JP2009209742A - Multiple injection hole fuel injection nozzle - Google Patents

Multiple injection hole fuel injection nozzle Download PDF

Info

Publication number
JP2009209742A
JP2009209742A JP2008052576A JP2008052576A JP2009209742A JP 2009209742 A JP2009209742 A JP 2009209742A JP 2008052576 A JP2008052576 A JP 2008052576A JP 2008052576 A JP2008052576 A JP 2008052576A JP 2009209742 A JP2009209742 A JP 2009209742A
Authority
JP
Japan
Prior art keywords
nozzle
injection
auxiliary
injection hole
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008052576A
Other languages
Japanese (ja)
Inventor
Susumu Kobayashi
将 小林
Yasuo Kimura
泰郎 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2008052576A priority Critical patent/JP2009209742A/en
Publication of JP2009209742A publication Critical patent/JP2009209742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that fuel easily adheres on a flat surface part and a large quantity of carbon piles up by auxiliary spray from an auxiliary injection hole in a multiple injection hole fuel injection nozzle which has a plurality of main injection holes provided around the single auxiliary injection hole provided at an injection part of a nozzle body and which has the auxiliary injection hole oppositely arranged roughly perpendicularly to a flat surface part of a projecting body formed at a roughly center part of a cavity constructing a combustion chamber at a piston top part. <P>SOLUTION: Injection hole diameter d2 of the auxiliary injection hole 25 is formed smaller than injection hole diameter d1 of the main injection holes 6 and an injection hole length adjusting structure making injection hole length L21 of the auxiliary injection hole 25 shorter than injection hole length L1 of the main injection hole 6 is provided. The injection hole length adjusting structure is constructed by forming a horizontal lower surface 20b which is a removal surface on an opening outside 25a of the auxiliary injection hole 25. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直噴式ディーゼルエンジンに用いられる多噴口燃料噴射ノズルに関し、特に、ピストン頂部の燃焼室内に形成した突体の平面部に対して略直角に補助噴口を対向配置した多噴口燃料噴射ノズルに関する。   The present invention relates to a multi-injection fuel injection nozzle used in a direct-injection diesel engine, and more particularly, to a multi-injection fuel injection nozzle in which auxiliary injection ports are arranged to be opposed to each other at a substantially right angle to a flat portion of a projecting body formed in a combustion chamber at the top of a piston. About.

従来より、燃焼室内に燃料を直接噴射して自然燃焼を起こすようにした直噴式ディーゼルエンジンにおいては、ピストン頂部にキャビティを設け、該キャビティにより、シリンダ内側面とシリンダヘッド下面との間で燃焼室を構成すると共に、燃料噴射ノズルの噴射部の噴口を、前記キャビティ内に臨むように配置することにより、スワール等の空気流動を積極的に利用して、燃料噴射ノズルから噴射した噴霧をキャビティの壁面に向かって拡散させ、燃料を空気と十分に混合させて効率良く燃焼させるようにしていた。   2. Description of the Related Art Conventionally, in a direct injection diesel engine in which fuel is directly injected into a combustion chamber to cause natural combustion, a cavity is provided at the top of the piston so that the combustion chamber is formed between the inner surface of the cylinder and the lower surface of the cylinder head. In addition, by arranging the injection port of the injection portion of the fuel injection nozzle so as to face the cavity, the air flow of the swirl or the like is actively used, and the spray injected from the fuel injection nozzle is The fuel was diffused toward the wall surface, and the fuel was sufficiently mixed with air to burn efficiently.

特に、前記噴射部に複数の噴口を設けて噴霧の数を増やすことにより、広範囲に燃料を拡散させて空気の利用効率を高めると共に、平面部を有する突体を前記キャビティの略中央に設け、前記噴射部の下端には、小径の噴口(以下、「補助噴口」とする。)を、前記平面部に対して略直角に対向配置することにより、燃料噴射ノズル直下のキャビティ内の空気を有効に利用し、これらによって、燃費の向上、及びエンジン稼働時に排出する煙の低減等を図る対向配置型の多噴口燃料噴射ノズルが知られている。   In particular, by providing a plurality of spray holes in the injection unit to increase the number of sprays, the fuel is diffused over a wide range to increase the efficiency of air utilization, and a projection having a flat part is provided in the approximate center of the cavity. A small-diameter nozzle (hereinafter referred to as an “auxiliary nozzle”) is disposed at the lower end of the injection section so as to face the plane section at a substantially right angle so that the air in the cavity immediately below the fuel injection nozzle is effectively used. There are known multi-injection fuel injection nozzles of opposed arrangement that improve the fuel efficiency and reduce the smoke emitted during engine operation.

