption layer by dispersing the chelate fine particles having the above-mentioned average particle diameter in the film.

キレート微粒子が多孔質吸着層に均一に分散しているか否かは、例えば走査型電子顕微鏡付属のエネルギー分散型X線分析で元素分析し、キレート性官能基由来原子の分布に著しい偏りがないことを確認すればよい。この場合、エネルギー分散型X線分析を用いて、多孔質吸着層の異なる20カ所以上、好ましくは50カ所以上について、5000倍の倍率で元素分析を行い、キレート性官能基由来原子の原子数(%)を測定し、偏りの程度を確認する。偏りの指針としては、標準偏差が好ましく用いられる。本発明の多孔質吸着層は、キレート性官能基を有する微粒子が均一に分散した層であることが好ましく、多孔質吸着層の断面をエネルギー分散型X線分析で元素分析した際のキレート性官能基由来原子の原子数(%)の平均値Xと標準偏差YがX≧3Yを満たす均一分散であることが好ましく、X≧5Yがより好まししい。   Whether chelate fine particles are uniformly dispersed in the porous adsorption layer is determined by, for example, elemental analysis using energy dispersive X-ray analysis attached to a scanning electron microscope, and there is no significant bias in the distribution of the chelating functional group-derived atoms. You can confirm. In this case, using energy dispersive X-ray analysis, elemental analysis is performed at a magnification of 5000 times at 20 or more, preferably 50 or more different porous adsorption layers, and the number of atoms of chelating functional group-derived atoms ( %) And check the degree of bias. A standard deviation is preferably used as a guide for bias. The porous adsorption layer of the present invention is preferably a layer in which fine particles having a chelating functional group are uniformly dispersed, and the chelating functionality when the cross section of the porous adsorption layer is subjected to elemental analysis by energy dispersive X-ray analysis. The average value X and the standard deviation Y of the number of atoms (%) of the group-derived atoms are preferably uniform dispersion satisfying X ≧ 3Y, and X ≧ 5Y is more preferable.

キレート性官能基由来原子としては、キレート性官能基を特定できる原子であればよく、キレート性官能基を構成する原子やキレート性官能基と塩形成可能な原子が挙げられ、上記例示したキレート性官能基の場合、N、O、P、S、NaおよびKからなる群から選ばれる少なくとも一種が好ましく用いられる。キレート性官能基を特定するための別の手段としては、該官能基が特定の金属イオンと選択的に吸着することを利用し、Cu、Fe、Bなどの特定の金属イオンを吸着させた後、該イオンの原子数(%)を測定することも好ましく用いられる。   The atom derived from the chelating functional group may be any atom that can identify the chelating functional group, and includes atoms constituting the chelating functional group and atoms capable of forming a salt with the chelating functional group. In the case of a functional group, at least one selected from the group consisting of N, O, P, S, Na and K is preferably used. As another means for specifying the chelating functional group, the functional group selectively adsorbs with a specific metal ion, and after adsorbing a specific metal ion such as Cu, Fe, B, etc. Measurement of the number of atoms (%) of the ions is also preferably used.

多孔質吸着層の厚みは、厚くなるほど金属イオンとキレート性官能基との接触機会が増し吸着効率が高くなり、吸着容量も大きくなるが、厚すぎると分離膜の水の流路抵抗が増し透過性能が低下する。このため、多孔質吸着層の厚みは10μm以上500μm以下が好ましく、20μm以上400μm以下がより好ましく、30μm以上300μm以下がさらに好ましい。   As the thickness of the porous adsorption layer increases, the chance of contact between the metal ions and the chelating functional group increases and the adsorption efficiency increases, and the adsorption capacity also increases. Performance decreases. For this reason, the thickness of the porous adsorption layer is preferably 10 μm or more and 500 μm or less, more preferably 20 μm or more and 400 μm or less, and further preferably 30 μm or more and 300 μm or less.

なお、多孔質吸着層は、本発明の趣旨を逸脱しない範囲、すなわち金属イオンに対する極めて高い吸着効率と高い膜強度を妨げない範囲において、その他の成分、例えば、有機物、無機物、ポリマーなどが含まれていてもよい。   The porous adsorption layer contains other components, for example, organic substances, inorganic substances, polymers, etc., within a range that does not depart from the spirit of the present invention, that is, within a range that does not impede extremely high adsorption efficiency for metal ions and high film strength. It may be.

多孔質吸着層内の濁質による汚染を防止するために、少なくとも一方の最外層または表面に、除濁可能な(除濁を担う)層または、除濁可能な(除濁を担う)表面を有することが好ましい。なお、ここでいう「除濁を担う表面」とは、除濁層を別に設けない場合において吸着層が有する表面のことを指す。除濁可能な層を多孔質吸着層よりも原水側に配置するか、除濁を担う表面を多孔質吸着層内の原水側に配置することが好ましい態様である。すなわち、除濁を担う層または表面によって原水中の濁質を除濁した後、原水中の金属イオンを多孔質吸着層内で吸着する配置とする。   In order to prevent contamination by turbidity in the porous adsorption layer, at least one outermost layer or surface is provided with a turbidity-removable layer (responsible for turbidity) or a turbidity-removable (responsible for turbidity) It is preferable to have. In addition, the "surface which bears turbidity" here refers to the surface which an adsorption layer has, when not providing a turbidity layer separately. It is a preferred embodiment that a layer capable of turbidity is disposed on the raw water side of the porous adsorption layer, or a surface responsible for turbidity is disposed on the raw water side in the porous adsorption layer. In other words, after the turbidity in the raw water is turbidized by the layer or surface responsible for turbidity, the metal ions in the raw water are adsorbed in the porous adsorption layer.

除濁層または除濁を担う表面が多孔質吸着層よりも原水側に配されることで、多層分離膜は、除濁層または除濁を担う表面によって水中の濁質を除去した後、多孔質吸着層によって金属イオン除去を行うことができる。よって、濁質による多孔質吸着層の汚れを抑制することができる。さらに、除濁層および除濁を担う表面は優れた耐ファウリング性を付与する効果も有する。その結果、大量の被処理水を短時間で処理しなければならない水処理分野において、水中の濁質成分除去と金属イオン吸着除去を十分かつ安定的に行うことができるようになる。   Since the turbidity layer or the surface responsible for turbidity is arranged closer to the raw water side than the porous adsorption layer, the multi-layer separation membrane is porous after removing the turbidity in water by the turbidity layer or the surface responsible for turbidity. Metal ion removal can be performed by the material adsorption layer. Therefore, contamination of the porous adsorption layer due to turbidity can be suppressed. Further, the turbid layer and the surface responsible for turbidity also have the effect of imparting excellent fouling resistance. As a result, in the water treatment field where a large amount of water to be treated must be treated in a short time, turbid component removal and metal ion adsorption removal in water can be performed sufficiently and stably.

なお、除濁を担う表面を有する場合、除濁層を別に設ける場合に比べて膜厚を小さくでき、高透水化できる点で好ましい。   In addition, when it has the surface which bears turbidity, a film thickness can be made small compared with the case where a turbidity layer is provided separately, and it is preferable at the point which can make water permeability high.

除濁層を複合膜中に設けず、多孔質吸着層が分離対象側の最表層にある場合、最表層の表面をこの層を真上から観察すると、細孔を有する表面が観察される。この細孔を有する表面が除濁を担う表面となるため、該表面細孔の平均孔径は用途に応じて変更されればよい。   When the turbidity layer is not provided in the composite membrane and the porous adsorption layer is on the outermost layer on the separation target side, when the surface of the outermost layer is observed from directly above, the surface having pores is observed. Since the surface having the pores becomes the surface responsible for turbidity, the average pore diameter of the surface pores may be changed according to the application.

除濁を担う表面の平均孔径の好ましい値は、分離対象物質によって異なるが、高い除去性能と高い透水性能を両立するためには、1nm以上1μm以下が好ましく、より好ましくは5nm以上0.5μm以下であり、さらに好ましくは10nm以上0.1μm以下である。特に、水処理用途においては、表面の平均孔径は、5nm〜0.5μmの範囲が好ましく、10nm〜0.1μmの範囲がより好ましい。表面の平均孔径がこの範囲にあると、水中の汚れ物質が細孔に詰まりにくく、透水性能の低下が起こりにくいため、分離膜をより長期間連続して使用することができる。また、詰まった場合でも、いわゆる逆洗や空洗によって汚れを除去することができる。   The preferred value of the average pore size of the surface responsible for turbidity varies depending on the substance to be separated, but in order to achieve both high removal performance and high water permeation performance, it is preferably 1 nm or more and 1 μm or less, more preferably 5 nm or more and 0.5 μm or less. More preferably, it is 10 nm or more and 0.1 μm or less. In particular, in water treatment applications, the average surface pore diameter is preferably in the range of 5 nm to 0.5 μm, and more preferably in the range of 10 nm to 0.1 μm. When the average pore diameter on the surface is within this range, dirt in the water is less likely to clog the pores, and the water permeation performance is unlikely to deteriorate, so the separation membrane can be used continuously for a longer period. Moreover, even when clogged, dirt can be removed by so-called backwashing or air washing.

ここで、汚れ物質とは、水源によって異なるが、例えば、河川や湖沼などでは、土や泥に由来する無機物やコロイド、微生物やその死骸、植物に由来するフミン質などを挙げることができる。逆洗とは、通常のろ過と逆方向に透過水などを通す操作であり、空洗とは、中空糸膜の場合に空気を送って中空糸膜を揺らし膜表面に堆積した汚れ物質を除去する操作である。   Here, although it differs depending on the water source, for example, in rivers and lakes, inorganic substances and colloids derived from soil and mud, microorganisms and dead bodies thereof, humic substances derived from plants, and the like can be mentioned. Backwashing is the operation of passing permeate in the opposite direction to normal filtration. In the case of hollow fiber membranes, air washing is used to shake the hollow fiber membranes to remove dirt accumulated on the membrane surface. It is an operation to do.

多孔質吸着層の表面の平均孔径は、多孔質吸着層の表面について走査型電子顕微鏡を用いて60000倍で写真撮影し、10個以上、好ましくは20個以上の任意の細孔の直径を測定し、数平均して求める。細孔が円状でない場合、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求められる。細孔が円状でない場合、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求められる。   The average pore diameter of the surface of the porous adsorption layer is photographed at a magnification of 60000 using a scanning electron microscope on the surface of the porous adsorption layer, and the diameter of any pore of 10 or more, preferably 20 or more is measured. And number average. When the pores are not circular, a circle having an area equal to the area of the pores (equivalent circle) is obtained by an image processing device or the like, and the equivalent circle diameter is obtained by the method of setting the diameter of the pores. When the pores are not circular, a circle having an area equal to the area of the pores (equivalent circle) is obtained by an image processing device or the like, and the equivalent circle diameter is obtained by the method of setting the diameter of the pores.

