JP2005140339A - Spindle motor for information equipment - Google Patents

Spindle motor for information equipment Download PDF

Info

Publication number
JP2005140339A
JP2005140339A JP2005033446A JP2005033446A JP2005140339A JP 2005140339 A JP2005140339 A JP 2005140339A JP 2005033446 A JP2005033446 A JP 2005033446A JP 2005033446 A JP2005033446 A JP 2005033446A JP 2005140339 A JP2005140339 A JP 2005140339A
Authority
JP
Japan
Prior art keywords
bearing
shaft member
housing
peripheral surface
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033446A
Other languages
Japanese (ja)
Inventor
Fumitada Satoji
文規 里路
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005033446A priority Critical patent/JP2005140339A/en
Publication of JP2005140339A publication Critical patent/JP2005140339A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve further cost reduction of a spindle motor for information equipment comprising a fluid dynamic bearing device. <P>SOLUTION: A housing 7 is formed by injection-molding a metallic material and has a cylindrical side part 7b and an annular seal part 7a integrally extended from an upper end of the side part 7b to an inner diameter side. A bottom member 6 is made out of a resin material and fixed to a lower end of the side part 7b of the housing 7. The fluid dynamic bearing device 1 is assembled by fixing a bearing sleeve 8 and the bottom member 6 to the housing 7 formed in a state of opening its bottom part, and further mounting a shaft member 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軸受隙間に生じる潤滑油の油膜で軸部材をラジアル方向に非接触支持する流体軸受装置を備えた情報機器用スピンドルモータに関する。このスピンドルモータは、例えば、HDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータとして好適である。   The present invention relates to a spindle motor for information equipment including a hydrodynamic bearing device that non-contact supports a shaft member in a radial direction with an oil film of lubricating oil generated in a bearing gap. This spindle motor is, for example, a spindle motor such as a magnetic disk device such as HDD or FDD, an optical disk device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable as a polygon scanner motor for a laser beam printer (LBP).

上記各種スピンドルモータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する流体軸受の使用が検討され、あるいは実際に使用されている。   The various spindle motors are required to have high speed, low cost, low noise, etc. in addition to high rotational accuracy. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, as this type of bearing, the use of a fluid bearing having characteristics excellent in the required performance has been studied, or It is actually used.

この種の流体軸受は、軸受隙間内の潤滑油に動圧を発生させる動圧発生手段を備えたいわゆる動圧軸受と、動圧発生手段を備えていないいわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a so-called hydrodynamic bearing provided with dynamic pressure generating means for generating dynamic pressure in the lubricating oil in the bearing gap, and a so-called perfect bearing having no dynamic pressure generating means (the bearing surface is a perfect circle). The bearings are roughly classified into shapes.

例えば、HDD等のディスク装置のスピンドルモータやレーザビームプリンタ(LBP)のポリゴンスキャナモータに組込まれる流体軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受や、軸部材の一端面をスラストプレート等によって接触支持する構造の軸受(いわゆるピボット軸受)が用いられる。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk device such as an HDD or a polygon scanner motor of a laser beam printer (LBP), a radial bearing portion that rotatably supports a shaft member in a radial direction and a shaft member A thrust bearing portion that is rotatably supported in the thrust direction, and a dynamic pressure in which a dynamic pressure generating groove (dynamic pressure groove) is provided on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member as the radial bearing portion A bearing is used. As the thrust bearing portion, for example, a motion in which dynamic pressure grooves are provided on both end surfaces of the flange portion of the shaft member, or surfaces facing the flange portion (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, etc.). A pressure bearing or a bearing having a structure in which one end surface of a shaft member is in contact and supported by a thrust plate or the like (so-called pivot bearing) is used.

通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部材を配設する場合が多い。   Normally, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal member is provided at the opening of the housing in order to prevent the lubricating oil injected into the inner space of the housing from leaking to the outside. There are many.

上記構成の流体軸受装置は、ハウジング、軸受スリーブ、軸部材、スラスト部材(又はスラストプレート)、及びシール部材といった部品で構成され、情報機器の益々の高性能化に伴って必要とされる高い軸受性能を確保すべく、各部品の加工精度や組立精度を高める努力がなされている。その一方で、情報機器の低価格化の傾向に伴い、この種の流体軸受装置を備えたスピンドルモータに対するコスト低減の要求も益々厳しくなっている。   The hydrodynamic bearing device having the above configuration is composed of parts such as a housing, a bearing sleeve, a shaft member, a thrust member (or a thrust plate), and a seal member, and is a high bearing required as the performance of information equipment increases. Efforts are being made to increase the processing accuracy and assembly accuracy of each part in order to ensure performance. On the other hand, with the trend of lowering the price of information equipment, the demand for cost reduction for spindle motors equipped with this type of hydrodynamic bearing device has become increasingly severe.

