JP2005140055A - Fuel injection valve for internal combustion engine - Google Patents

Fuel injection valve for internal combustion engine Download PDF

Info

Publication number
JP2005140055A
JP2005140055A JP2003378849A JP2003378849A JP2005140055A JP 2005140055 A JP2005140055 A JP 2005140055A JP 2003378849 A JP2003378849 A JP 2003378849A JP 2003378849 A JP2003378849 A JP 2003378849A JP 2005140055 A JP2005140055 A JP 2005140055A
Authority
JP
Japan
Prior art keywords
injection valve
fuel
fuel injection
injection
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003378849A
Other languages
Japanese (ja)
Inventor
Eriko Matsumura
恵理子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003378849A priority Critical patent/JP2005140055A/en
Publication of JP2005140055A publication Critical patent/JP2005140055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve for an internal combustion engine, capable of forming homogeneous mixture by uniformizing the atomization level of whole fuel spray. <P>SOLUTION: The fuel injection valve 10 has a preset injection angle to its axis L1 and an injection hole 11 formed into a sectionally rectangular slit. An injection hole inner wall face 11C on the side closer to the axis L1 of the fuel injection valve 10 is formed coarser than an injection hole inner wall face 11B on the side farther from the axis L1. Thus, a separation flow on the inner wall face 11C is accelerated to improve the atomization level of the whole fuel spray. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、内燃機関の燃料噴射弁に関し、さらに詳しくは、燃料噴霧全体の微粒化レベルを均一にし、均質な混合気を形成できる内燃機関の燃料噴射弁に関する。   The present invention relates to a fuel injection valve for an internal combustion engine, and more particularly to a fuel injection valve for an internal combustion engine that can uniformize the atomization level of the entire fuel spray and form a homogeneous air-fuel mixture.

従来、燃料噴射弁の軸線に対して噴射角度が所定角度を有しており、かつ噴射孔が断面矩形のスリット状に形成された内燃機関の燃料噴射弁が公知である(たとえば、特許文献1参照)。   Conventionally, a fuel injection valve of an internal combustion engine in which an injection angle has a predetermined angle with respect to the axis of the fuel injection valve and an injection hole is formed in a slit shape having a rectangular cross section is known (for example, Patent Document 1). reference).

このような噴射孔は、燃料の噴射方向に拡大する扇形状のスリット状となっているので、噴射された燃料は比較的厚さの薄い平らな扇状噴霧となり、円錐状の燃料噴霧に比較して空気との接触面積が増大する。したがって、エンジン筒内に直接噴射された噴霧燃料を良好に微粒化させることができる。   Such injection holes are fan-shaped slits that expand in the direction of fuel injection, so that the injected fuel is a flat fan spray with a relatively thin thickness, compared to a conical fuel spray. This increases the contact area with air. Therefore, the atomized fuel directly injected into the engine cylinder can be finely atomized.

なお、断面が円形の噴射孔の内壁面に、凹凸を設けて噴霧燃料の微粒化を図る技術も提案されている(たとえば、特許文献2参照)。   In addition, a technique has been proposed in which the atomized fuel is atomized by providing irregularities on the inner wall surface of the injection hole having a circular cross section (see, for example, Patent Document 2).

特許第3301013号公報Japanese Patent No. 3301013 特開平9−228928号公報Japanese Patent Laid-Open No. 9-228928

しかしながら、従来の内燃機関の燃料噴射弁は、燃料噴射弁の軸線に対して噴射角度が所定角度を有しているので、噴射孔の入り口部で発生する燃料流れの剥離状態が不均一となり易い。剥離流れによるキャビテーションにより微粒化が促進されるため、剥離状態が不均一になると、微粒化レベルも不均一になる。   However, since the fuel injection valve of the conventional internal combustion engine has a predetermined injection angle with respect to the axis of the fuel injection valve, the separation state of the fuel flow generated at the inlet of the injection hole tends to be uneven. . Since atomization is promoted by cavitation due to the separation flow, if the separation state becomes uneven, the atomization level also becomes uneven.

したがって、燃料噴霧全体の微粒化分布が不均一になると、局所的に微粒化レベルが悪い部位が存在し、エンジン筒内での均質な混合気形成が困難になってしまうという課題があった。   Therefore, when the atomization distribution of the entire fuel spray becomes non-uniform, there is a region where the atomization level is locally low, and it becomes difficult to form a homogeneous air-fuel mixture in the engine cylinder.