(1−2)多孔質支持層
多孔質支持層は、多孔構造を有する熱可塑性樹脂を少なくとも備える。多層分離膜が多孔質支持層を備えることで、分離膜の透過性能を損なうことなく機械的強度を高めることができる。多孔質吸着層の表面細孔の平均孔径A、または除濁層の細孔の平均孔径Bと多孔質支持層の内部細孔の平均孔径Cとの関係が、A<C、またはB<Cであることが好ましい。
(1-2) Porous support layer The porous support layer includes at least a thermoplastic resin having a porous structure. By providing the multilayer separation membrane with the porous support layer, the mechanical strength can be enhanced without impairing the permeation performance of the separation membrane. The relationship between the average pore diameter A of the surface pores of the porous adsorption layer or the average pore diameter B of the pores of the turbidity layer and the average pore diameter C of the internal pores of the porous support layer is A <C or B <C It is preferable that

多孔質支持層を形成するポリマーは(1−1)に記載の樹脂を用いることが出来る。上述したポリマーの中でもフッ素樹脂系ポリマーは、水処理用途で使用される各種薬品に対する耐性が高く機械的強度も高いため好ましく用いられる。   As the polymer for forming the porous support layer, the resin described in (1-1) can be used. Among the above-mentioned polymers, fluororesin-based polymers are preferably used because they have high resistance to various chemicals used in water treatment applications and high mechanical strength.

また、フッ素樹脂系高分子の重量平均分子量は、要求される高分子分離膜の強度と透水性能によって適宜選択すればよいが、重量平均分子量が大きくなると透水性能が低下し、重量平均分子量が小さくなると強度が低下する。このため、重量平均分子量は5万以上100万以下が好ましい。高分子分離膜が薬液洗浄に晒される水処理用途の場合、重量平均分子量は10万以上70万以下が好ましく、さらに15万以上60万以下が好ましい。   The weight average molecular weight of the fluororesin-based polymer may be appropriately selected depending on the required strength and water permeability of the polymer separation membrane, but as the weight average molecular weight increases, the water permeability performance decreases and the weight average molecular weight decreases. As a result, the strength decreases. For this reason, the weight average molecular weight is preferably from 50,000 to 1,000,000. In the case of a water treatment application where the polymer separation membrane is exposed to chemical cleaning, the weight average molecular weight is preferably from 100,000 to 700,000, more preferably from 150,000 to 600,000.

多孔質支持層の厚みは、30μm以上500μm以下が好ましい。30μm以上であることで実用的な強度が得られ、500μm以下であることで良好な透過性能が得られる。50μm以上400μm以下がより好ましく、70μm以上300μm以下がさらに好ましい。   The thickness of the porous support layer is preferably 30 μm or more and 500 μm or less. Practical strength is obtained when the thickness is 30 μm or more, and good transmission performance is obtained when the thickness is 500 μm or less. 50 μm or more and 400 μm or less is more preferable, and 70 μm or more and 300 μm or less is more preferable.

球状構造の平均直径は0.1μm以上5μm以下、より好ましくは0.5μm以上3μm以下である。平均直径が0.1μm未満であると球状で形成する間隙が狭くなり、機械的強度が高くなるが透過性能が低下する場合がある。また平均直径が5μm超えると球状構造で形成される間隙が広くなり透水性が高くなるが、機械的強度が低下する傾向を示す場合がある。球状構造の平均直径は、走査型電子顕微鏡を用いて複合中空糸膜の断面を10,000倍で写真撮影し、任意に選んだ20個の球状構造の直径を測定し、数平均して求めることができる。ここで「球状構造」とは、多数の球状もしくは略球状の固形分が、直接もしくは筋状に固形分を介して連結している構造のこという。   The average diameter of the spherical structure is 0.1 μm or more and 5 μm or less, more preferably 0.5 μm or more and 3 μm or less. When the average diameter is less than 0.1 μm, the gap formed in a spherical shape is narrowed and the mechanical strength is increased, but the transmission performance may be lowered. On the other hand, when the average diameter exceeds 5 μm, the gap formed by the spherical structure becomes wide and the water permeability increases, but the mechanical strength may tend to decrease. The average diameter of the spherical structure is obtained by taking a photograph of a cross section of the composite hollow fiber membrane at a magnification of 10,000 using a scanning electron microscope, measuring the diameters of 20 arbitrarily selected spherical structures, and calculating the number average. be able to. Here, the “spherical structure” means a structure in which a large number of spherical or substantially spherical solid components are connected directly or in a streak shape through the solid components.

(1−3)他の層
多孔質吸着層や多孔質支持層以外の層として、多孔質除濁層を設けると、より高い耐ファウリング性が得られるため好ましい。このような多孔質除濁層としては、熱誘起相分離法や非溶媒誘起相分離法を用いて作製した層などが例示される。
(1-3) Other layers It is preferable to provide a porous turbidity layer as a layer other than the porous adsorption layer and the porous support layer because higher fouling resistance can be obtained. Examples of such a porous turbidity layer include a layer produced using a thermally induced phase separation method or a non-solvent induced phase separation method.

(1−4)多層分離膜の構成
本発明の多層分離膜は吸着層、支持層を少なくとも備えており、その他の層をさらに備えていても良い。少なくとも一方が最外層に除濁層または除濁を担う表面を配置し、原水側とすることで、濁質による膜内部の汚染を防止することが出来る。
(1-4) Configuration of Multilayer Separation Membrane The multilayer separation membrane of the present invention includes at least an adsorption layer and a support layer, and may further include other layers. By disposing the turbidity layer or the surface responsible for turbidity at least one of the outermost layers and setting it as the raw water side, contamination inside the membrane due to turbidity can be prevented.

多層分離膜の外径は800μm以上2000μm以下であることが好ましい。外径が800μm以上あることで、上述の支持層厚みとした場合に容易に膜を取り扱うに足る強度が得られ、外径が2000μm以下であることで単位容積あたりの膜面積が大きくなるため好ましい。900μm以上1900μm以下がより好ましく、1000μm以上1800μm以下がさらに好ましい。   The outer diameter of the multilayer separation membrane is preferably 800 μm or more and 2000 μm or less. When the outer diameter is 800 μm or more, the above-mentioned support layer thickness is sufficient to easily handle the membrane, and when the outer diameter is 2000 μm or less, the membrane area per unit volume is preferable. . 900 μm or more and 1900 μm or less are more preferable, and 1000 μm or more and 1800 μm or less are more preferable.

(1−5)特性
本発明の膜は、多孔質吸着層と支持層とを備えることで、吸着効率と強度とを両立することができる。
(1-5) Characteristics The membrane of the present invention can achieve both adsorption efficiency and strength by including a porous adsorption layer and a support layer.

本発明の多層分離膜は、50kPa、25℃における純水透過性能が0.01m/m・hr以上10m/m・hr以下、破断強度が6MPa以上、かつ、破断伸度が10%以上であることが好ましい。また、0.309μm径粒子の除去率が90%以上であることが好ましい。純水透過性能は、より好ましくは0.03m/m・hr以上8m/m・hr以下、さらに好ましくは0.05m/m・hr以上6m/m・hr以下である。破断強度は、より好ましくは7MPa以上、さらに好ましくは8MPa以上である。破断伸度は、より好ましくは20%以上である。また、0.309μm径粒子の除去率は、より好ましくは95%以上である。以上の条件を満たすことで、水処理、医療、食品工業、電池用セパレーター、荷電膜、燃料電池用電解質膜等の用途に十分な強度、透水性能を有する分離膜を得ることができる。 The multilayer separation membrane of the present invention has a pure water permeation performance at 50 kPa and 25 ° C. of 0.01 m 3 / m 2 · hr or more and 10 m 3 / m 2 · hr or less, a breaking strength of 6 MPa or more, and a breaking elongation of 10 % Or more is preferable. The removal rate of 0.309 μm diameter particles is preferably 90% or more. The pure water permeation performance is more preferably 0.03 m 3 / m 2 · hr to 8 m 3 / m 2 · hr, more preferably 0.05 m 3 / m 2 · hr to 6 m 3 / m 2 · hr or less. is there. The breaking strength is more preferably 7 MPa or more, and further preferably 8 MPa or more. The breaking elongation is more preferably 20% or more. The removal rate of 0.309 μm diameter particles is more preferably 95% or more. By satisfying the above conditions, a separation membrane having sufficient strength and water permeability can be obtained for applications such as water treatment, medical treatment, food industry, battery separator, charged membrane, fuel cell electrolyte membrane and the like.

破断強度と破断伸度の測定方法は、特に限定されるものではないが、例えば、引っ張り試験機を用い、測定長さ50mmの試料を引っ張り速度50mm/分で、試料を変えて5回以上試験し、破断強度の平均値と破断伸度の平均値を求めることで測定することができる。   The method for measuring the breaking strength and breaking elongation is not particularly limited. For example, using a tensile tester, test a sample with a measurement length of 50 mm at a pulling speed of 50 mm / min and changing the sample at least five times. And it can measure by calculating | requiring the average value of breaking strength, and the average value of breaking elongation.

ここで、金属イオン吸着除去性能、すなわち、金属イオン除去性能は、80%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、99%以上特に好ましい。金属イオン除去性能はろ過前後の金属イオン濃度をICP発光分析装置で定量分析すれば評価することができる。本発明では、中空糸膜4本からなる有効長さ200mmの小型モジュールを作製し、温度25℃、濾過差圧16kPaの条件下、所定の金属イオンを所定の濃度で含有する水溶液について、外圧全ろ過で30分間行い、供給水および透過水中に存在する金属イオン濃度をICP発光分析装置(株式会社日立製作所製P−4010)で分析し、以下の式で金属イオン除去性能(%)を求めることができる。   Here, the metal ion adsorption removal performance, that is, the metal ion removal performance is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 99% or more. The metal ion removal performance can be evaluated by quantitatively analyzing the metal ion concentration before and after filtration with an ICP emission spectrometer. In the present invention, a small module having an effective length of 200 mm composed of four hollow fiber membranes is manufactured, and an aqueous solution containing a predetermined metal ion at a predetermined concentration under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa Perform filtration for 30 minutes, analyze the metal ion concentration present in the feed water and permeated water with an ICP emission analyzer (P-4010, manufactured by Hitachi, Ltd.), and obtain the metal ion removal performance (%) using the following formula. Can do.