ここで、図5は、このような従来の多噴口燃料噴射ノズルの先部の側面一部断面図であり、図6は、同じく従来の多噴口燃料噴射ノズルによる噴霧状況を示す、燃焼室近傍の側面一部断面図である。
図5、図6に示すように、多噴口燃料噴射ノズル1のノズルボディ2の下部には半球状の噴射部3が形成され、該噴射部3の下端には、噴口長さL2・噴口径d2の小径の補助噴口5が形成されると共に、該補助噴口5の周囲には、噴口長さL1・噴口径d1の大径の噴口(以下、「主噴口」とする。)6が複数形成されている。更に、前記噴口長さL2は噴口長さL1と等しく、噴口径d2は噴口径d1よりも小さく設定されている。
Here, FIG. 5 is a partial cross-sectional side view of the front portion of such a conventional multi-injection fuel injection nozzle, and FIG. 6 is also the vicinity of the combustion chamber, showing the spraying state by the conventional multi-injection fuel injection nozzle. FIG.
As shown in FIGS. 5 and 6, a hemispherical injection part 3 is formed in the lower part of the nozzle body 2 of the multi-injection fuel injection nozzle 1, and the injection hole length L <b> 2 and the injection hole diameter are provided at the lower end of the injection part 3. A small diameter auxiliary injection hole 5 of d2 is formed, and a plurality of large diameter injection holes (hereinafter referred to as “main injection holes”) 6 having the injection hole length L1 and the injection hole diameter d1 are formed around the auxiliary injection hole 5. Has been. Furthermore, the nozzle length L2 is equal to the nozzle length L1, and the nozzle diameter d2 is set smaller than the nozzle diameter d1.

そして、このような多噴口燃料噴射ノズル1は、そのノズル軸心7が、ピストン9を収納する図示せぬシリンダのシリンダ中心線18と同軸上に配置されるように、シリンダヘッド8に嵌着され、該シリンダヘッド8の下面8aからは、前記噴射部3の主噴口6と補助噴口5が燃焼室4内に臨むようにしている。   The multi-injection fuel injection nozzle 1 is fitted to the cylinder head 8 so that the nozzle axis 7 is disposed coaxially with a cylinder center line 18 of a cylinder (not shown) that houses the piston 9. The main injection port 6 and the auxiliary injection port 5 of the injection unit 3 face the inside of the combustion chamber 4 from the lower surface 8 a of the cylinder head 8.

該燃焼室4は、前記シリンダヘッド8の下面8aと、図示せぬシリンダの内側面と、ピストン9の頂部9aを凹状に加工したキャビティ10との間に形成され、該キャビティ10の平面視略中央においては、突体11が上方に膨出され、該突体11の上部には、略平坦な平面部11aが形成されており、該平面部11aに対して、前記補助噴口5は、その補助噴口中心線12が略直交するように対向配置されている。   The combustion chamber 4 is formed between a lower surface 8a of the cylinder head 8, an inner surface of a cylinder (not shown), and a cavity 10 in which a top portion 9a of the piston 9 is processed into a concave shape. In the center, the protrusion 11 bulges upward, and a substantially flat flat surface portion 11a is formed on the upper portion of the protrusion 11, and the auxiliary injection hole 5 is provided with respect to the flat surface portion 11a. The auxiliary nozzle center line 12 is disposed so as to be substantially orthogonal.