この発明は、上記に鑑みてなされたものであって、燃料噴霧全体の微粒化レベルを均一にし、均質な混合気を形成できる内燃機関の燃料噴射弁を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a fuel injection valve for an internal combustion engine that can uniformize the atomization level of the entire fuel spray and form a homogeneous air-fuel mixture.

上述した課題を解決し、目的を達成するために、この発明に係る内燃機関の燃料噴射弁は、燃料噴射弁の軸線に対して噴射角度が所定角度を有しており、かつ噴射孔が断面矩形のスリット状に形成された内燃機関の燃料噴射弁において、前記燃料噴射弁の軸線に近い側の噴射孔内壁面が、遠い側の噴射孔内壁面に比べて粗く形成されていることを特徴とするものである。   In order to solve the above-described problems and achieve the object, a fuel injection valve for an internal combustion engine according to the present invention has an injection angle of a predetermined angle with respect to the axis of the fuel injection valve, and the injection hole has a cross section. In the fuel injection valve of the internal combustion engine formed in a rectangular slit shape, the inner wall surface of the injection hole closer to the axis of the fuel injection valve is formed to be rougher than the inner wall surface of the injection hole on the far side. It is what.

したがって、この発明によれば、剥離流れが弱く微粒化レベルが悪い部位の面粗度を粗く形成することにより、剥離流れが促進される。これにより、微粒化レベルが向上し、燃料噴霧全体の微粒化レベルが均一になる。   Therefore, according to the present invention, the separation flow is promoted by forming the surface roughness of the portion where the separation flow is weak and the atomization level is poor. This improves the atomization level and makes the atomization level of the entire fuel spray uniform.

この発明に係る内燃機関の燃料噴射弁によれば、剥離流れの度合いによって噴射孔内壁面の面粗度を調整しているので、剥離流れが弱く微粒化レベルが悪い部位であっても、当該箇所の面粗度を粗く形成することにより剥離流れを促進させ、微粒化レベルを向上させることができるため、燃料噴霧全体の微粒化レベルを均一にでき、均質な混合気を形成することができる。   According to the fuel injection valve of the internal combustion engine according to the present invention, since the surface roughness of the inner wall surface of the injection hole is adjusted according to the degree of the separation flow, even if the separation flow is weak and the atomization level is bad, Since the separation flow can be promoted and the atomization level can be improved by forming the surface roughness of the portion roughly, the atomization level of the entire fuel spray can be made uniform, and a homogeneous mixture can be formed. .

以下に、この発明に係る内燃機関の燃料噴射弁の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a fuel injection valve for an internal combustion engine according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、燃料噴射弁の噴射孔を示す側面断面図、図2は、燃料噴射弁の噴射孔を示す正面断面図である。   FIG. 1 is a side sectional view showing an injection hole of a fuel injection valve, and FIG. 2 is a front sectional view showing an injection hole of the fuel injection valve.

図1および図2に示すように、燃料噴射弁10は、その軸線L1に対して噴射角度が所定角度を有しており、かつ噴射孔11が断面矩形のスリット状に形成されている。すなわち、噴射孔11の噴射方向軸線L2が軸線L1に対して所定の噴射角度αを有している(図4参照)。   As shown in FIGS. 1 and 2, the fuel injection valve 10 has an injection angle of a predetermined angle with respect to the axis L1, and the injection hole 11 is formed in a slit shape having a rectangular cross section. That is, the injection direction axis L2 of the injection hole 11 has a predetermined injection angle α with respect to the axis L1 (see FIG. 4).

図2に示すように、噴射孔11の内壁面11Aは、放電加工等によって製造される平均的な粗度で形成されている。そして、図1に示すように、燃料噴射弁10の軸線L1に近い側の噴射孔内壁面11Cが、軸線L1に遠い側の噴射孔内壁面11Bに比べて粗く形成されている。なお、粗度が異なる様子を図中にハッチングで示してある。これら内壁面の粗度の大小関係を示すと、内壁面11Bの粗度<内壁面11Aの粗度<内壁面11Cの粗度、となっている。   As shown in FIG. 2, the inner wall surface 11 </ b> A of the injection hole 11 is formed with an average roughness produced by electric discharge machining or the like. As shown in FIG. 1, the injection hole inner wall surface 11C on the side close to the axis L1 of the fuel injection valve 10 is formed to be rougher than the injection hole inner wall surface 11B on the side far from the axis L1. In addition, the state in which the roughness is different is indicated by hatching in the drawing. When showing the magnitude relation of the roughness of the inner wall surface, the roughness of the inner wall surface 11B <the roughness of the inner wall surface 11A <the roughness of the inner wall surface 11C.