本発明の課題は、流体軸受装置を備えた情報機器用スピンドルモータのより一層の低コスト化を図ることである。   An object of the present invention is to further reduce the cost of a spindle motor for information equipment provided with a hydrodynamic bearing device.

上記課題を解決するため、本発明は、軸部材と、軸部材を回転自在に支持する流体軸受装置と、モータステータ及びモータロータとを備え、モータステータとモータロータとの間の励磁力で軸部材を回転させる情報機器用スピンドルモータにおいて、流体軸受装置は、ハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周面と軸部材の外周面との間に設けられ、軸受隙間に生じる潤滑油の油膜で軸部材をラジアル方向に非接触支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部とを備え、ハウジングが金属材料の射出成形により形成されている構成を提供する。   In order to solve the above-mentioned problems, the present invention includes a shaft member, a hydrodynamic bearing device that rotatably supports the shaft member, a motor stator and a motor rotor, and the shaft member is driven by an exciting force between the motor stator and the motor rotor. In a rotating spindle motor for information equipment, a hydrodynamic bearing device is provided between a housing, a bearing sleeve fixed to the inner periphery of the housing, an inner peripheral surface of the bearing sleeve, and an outer peripheral surface of the shaft member. A radial bearing portion that supports the shaft member in the radial direction in a non-contact manner with an oil film of the lubricating oil generated in the above, and a thrust bearing portion that supports the shaft member in the thrust direction, and the housing is formed by injection molding of a metal material I will provide a.

上記の金属材料としては、例えばアルミ合金、マグネシウム合金、ステンレス鋼等を用いることができる。   As said metal material, an aluminum alloy, a magnesium alloy, stainless steel etc. can be used, for example.

ハウジングを金属材料で射出成形することにより、旋削加工等で形成する場合に比べて、製造コスト低減を図ることができる。   By injection-molding the housing with a metal material, the manufacturing cost can be reduced as compared with the case where the housing is formed by turning or the like.

ハウジングを金属材料で射出成形する方法としては、メタル・インジェクション・モールディング(MIM:Metal Injection Molding)法やチクソモールディング法を採用することができる。MIM法は、一般に、金属粉末と樹脂バインダとを混練後、金型に射出して成形し、続いて脱脂してバインダを除いた成形体を焼結して完成品とする成形法であり(焼結後、必要に応じて後処理を行う。)、次のような特長を有している。すなわち、複雑な形状の小物部品をニア・ネット・シェイプで形成することができ、金型形状を転写し同一形状のものを量産することができ、成型時の収縮率、脱脂・焼結時の収縮率などを見極めることにより、寸法精度の高い部品を生産することができ、金型形状を転写するので、金型の仕上精度と同一の面精度(面粗度等)を確保することができ、ステンレス鋼等の難加工材のニア・ネット・シェイプ化が可能である。また、チクソモールディング法は、マグネシウム合金等のチップをシリンダー内で半溶融状態まで加熱し、スクリューで攪拌してスラリー状としてノズルから射出成形するものである。チクソモールディング法は、寸法精度の高い部品を生産することができると共に、SF6ガスのような防燃ガスが不要であるため、地球環境にやさしいプロセスである。   As a method for injection molding the housing with a metal material, a metal injection molding (MIM) method or a thixo molding method can be employed. In general, the MIM method is a molding method in which a metal powder and a resin binder are kneaded, then injected into a mold and molded, and then the molded body from which the binder has been removed by degreasing is sintered to obtain a finished product ( After sintering, post-processing is performed as necessary.) And has the following features. In other words, small parts with complex shapes can be formed in near net shape, mold shapes can be transferred and mass-produced with the same shape, shrinkage during molding, degreasing and sintering By determining the shrinkage rate, etc., parts with high dimensional accuracy can be produced, and the mold shape can be transferred, ensuring the same surface accuracy (surface roughness, etc.) as the mold finish accuracy. It is possible to make near-net shapes for difficult-to-process materials such as stainless steel. In the thixomolding method, a chip such as a magnesium alloy is heated to a semi-molten state in a cylinder, stirred with a screw, and formed into a slurry to be injection-molded from a nozzle. The thixomolding method is a process that is friendly to the global environment because it can produce parts with high dimensional accuracy and does not require a flameproof gas such as SF6 gas.

ハウジングを成形する金属材料として、マグネシウム合金を用いることにより流体軸受装置ひいてはスピンドルモータのより一層の軽量化を図ることができる。マグネシウム合金は、実用金属中、比重の最も小さい金属であり、その比重は約1.8で、鉄の約4分の1、アルミニウム合金と比べても約3分の2と軽量である。また、アルミニウム合金等と比較して、薄肉成形性に優れている。   By using a magnesium alloy as the metal material for forming the housing, it is possible to further reduce the weight of the hydrodynamic bearing device and thus the spindle motor. Magnesium alloy is the metal with the lowest specific gravity among practical metals, and its specific gravity is about 1.8, which is about one-fourth that of iron and about two-thirds that of aluminum alloy. Moreover, it is excellent in thin-wall formability as compared with aluminum alloys and the like.