以上のような構成において、前記複数の主噴口6から噴射される燃料は、主噴霧16として主噴口中心線13上を円錐状に広がりながら、斜め下方にある、キャビティ10の内側壁10aに向かって進行し、更に、前記補助噴口5から噴射される燃料は、補助噴霧15として補助噴口中心線12上を円錐状に広がりながら、下方にある前記平面部11aに向かって進行する。これにより、噴霧の数を増加させると共に、前記突体11が占めることにより縮小された多噴口燃料噴射ノズル1直下の空間に存在する空気を、前記補助噴霧15によって燃料と十分に混合して燃焼させ、空気の利用効率を高めるようにしている。   In the above-described configuration, the fuel injected from the plurality of main nozzles 6 is directed toward the inner wall 10a of the cavity 10 that is obliquely downward while spreading as a main spray 16 on the center line 13 of the main nozzle. Further, the fuel injected from the auxiliary nozzle 5 advances toward the flat surface portion 11a below while spreading as a supplementary spray 15 on the center line 12 of the auxiliary nozzle. As a result, the number of sprays is increased, and air existing in the space immediately below the multi-injection fuel injection nozzle 1 reduced by the projection 11 is sufficiently mixed with the fuel by the auxiliary spray 15 and burned. To improve the efficiency of air use.

しかし、前記補助噴口5の噴口長さL2や噴口径d2が不適切であると、補助噴霧15の貫徹力が強くなって噴霧長さS2が長くなり、この補助噴霧15を構成する燃料が、十分に微粒化される前に平面部11aに衝突し、その衝突面に付着する。このような燃料付着を防止する技術として、補助噴口における噴口径に対する噴口長さの割合を、主噴口における噴口径に対する噴口長さの割合以下に設定する等により、補助噴霧の噴霧角を広げて前記貫徹力を緩和し、噴霧長さを短くする技術が公知となっている(例えば、特許文献1参照)。
特開2004−204808号公報
However, if the nozzle length L2 and the nozzle diameter d2 of the auxiliary nozzle 5 are inappropriate, the penetration force of the auxiliary spray 15 becomes strong and the spray length S2 becomes long, and the fuel constituting the auxiliary spray 15 is Before it is sufficiently atomized, it collides with the flat surface portion 11a and adheres to the collision surface. As a technology for preventing such fuel adhesion, the spray angle of the auxiliary spray is increased by setting the ratio of the nozzle hole length to the nozzle hole diameter at the auxiliary nozzle hole to be equal to or less than the ratio of the nozzle hole length to the nozzle hole diameter at the main nozzle. A technique for reducing the penetration force and shortening the spray length is known (for example, see Patent Document 1).
JP 2004-204808 A

しかしながら、前記技術では、補助噴口はノズルボディに形成された上下2段の噴口列のうちの下段の噴口であって、補助噴口から噴射する補助噴霧も、主噴霧と同様に、キャビティの内側壁に対して斜めに進行して衝突する。これに対し、本発明に係わる対向配置型の多噴口燃料噴射ノズル1の場合には、補助噴口5から噴射する補助噴霧15は、突体11の平面部11aに向かって略直角に衝突するため、その衝突面への燃料の付着力は一層強力なものとなっており、このために、多噴口燃料噴射ノズル1では、噴霧長さS2が少しでも変動して補助噴霧15の先部が平面部11aに接触すると、該平面部11aには、燃料が容易に付着して多量にカーボンが堆積することとなる。   However, in the above technique, the auxiliary nozzle is the lower nozzle of the upper and lower nozzle arrays formed in the nozzle body, and the auxiliary spray injected from the auxiliary nozzle is also the inner wall of the cavity, like the main spray. It travels diagonally and collides. On the other hand, in the case of the opposed injection type multi-injection fuel injection nozzle 1 according to the present invention, the auxiliary spray 15 injected from the auxiliary injection port 5 collides at a substantially right angle toward the flat surface portion 11a of the projection 11. The adhesion force of the fuel to the collision surface is stronger, and for this reason, in the multi-injection fuel injection nozzle 1, the spray length S2 varies even a little and the tip of the auxiliary spray 15 is flat. When contacting the portion 11a, the fuel easily adheres to the flat portion 11a and a large amount of carbon is deposited.