金属イオン除去性能(%)=[1−2×(透過水中の金属イオン濃度)/{(測定開始時の供給水中の金属イオン濃度)+(測定終了時の供給水中の金属イオン濃度)}]×100
また、濁質成分除去性能は、ろ過前後の濁質成分濃度を例えば分光光度計を用いて定量分析すれば評価することができ、90%以上が好ましく、95%以上がより好ましく、99%以上がさらに好ましい。測定方法は実施例にて詳細に説明する。
Metal ion removal performance (%) = [1-2 × (metal ion concentration in permeated water) / {(metal ion concentration in supplied water at the start of measurement) + (metal ion concentration in supplied water at the end of measurement)}] × 100
The turbid component removal performance can be evaluated by quantitatively analyzing the turbid component concentration before and after filtration using, for example, a spectrophotometer, preferably 90% or more, more preferably 95% or more, and 99% or more. Is more preferable. The measuring method will be described in detail in Examples.

なお、実際の水処理では、上記濁質成分除去性能に加えて、濁質成分に対する耐性、すなわち耐ファウリング性に優れていることが重要である。一般に、水処理用分離膜は、5年から10年にわたって使用されるため、濁質成分を含有する原水をろ過しても、逆流洗浄によってろ過性が回復し、繰り返し使用できることが求められる。   In actual water treatment, in addition to the turbid component removal performance, it is important to have excellent resistance to turbid components, that is, fouling resistance. In general, since a separation membrane for water treatment is used for 5 to 10 years, even if raw water containing a turbid component is filtered, filterability is restored by backwashing and it is required that it can be used repeatedly.

耐ファウリング性は、濁質成分を含有する水溶液のろ過前後の純水の透過性能を比較すれば評価することができる。本発明では、中空糸膜4本からなる有効長さ200mmの小型モジュールを作製し、温度25℃、ろ過差圧16kPaの条件で、1時間にわたって蒸溜水を送液し得られた透過水量(m)を測定し、単位時間(h)および単位膜面積(m)当たりの数値に換算し、さらに圧力(50kPa)換算して純水の透過性能(Q0、単位=m/m/h)とする。なお、単位膜面積は平均外径と中空糸膜の有効長から算出する。次に、典型的な濁質成分であるフミン酸(試薬、和光純薬工業株式会社製)を20ppm含有する水溶液をろ過差圧16kPa、温度25℃の条件下にて外圧全ろ過で2m/mになるようにろ過する。さらに150kPaの逆流洗浄圧力で透過水を1分間供給し、その直後の純水の透過性能(Q1)を測定する。耐ファウリング性の指標としては、A=Q1/Q0を用いれば、Aの値が大きいほど耐ファウリング性に優れることになる。長期使用の観点から、Aの値は高い程好ましく、下限としては0.8以上が好ましく、0.85以上がより好ましく、0.90以上がさらに好ましい。 Fouling resistance can be evaluated by comparing the permeation performance of pure water before and after filtration of an aqueous solution containing a turbid component. In the present invention, a small module having an effective length of 200 mm composed of four hollow fiber membranes was manufactured, and the amount of permeated water (m) obtained by feeding distilled water over 1 hour under conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. 3 ) is measured, converted into a numerical value per unit time (h) and unit membrane area (m 2 ), and further converted into pressure (50 kPa), and the permeation performance of pure water (Q0, unit = m 3 / m 2 / h). The unit membrane area is calculated from the average outer diameter and the effective length of the hollow fiber membrane. Next, typical contaminants humic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.) is a component of 20ppm containing that solution filtered differential pressure 16 kPa, with external pressure all filtration under conditions of a temperature 25 ° C. 2m 3 / Filter to m 2 . Further, permeate is supplied for 1 minute at a backwash pressure of 150 kPa, and the permeation performance (Q1) of pure water immediately after that is measured. If A = Q1 / Q0 is used as an index of fouling resistance, the greater the value of A, the better the fouling resistance. From the viewpoint of long-term use, the value of A is preferably as high as possible. The lower limit is preferably 0.8 or more, more preferably 0.85 or more, and even more preferably 0.90 or more.

[2.製造方法]
本発明の多孔質吸着層と多孔質支持層を含む多層分離膜は、種々の方法により製造することができる。例えば、多孔質支持層の単層や多孔質支持層を含む複数層を形成させ、次いでこれらの上に多孔質吸着層を積層する方法が挙げられる。この場合、多孔質支持層の単層や多孔質支持層を含む複数層を熱誘起相分離法や非溶媒誘起相分離法を用いて予め作製しておき、これらの層の上に多孔質吸着層形成用のポリマー溶液を塗布した後、熱誘起相分離法や非溶媒誘起相分離法を用いて多孔質吸着層とすることができる。さらに、多孔質吸着層の上に熱誘起相分離法や非溶媒誘起相分離法を用いて多孔質吸着層や多孔質支持層以外の層を設けることができる。
[2. Production method]
The multilayer separation membrane including the porous adsorption layer and the porous support layer of the present invention can be produced by various methods. For example, a method of forming a single layer of a porous support layer or a plurality of layers including a porous support layer and then laminating a porous adsorption layer on these layers can be mentioned. In this case, a single porous support layer or multiple layers including a porous support layer are prepared in advance using a thermally induced phase separation method or a non-solvent induced phase separation method, and porous adsorption is performed on these layers. After applying the polymer solution for layer formation, a porous adsorption layer can be obtained by using a thermally induced phase separation method or a non-solvent induced phase separation method. Furthermore, layers other than the porous adsorption layer and the porous support layer can be provided on the porous adsorption layer by using a thermally induced phase separation method or a non-solvent induced phase separation method.

また、多孔質吸着層と多孔質支持層を含む多層分離膜の別の製造方法としては、二種類以上のポリマー溶液を吐出できる口金を用いて、多孔質吸着層と多孔質支持層とを同時に形成する方法が挙げられる。   As another method for producing a multilayer separation membrane including a porous adsorption layer and a porous support layer, a porous adsorption layer and a porous support layer can be simultaneously formed using a die capable of discharging two or more kinds of polymer solutions. The method of forming is mentioned.

多孔質吸着層用ポリマー溶液と多孔質除濁層形成用ポリマー溶液とを同時に吐出する場合の口金としては、特に限定されないが、分離膜の形状を平膜とする場合には、例えばスリットが2枚並んだ二重スリット形状のものが好ましく用いられる。また、分離膜の形状を中空糸とする場合には、例えば三重管式口金が好ましく用いられる。三重管式口金の外側の管と中間の管から多孔質吸着層形成用ポリマー溶液と多孔質支持層用ポリマー溶液を吐出し、中空部形成流体を内側の管から吐出しながら凝固浴中で固化させ、中空糸膜とすることができる。多孔質吸着層形成用ポリマー溶液を外側の管から、多孔質吸着層用ポリマー溶液を中間の管から吐出することにより、多孔質吸着層を外側に、多孔質支持層を内側に有する中空糸膜を得ることができ、逆に多孔質吸着層形成用ポリマー溶液を中間の管から、多孔質支持層用ポリマー溶液を外側の管から吐出することにより、多孔質吸着層を内側に、多孔質支持層を外側に有する中空糸膜を得ることができる。ここで、平膜形状の場合には多重スリット形状、中空糸形状の場合には多重管式口金を用いて、多孔質吸着層や多孔質支持層以外の層を設けることもできる。   The die for discharging the porous adsorption layer polymer solution and the porous turbidity layer forming polymer solution at the same time is not particularly limited, but when the shape of the separation membrane is a flat membrane, for example, two slits are provided. A double slit shape in which the sheets are arranged is preferably used. Further, when the shape of the separation membrane is a hollow fiber, for example, a triple tube type die is preferably used. The polymer solution for forming the porous adsorption layer and the polymer solution for the porous support layer are discharged from the outer tube and the intermediate tube of the triple tube type die, and solidified in the coagulation bath while discharging the hollow portion forming fluid from the inner tube. Thus, a hollow fiber membrane can be obtained. A hollow fiber membrane having a porous adsorption layer on the outside and a porous support layer on the inside by discharging the polymer solution for forming the porous adsorption layer from the outer tube and the polymer solution for the porous adsorption layer from the intermediate tube Conversely, by discharging the polymer solution for forming the porous adsorption layer from the intermediate tube and the polymer solution for the porous support layer from the outer tube, the porous adsorption layer is placed inside and the porous support layer is produced. A hollow fiber membrane having a layer on the outside can be obtained. Here, a layer other than the porous adsorption layer and the porous support layer can be provided using a multi-slit shape in the case of a flat membrane shape and a multi-tube type die in the case of a hollow fiber shape.

多孔質吸着層および多孔質支持層の具体的な形成方法について、以下に説明する。なお、以下では、それぞれの層について、分けて記載したが、二種類以上のポリマー溶液を吐出できる口金を用いて、多孔質吸着層と多孔質支持層とその他の層とを同時に形成できることは、上述のとおりである。   A specific method for forming the porous adsorption layer and the porous support layer will be described below. In the following, each layer is described separately, but using a die capable of discharging two or more types of polymer solutions, it is possible to simultaneously form the porous adsorption layer, the porous support layer, and other layers, As described above.

<多孔質吸着層の形成方法>
多孔質吸着層は、上述したキレート微粒子および公知の種々のポリマーを用いて、熱誘起相分離法や非溶媒誘起相分離法などの相転移法にて製造することができる。ポリマーにキレート性官能基を導入する方法については、すでに述べたとおりである。これらの方法は、溶融製膜法などに比べて低温で製膜出来るため、キレート性官能基の熱分解を抑制できる点で好ましい。中でも、非溶媒誘起相分離法はより低温で製膜が可能である点で特に好ましい。
<Method for forming porous adsorption layer>
The porous adsorption layer can be produced by using the above-described chelate fine particles and various known polymers by a phase transition method such as a thermally induced phase separation method or a non-solvent induced phase separation method. The method for introducing the chelating functional group into the polymer is as described above. These methods are preferable in that thermal decomposition of the chelating functional group can be suppressed because the film can be formed at a lower temperature than the melt film forming method. Among these, the non-solvent induced phase separation method is particularly preferable because it can form a film at a lower temperature.