さらに、マグネシウム合金は放熱性が良く、マグネシウム合金からなるハウジングを備えた本発明の流体軸受装置は、情報機器に搭載されるスピンドルモータの回転支持部に好適である。例えばパソコンでは、CPU(中央演算処理装置)のクロック周波数が急速に向上していることに伴い、パソコン内部に熱がこもり易くなっており、ディスク駆動装置等に組み込まれる流体軸受装置の運転環境も厳しさを増している。また、ディスク駆動装置等の高速化に伴い、軸受自身の内部発熱量も多くなり易い傾向にある。一方、流体軸受装置の内部に熱が蓄積されると、潤滑油の劣化が促進され、軸受寿命の低下をきたす一因となる。流体軸受装置のハウジングを放熱性の良いマグネシウム合金で形成することにより、流体軸受装置の内部に熱が蓄積されるのを抑制して、軸受寿命の低下を防止することができる。   Furthermore, the magnesium alloy has good heat dissipation, and the hydrodynamic bearing device of the present invention having a housing made of magnesium alloy is suitable for a rotation support portion of a spindle motor mounted on information equipment. For example, in a personal computer, as the clock frequency of a CPU (central processing unit) is rapidly increasing, heat is easily trapped inside the personal computer, and the operating environment of a hydrodynamic bearing device incorporated in a disk drive device or the like is also increased. The severity is increasing. In addition, with the increase in the speed of disk drive devices and the like, the internal heat generation amount of the bearing itself tends to increase. On the other hand, when heat is accumulated inside the hydrodynamic bearing device, the deterioration of the lubricating oil is promoted, which causes a decrease in the bearing life. By forming the housing of the hydrodynamic bearing device with a magnesium alloy having good heat dissipation, it is possible to prevent heat from being accumulated inside the hydrodynamic bearing device and prevent a reduction in bearing life.

また、マグネシウム合金は、再溶解、精錬することによって品質の低下は殆どなく、リサイクル性に優れている。従って、流体軸受装置のハウジングをマグネシウム合金で形成することは、環境負荷を軽減する点からも好ましい。   Magnesium alloys are excellent in recyclability with almost no deterioration in quality due to remelting and refining. Therefore, it is preferable to form the housing of the hydrodynamic bearing device with a magnesium alloy from the viewpoint of reducing the environmental load.

以上の構成において、ラジアル軸受部は、軸受隙間内の潤滑油に動圧を発生させる動圧軸受とすることができる。   In the above configuration, the radial bearing portion can be a dynamic pressure bearing that generates dynamic pressure in the lubricating oil in the bearing gap.

本発明によれば、より一層低コストで軽量な情報機器用スピンドルモータを提供することができる。   According to the present invention, it is possible to provide a spindle motor for information equipment that is much cheaper and lighter.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、この実施形態に係る流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。流体軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to this embodiment. This spindle motor is used for a disk drive device such as an HDD, and has a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 mounted on the shaft member 2, and a radial gap, for example. A motor stator 4 and a motor rotor 5 which are opposed to each other. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、流体軸受装置(流体動圧軸受装置)1を示している。この流体軸受装置1は、ハウジング7と、軸受スリーブ8と、軸部材2と、ハウジング7の底部を形成する底部材6を構成部品して構成される。   FIG. 2 shows a fluid dynamic bearing device (fluid dynamic pressure bearing device) 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8, a shaft member 2, and a bottom member 6 that forms the bottom of the housing 7.

軸受スリーブ8の内周面8aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸部材2の下側端面2bと底部材6の端面との間にスラスト軸受部S1が設けられる。尚、説明の便宜上、底部材6の側を下側、底部材6と反対の側を上側として説明を進める。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A thrust bearing portion S <b> 1 is provided between the lower end surface 2 b of the shaft member 2 and the end surface of the bottom member 6. For convenience of explanation, the description will proceed with the side of the bottom member 6 as the lower side and the side opposite to the bottom member 6 as the upper side.

軸部材2は、例えば、ステンレス鋼等の金属材で形成され、その下側端面2bは凸球状に形成される。   The shaft member 2 is formed of, for example, a metal material such as stainless steel, and the lower end surface 2b thereof is formed in a convex spherical shape.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成される。この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えばヘリングボーン形状の動圧溝がそれぞれ形成される。尚、動圧溝の形状として、スパイラル形状や軸方向溝形状等を採用しても良い。   The bearing sleeve 8 is formed in a cylindrical shape, for example, with a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper. On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart in the axial direction. In the two regions, for example, herringbone-shaped dynamic pressure grooves are formed. In addition, as the shape of the dynamic pressure groove, a spiral shape, an axial groove shape, or the like may be adopted.