ここで、前記技術のように、噴口径dに対する噴口長さLの割合(以下、単に「形状係数」とする。)L/dだけを調整しても、噴口径が大きすぎると、噴霧角拡大による貫徹力緩和の効果以外に、噴霧量増加に伴う質量増大による貫徹力強化の効果も奏するようになり、噴霧がキャビティの内壁に接触しない長さまで、噴霧長さを確実に短縮させるのは難しい。特に、前述した多噴口燃料噴射ノズル1の補助噴口5のように、燃料を略垂直下方に噴射させる場合には、質量増大を通じた、噴霧量増加による貫徹力強化の効果が著しい。   Here, as in the above technique, even if only the ratio of the nozzle length L to the nozzle diameter d (hereinafter simply referred to as “shape factor”) L / d is adjusted, if the nozzle diameter is too large, the spray angle In addition to the effect of alleviating the penetration force due to expansion, the effect of enhancing the penetration force due to the increase in mass accompanying the increase in the amount of spray is also achieved, and it is possible to reliably reduce the spray length to a length where the spray does not contact the inner wall of the cavity difficult. In particular, when fuel is injected substantially vertically downward as in the auxiliary injection nozzle 5 of the multi-injection fuel injection nozzle 1 described above, the effect of enhancing the penetration force by increasing the spray amount through the increase in mass is remarkable.

従って、たとえ前記技術を適用しても、従来の前記多噴口燃料噴射ノズル1のように、平面部11aへの燃料付着力が強力で、しかも噴霧量増加による貫徹力強化の効果が著しい場合には、供給燃料圧の脈動等によって僅かでも変動して噴霧量が増加すると、補助噴霧15の先部が、すぐ近くに位置する平面部11aに接触して、該平面部11aに燃料が容易に付着して多量にカーボンが堆積し、これにより、低負荷時の黒煙や始動直後の白煙の発生が頻発する等して、エンジン性能が著しく低下する、という問題があった。   Therefore, even if the above technique is applied, the fuel adhesion force to the flat surface portion 11a is strong as in the conventional multi-injection fuel injection nozzle 1, and the effect of enhancing the penetration force by increasing the spray amount is significant. If the amount of spray increases due to slight fluctuations due to the pulsation of the supplied fuel pressure or the like, the tip of the auxiliary spray 15 comes into contact with the flat surface portion 11a located in the immediate vicinity, and fuel easily flows into the flat surface portion 11a. There is a problem that engine performance is remarkably lowered due to frequent deposition of black smoke at low load and white smoke immediately after starting.

本発明者等は上記の課題を解決すべく鋭意検討した結果、対向配置型の多噴口燃料噴射ノズル1において平面部11aへの燃料付着を防止するには、補助噴口5の形状係数L2/d2の調整よりも、噴口径d2を小さく形成した上での噴口長さL2の調整の方が極めて有効であることを見出したのである。   As a result of intensive studies to solve the above-described problems, the present inventors have found that the shape factor L2 / d2 of the auxiliary injection nozzle 5 is used to prevent the fuel from adhering to the flat portion 11a in the opposed injection type multi injection nozzle fuel injection nozzle 1. It has been found that the adjustment of the nozzle length L2 after forming the nozzle diameter d2 smaller is much more effective than the above adjustment.

すなわち、請求項1においては、ノズルボディの噴射部に単一の補助噴口を設け、該補助噴口に複数の主噴口を周設すると共に、前記補助噴口を、ピストン頂部で燃焼室を構成するキャビティの略中央に形成された突体の平面部に対して、略直角に対向配置した多噴口燃料噴射ノズルにおいて、前記補助噴口の噴口径を主噴口の噴口径よりも小さく形成すると共に、前記補助噴口の噴口長さを主噴口の噴口長さよりも短く設定する噴口長さ調節構造を備えたものである。
請求項2においては、前記噴口長さ調節構造は、前記補助噴口の開口外側に削除面を形成して成るものである。
請求項3においては、前記噴口長さ調節構造により、前記補助噴口における噴口径に対する噴口長さの割合と、前記主噴口における噴口径に対する噴口長さの割合を略同一に設定するものである。
That is, according to claim 1, a single auxiliary injection port is provided in the injection part of the nozzle body, a plurality of main injection ports are provided around the auxiliary injection port, and the auxiliary injection port is a cavity that forms a combustion chamber at the top of the piston. In the multi-injection fuel injection nozzle disposed substantially perpendicular to the flat portion of the projecting body formed at substantially the center of the auxiliary nozzle, the auxiliary nozzle has a nozzle diameter smaller than the nozzle diameter of the main nozzle, and the auxiliary nozzle A nozzle length adjustment structure is provided that sets the nozzle hole length of the nozzle hole to be shorter than the nozzle hole length of the main nozzle hole.
According to a second aspect of the present invention, the nozzle hole length adjusting structure is formed by forming a deletion surface outside the opening of the auxiliary nozzle hole.
According to a third aspect of the present invention, the ratio of the nozzle hole length to the nozzle hole diameter at the auxiliary nozzle hole and the ratio of the nozzle hole length to the nozzle hole diameter at the main nozzle hole are set substantially the same by the nozzle hole length adjusting structure.