つぎに、内壁面11A,11B,11Cの粗度を上記のように設定した理由を図3〜図6に基づいて説明する。ここで、図3は、噴射孔内壁面に発生する流れの剥離部を示す正面断面図、図4は、噴射孔内壁面に発生する流れの剥離部を示す側面断面図、図5は、噴射角度αと剥離領域との関係を示すグラフ、図6は、噴射角度αと微粒化レベルとの関係を示すグラフである。   Next, the reason why the roughness of the inner wall surfaces 11A, 11B, and 11C is set as described above will be described with reference to FIGS. Here, FIG. 3 is a front sectional view showing a flow separation portion generated on the inner wall surface of the injection hole, FIG. 4 is a side sectional view showing a separation portion of the flow generated on the inner wall surface of the injection hole, and FIG. FIG. 6 is a graph showing the relationship between the spray angle α and the atomization level.

すなわち、図3および図4に示すように、内壁面11A,11B,11Cの各粗度をほぼ同一とした噴射孔11を示してある。図中の黒塗り部分は、このように形成された噴射孔11に発生する燃料流れの剥離部12,13,14を示している。   That is, as shown in FIGS. 3 and 4, the injection holes 11 are shown in which the roughness of the inner wall surfaces 11A, 11B, and 11C is substantially the same. Black portions in the figure indicate the fuel flow separation portions 12, 13, and 14 generated in the injection holes 11 formed in this way.

そして、図5に示すように、この内壁面11A,11B,11Cの各領域に発生する剥離部12,13,14の大きさ(剥離領域)を比較すると、内壁面11Aの領域を基準にしたときに、内壁面11Cの剥離領域が小さく、内壁面11Bの剥離領域が大きいことが分かる。この傾向は、噴射角度αが大きくなるに従って顕著となっている。   As shown in FIG. 5, when the sizes (peeling regions) of the peeling portions 12, 13, and 14 generated in the regions of the inner wall surfaces 11A, 11B, and 11C are compared, the region of the inner wall surface 11A is used as a reference. Sometimes, it can be seen that the peeling area of the inner wall surface 11C is small and the peeling area of the inner wall surface 11B is large. This tendency becomes more prominent as the injection angle α increases.

また、上記剥離領域の大小関係に対応して、剥離流れによるキャビテーションにより燃料噴霧の微粒化が促進される。したがって、図6に示すように、微粒化レベルの大小関係を比較すると、内壁面11Aの領域を基準にしたときに、内壁面11Cの微粒化レベルが悪く、内壁面11Bの微粒化レベルが良いことが分かる。すなわち、剥離状態が不均一になると、微粒化レベルも不均一となることが分かる。   Further, atomization of the fuel spray is promoted by cavitation due to the separation flow, corresponding to the size relationship of the separation region. Therefore, as shown in FIG. 6, when comparing the size relationship of the atomization level, the atomization level of the inner wall surface 11C is poor and the atomization level of the inner wall surface 11B is good when the region of the inner wall surface 11A is used as a reference. I understand that. That is, it can be seen that when the peeled state becomes non-uniform, the atomization level also becomes non-uniform.

そこで、本発明は、図7に示すように、剥離流れが弱い内壁面11Cの面粗度を、剥離流れが強い内壁面11Bの面粗度よりも粗くすることにより、内壁面11Cでの剥離を増大させ、微粒化を促進させるようにしたものである。これは、噴射角度αが大きくなるに従って、内壁面11Cの面粗度を、より粗くなるように設定する。ここで、図7は、噴射角度αと面粗度との関係を示すグラフである。   Therefore, as shown in FIG. 7, according to the present invention, the surface roughness of the inner wall surface 11C where the separation flow is weak is made rougher than the surface roughness of the inner wall surface 11B where the separation flow is strong. In order to promote atomization. This sets the surface roughness of the inner wall surface 11C to be rougher as the injection angle α increases. Here, FIG. 7 is a graph showing the relationship between the injection angle α and the surface roughness.