ハウジング7は、例えば、マグネシウム合金等の金属材料を射出成形(メタル・インジェクション・モールディング又はチクソモールディング)して形成され、円筒状の側部7bと、側部7bの上端から内径側に一体に延びた環状のシール部7aとを備えている。シール部7aの内周面7a1は、軸部材2の外周面2a1と所定のシール空間を介して対向する。尚、この実施形態では、シール部7aの内周面7a1と対向してシール空間を形成する軸部材2の外周面2a1を、上方(ハウジング7の外方向)に向かって漸次縮径するテーパ形状に形成している。軸部材2の回転時、テーパ形状の外周面2a1は、いわゆる遠心力シールとしても機能する。   The housing 7 is formed by injection molding (metal injection molding or thixo molding) of a metal material such as a magnesium alloy, and extends integrally from the upper end of the cylindrical side portion 7b and the side portion 7b to the inner diameter side. And an annular seal portion 7a. The inner peripheral surface 7a1 of the seal portion 7a faces the outer peripheral surface 2a1 of the shaft member 2 via a predetermined seal space. In this embodiment, the tapered shape of the outer peripheral surface 2a1 of the shaft member 2 that forms the seal space facing the inner peripheral surface 7a1 of the seal portion 7a is gradually reduced upward (outward direction of the housing 7). Is formed. When the shaft member 2 rotates, the tapered outer peripheral surface 2a1 also functions as a so-called centrifugal force seal.

底部材6は樹脂材料で形成され、ハウジング7の側部7bの下端に固定される。   The bottom member 6 is formed of a resin material and is fixed to the lower end of the side portion 7b of the housing 7.

この実施形態の流体軸受装置1は、上記の型成形により底部が開口した状態に形成されたハウジング7に軸受スリーブ8および底部材6を固定し、さらに軸部材2を装着することによって組み立てることができる。   The hydrodynamic bearing device 1 of this embodiment can be assembled by fixing the bearing sleeve 8 and the bottom member 6 to the housing 7 formed in the state where the bottom portion is opened by the above-described molding, and further mounting the shaft member 2. it can.

まず、軸受スリーブ8をハウジング7の開口した底部から側部7bの内周面に装着し、上側端面がシール部7aの内面と当接するまで推し進める。そして、その位置で、軸受スリーブ8を接着、圧入、レーザビーム溶接、高周波パルス接合等の適宜の手段でハウジング7に固定する。つぎに、ハウジング7の側部7bの下端に樹脂製の底部材6を適宜の手段で固定する。この実施形態では、側部7bの下端に環状のリブ7b1を形成すると共に、底部材6の端面に環状の凹部6aを形成し、凹部6aをリブ7b1に嵌合させた状態で、底部材6を側部7bの下端に装着し、超音波溶着又は誘導加熱によって固着している。尚、底部材6の固着状態を強固ならしめるため、リブ7b1の内周面及び外周面のうち少なくとも一方にねじ状の凹凸やローレット加工等による凹凸を形成しておくのが好ましい。また、リブ7b1と凹部6aは相互に嵌合するものであれば、円周方向に非連続なものであってもよい。その後、軸部材2を軸受スリーブ8の内周面8aに挿入して、その下側端面2bを底部材6の端面に接触させる。そして、シール部7aで密封されたハウジング7の内部空間に潤滑油を給油する。   First, the bearing sleeve 8 is mounted on the inner peripheral surface of the side portion 7b from the opened bottom portion of the housing 7, and is pushed forward until the upper end surface comes into contact with the inner surface of the seal portion 7a. At that position, the bearing sleeve 8 is fixed to the housing 7 by appropriate means such as bonding, press-fitting, laser beam welding, and high-frequency pulse bonding. Next, the resin bottom member 6 is fixed to the lower end of the side portion 7b of the housing 7 by an appropriate means. In this embodiment, while forming the annular rib 7b1 in the lower end of the side part 7b, forming the annular recessed part 6a in the end surface of the bottom member 6, and fitting the recessed part 6a to the rib 7b1, Is attached to the lower end of the side portion 7b, and is fixed by ultrasonic welding or induction heating. In order to strengthen the fixed state of the bottom member 6, it is preferable that at least one of the inner peripheral surface and the outer peripheral surface of the rib 7 b 1 is formed with screw-like unevenness or knurled unevenness. Further, the rib 7b1 and the recess 6a may be discontinuous in the circumferential direction as long as they can be fitted to each other. Thereafter, the shaft member 2 is inserted into the inner peripheral surface 8 a of the bearing sleeve 8, and the lower end surface 2 b is brought into contact with the end surface of the bottom member 6. Then, lubricating oil is supplied to the internal space of the housing 7 sealed by the seal portion 7a.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2が上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、軸部材2の下側端面2bが底部材6によって接触支持される。これにより、軸部材2をスラスト方向に回転自在に支持するスラスト軸受部S1が構成される。   When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a of the shaft member 2 via a radial bearing gap. As the shaft member 2 rotates, dynamic pressure of lubricating oil is generated in the radial bearing gap, and the shaft member 2 is non-contacting freely in the radial direction by an oil film of lubricating oil formed in the radial bearing gap. Supported. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the lower end surface 2 b of the shaft member 2 is contact-supported by the bottom member 6. Thereby, the thrust bearing part S1 which supports the shaft member 2 rotatably in the thrust direction is configured.