ここで、熱誘起相分離とは、高温で溶解させたポリマー溶液を1相領域と2相領域の境界であるバイノーダル線以下の温度へ冷却させることによって相分離を誘起し、ポリマーの結晶化やガラス転移により構造を固定化する方法である。非溶媒誘起相分離とは、均一なポリマー溶液への非溶媒の浸入あるいは溶媒の外部雰囲気への蒸発による濃度変化によって相分離を誘起する方法である。なお、本願において平均粒径3μm以下の微粒子が分散している溶液は均一な溶液とみなすものとする。   Here, the heat-induced phase separation is a method in which phase separation is induced by cooling a polymer solution dissolved at a high temperature to a temperature below the binodal line that is the boundary between the one-phase region and the two-phase region, This is a method of fixing the structure by glass transition. Non-solvent induced phase separation is a method in which phase separation is induced by concentration change due to penetration of a non-solvent into a uniform polymer solution or evaporation of the solvent into an external atmosphere. In the present application, a solution in which fine particles having an average particle size of 3 μm or less are dispersed is regarded as a uniform solution.

熱誘起相分離法では、熱可塑性樹脂を10重量%から60重量%以下程度の比較的高濃度で、該熱可塑性樹脂の貧溶媒または良溶媒に溶解して該熱可塑性樹脂溶液を調製し、該熱可塑性樹脂溶液を冷却固化することにより相分離せしめて、多孔質構造を形成させることができる。ここで、貧溶媒とは、熱可塑性樹脂を60℃以下の低温では、5重量%以上溶解させることができないが、60℃を超えてかつ高分子の融点以下の高温領域で5重量%以上溶解させることができる溶媒のことである。貧溶媒に対し、60℃以下の低温領域でも熱可塑性樹脂を5重量%以上溶解させることが可能な溶媒を良溶媒、熱可塑性樹脂の融点または溶媒の沸点まで、ポリマーを溶解も膨潤もさせない溶媒を非溶媒と定義する。非溶媒と貧溶媒の混合溶媒であっても、上記貧溶媒の定義を満足するものは、貧溶媒であると定義する。   In the thermally induced phase separation method, the thermoplastic resin solution is prepared by dissolving the thermoplastic resin in a poor solvent or a good solvent of the thermoplastic resin at a relatively high concentration of about 10 wt% to 60 wt% or less, The thermoplastic resin solution can be cooled and solidified to cause phase separation to form a porous structure. Here, the poor solvent cannot dissolve the thermoplastic resin by 5% by weight or more at a low temperature of 60 ° C. or lower, but dissolves by 5% by weight or more in a high temperature region exceeding 60 ° C. and below the melting point of the polymer. It is a solvent that can be made to occur. A solvent capable of dissolving 5% by weight or more of a thermoplastic resin in a low temperature region of 60 ° C. or less with respect to a poor solvent, a solvent that does not dissolve or swell the polymer up to the melting point of the thermoplastic resin or the boiling point of the solvent. Is defined as a non-solvent. Even a mixed solvent of a non-solvent and a poor solvent is defined as a poor solvent if it satisfies the definition of the poor solvent.

また、該ポリマー溶液の粘度が適正な範囲に無ければ、取り扱いが困難であり、製膜することができなくなる。従って、熱可塑性樹脂濃度は、30重量%以上50重量%以下の範囲とすることがより好ましい。該ポリマー溶液を冷却固化するにあたっては、口金から該ポリマー溶液を冷却浴中に吐出する方法が好ましい。この際、冷却浴に用いる冷却液体としては温度が5〜50℃であり、濃度が60〜100重量%の貧溶媒もしくは良溶媒を含有する液体を用いて固化させることが好ましい。冷却液体には、貧溶媒、良溶媒以外に非溶媒を含有していてもよいが、冷却液体に非溶媒を主成分とする液体を用いると、冷却固化による相分離よりも非溶媒浸入による非溶媒誘起相分離が優先される傾向がある。   Further, if the viscosity of the polymer solution is not within an appropriate range, handling is difficult and film formation cannot be performed. Therefore, the thermoplastic resin concentration is more preferably in the range of 30 wt% to 50 wt%. In cooling and solidifying the polymer solution, a method of discharging the polymer solution from a die into a cooling bath is preferable. At this time, the cooling liquid used in the cooling bath is preferably solidified using a liquid containing a poor solvent or a good solvent having a temperature of 5 to 50 ° C. and a concentration of 60 to 100% by weight. The cooling liquid may contain a non-solvent in addition to the poor solvent and the good solvent. However, when a liquid mainly composed of a non-solvent is used as the cooling liquid, the non-solvent intrusion is less than the phase separation by cooling solidification. Solvent induced phase separation tends to be preferred.

非溶媒誘起相分離法では、熱可塑性樹脂を通常5〜30重量%、より好ましくは10〜25重量%の範囲で良溶媒に溶解して該熱可塑性樹脂溶液を調製し、凝固浴に浸漬させて非溶媒を浸入させることにより相分離せしめて、多孔質構造を形成させることができる。5重量%未満では、物理的強度が低下し、30重量%を超えると透過性能が低下する。ここで、該熱可塑性樹脂の種類・濃度、溶媒の種類などによって溶解温度が異なる。再現性良く安定な該熱可塑性樹脂溶液を調製するためには、溶媒の沸点以下の温度で攪拌しながら数時間加熱して、透明な溶液となるようにすることが好ましい。   In the non-solvent induced phase separation method, the thermoplastic resin is usually dissolved in a good solvent in the range of 5 to 30% by weight, more preferably in the range of 10 to 25% by weight to prepare the thermoplastic resin solution and immersed in a coagulation bath. Thus, the porous structure can be formed by causing the non-solvent to enter and phase separation. If it is less than 5% by weight, the physical strength is lowered, and if it exceeds 30% by weight, the permeation performance is lowered. Here, the melting temperature varies depending on the type and concentration of the thermoplastic resin and the type of solvent. In order to prepare the thermoplastic resin solution which is stable with good reproducibility, it is preferable that the solution is heated for several hours while stirring at a temperature not higher than the boiling point of the solvent so that a transparent solution is obtained.

キレート微粒子はあらかじめ熱可塑性樹脂の良溶媒中に添加しておいても良いし、熱可塑性樹脂を溶解させた後に添加してもよい。キレート微粒子の分散性を向上させる点で、良溶媒中にあらかじめ添加し、超音波などで分散させておくことが好ましく、キレート性官能基の分解抑制の点で、熱可塑性樹脂を溶解させた後に添加することが好ましい。さらに、あらかじめ良溶媒中にキレート微粒子を添加して超音波で分散させた液を、これとは別に調製した、キレート性官能基の分解温度以下の熱可塑性樹脂溶液に添加・混合することで、分散性とキレート性官能基の分解抑制の両方の効果を得ることができる点でより好ましい。キレート微粒子の濃度は3重量%から20重量%の範囲で適宜調節すればよい。3重量%以上添加することで十分な吸着性能を得ることが出来、30重量%以下とすることで熱可塑性樹脂の相分離による均一な三次元網目構造を得ることが出来る。ここで三次元網目構造とは、固形分が三次元的に網目状に広がっている構造をいう。また三次元網目構造は網を形成する固形分に仕切られた細孔およびボイドを有する。   The chelate fine particles may be added in advance in a good solvent for the thermoplastic resin, or may be added after dissolving the thermoplastic resin. In order to improve the dispersibility of the chelate fine particles, it is preferably added in advance in a good solvent and dispersed with ultrasonic waves or the like, and after dissolving the thermoplastic resin in terms of inhibiting the decomposition of the chelating functional group It is preferable to add. Furthermore, by adding and mixing a solution in which a fine particle of chelate is added in advance in a good solvent and dispersed with ultrasonic waves, a thermoplastic resin solution having a decomposition temperature equal to or lower than the decomposition temperature of the chelating functional group is prepared separately. It is more preferable at the point which can acquire the effect of both dispersibility and decomposition | disassembly suppression of a chelating functional group. What is necessary is just to adjust the density | concentration of a chelate fine particle suitably in the range of 3 weight%-20 weight%. By adding 3% by weight or more, sufficient adsorption performance can be obtained, and by making it 30% by weight or less, a uniform three-dimensional network structure by phase separation of the thermoplastic resin can be obtained. Here, the three-dimensional network structure refers to a structure in which the solid content spreads in a three-dimensional network. In addition, the three-dimensional network structure has pores and voids partitioned by solid contents forming a network.

非溶媒誘起相分離法を用いて、多孔質吸着層の表面および内部細孔の平均孔径を制御する方法としては、用いるポリマーの種類や濃度によって異なるが、例えば以下の方法で行うことができる。ポリマー溶液に、孔径を制御するための添加剤を入れ、多孔質吸着層を形成する際に、または、多孔質吸着層を形成した後に、該添加剤を溶出させることにより、表面および多孔質吸着層の内部細孔の平均孔径を制御することができる。該添加剤としては、有機化合物および無機化合物が挙げられる。有機化合物としては、ポリマー溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく用いられる。例えば、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、界面活性剤、グリセリン、糖類などを挙げることができる。無機化合物としては、ポリマー溶液に用いる溶媒および非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウムなどを挙げることができる。また、添加剤を用いずに、凝固浴における非溶媒の種類、濃度および温度によって相分離速度を制御し、表面および多孔質吸着層の内部細孔の平均孔径を制御することも可能である。一般的には、相分離速度が速いと平均孔径が小さく、遅いと大きくなる。また、該ポリマー溶液に非溶媒を添加することも、相分離速度の制御に有効である。   The method for controlling the average pore size of the surface of the porous adsorption layer and the internal pores using the non-solvent induced phase separation method varies depending on the type and concentration of the polymer used, and can be performed by the following method, for example. An additive for controlling the pore size is put into the polymer solution to form a porous adsorption layer, or after the porous adsorption layer is formed, by eluting the additive, the surface and porous adsorption The average pore size of the internal pores of the layer can be controlled. Examples of the additive include organic compounds and inorganic compounds. As the organic compound, those that are soluble in both the solvent used in the polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferably used. For example, water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylic acid, and dextran, surfactants, glycerin, and saccharides can be used. As the inorganic compound, those that are soluble in both the solvent used in the polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferable, and examples thereof include calcium chloride, magnesium chloride, lithium chloride, and barium sulfate. Moreover, it is also possible to control the average pore diameter of the internal pores of the surface and the porous adsorption layer by controlling the phase separation speed according to the kind, concentration and temperature of the non-solvent in the coagulation bath without using an additive. Generally, the average pore size is small when the phase separation rate is high, and it is large when the phase separation rate is low. Also, adding a non-solvent to the polymer solution is effective for controlling the phase separation rate.

特に、非溶媒誘起相分離では、相分離過程において、キレート微粒子が流路側に偏在するように配置されやすく、効率的にキレート性官能基を利用できるようになるため好ましい。さらに、室温程度での製膜も可能であることに加え、前述のような方法で表面および内部細孔の平均孔径を制御しやすいため好ましい。   In particular, non-solvent induced phase separation is preferable because in the phase separation process, the chelate fine particles are easily arranged so as to be unevenly distributed on the channel side, and the chelating functional group can be used efficiently. Furthermore, in addition to being able to form a film at about room temperature, it is preferable because the average pore diameter of the surface and internal pores can be easily controlled by the method as described above.