本発明は、以上のように構成したので、以下に示す効果を奏する。
すなわち、請求項1においては、ノズルボディの噴射部に単一の補助噴口を設け、該補助噴口に複数の主噴口を周設すると共に、前記補助噴口を、ピストン頂部で燃焼室を構成するキャビティの略中央に形成された突体の平面部に対して、略直角に対向配置した多噴口燃料噴射ノズルにおいて、前記補助噴口の噴口径を主噴口の噴口径よりも小さく形成すると共に、前記補助噴口の噴口長さを主噴口の噴口長さよりも短く設定する噴口長さ調節構造を備えたので、前記主噴口では、噴口径を大きく形成して噴霧量を増加し、噴射される主噴霧の貫徹力を強く維持する一方、前記補助噴口では、噴口径を小さく設定して噴霧量増加による貫徹力強化を防止した上で、噴口長さを短くして噴霧角を広げることにより、貫徹力を十分に緩和することができ、補助噴霧の噴霧長さを短縮して、平面部に衝突する前に燃料を微粒化し、該平面部への燃料付着を確実に防止することができる。これにより、対向配置型の多噴口燃料噴射ノズルであっても、該多噴口燃料噴射ノズル直下のキャビティ内の空気を有効に利用し、低負荷時の黒煙や始動直後の白煙の発生を抑制する等してエンジン性能を向上させることができる。
請求項2においては、前記噴口長さ調節構造は、前記補助噴口の開口外側に削除面を形成して成るので、該削除面形成によって補助噴口の開口外側を前記平面部から離間させ、該平面部に補助噴霧の先部を接触しにくくして平面部への燃料付着を一層抑制することができ、エンジン性能の更なる向上を図ることができる。
請求項3においては、前記噴口長さ調節構造により、前記補助噴口における噴口径に対する噴口長さの割合と、前記主噴口における噴口径に対する噴口長さの割合を略同一に設定するので、補助噴口の噴口長さが長すぎて噴霧角が狭くなり、貫徹力が増加して補助噴霧の噴霧長さが長くなったり、補助噴口の噴口長さが短すぎて補助噴口近傍の部材厚が減少し、耐圧・耐熱等の強度が低下して多噴口燃料噴射ノズル全体の耐久性が悪化するのを、確実に防止して良好なエンジン性能とノズル耐久性を確保することができる。
Since this invention was comprised as mentioned above, there exists an effect shown below.
That is, according to claim 1, a single auxiliary injection port is provided in the injection part of the nozzle body, a plurality of main injection ports are provided around the auxiliary injection port, and the auxiliary injection port is a cavity that forms a combustion chamber at the top of the piston. In the multi-injection fuel injection nozzle disposed substantially perpendicular to the flat portion of the projecting body formed at substantially the center of the auxiliary nozzle, the auxiliary nozzle has a nozzle diameter smaller than the nozzle diameter of the main nozzle, and the auxiliary nozzle Since the nozzle hole length adjustment structure is set to set the nozzle hole length shorter than the nozzle hole length of the main nozzle hole, the main nozzle hole is formed with a larger nozzle diameter to increase the spray amount, and While maintaining the penetrating force strongly, the auxiliary nozzle has a small nozzle diameter to prevent the penetrating force from being increased by increasing the spray amount, and then shortening the nozzle length and widening the spray angle to reduce the penetrating force. Full relaxation It can, by shortening the spray length of the auxiliary spray fuel is atomized before striking the flat surface portion, it is possible to reliably prevent the fuel from adhering to the flat surface portion. As a result, even in the multi-hole fuel injection nozzle of the opposed arrangement type, the air in the cavity immediately below the multi-hole fuel injection nozzle is effectively used to generate black smoke at low load and white smoke immediately after starting. It is possible to improve engine performance by suppressing it.
According to a second aspect of the present invention, since the nozzle hole length adjusting structure is formed by forming a deletion surface outside the opening of the auxiliary nozzle, the outer surface of the auxiliary nozzle is spaced apart from the flat surface by forming the deletion surface. This makes it difficult to contact the tip portion of the auxiliary spray with the portion, thereby further suppressing fuel adhesion to the flat portion, and further improving engine performance.
In claim 3, since the ratio of the nozzle hole length to the nozzle hole diameter in the auxiliary nozzle hole and the ratio of the nozzle hole length to the nozzle hole diameter in the main nozzle hole are set substantially the same by the nozzle hole length adjusting structure, the auxiliary nozzle hole The nozzle length is too long and the spray angle is narrowed, the penetration force is increased and the spray length of the auxiliary spray is increased, or the nozzle length of the auxiliary nozzle is too short and the member thickness near the auxiliary nozzle is reduced. Thus, it is possible to reliably prevent deterioration of the durability of the entire multi-injection fuel injection nozzle due to a decrease in strength such as pressure resistance and heat resistance, and to ensure good engine performance and nozzle durability.