図3は、図2に示す実施形態の変形例を示している。この変形例では、樹脂製の底部材9をハウジング7の側部7bの下端内周に圧入固定している。   FIG. 3 shows a modification of the embodiment shown in FIG. In this modification, the resin bottom member 9 is press-fitted and fixed to the inner periphery of the lower end of the side portion 7 b of the housing 7.

図4は、他の実施形態に係る流体軸受装置11を示している。この実施形態の流体軸受装置11が図2に示す流体軸受装置1と異なる点は、ハウジング17に底部17cを一体形成している点、軸部材2の下側端面2bをスラストプレート20によって接触支持している点、ハウジング17の上端開口部に樹脂製のシール部材10を装着している点である。シール部材10は、軸部材2の外周面2a1と対向してシール空間を形成する内周面10bを備えている。   FIG. 4 shows a hydrodynamic bearing device 11 according to another embodiment. The hydrodynamic bearing device 11 of this embodiment is different from the hydrodynamic bearing device 1 shown in FIG. 2 in that the bottom portion 17 c is integrally formed with the housing 17, and the lower end surface 2 b of the shaft member 2 is contact-supported by the thrust plate 20. In other words, the resin seal member 10 is attached to the upper end opening of the housing 17. The seal member 10 includes an inner peripheral surface 10b that forms a seal space facing the outer peripheral surface 2a1 of the shaft member 2.

ハウジング17は、例えば、マグネシウム合金等の金属材料を射出成形(メタル・インジェクション・モールディング又はチクソモールディング)して形成され、円筒状の側部17bと、側部17bの下端と一体に連続した底部17cとを備えている。   The housing 17 is formed by injection molding (metal injection molding or thixo molding) of a metal material such as a magnesium alloy, for example, and has a cylindrical side portion 17b and a bottom portion 17c continuous with the lower end of the side portion 17b. And.

スラストプレート20は、低摩擦材、例えば樹脂材で形成され、ハウジング17の底部17cに配置される。   The thrust plate 20 is formed of a low friction material, for example, a resin material, and is disposed on the bottom portion 17 c of the housing 17.

この実施形態の流体軸受装置11は、上記の型成形により上端が開口した状態に形成されたハウジング17に軸受スリーブ8およびシール部材10を固定し、さらにスラストプレート20および軸部材2を装着することによって組み立てることができる。   In the hydrodynamic bearing device 11 of this embodiment, the bearing sleeve 8 and the seal member 10 are fixed to the housing 17 formed with the upper end opened by the above-described molding, and the thrust plate 20 and the shaft member 2 are further mounted. Can be assembled by.

まず、軸受スリーブ8をハウジング17の上端開口部から側部17bの内周面に装着し、下側端面が底部17cの内面と当接するまで推し進める。そして、その位置で、軸受スリーブ8を接着、圧入、レーザビーム溶接、高周波パルス接合等の適宜の手段でハウジング17に固定する。つぎに、ハウジング17の側部17bの上端に樹脂製のシール部材10を適宜の手段で固定する。この実施形態では、側部17bの上端に環状のリブ17b1を形成すると共に、シール部材10の端面に環状の凹部10aを形成し、凹部10aをリブ17b1に嵌合させた状態で、シール部材10を側部17bの上端に装着し、超音波溶着又は誘導加熱によって固着している。尚、シール部材10の固着状態を強固ならしめるため、リブ17b1の内周面及び外周面のうち少なくとも一方にねじ状の凹凸やローレット加工等による凹凸を形成しておくのが好ましい。また、リブ17b1と凹部10aは相互に嵌合するものであれば、円周方向に非連続なものであってもよい。   First, the bearing sleeve 8 is mounted on the inner peripheral surface of the side portion 17b from the upper end opening of the housing 17, and is advanced until the lower end surface comes into contact with the inner surface of the bottom portion 17c. At that position, the bearing sleeve 8 is fixed to the housing 17 by appropriate means such as adhesion, press-fitting, laser beam welding, and high-frequency pulse bonding. Next, the resin seal member 10 is fixed to the upper end of the side portion 17b of the housing 17 by an appropriate means. In this embodiment, the annular rib 17b1 is formed on the upper end of the side portion 17b, the annular recess 10a is formed on the end surface of the seal member 10, and the seal member 10 is fitted to the rib 17b1. Is attached to the upper end of the side portion 17b, and is fixed by ultrasonic welding or induction heating. In order to strengthen the fixing state of the seal member 10, it is preferable that at least one of the inner peripheral surface and the outer peripheral surface of the rib 17b1 is formed with screw-shaped unevenness or knurled unevenness. Further, the rib 17b1 and the recess 10a may be discontinuous in the circumferential direction as long as they can be fitted to each other.