したがって、図8および図9に示すように、噴射孔11の内壁面11A,11B,11Cの面粗度を上記のように設定することによって、流れの剥離部14の発生を従来よりも促進することができるので、図9に示した従来の噴射孔11による燃料噴霧20よりも、図8に示した本発明に係る噴射孔11による燃料噴霧15の方が微粒化レベルを均一にすることができる。、ここで、図8は、本実施例に係る燃料噴霧の微粒化状態を示す模式図、図9は、従来技術に係る燃料噴霧の微粒化状態を示す模式図である。   Therefore, as shown in FIGS. 8 and 9, by setting the surface roughness of the inner wall surfaces 11A, 11B, and 11C of the injection hole 11 as described above, the generation of the flow separation portion 14 is promoted more than before. Therefore, the atomization level can be made uniform in the fuel spray 15 by the injection hole 11 according to the present invention shown in FIG. 8 than in the fuel spray 20 by the conventional injection hole 11 shown in FIG. it can. Here, FIG. 8 is a schematic diagram showing the atomization state of the fuel spray according to the present embodiment, and FIG. 9 is a schematic diagram showing the atomization state of the fuel spray according to the prior art.

以上のように、この実施例に係る内燃機関の燃料噴射弁によれば、燃料噴霧全体の微粒化レベルを均一にし、均質な混合気を形成することができる。   As described above, according to the fuel injection valve of the internal combustion engine according to this embodiment, the atomization level of the entire fuel spray can be made uniform, and a homogeneous air-fuel mixture can be formed.

なお、上記実施例においては、図1および図2に示したように、噴射孔11の内壁面11A,11B,11Cの各面粗度を噴射方向に向かってそれぞれ均一に形成したものを示したが、これに限定されず、たとえば、噴射方向に向かって剥離流れの度合いに応じて面粗度の分布を変化させてもよい。   In addition, in the said Example, as shown in FIG.1 and FIG.2, what showed each surface roughness of the inner wall surfaces 11A, 11B, and 11C of the injection hole 11 uniformly formed toward the injection direction was shown. However, the present invention is not limited to this. For example, the distribution of surface roughness may be changed in accordance with the degree of separation flow toward the injection direction.

以上のように、この発明に係る内燃機関の燃料噴射弁は、燃料噴霧全体の微粒化レベルを均一にし、均質な混合気を形成を目指す筒内直噴エンジンに有用である。   As described above, the fuel injection valve of the internal combustion engine according to the present invention is useful for an in-cylinder direct injection engine aiming at uniformizing the atomization level of the entire fuel spray and forming a homogeneous air-fuel mixture.

燃料噴射弁の噴射孔を示す側面断面図である。It is side surface sectional drawing which shows the injection hole of a fuel injection valve. 燃料噴射弁の噴射孔を示す正面断面図である。It is front sectional drawing which shows the injection hole of a fuel injection valve. 噴射孔内壁面に発生する流れの剥離部を示す正面断面図である。It is front sectional drawing which shows the peeling part of the flow which generate | occur | produces in an injection hole inner wall face. 噴射孔内壁面に発生する流れの剥離部を示す側面断面図である。It is side surface sectional drawing which shows the peeling part of the flow which generate | occur | produces in an injection hole inner wall face. 噴射角度αと剥離領域との関係を示すグラフである。It is a graph which shows the relationship between the injection angle (alpha) and a peeling area | region. 噴射角度αと微粒化レベルとの関係を示すグラフである。It is a graph which shows the relationship between the injection angle (alpha) and atomization level. 噴射角度αと面粗度との関係を示すグラフである。It is a graph which shows the relationship between the injection angle (alpha) and surface roughness. 本実施例に係る燃料噴霧の微粒化状態を示す模式図である。It is a schematic diagram which shows the atomization state of the fuel spray which concerns on a present Example. 従来技術に係る燃料噴霧の微粒化状態を示す模式図である。It is a schematic diagram which shows the atomization state of the fuel spray which concerns on a prior art.