次に、発明の実施形態を説明する。
図1は本発明に係わる多噴口燃料噴射ノズルの先部の側面一部断面図、図2は同じく拡大図、図3は本発明に係わる多噴口燃料噴射ノズルによる噴霧状況を示す、燃焼室近傍の側面一部断面図、図4は低負荷時の黒煙濃度に及ぼす補助噴口の形状係数の影響を示す説明図である。なお、これら図1乃至図4によって、本発明を適用した多噴口燃料噴射ノズルの実施形態を説明しているが、前述した図5及び図6の従来例と同じ部品や寸法には、同一符号を付するようにしている。
Next, embodiments of the invention will be described.
FIG. 1 is a partial cross-sectional side view of a front portion of a multi-injection fuel injection nozzle according to the present invention, FIG. 2 is an enlarged view of the same, and FIG. 3 shows the state of spraying by the multi-injection fuel injection nozzle according to the present invention. FIG. 4 is an explanatory view showing the influence of the shape factor of the auxiliary injection hole on the black smoke density at low load. The embodiment of the multi-injection fuel injection nozzle to which the present invention is applied has been described with reference to FIGS. 1 to 4. The same reference numerals are used for the same parts and dimensions as those of the conventional examples of FIGS. 5 and 6 described above. Is attached.

まず、本発明に係わる多噴口燃料噴射ノズル21について、図1乃至図3により説明する。
該多噴口燃料噴射ノズル21も、前述した多噴口燃料噴射ノズル1と同様、そのノズル軸心7が、図示せぬシリンダのシリンダ中心線18と同軸上に配置されるように、シリンダヘッド8に嵌着されている。更に、この多噴口燃料噴射ノズル21の下部には、本発明に係わる噴射部20が形成され、該噴射部20は、前記シリンダヘッド8の下面8aより、燃焼室4内に臨むようにしている。
First, the multi-injection fuel injection nozzle 21 according to the present invention will be described with reference to FIGS.
Similarly to the multi-hole fuel injection nozzle 1 described above, the multi-hole fuel injection nozzle 21 is also attached to the cylinder head 8 so that the nozzle axis 7 is disposed coaxially with a cylinder center line 18 of a cylinder (not shown). It is inserted. Further, an injection portion 20 according to the present invention is formed below the multi-injection fuel injection nozzle 21, and the injection portion 20 faces the inside of the combustion chamber 4 from the lower surface 8 a of the cylinder head 8.