<多孔質支持体の形成方法>
多孔質支持層は、上述した公知の種々のポリマーを用いて、上述した非溶媒誘起層分離法や熱誘起相分離法などの相転移法にて製造することができる。熱誘起相分離法を用いることにより、高い強度を得られるので好ましい。
<Method for forming porous support>
The porous support layer can be produced by the phase transition method such as the non-solvent induced layer separation method or the thermally induced phase separation method described above using the various known polymers described above. Use of the thermally induced phase separation method is preferable because high strength can be obtained.

以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本発明に関する物性値は、以下の方法で測定することができる。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples. In addition, the physical-property value regarding this invention can be measured with the following method.

(1)平均厚みおよび平均孔径
走査型電子顕微鏡を用いて、多層分離膜の横断面を100倍〜3000倍に拡大して写真撮影した。こうして得られた画像において、各層の任意の10箇所の厚みを測定し、得られた値から数平均して各層の平均厚みとした。
(1) Average thickness and average pore diameter Using a scanning electron microscope, the cross section of the multilayer separation membrane was magnified 100 to 3000 times and photographed. In the image thus obtained, the thicknesses at arbitrary 10 positions of each layer were measured, and the number averaged from the obtained values was used as the average thickness of each layer.

除濁層および除濁を担う表面の平均孔径については、表面について走査型電子顕微鏡を用いて60000倍で写真撮影し、得られた画像において、50箇所の細孔の直径を測定し、数平均して各表面の平均孔径とした。   Regarding the average pore size of the turbid layer and the surface responsible for turbidity, the surface was photographed at 60000 times using a scanning electron microscope, and the diameter of 50 pores was measured in the obtained image, and the number average The average pore diameter of each surface was used.

多孔質吸着層の内部細孔の平均孔径については、多層分離膜の径断面について走査型電子顕微鏡を用いて60000倍で写真撮影した。こうして得られた画像において、原水側に近い厚み1μm以内の範囲および支持層との界面から1μm以内の範囲を除いた部分において、10箇所の細孔の直径を測定し、数平均して多孔質吸着層の内部細孔平均孔径とした。   As for the average pore diameter of the internal pores of the porous adsorption layer, the diameter cross section of the multilayer separation membrane was photographed at 60000 times using a scanning electron microscope. In the image obtained in this manner, the diameters of 10 pores were measured in the range of the thickness within 1 μm close to the raw water side and the range within 1 μm from the interface with the support layer, and the number average pore size was measured. The internal pore average pore diameter of the adsorption layer was used.

(2)中空糸膜の内径/外径
走査型電子顕微鏡を用いて、複合中空糸膜の断面を50倍、100倍で写真撮影し、長径と短径を測定し、数平均して求めた
(3)金属除去性能(銅の除去性能)
中空糸膜4本からなる有効長さ200mmの小型モジュールを作製した。このモジュールに、温度25℃、濾過差圧16kPaの条件下、硫酸銅水溶液(銅濃度:10mg/L)を用いて、外圧全ろ過で30分間行い、供給水および透過水中に存在する銅濃度を測定した。銅濃度の測定には、ICP発光分析装置(株式会社日立製作所製P−4010)を用い、10倍希釈したサンプルを測定した。銅の除去性能(%)は、以下の式で定義される。
(2) Inner diameter / outer diameter of hollow fiber membrane Using a scanning electron microscope, the cross section of the composite hollow fiber membrane was photographed at 50 times and 100 times, the major axis and minor axis were measured, and the number average was obtained. (3) Metal removal performance (copper removal performance)
A small module having an effective length of 200 mm composed of four hollow fiber membranes was produced. This module was subjected to external pressure total filtration for 30 minutes using a copper sulfate aqueous solution (copper concentration: 10 mg / L) under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, and the copper concentration present in the supply water and permeated water was determined. It was measured. For the measurement of the copper concentration, an ICP emission analyzer (P-4010 manufactured by Hitachi, Ltd.) was used, and a sample diluted 10 times was measured. Copper removal performance (%) is defined by the following equation.

銅の除去性能(%)=[1−2×(透過水中の銅濃度)/{(測定開始時の供給水中の銅濃度)+(測定終了時の供給水中の銅濃度)}]×100
(4)濁質成分除去性能
中空糸膜4本からなる有効長さ200mmの小型モジュールを作製した。このモジュールに、温度25℃、濾過差圧16kPaの条件下、濁質成分として平均粒径0.309μmのポリスチレンラテックス粒子(試薬、Magsphere社製)を20ppm含有する水溶液を用いて、外圧全ろ過で30分間行い、供給水および透過水中に存在する濁質成分濃度を波長234nmの紫外線吸収係数から算出し、その濃度比から除去性能を求めた。ここで、波長234nmの紫外線吸収係数の測定には、分光光度計(株式会社日立製作所社製U−3200)を用いた。濁質成分除去性能(%)は、以下の式で定義される。
Copper removal performance (%) = [1-2 × (copper concentration in permeated water) / {(copper concentration in supply water at the start of measurement) + (copper concentration in supply water at the end of measurement)}] × 100
(4) Turbidity component removal performance A small module having an effective length of 200 mm made of four hollow fiber membranes was produced. This module was subjected to external pressure total filtration using an aqueous solution containing 20 ppm of polystyrene latex particles (reagent, manufactured by Magsphere) having an average particle size of 0.309 μm as a turbid component under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa. After 30 minutes, the concentration of turbid components present in the feed water and permeated water was calculated from the ultraviolet absorption coefficient at a wavelength of 234 nm, and the removal performance was determined from the concentration ratio. Here, a spectrophotometer (U-3200 manufactured by Hitachi, Ltd.) was used to measure the ultraviolet absorption coefficient at a wavelength of 234 nm. The turbidity component removal performance (%) is defined by the following equation.

(濁質成分除去性能(%)=[1−2×(透過水中の濁質成分濃度)/{(測定開始時の供給水中の濁質成分濃度)+(測定終了時の供給水中の濁質成分濃度)}]×100
(5)純水の透過性能
中空糸膜4本からなる有効長さ200mmの小型モジュールを作製した。このモジュールに、温度25℃、ろ過差圧16kPaの条件で、1時間にわたって蒸溜水を送液し得られた透過水量(m)を測定し、単位時間(h)および単位膜面積(m)当たりの数値に換算し、さらに圧力(50kPa)換算して純水の透過性能(Q0、単位=m/m/h)とした。なお、単位膜面積は平均外径と中空糸膜の有効長から算出した。次に、20ppmのフミン酸(試薬、和光純薬工業株式会社製)水溶液をろ過差圧16kPa、温度25℃の条件下にて外圧全ろ過で2m/mになるようにろ過した。さらに150kPaの逆流洗浄圧力で透過水を1分間供給し、その直後の純水の透過性能(Q1)を測定した。
(Turbidity component removal performance (%) = [1-2 × (turbidity component concentration in permeate)] / {(turbidity component concentration in feed water at the start of measurement) + (turbidity in feed water at the end of measurement) Ingredient concentration)}] × 100
(5) Permeation performance of pure water A small module having an effective length of 200 mm composed of four hollow fiber membranes was produced. The amount of permeated water (m 3 ) obtained by sending distilled water to this module over a period of 1 hour under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa was measured, and the unit time (h) and unit membrane area (m 2 ) were measured. ), And further converted to pressure (50 kPa) to obtain the permeation performance of pure water (Q0, unit = m 3 / m 2 / h). The unit membrane area was calculated from the average outer diameter and the effective length of the hollow fiber membrane. Next, a 20 ppm aqueous solution of humic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was filtered to 2 m 3 / m 2 by external pressure total filtration under the conditions of a filtration differential pressure of 16 kPa and a temperature of 25 ° C. Further, permeated water was supplied for 1 minute at a backwashing pressure of 150 kPa, and the permeation performance (Q1) of pure water immediately after that was measured.

(6)耐ファウリング性
耐ファウリング性の指標としてA=Q1/Q0を用いた。Aの値が大きいほど耐ファウリング性に優れることを意味する。
(6) Fouling resistance A = Q1 / Q0 was used as an index of fouling resistance. It means that it is excellent in fouling resistance, so that the value of A is large.

(7)破断強度
引っ張り試験機(TENSILON(登録商標)/RTM−100、株式会社東洋ボールドウィン製)を用い、測定長さ50mmの試料を引っ張り速度50mm/分で、試料を変えて5回以上試験し、破断強度の平均値を求めることで算出した。
(7) Breaking strength Using a tensile tester (TENSILON (registered trademark) / RTM-100, manufactured by Toyo Baldwin Co., Ltd.), test a sample with a measurement length of 50 mm at a pulling speed of 50 mm / min and changing the sample at least 5 times. And it calculated by calculating | requiring the average value of breaking strength.

(8)キレート性官能基を有するポリマー
キレート性官能基を有するポリマーとして、オルガノ社から市販されているキレート樹脂(アンバーライトIRC748(以下ポリマーA)、)を用いた。ポリマーAはキレート性官能基としてイミノ二酢酸Na基を有している。ポリマーA10gをHCl水溶液(0.01mol/L)500mlに3日間浸漬し、官能基をイミノ二酢酸(H型)に変換したものをポリマーBとした。
(8) Polymer having a chelating functional group As a polymer having a chelating functional group, a chelate resin (Amberlite IRC748 (hereinafter referred to as polymer A)) commercially available from Organo Corporation was used. Polymer A has iminodiacetic acid Na groups as chelating functional groups. Polymer B was obtained by immersing 10 g of polymer A in 500 ml of aqueous HCl (0.01 mol / L) for 3 days and converting the functional group to iminodiacetic acid (H type).

(9)ポリマー微粒子の調製
純水を用いてポリマーA、Bを蒸留水で中性になるまで洗浄し、40℃の乾燥機で2日間乾燥させた後、ボールミル(FRITSCH社製遊星ボールミルP−5)を用いて樹脂の破砕を行った。実施した破砕条件は各実施例または比較例ごとに記載する。なお、破砕時には、熱によるキレート基の分解を抑制するため、破砕1時間ごとに30分の放冷時間を設けた。以降、ポリマーAを破砕したものをキレート微粒子Aと呼び、ポリマーBを破砕したものをキレート微粒子Bと呼ぶことがある。
(9) Preparation of polymer fine particles Polymers A and B were washed with distilled water until neutral, and dried with a dryer at 40 ° C. for 2 days. Then, a ball mill (Planet Ball Mill P- manufactured by FRITSCH) was used. The resin was crushed using 5). The implemented crushing conditions are described for each example or comparative example. In addition, at the time of crushing, in order to suppress decomposition | disassembly of the chelate group by a heat | fever, the cooling time for 30 minutes was provided for every 1 hour of crushing. Hereinafter, the polymer A crushed may be referred to as chelate fine particles A, and the polymer B crushed may be referred to as chelate fine particles B.