符号の説明Explanation of symbols

L1 軸線
L2 噴射方向軸線
10 燃料噴射弁
11 噴射孔
11A 噴射孔内壁面
11B 軸線に遠い側の噴射孔内壁面
11C 軸線に近い側の噴射孔内壁面
12、13、14 流れの剥離部
15 燃料噴霧
L1 axis line L2 injection direction axis line 10 fuel injection valve 11 injection hole 11A injection hole inner wall surface 11B injection hole inner wall surface 11C farther from the axis line 11C injection hole inner wall surface 12, 13, 14 flow separation portion 15 fuel spray

Claims (1)

燃料噴射弁の軸線に対して噴射角度が所定角度を有しており、かつ噴射孔が断面矩形のスリット状に形成された内燃機関の燃料噴射弁において、
前記燃料噴射弁の軸線に近い側の噴射孔内壁面が、遠い側の噴射孔内壁面に比べて粗く形成されていることを特徴とする内燃機関の燃料噴射弁。
In a fuel injection valve of an internal combustion engine in which the injection angle has a predetermined angle with respect to the axis of the fuel injection valve and the injection hole is formed in a slit shape having a rectangular cross section,
A fuel injection valve for an internal combustion engine, characterized in that an injection hole inner wall surface closer to an axis of the fuel injection valve is formed to be rougher than a far injection wall inner wall surface.
JP2003378849A 2003-11-07 2003-11-07 Fuel injection valve for internal combustion engine Pending JP2005140055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378849A JP2005140055A (en) 2003-11-07 2003-11-07 Fuel injection valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378849A JP2005140055A (en) 2003-11-07 2003-11-07 Fuel injection valve for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005140055A true JP2005140055A (en) 2005-06-02

Family

ID=34689111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378849A Pending JP2005140055A (en) 2003-11-07 2003-11-07 Fuel injection valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005140055A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236048A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Fuel injection valve for internal combustion engine
JP2013185455A (en) * 2012-03-06 2013-09-19 Mazda Motor Corp Fuel injection valve, and internal combustion engine comprising the same
US8794549B2 (en) 2008-09-08 2014-08-05 Toyota Jidosha Kabushiki Kaisha Fuel injection valve of internal combustion engine
WO2017056857A1 (en) * 2015-10-02 2017-04-06 株式会社デンソー Fuel injection valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236048A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Fuel injection valve for internal combustion engine
US8794549B2 (en) 2008-09-08 2014-08-05 Toyota Jidosha Kabushiki Kaisha Fuel injection valve of internal combustion engine
JP2013185455A (en) * 2012-03-06 2013-09-19 Mazda Motor Corp Fuel injection valve, and internal combustion engine comprising the same
WO2017056857A1 (en) * 2015-10-02 2017-04-06 株式会社デンソー Fuel injection valve

Similar Documents

Publication Publication Date Title
JPH0914244A (en) Self-locking nut
JP2007315276A (en) Multi-hole type injector
JP2005140055A (en) Fuel injection valve for internal combustion engine
JPH09148045A (en) Ignition plug
WO2015097508A1 (en) Internal combustion engine
JP3796888B2 (en) Combustion chamber structure of internal combustion engine
JP2002195133A (en) Method of manufacturing fuel injection valve, fuel injection valve and internal combustion engine having the same installed
JP2009068354A (en) Direct injection combustion chamber of engine
JP2011226416A (en) Fuel injection valve
US6845925B2 (en) Fuel injector
US6666387B2 (en) Fuel injector of internal combustion engine
JP2008286181A (en) Internal combustion engine
JPH09236016A (en) Combustion chamber of direct injection diesel engine
JP2009209742A (en) Multiple injection hole fuel injection nozzle
JP2003293906A (en) Fuel injection device
JPH10288129A (en) Injection valve
JP2007239720A (en) Direct injection type diesel engine
JP2006348817A (en) Fuel injection device for internal combustion engine
GB2325492A (en) Spark plug for i.c. engines
JP4320954B2 (en) Engine intake structure
JP2023141891A (en) Intake manifold connecting structure
JP3334862B2 (en) Fuel injection nozzle
JPH05321672A (en) Swirl chamber type combustion chamber of diesel engine
JP2006125224A (en) Cylinder injection type spark ignition internal combustion engine
JPS58106167A (en) Fuel injection nozzle of internal-combustion engine