前記噴射部20の内部には、球面状のサック孔14が形成され、該サック孔14の球心19は前記ノズル軸心7上に位置している。そして、該サック孔14には、上下摺動可能な弁体17の円錐状の下端部17aが突出され、該下端部17aは、ノズルボディ22内の弁座22aに着座可能に形成されている。更に、該ノズルボディ22の内周側面と弁体17の外周側面との間には、燃料供給路23が形成されている。   A spherical sac hole 14 is formed inside the injection unit 20, and a spherical center 19 of the sack hole 14 is located on the nozzle axis 7. A conical lower end 17 a of a valve body 17 that can slide up and down projects from the sack hole 14, and the lower end 17 a is formed so as to be seated on a valve seat 22 a in the nozzle body 22. . Further, a fuel supply path 23 is formed between the inner peripheral side surface of the nozzle body 22 and the outer peripheral side surface of the valve body 17.

このような構成において、燃料噴射開始時には、高圧の燃料が、図示せぬ燃料噴射ポンプから前記燃料供給路23に供給された後、弁体17の下端部17aと弁座22aとの間の隙間23aを通ってサック孔14内に流入し、噴射部20に形成された後述の噴口6・25より、燃焼室4を構成するキャビティ10内に噴射されるようにしている。   In such a configuration, at the start of fuel injection, a high-pressure fuel is supplied to the fuel supply path 23 from a fuel injection pump (not shown), and then a gap between the lower end 17a of the valve body 17 and the valve seat 22a. The gas flows into the sack hole 14 through 23 a and is injected into the cavity 10 constituting the combustion chamber 4 from the later-described injection holes 6 and 25 formed in the injection unit 20.

燃料噴射終了時には、図示せぬ制御装置からの制御信号に基づいて電磁弁等が作動し、油圧ピストン等のアクチュエータによって前記弁体17が下降して前記隙間23aを遮断し、これにより、サック孔14内への燃料の供給を停止して、噴口6・25からキャビティ10内への燃料の噴射を停止するようにしている。   At the end of fuel injection, an electromagnetic valve or the like is operated based on a control signal from a control device (not shown), and the valve body 17 is lowered by an actuator such as a hydraulic piston to shut off the gap 23a. The fuel supply to the inside 14 is stopped, and the fuel injection into the cavity 10 from the nozzle holes 6 and 25 is stopped.

次に、前記噴射部20の構造と本発明に係わる噴口6・25について、図1乃至図6により説明する。   Next, the structure of the injection unit 20 and the nozzle holes 6 and 25 according to the present invention will be described with reference to FIGS.

図1乃至図3に示すように、該噴射部20は、前記多噴口燃料噴射ノズル1の半球状の噴射部3の下半部を水平に切断除去して設けられている。そして、この噴射部20上部の半球側面20aでは、その球心24は前記サック孔14の球心19に略一致すると共に、該半球側面20aには、前記複数の主噴口6が開口されている。一方、前記噴射部20下部の水平下面20bは、前記ノズル軸心7に略直角に形成されると共に、該水平下面20bの平面視略中央には、単一の補助噴口25が開口されている。   As shown in FIGS. 1 to 3, the injection unit 20 is provided by horizontally cutting and removing the lower half of the hemispherical injection unit 3 of the multi-injection fuel injection nozzle 1. In the hemispherical side surface 20a at the upper part of the injection unit 20, the spherical center 24 substantially coincides with the spherical center 19 of the sack hole 14, and the plurality of main injection holes 6 are opened in the hemispherical side surface 20a. . On the other hand, the horizontal lower surface 20b at the lower part of the injection unit 20 is formed at a substantially right angle to the nozzle shaft center 7, and a single auxiliary injection hole 25 is opened at the approximate center of the horizontal lower surface 20b in plan view. .

前記複数の主噴口6は、ノズル軸心7を中心とした同一円周上に、周方向に等間隔をあけて配置され、更に、各主噴口6は、主噴口中心線13が前記半球側面20aの球心24を略通過するように形成されており、半球側面20aに対して略直角に開口されている。一方、前記補助噴口25は、補助噴口中心線12が前記ノズル軸心7と一致するように形成されており、水平下面20bに対して略直角に開口されている。   The plurality of main nozzle holes 6 are arranged at equal intervals in the circumferential direction on the same circumference centered on the nozzle axis 7, and each main nozzle hole 6 has a main nozzle hole center line 13 with the hemispheric side surface It is formed so as to substantially pass through the spherical center 24 of 20a, and is opened at a substantially right angle to the hemispherical side surface 20a. On the other hand, the auxiliary injection hole 25 is formed so that the auxiliary injection hole center line 12 coincides with the nozzle axis 7 and is opened at a substantially right angle to the horizontal lower surface 20b.