その後、ハウジング17の底部17cにスラストプレート20を装着し、さらに軸部材2を軸受スリーブ8の内周面8aに挿入して、その下側端面2bをスラストプレート20の端面に接触させる。そして、シール部材10で密封されたハウジング17の内部空間に潤滑油を給油する。   Thereafter, the thrust plate 20 is mounted on the bottom portion 17 c of the housing 17, and the shaft member 2 is further inserted into the inner peripheral surface 8 a of the bearing sleeve 8, and the lower end surface 2 b is brought into contact with the end surface of the thrust plate 20. Then, lubricating oil is supplied to the internal space of the housing 17 sealed with the seal member 10.

図5は、他の実施形態に係る流体軸受装置21を示している。この流体軸受装置21は、ハウジング27と、軸受スリーブ28と、軸部材22と、ハウジング27の底部を構成する底部材26を構成部品して構成される。   FIG. 5 shows a hydrodynamic bearing device 21 according to another embodiment. The hydrodynamic bearing device 21 includes a housing 27, a bearing sleeve 28, a shaft member 22, and a bottom member 26 that constitutes a bottom portion of the housing 27.

軸受スリーブ28の内周面28aと軸部材22の軸部22aの外周面22a1との間に第1ラジアル軸受部R21と第2ラジアル軸受部R22とが軸方向に離隔して設けられる。また、軸受スリーブ28の下側端面28cと軸部材22のフランジ部22bの上側端面22b1との間に第1スラスト軸受部S21が設けられ、底部材26の端面26aとフランジ部22bの下側端面22b2との間に第2スラスト軸受部S22が設けられる。   Between the inner peripheral surface 28a of the bearing sleeve 28 and the outer peripheral surface 22a1 of the shaft portion 22a of the shaft member 22, the first radial bearing portion R21 and the second radial bearing portion R22 are provided apart in the axial direction. A first thrust bearing portion S21 is provided between the lower end surface 28c of the bearing sleeve 28 and the upper end surface 22b1 of the flange portion 22b of the shaft member 22, and the lower end surface of the end surface 26a of the bottom member 26 and the flange portion 22b. A second thrust bearing portion S22 is provided between 22b2.

軸部材22は、例えば、ステンレス鋼等の金属材で形成され、軸部22aと、軸部22aの下端に一体又は別体に設けられたフランジ部22bとを備えている。   The shaft member 22 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 22a and a flange portion 22b provided integrally or separately at the lower end of the shaft portion 22a.

軸受スリーブ28は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成される。   The bearing sleeve 28 is formed in a cylindrical shape, for example, with a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper.

この焼結金属で形成された軸受スリーブ28の内周面28aには、第1ラジアル軸受部R21と第2ラジアル軸受部R22のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えばヘリングボーン形状の動圧溝がそれぞれ形成される。尚、動圧溝の形状として、スパイラル形状や軸方向溝形状等を採用しても良い。   On the inner peripheral surface 28a of the bearing sleeve 28 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R21 and the second radial bearing portion R22 are provided apart in the axial direction. In the two regions, for example, herringbone-shaped dynamic pressure grooves are formed. In addition, as the shape of the dynamic pressure groove, a spiral shape, an axial groove shape, or the like may be adopted.

また、第1スラスト軸受部S21のスラスト軸受面となる、軸受スリーブ28の下側端面28cには、例えばスパイラル形状の動圧溝が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。   Further, for example, a spiral dynamic pressure groove is formed on the lower end surface 28c of the bearing sleeve 28, which is the thrust bearing surface of the first thrust bearing portion S21. In addition, as a shape of the dynamic pressure groove, a herringbone shape, a radiation groove shape, or the like may be adopted.

ハウジング27は、例えば、マグネシウム合金等の金属材料を射出成形(メタル・インジェクション・モールディング又はチクソモールディング)して形成され、円筒状の側部27bと、側部27bの上端から内径側に一体に延びた環状のシール部27aとを備えている。シール部27aの内周面27a1は、軸部材22の外周面22a1と所定のシール空間を介して対向する。尚、この実施形態では、シール部27aの内周面27a1と対向してシール空間を形成する軸部材22の外周面22a1を、上方(ハウジング27の外方向)に向かって漸次縮径するテーパ形状に形成している。   The housing 27 is formed, for example, by injection molding (metal injection molding or thixo molding) of a metal material such as magnesium alloy, and extends integrally from the upper end of the cylindrical side portion 27b to the inner diameter side of the side portion 27b. And an annular seal portion 27a. The inner peripheral surface 27a1 of the seal portion 27a faces the outer peripheral surface 22a1 of the shaft member 22 via a predetermined seal space. In this embodiment, the outer peripheral surface 22a1 of the shaft member 22 that forms the seal space facing the inner peripheral surface 27a1 of the seal portion 27a is tapered so that the diameter gradually decreases upward (outward direction of the housing 27). Is formed.