(10)粒子径測定
走査型電子顕微鏡を用いて、多層分離膜の横断面を3,000倍〜60,000倍に拡大して写真撮影した。こうして得られた画像において、任意の粒子50個の粒径を測定し、得られた値から数平均して粒子径とした。
(10) Particle size measurement Using a scanning electron microscope, the cross section of the multilayer separation membrane was magnified 3,000 times to 60,000 times and photographed. In the image thus obtained, the particle size of 50 arbitrary particles was measured, and the particle size was averaged from the obtained values.

(11)キレート性官能基の原子数(%)、平均値X、標準偏差Y
キレート微粒子Bを含む多孔質吸着層については、0.1N水酸化ナトリウム水溶液中に1時間浸漬した後取り出し、蒸留水で中性になるまで洗浄して、イミノ二酢酸基をNa塩にした後に測定を行った。
(11) Number of atoms (%) of chelating functional group, average value X, standard deviation Y
The porous adsorption layer containing the chelate fine particles B is taken out after being immersed in a 0.1N sodium hydroxide aqueous solution for 1 hour, washed with distilled water until neutral, and the iminodiacetic acid group is converted into a Na salt. Measurements were made.

走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製SU1510)付属のエネルギー分散型X線分析(X線加速電圧15kV)を用いて、多孔質吸着層の異なる50カ所について、5000倍の倍率で元素分析を行い、キレート性官能基由来原子であるNaの原子数(%)を測定し、平均値Xと標準偏差Yを算出した。   Using the energy dispersive X-ray analysis (X-ray accelerating voltage 15 kV) attached to the scanning electron microscope (Hitachi High-Technologies Corporation SU1510), elemental analysis was performed at a magnification of 5000 times for 50 different porous adsorption layers. Then, the number (%) of Na atoms which are atoms derived from the chelating functional group was measured, and the average value X and the standard deviation Y were calculated.

〈実施例1〉
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとを、それぞれ38重量%と62重量%の割合で170℃の温度で溶解した。このポリマー溶液をγ−ブチロラクトンを中空部形成液体として随伴させながら口金から吐出し、温度10℃のγ−ブチロラクトン80重量%水溶液からなる冷却浴中で固化することにより、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 1>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 38% by weight and 62% by weight, respectively. The polymer solution is discharged from the die while accompanying γ-butyrolactone as a hollow portion forming liquid, and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 10 ° C., whereby a hollow fiber membrane-like support layer Was made. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、300rpm、5Hの条件で破砕し、さらに、ジルコニアボールを1〜2mm径、50gに交換した後、400rpmで4H破砕を行い、粒子を得た。
この微粒子化したポリマーA5.5重量%、N−メチル−2−ピロリドン78.5重量%を混合し、微粒子を均一に分散させた後、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを11.3重量%、セルロースアセテート(イーストマンケミカル社、CA435−75S、三酢酸セルロース)4.7重量%を95℃で混合溶解してポリマー溶液を調製した。このポリマー溶液を上記支持層の表面に均一に塗布し、すぐに水浴中で凝固させて支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層表面の平均孔径は20nm、厚みは50μmであった。
Next, the resin was crushed using a ball mill. Put 18 zirconia balls 18mm and 4g of polymer A in a 45ml agate container, crush them under conditions of 300rpm and 5H, and further change the zirconia balls to 1-2mm diameter and 50g, then crush 4H at 400rpm, Got.
The finely divided polymer A (5.5% by weight) and N-methyl-2-pyrrolidone (78.5% by weight) were mixed to uniformly disperse the fine particles, and then a vinylidene fluoride homopolymer having a weight average molecular weight of 284,000 was obtained. A polymer solution was prepared by mixing and dissolving 11.3% by weight and cellulose acetate (Eastman Chemical Co., CA435-75S, cellulose triacetate) 4.7% by weight at 95 ° C. This polymer solution was uniformly applied to the surface of the support layer and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous adsorption layer was formed on the support layer. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter on the surface of the porous adsorption layer was 20 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.09、標準偏差Yは0.19であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていた。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.09 and the standard deviation Y was 0.19. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property are as shown in Table 1, and were excellent in any of turbidity removal performance, adsorption performance, and mechanical strength.

〈実施例2〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 2>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、実施例1と同様にして、ポリマーAの微粒子化を行い、支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は100nm、厚みは20μmであり、実施例1よりも吸着層の厚みが薄かった。   Next, in the same manner as in Example 1, the polymer A was atomized to produce a hollow fiber membrane in which a porous adsorption layer was formed on the support layer. The obtained porous adsorption layer had a three-dimensional network structure. The porous adsorption layer had an average pore diameter of 100 nm and a thickness of 20 μm, and the adsorption layer was thinner than Example 1.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.11、標準偏差Yは0.18であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、多孔質吸着層の厚みが実施例1に比べて薄いために吸着帯が狭く、銅の除去性能がやや低くなった。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.11 and the standard deviation Y was 0.18. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property are as shown in Table 1, and were excellent in turbidity removal performance, adsorption performance, and mechanical strength. However, since the thickness of the porous adsorption layer was thinner than that in Example 1, adsorption was performed. The strip was narrow and the copper removal performance was slightly lower.

〈実施例3〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 3>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、実施例1と同様にして、ポリマーAの微粒子化を行い、支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は50nm、厚みは150μmであり、実施例1よりも多孔質吸着層の厚みが厚かった。   Next, in the same manner as in Example 1, the polymer A was atomized to produce a hollow fiber membrane in which a porous adsorption layer was formed on the support layer. The obtained porous adsorption layer had a three-dimensional network structure. The porous adsorption layer had an average pore diameter of 50 nm and a thickness of 150 μm, and the porous adsorption layer was thicker than Example 1.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.06、標準偏差Yは0.18であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、多孔質吸着層の厚みが実施例1に比べて厚いためにろ過の抵抗が大きくなり、純水の透過性能がやや低くなった。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.06 and the standard deviation Y was 0.18. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and physical properties were as shown in Table 1, and were excellent in turbidity removal performance, adsorption performance, and mechanical strength. However, since the thickness of the porous adsorption layer was thicker than that in Example 1, filtration was performed. As a result, the resistance to pure water decreased slightly.

〈実施例4〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 4>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、実施例1と同様にして、ポリマーAの微粒子化を行い、支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は50nm、厚みは300μmであり、実施例1よりも多孔質吸着層の厚みが厚かった。   Next, in the same manner as in Example 1, the polymer A was atomized to produce a hollow fiber membrane in which a porous adsorption layer was formed on the support layer. The obtained porous adsorption layer had a three-dimensional network structure. The porous adsorption layer had an average pore diameter of 50 nm and a thickness of 300 μm, and the porous adsorption layer was thicker than Example 1.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.03、標準偏差Yは0.20であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、多孔質吸着層の厚みが実施例1に比べて厚いためにろ過の抵抗が大きくなり、純水の透過性能がやや低くなった。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.03, and the standard deviation Y was 0.20. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and physical properties were as shown in Table 1, and were excellent in turbidity removal performance, adsorption performance, and mechanical strength. However, since the thickness of the porous adsorption layer was thicker than that in Example 1, filtration was performed. As a result, the resistance to pure water decreased slightly.

〈実施例5〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 5>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、実施例1と同様にして、ポリマーAの微粒子化を行い、支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は50nm、厚みは50μmであった。   Next, in the same manner as in Example 1, the polymer A was atomized to produce a hollow fiber membrane in which a porous adsorption layer was formed on the support layer. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 50 nm and the thickness was 50 μm.

最後に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを15重量%、重量平均分子量2万のポリエチレングリコールを3重量%、N−メチル−2−ピロリドンを80重量%、水を2重量%の割合で95℃の温度で混合溶解してポリマー溶液を調製した。このポリマー溶液を上記多孔質吸着層の表面に均一に塗布し、すぐに水浴中で凝固させて多孔質吸着層の上に多孔質除濁層を形成させた中空糸膜を作製した。得られた多孔質除濁層は、三次元網目構造となっており、多孔質除濁層の平均孔径は20nm、厚みは50μmであった。   Finally, 15% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 3% by weight of polyethylene glycol having a weight average molecular weight of 20,000, 80% by weight of N-methyl-2-pyrrolidone, and 2% by weight of water The polymer solution was prepared by mixing and dissolving at a temperature of 95 ° C. at a rate of%. This polymer solution was uniformly applied to the surface of the porous adsorption layer and immediately solidified in a water bath to produce a hollow fiber membrane in which a porous turbidity layer was formed on the porous adsorption layer. The obtained porous turbidity layer had a three-dimensional network structure, and the porous turbidity layer had an average pore diameter of 20 nm and a thickness of 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.13、標準偏差Yは0.21であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、除濁層を設けているため、膜厚みが実施例1に比べて厚いためにろ過の抵抗が大きくなり、純水の透過性能がやや低くなった。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.13, and the standard deviation Y was 0.21. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and physical properties are as shown in Table 1 and were excellent in turbidity performance, adsorption performance, and mechanical strength. However, since a turbidity layer was provided, the film thickness was compared with Example 1. Because of its thick thickness, the resistance to filtration increased, and the permeation performance of pure water decreased slightly.

〈実施例6〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Example 6>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、キレート性官能基を有するポリマーB(イミノ二酢酸基含有)を用いた以外は実施例1と同様にして、支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は20nm、厚みは50μmであった。最後に、NaOHに浸漬し、イミノ二酢酸をイミノ二酢酸Naに変換した。   Next, a hollow fiber membrane having a porous adsorption layer formed on a support layer was produced in the same manner as in Example 1 except that the polymer B having an chelating functional group (containing iminodiacetic acid group) was used. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 20 nm and the thickness was 50 μm. Finally, it was immersed in NaOH to convert iminodiacetic acid to Na iminodiacetic acid.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.18、標準偏差Yは0.19であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていた。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.18 and the standard deviation Y was 0.19. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property are as shown in Table 1, and were excellent in any of turbidity removal performance, adsorption performance, and mechanical strength.