底部材26は樹脂材料で形成され、ハウジング27の側部27bの下端に固定される。第2スラスト軸受部S22のスラスト軸受面となる、底部材26の端面26aには、例えばヘリングボーン形状の動圧溝が形成される。底部材26を樹脂の射出成形で形成する場合、端面26aの動圧溝を成形と同時に形成(成形金型で転写)することができる。また、動圧溝の形状として、スパイラル形状や放射溝形状等を採用しても良い。尚、底部材26のハウジング27に対する固定は、図2に示す実施形態と同様の態様で行うことができる。あるいは、図3に示す実施形態と同様の態様で行うこともできる。   The bottom member 26 is formed of a resin material and is fixed to the lower end of the side portion 27b of the housing 27. For example, a herringbone-shaped dynamic pressure groove is formed on the end surface 26a of the bottom member 26, which is a thrust bearing surface of the second thrust bearing portion S22. When the bottom member 26 is formed by resin injection molding, the dynamic pressure groove of the end face 26a can be formed simultaneously with molding (transferred by a molding die). Further, as the shape of the dynamic pressure groove, a spiral shape, a radiation groove shape, or the like may be adopted. The bottom member 26 can be fixed to the housing 27 in the same manner as in the embodiment shown in FIG. Or it can also carry out in the aspect similar to embodiment shown in FIG.

軸部材22の軸部22aは軸受スリーブ28の内周面28aに挿入され、フランジ部22bは軸受スリーブ28の下側端面28cと底部材26の端面26aとの間の空間部に収容される。また、シール部27aで密封されたハウジング27の内部空間には潤滑油が給油される。   The shaft portion 22 a of the shaft member 22 is inserted into the inner peripheral surface 28 a of the bearing sleeve 28, and the flange portion 22 b is accommodated in a space portion between the lower end surface 28 c of the bearing sleeve 28 and the end surface 26 a of the bottom member 26. Lubricating oil is supplied to the internal space of the housing 27 sealed by the seal portion 27a.

軸部材22の回転時、軸受スリーブ28の内周面28aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部22aの外周面22a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ28の下側端面28cのスラスト軸受面となる領域はフランジ部22bの上側端面22b1とスラスト軸受隙間を介して対向し、底部材26の端面26aのスラスト軸受面となる領域はフランジ部22bの下側端面22b2とスラスト軸受隙間を介して対向する。そして、軸部材22の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材22の軸部22aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材22をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R21と第2ラジアル軸受部R22とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材22のフランジ部22bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材22をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S21と第2スラスト軸受部S22とが構成される。   When the shaft member 22 rotates, the regions (two upper and lower regions) of the inner peripheral surface 28a of the bearing sleeve 28 face the outer peripheral surface 22a1 of the shaft portion 22a via a radial bearing gap. Further, the region that becomes the thrust bearing surface of the lower end surface 28c of the bearing sleeve 28 faces the upper end surface 22b1 of the flange portion 22b via the thrust bearing gap, and the region that becomes the thrust bearing surface of the end surface 26a of the bottom member 26 is the flange. It faces the lower end surface 22b2 of the portion 22b via a thrust bearing gap. As the shaft member 22 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 22a of the shaft member 22 rotates in the radial direction by the oil film of the lubricating oil formed in the radial bearing gap. It is supported non-contact freely. Thereby, the first radial bearing portion R21 and the second radial bearing portion R22 that support the shaft member 22 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the flange portion 22b of the shaft member 22 is rotatably supported in both thrust directions by the lubricating oil film formed in the thrust bearing gap. . Thereby, the first thrust bearing portion S21 and the second thrust bearing portion S22 that support the shaft member 22 in a non-contact manner so as to be rotatable in the thrust direction are configured.

尚、スラスト軸受部に動圧軸受を採用した流体軸受装置に対して、図4に示す実施形態に準じて、ハウジングの上端開口部に樹脂製のシール部材を固定する構成を適用することもできる。   In addition, the structure which fixes a resin-made sealing member to the upper-end opening part of a housing is also applicable to the hydrodynamic bearing apparatus which employ | adopted the dynamic pressure bearing for the thrust bearing part according to embodiment shown in FIG. .