〈実施例7〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、400rpm、5Hの条件で破砕し、さらに、ジルコニアボールを1〜2mm径、50gに交換した後、400rpmで10H破砕を行い、粒子を得た。
<Example 7>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. Put 18 zirconia balls 18 mm and 4 g of polymer A in a 45 ml agate container and crush them under the conditions of 400 rpm and 5 H. Furthermore, after replacing the zirconia balls with 1 to 2 mm diameter and 50 g, crush 10 H at 400 rpm to obtain particles. Got.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は60nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 60 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは0.94、標準偏差Yは0.28であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、表面孔径が大きく、耐ファウリング性がやや低くなった。膜表面にはところどころマクロボイドに起因した径の大きな孔が生じており、キレートポリマー粒子径が細かくなったことで均一分散性がさらに増し、キレートポリマーの持つイオン性が相分離挙動に影響を与えたものと考えている。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 0.94, and the standard deviation Y was 0.28. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property were as shown in Table 1, and were excellent in turbidity removal performance, adsorption performance and mechanical strength, but the surface pore size was large and the fouling resistance was slightly lowered. Large pores due to macrovoids are generated on the membrane surface, and the fine dispersion of the chelate polymer particles further increases the uniform dispersibility. The ionic character of the chelate polymer affects the phase separation behavior. I think.

〈実施例8〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、300rpm、5Hの条件で破砕し、さらに、ジルコニアボールを1〜2mm径、50gに交換した後、400rpmで8H破砕を行い、粒子を得た。
<Example 8>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. Put 18 zirconia balls 18mm and 4g polymer A in a 45ml agate container, crush them under conditions of 300rpm and 5H, and further change the zirconia balls to 1-2mm diameter and 50g, then crush 8H at 400rpm, Got.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は40nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 40 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.05、標準偏差Yは0.20であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、表面孔径が大きく、耐ファウリング性がやや低くなった。膜表面にはところどころマクロボイドに起因した径の大きな孔が生じており、キレートポリマー粒子径が細かくなったことで均一分散性がさらに増し、キレートポリマーの持つイオン性が相分離挙動に影響を与えたものと考えている。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.05, and the standard deviation Y was 0.20. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property were as shown in Table 1, and were excellent in turbidity removal performance, adsorption performance and mechanical strength, but the surface pore size was large and the fouling resistance was slightly lowered. Large pores due to macrovoids are generated on the membrane surface, and the fine dispersion of the chelate polymer particles further increases the uniform dispersibility. The ionic character of the chelate polymer affects the phase separation behavior. I think.

〈実施例9〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、300rpm、1Hの条件で破砕し、粒子を得た。
<Example 9>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. In a 45 ml agate container, 18 10 mm diameter zirconia balls and 4 g of polymer A were placed and crushed under conditions of 300 rpm and 1 H to obtain particles.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は20nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 20 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.13、標準偏差Yは0.19であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていた。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.13 and the standard deviation Y was 0.19. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property are as shown in Table 1, and were excellent in any of turbidity removal performance, adsorption performance, and mechanical strength.

〈実施例10〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、100rpm、30minの条件で破砕し、粒子を得た。
<Example 10>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. In a 45 ml agate container, 18 10 mm diameter zirconia balls and 4 g of polymer A were placed and crushed under the conditions of 100 rpm and 30 min to obtain particles.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は20nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 20 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは1.05、標準偏差Yは0.33であった。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、均一分散性がやや低下しており、吸着性能がやや低下していた。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 1.05 and the standard deviation Y was 0.33. It was. The shape and physical properties are as shown in Table 1 and were excellent in turbidity removal performance, adsorption performance, and mechanical strength, but the uniform dispersibility was slightly lowered and the adsorption performance was slightly lowered. It was.

〈実施例11〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に15mm径ジルコニアボール18個、およびポリマーA4gを入れ、100rpm、30minの条件で破砕し、粒子を得た。
<Example 11>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. In a 45 ml agate container, 18 15 mm diameter zirconia balls and 4 g of polymer A were placed and crushed under the conditions of 100 rpm and 30 min to obtain particles.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は20nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 20 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは0.97、標準偏差Yは0.45であった。形状や各物性は表1に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、均一分散性がやや低下しており、吸着性の性能がやや低下していた。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 0.97, and the standard deviation Y was 0.45. It was. The shape and physical properties are as shown in Table 1 and were excellent in turbidity removal performance, adsorption performance, and mechanical strength, but the uniform dispersibility was slightly lowered and the adsorptivity performance was slightly lowered. Was.

〈比較例1〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、ボールミルを用いて樹脂の破砕を行った。45mlメノウ容器に10mm径ジルコニアボール18個、およびポリマーA4gを入れ、400rpm、7Hの条件で破砕し、さらに、ジルコニアボールを1〜2mm径、50gに交換した後、400rpmで15H破砕を行い、粒子を得た。
<Comparative example 1>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Next, the resin was crushed using a ball mill. Put 18 zirconia balls 18mm and 4g of polymer A in a 45ml agate container, crush them under the conditions of 400rpm, 7H, and replace the zirconia balls with 1-2mm diameter, 50g, then crush 15H at 400rpm, Got.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は80nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 80 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは0.91、標準偏差Yは0.27であり、キレート性官能基が多孔質吸着層に均一に分散していた。形状や各物性は表2に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、表面孔径が大きく、耐ファウリング性が低くなった。膜表面にはマクロボイドに起因した径の大きな孔が部分的に生じており、これによって耐ファウリング性が悪化したものと考えている。マクロボイドが形成された理由については、キレート微粒子の径が小さくなり、より多くのキレート性官能基が露出するようになったことで系中のイオン性官能基量が増加、相分離に影響を与えたものと考えている。   With respect to the porous adsorption layer of the obtained hollow fiber membrane, when the number of Na atoms (%) as an atom derived from the chelating functional group was measured, the average value X was 0.91 and the standard deviation Y was 0.27. The chelating functional group was uniformly dispersed in the porous adsorption layer. The shape and each physical property are as shown in Table 2, and were excellent in turbidity removal performance, adsorption performance, and mechanical strength, but the surface pore diameter was large and the fouling resistance was low. It is thought that large-diameter holes due to macrovoids were partially formed on the film surface, which deteriorated the fouling resistance. The reason for the formation of macrovoids is that the size of the chelate fine particles is reduced and more chelating functional groups are exposed, increasing the amount of ionic functional groups in the system and affecting the phase separation. I think it was given.

〈比較例2〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
次いで、メノウ乳鉢を用いてキレートポリマーの破砕を行い粒子を得た。
<Comparative example 2>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.
Subsequently, the chelate polymer was crushed using an agate mortar to obtain particles.

この微粒子化したポリマーAを用いて、実施例1と同様にして支持層の上に多孔質吸着層を形成させた中空糸膜を作製した。得られた多孔質吸着層は、三次元網目構造となっており、多孔質吸着層の平均孔径は20nm、厚みは50μmであった。   Using this finely divided polymer A, a hollow fiber membrane in which a porous adsorption layer was formed on a support layer was produced in the same manner as in Example 1. The obtained porous adsorption layer had a three-dimensional network structure, and the average pore diameter of the porous adsorption layer was 20 nm and the thickness was 50 μm.

得られた中空糸膜の多孔質吸着層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは0.87、標準偏差Yは0.49であった。形状や各物性は表2に示したとおりであり、除濁性能、吸着性能、機械的強度のいずれにも優れていたが、キレート性官能基の均一分散性がやや低下しており、吸着性の性能がやや低下していた。
〈比較例3〉
重量平均分子量41.7万のフッ化ビニリデンホモポリマーとγ−ブチロラクトンとを、それぞれ27重量%と58重量%の割合で170℃の温度で溶解した。このポリマー溶液に対して、さらに攪拌しながら実施例9と同様に調製したキレート微粒子を15重量%添加し、攪拌混合して分散溶液を得た。この分散溶液をγ−ブチロラクトンを中空部形成液体として随伴させながら口金から吐出し、温度10℃のγ−ブチロラクトン80重量%水溶液からなる冷却浴中で固化することにより、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体中にキレート微粒子が分散した構造であり、支持層の厚みは300μmであった。
The porous adsorption layer of the obtained hollow fiber membrane was measured for the number of Na atoms (%) as atoms derived from the chelating functional group. The average value X was 0.87, and the standard deviation Y was 0.49. It was. The shape and physical properties are as shown in Table 2, and it was excellent in turbidity removal performance, adsorption performance, and mechanical strength, but the uniform dispersibility of the chelating functional group was slightly lowered, and the adsorptivity The performance was slightly degraded.
<Comparative Example 3>
A vinylidene fluoride homopolymer having a weight average molecular weight of 41,000 and γ-butyrolactone were dissolved at a temperature of 170 ° C. at a ratio of 27% by weight and 58% by weight, respectively. To this polymer solution, 15% by weight of chelate fine particles prepared in the same manner as in Example 9 was added with further stirring, followed by stirring and mixing to obtain a dispersion solution. The dispersion solution is discharged from the base while accompanying γ-butyrolactone as a hollow portion forming liquid, and solidified in a cooling bath composed of an 80% by weight aqueous solution of γ-butyrolactone at a temperature of 10 ° C., whereby a hollow fiber membrane-like support layer Was made. The obtained support layer had a structure in which chelate fine particles were dispersed in a spherical structure having an average diameter of 3.0 μm, and the thickness of the support layer was 300 μm.

次いで、実施例5と同様にして多孔質除濁層を形成させた中空糸膜を作製した。得られた多孔質除濁層は、三次元網目構造となっており、多孔質除濁層の平均孔径は20nm、厚みは50μmであった。   Next, a hollow fiber membrane having a porous turbidity layer formed thereon was produced in the same manner as in Example 5. The obtained porous turbidity layer had a three-dimensional network structure, and the porous turbidity layer had an average pore diameter of 20 nm and a thickness of 50 μm.