本発明の実施形態に係るスピンドルモータの断面図である。It is sectional drawing of the spindle motor which concerns on embodiment of this invention. 本発明の実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on embodiment of this invention. 図2に示す実施形態の変形例に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on the modification of embodiment shown in FIG. 本発明の他の実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1、11、21 流体軸受装置
2、22 軸部材
4 モータステータ
5 モータロータ
7、17、27 ハウジング
8、28 軸受スリーブ
R1、R21 第1ラジアル軸受部
R2、R22 第2ラジアル軸受部
S1、S21、S22 スラスト軸受部
1, 11, 21 Fluid bearing device 2, 22 Shaft member 4 Motor stator 5 Motor rotor 7, 17, 27 Housing 8, 28 Bearing sleeve R1, R21 First radial bearing portion R2, R22 Second radial bearing portion S1, S21, S22 Thrust bearing

Claims (3)

軸部材と、該軸部材を回転自在に支持する流体軸受装置と、モータステータ及びモータロータとを備え、モータステータとモータロータとの間の励磁力で前記軸部材を回転させる情報機器用スピンドルモータにおいて、
前記流体軸受装置は、ハウジングと、該ハウジングの内周に固定された軸受スリーブと、前記軸受スリーブの内周面と前記軸部材の外周面との間に設けられ、軸受隙間に生じる潤滑油の油膜で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、前記軸部材をスラスト方向に支持するスラスト軸受部とを備え、
前記ハウジングが金属材料の射出成形により形成されていることを特徴とする情報機器用スピンドルモータ。
In an information equipment spindle motor comprising a shaft member, a hydrodynamic bearing device that rotatably supports the shaft member, a motor stator and a motor rotor, and rotating the shaft member by an excitation force between the motor stator and the motor rotor.
The hydrodynamic bearing device is provided between a housing, a bearing sleeve fixed to the inner periphery of the housing, and an inner peripheral surface of the bearing sleeve and an outer peripheral surface of the shaft member, and the lubricating oil generated in the bearing gap. A radial bearing portion that supports the shaft member in a radial direction in an oil film in a non-contact manner; and a thrust bearing portion that supports the shaft member in a thrust direction.
A spindle motor for information equipment, wherein the housing is formed by injection molding of a metal material.
前記金属材料がマグネシウム合金であることを特徴とする請求項1に記載の流体軸受装置。 The hydrodynamic bearing device according to claim 1, wherein the metal material is a magnesium alloy. 前記ラジアル軸受部が、前記軸受隙間内の潤滑油に動圧を発生させる動圧軸受であることを特徴とする請求項1又は2に記載の流体軸受装置。 The hydrodynamic bearing device according to claim 1, wherein the radial bearing portion is a dynamic pressure bearing that generates dynamic pressure in the lubricating oil in the bearing gap.
JP2005033446A 2005-02-09 2005-02-09 Spindle motor for information equipment Pending JP2005140339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033446A JP2005140339A (en) 2005-02-09 2005-02-09 Spindle motor for information equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033446A JP2005140339A (en) 2005-02-09 2005-02-09 Spindle motor for information equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002183133A Division JP2004028165A (en) 2002-06-24 2002-06-24 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2005140339A true JP2005140339A (en) 2005-06-02

Family

ID=34698256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033446A Pending JP2005140339A (en) 2005-02-09 2005-02-09 Spindle motor for information equipment

Country Status (1)

Country Link
JP (1) JP2005140339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816729A2 (en) * 2006-02-03 2007-08-08 ebm-papst St. Georgen GmbH & Co. KG Electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816729A2 (en) * 2006-02-03 2007-08-08 ebm-papst St. Georgen GmbH & Co. KG Electric motor
EP1816729A3 (en) * 2006-02-03 2013-11-13 ebm-papst St. Georgen GmbH & Co. KG Electric motor

Similar Documents

Publication Publication Date Title
US6921208B2 (en) Dynamic bearing device and method for making same
US8113715B2 (en) Fluid dynamic bearing device
JP3981564B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4236891B2 (en) Hydrodynamic bearing device
JP4672379B2 (en) Hydrodynamic bearing device
JP2007255449A (en) Fluid bearing device
JP2004028165A (en) Fluid bearing device
JP2005140339A (en) Spindle motor for information equipment
JP4226559B2 (en) Method for manufacturing hydrodynamic bearing device
JP2003343547A (en) Fluid bearing device
JP4579177B2 (en) Hydrodynamic bearing device
JP2002276649A (en) Dynamic pressure type bearing unit
JP2008144847A (en) Dynamic pressure bearing device
JP2003314533A (en) Fluid bearing device
JP4152712B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2004011721A (en) Fluid bearing device
JP7199263B2 (en) Fluid dynamic bearing device
JP4685675B2 (en) Hydrodynamic bearing device
JP2004116623A (en) Fluid bearing device
JP2005210896A (en) Spindle motor of disc drive
JP4522869B2 (en) Hydrodynamic bearing device
JP2005130699A (en) Spindle motor of disk unit
JP2005273815A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Effective date: 20080509

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014