得られた中空糸膜は、純水の透過性能1.1m/m/hr、濁質成分除去性能99%、耐ファウリング性0.98、銅の除去性能38%、破断強度5.5MPaであった。形状や各物性は表2に示したとおりである。この中空糸膜は、三次元網目状構造を有する層と、キレート微粒子を含有する多孔質構造の層とを有する複合分離膜であったが、支持層内の比較的大きな細孔内に吸着剤が保持されているのみで吸着剤の均一分散性が低く、金属イオンとの接触機会に乏しいため、吸着剤を含有する多孔質構造の層の金属イオンに対する吸着効率が悪かった。さらに、膜強度も低下しており、支持層内に径の小さな粒子を添加したことによる界面の増加に起因するものと考えられる。この中空糸膜の吸着剤を含有する多孔質構造の層について、キレート性官能基由来の原子としてNaの原子数(%)を測定したところ、平均値Xは0.81、標準偏差Yは0.90であり、キレート性官能基が偏って存在していた。なお、評価結果を表2にまとめた。 The obtained hollow fiber membrane had a pure water permeation performance of 1.1 m 3 / m 2 / hr, a turbid component removal performance of 99%, a fouling resistance of 0.98, a copper removal performance of 38%, and a breaking strength of 5. 5 MPa. The shape and physical properties are as shown in Table 2. This hollow fiber membrane was a composite separation membrane having a layer having a three-dimensional network structure and a porous structure layer containing chelate fine particles, but the adsorbent was placed in relatively large pores in the support layer. Since the adsorbent has a low uniform dispersibility and there are few opportunities for contact with metal ions, the adsorption efficiency of the porous layer containing the adsorbent with respect to metal ions was poor. Further, the film strength is also lowered, which is considered to be caused by an increase in the interface due to the addition of particles having a small diameter in the support layer. When the number of Na atoms (%) as an atom derived from the chelating functional group was measured for the porous structure layer containing the adsorbent of the hollow fiber membrane, the average value X was 0.81 and the standard deviation Y was 0. .90, and chelating functional groups were present in a biased manner. The evaluation results are summarized in Table 2.

〈比較例4〉
実施例1と同様にして、中空糸膜状の支持層を作製した。得られた支持層は、平均直径3.0μmの球状構造体が集積した構造であり、支持層の厚みは250μmであった。
<Comparative example 4>
In the same manner as in Example 1, a hollow fiber membrane-shaped support layer was produced. The obtained support layer had a structure in which spherical structures having an average diameter of 3.0 μm were accumulated, and the thickness of the support layer was 250 μm.

次いで、実施例5と同様にして多孔質除濁層を形成させた中空糸膜を作製した。得られた多孔質除濁層は、三次元網目構造となっており、多孔質除濁層の平均孔径は20nm、厚みは50μmであった。   Next, a hollow fiber membrane having a porous turbidity layer formed thereon was produced in the same manner as in Example 5. The obtained porous turbidity layer had a three-dimensional network structure, and the porous turbidity layer had an average pore diameter of 20 nm and a thickness of 50 μm.

得られた中空糸膜は、純水の透過性能1.8m/m/hr、濁質成分除去性能99%、耐ファウリング性0.98、銅の除去性能0%、破断強度8.8MPaであり、多孔質吸着層が無いために吸着性能を示さなかった。なお、評価結果を表2にまとめた。 The obtained hollow fiber membrane had a pure water permeability of 1.8 m 3 / m 2 / hr, a turbid component removal performance of 99%, a fouling resistance of 0.98, a copper removal performance of 0%, and a breaking strength of 8. Since it was 8 MPa and there was no porous adsorption layer, adsorption performance was not shown. The evaluation results are summarized in Table 2.

Figure 2017001029
Figure 2017001029

Figure 2017001029
Figure 2017001029

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。   Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

本発明によれば、吸着層と支持層を少なくとも含み、除濁を担う表面による水中の濁質除去と吸着層による金属イオン除去が可能な、高強度、高耐ファウリング性を備えた多層分離膜が提供される。これにより水処理分野に適用した場合、水中の濁質成分除去と金属イオン吸着除去を十分に行うことができるようになる。
According to the present invention, the multi-layer separation having high strength and high fouling resistance, including at least an adsorption layer and a support layer, capable of removing turbidity in water by a surface responsible for turbidity and removing metal ions by the adsorption layer. A membrane is provided. As a result, when applied to the water treatment field, turbid component removal in water and adsorption removal of metal ions can be sufficiently performed.

Claims (11)

キレート性官能基を有する微粒子およびベースポリマーを含有する多孔質吸着層と、
多孔質支持層と
を備える多層分離膜。
A porous adsorption layer containing fine particles having a chelating functional group and a base polymer;
A multilayer separation membrane comprising a porous support layer.
前記キレート性官能基を有する微粒子の粒径が0.15μm〜3μmである、請求項1に記載の多層分離膜。 2. The multilayer separation membrane according to claim 1, wherein the fine particles having a chelating functional group have a particle size of 0.15 μm to 3 μm. 前記多孔質吸着層が三次元網目構造または球状構造の少なくとも一方を有する、
請求項1または請求項2に記載の多層分離膜。
The porous adsorption layer has at least one of a three-dimensional network structure or a spherical structure;
The multilayer separation membrane according to claim 1 or 2.
前記多孔質吸着層が、除濁を担う表面を有する、請求項1〜請求項3のいずれか1項に記載の多層分離膜。   The multilayer separation membrane according to any one of claims 1 to 3, wherein the porous adsorption layer has a surface responsible for turbidity. 前記多孔質吸着層の断面をエネルギー分散型X線分析で元素分析した際のキレート性官能基由来原子の原子数(%)の平均値Xと標準偏差YがX≧3Yを満たす、
請求項1〜請求項4のいずれか1項に記載の多層分離膜。
The average value X of the number of atoms (%) of the chelating functional group-derived atoms and the standard deviation Y satisfy X ≧ 3Y when the cross section of the porous adsorption layer is subjected to elemental analysis by energy dispersive X-ray analysis.
The multilayer separation membrane according to any one of claims 1 to 4.
キレート性官能基由来原子が、N、O、P、S、Na、K、Cu、FeおよびBからなる群から選ばれる少なくとも一種である、請求項5に記載の多層分離膜。 The multilayer separation membrane according to claim 5, wherein the chelate functional group-derived atom is at least one selected from the group consisting of N, O, P, S, Na, K, Cu, Fe and B. 前記多孔質吸着層の厚みが10μm以上500μm以下である、請求項1〜請求項6のいずれか1項に記載の多層分離膜。   The multilayer separation membrane of any one of Claims 1-6 whose thickness of the said porous adsorption layer is 10 micrometers or more and 500 micrometers or less. 外径が800μm以上2000μm以下の中空糸膜である、請求項1〜請求項7のいずれか1項に記載の多層分離膜。 The multilayer separation membrane according to any one of claims 1 to 7, which is a hollow fiber membrane having an outer diameter of 800 µm or more and 2000 µm or less. 50kPa、25℃における純水透過性能が0.01m/m・hr以上10m/m・hr以下、破断強度が6MPa以上、破断伸度が10%以上である、請求項1〜請求項8のいずれか1項に記載の多層分離膜。 The pure water permeation performance at 50 kPa and 25 ° C. is 0.01 m 3 / m 2 · hr to 10 m 3 / m 2 · hr, the breaking strength is 6 MPa or more, and the breaking elongation is 10% or more. Item 9. The multilayer separation membrane according to any one of Item 8. 前記多孔質吸着層が、熱誘起相分離法および/または非溶媒誘起相分離法で得られた層である、請求項1〜請求項9のいずれか1項に記載の多層分離膜。   The multilayer separation membrane according to any one of claims 1 to 9, wherein the porous adsorption layer is a layer obtained by a thermally induced phase separation method and / or a non-solvent induced phase separation method. 前記多孔質支持層が、熱誘起相分離法および/または非溶媒誘起相分離法で得られた層である、請求項1〜請求項10のいずれか1項に記載の多層分離膜。   The multilayer separation membrane according to any one of claims 1 to 10, wherein the porous support layer is a layer obtained by a thermally induced phase separation method and / or a non-solvent induced phase separation method.
JP2016115890A 2015-06-11 2016-06-10 Multilayer separation film Pending JP2017001029A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015118216 2015-06-11
JP2015118216 2015-06-11

Publications (1)

Publication Number Publication Date
JP2017001029A true JP2017001029A (en) 2017-01-05

Family

ID=57753591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016115890A Pending JP2017001029A (en) 2015-06-11 2016-06-10 Multilayer separation film

Country Status (1)

Country Link
JP (1) JP2017001029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070859A (en) * 2019-11-01 2021-05-06 オルガノ株式会社 Metal recovery method and metal recovery device
WO2024002382A1 (en) * 2022-06-28 2024-01-04 江苏久膜高科技股份有限公司 Preparation method for chelating membrane for purifying wet electronic chemicals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070859A (en) * 2019-11-01 2021-05-06 オルガノ株式会社 Metal recovery method and metal recovery device
WO2024002382A1 (en) * 2022-06-28 2024-01-04 江苏久膜高科技股份有限公司 Preparation method for chelating membrane for purifying wet electronic chemicals

Similar Documents

Publication Publication Date Title
Vatanpour et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification
AU2006345112B2 (en) Polymer separation membrane and process for producing the same
JP6413768B2 (en) Multi-layer separation membrane
CA2458378C (en) Porous membrane and method of manufacturing the same
US11224854B2 (en) Porous formed article, method for producing porous formed article, and production apparatus for porous formed article
JP5066810B2 (en) Polymer separation membrane and production method thereof
JP6484171B2 (en) Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
Vetrivel et al. Cellulose acetate nanocomposite ultrafiltration membranes tailored with hydrous manganese dioxide nanoparticles for water treatment applications
JP2010227757A (en) Composite separation membrane
KR20100113167A (en) Polymer fiber material, method of producing the same and filter for filtering fluid
WO2008012872A1 (en) Fluororesin polymer separation membrane and process for producing the same
JP5177506B2 (en) Filter and liquid treatment method
Keskin et al. Halloysite nanotube blended nanocomposite ultrafiltration membranes for reactive dye removal
JP2004016930A (en) Microporous membrane and its production method
Aniagor et al. CuO nanoparticles as modifiers for membranes: A review of performance for water treatment
JP2017001029A (en) Multilayer separation film
Maleki et al. Algal biochar of unique structure as a robust alternative to manipulate mixed-matrix membranes performance and fouling resistance
JP4572531B2 (en) Membrane stock solution for separation membrane and separation membrane
JP2018015734A (en) Adsorbent-containing separation membrane and method for manufacturing the same
KR20120100076A (en) Membrane having carbon nanotube
Nadizadeh et al. Enhancing dye/salt separation efficiency through polysulfobetaine-modified poly (triazine imide)/polyethersulfone (PTI-PSBMA/PES) composite membrane fabrication
Shokri et al. Fabrication of Fouling Resistant PC Membrane by Incorporating Chitosan Grafted on Graphene Oxide Composite for Efficient Arsenate Removal from Water
Nayeri et al. A Review on the Recent Development of Carbon Nanotubes (CNTs) Application for Polymeric Mixed-Matrix Membranes: Synthesis, Performance, and Future Challenges
JP6592306B2 (en) Porous membrane for phosphorus adsorption and method for producing the same
Abdulkarem Novel Zirconium Phosphate Nanocomposite Polymeric Membrane for Effective Removal of Heavy Metals from Wastewater