これにより、燃料を、前記主噴口6・補助噴口25のいずれからも、噴射部20の外周面に対して略直角に噴射させることができ、燃料噴射時の不規則な渦流等の発生を防止し、燃焼室4内における燃料分布のばらつきを軽減することができる。   As a result, fuel can be injected from either the main injection nozzle 6 or the auxiliary injection nozzle 25 at a substantially right angle with respect to the outer peripheral surface of the injection unit 20, thereby preventing the occurrence of irregular vortices during fuel injection. In addition, variations in fuel distribution in the combustion chamber 4 can be reduced.

そして、図1乃至図3、図5、図6に示すように、前記主噴口6は、従来の多噴口燃料噴射ノズル1の場合と同様に、噴口長さがL1、噴口径がd1であり、このような主噴口6から噴射した燃料は、噴霧角θ1で噴霧長さS1まで広がり、円錐状の主噴霧16を形成するが、該主噴霧16の先部は、キャビティ10の内側壁10aまでは到達せず、主噴霧16を構成する燃料が、内側壁10aに付着することはない。   As shown in FIGS. 1 to 3, 5, and 6, the main injection hole 6 has an injection hole length L <b> 1 and an injection hole diameter d <b> 1 as in the case of the conventional multi-injection fuel injection nozzle 1. The fuel injected from the main nozzle 6 spreads to the spray length S1 at the spray angle θ1 to form a conical main spray 16. The tip of the main spray 16 is the inner wall 10a of the cavity 10. The fuel constituting the main spray 16 does not adhere to the inner wall 10a.

これに対し、補助噴口25においては、噴口径は、従来の多噴口燃料噴射ノズル1と同様に、主噴口6の噴口径d1よりも小さいd2に設定したままで増加させず、噴口長さについては、主噴口6の噴口長さL1よりも短いL21まで短縮している。   On the other hand, in the auxiliary injection hole 25, the injection hole diameter is set to d2 smaller than the injection hole diameter d1 of the main injection hole 6 as in the conventional multi-injection fuel injection nozzle 1, and is not increased. Is shortened to L21 which is shorter than the nozzle length L1 of the main nozzle hole 6.

これにより、前述したような、噴霧量増加による貫徹力強化を防止した上で、形状係数をL2/d2からL21/d2まで減少させて噴霧角をθ2からθ21まで拡大し、その結果、噴霧長さをS2からS21まで短縮することができる。   As a result, while preventing the penetration force from increasing due to the increase in the spray amount as described above, the shape factor is decreased from L2 / d2 to L21 / d2, and the spray angle is expanded from θ2 to θ21. The length can be shortened from S2 to S21.

また、図1、図2に示すように、このような、補助噴口25の噴口径を増加させることなく噴口長さのみをL2からL21まで短縮する構造(以下、「噴口長さ調節構造」とする。)は、本実施例では、前述の如く、半球状の噴射部3の下半部を水平に切断除去し、補助噴口25の開口外側25aに削除面として水平下面20bを形成することによって設けているが、特に、限定されるものではなく、例えば、補助噴口25の開口内側25bの方に削除面を設けるようにしてもよい。   Further, as shown in FIGS. 1 and 2, such a structure in which only the nozzle hole length is shortened from L2 to L21 without increasing the nozzle hole diameter of the auxiliary nozzle 25 (hereinafter referred to as “hole nozzle length adjusting structure”). In this embodiment, as described above, the lower half portion of the hemispherical injection portion 3 is horizontally cut and removed, and a horizontal lower surface 20b is formed as a deletion surface on the outer opening 25a of the auxiliary injection port 25. Although provided, it is not particularly limited, and for example, a deletion surface may be provided toward the opening inner side 25b of the auxiliary injection hole 25.

ただし、本実施例の如く補助噴口25の開口外側25aに削除面を設けた場合には、補助噴霧26の噴射開始位置が位置27から位置28まで上昇し、その結果、補助噴霧26の先部から前記突体11の平面部11aまでの距離30が長くなり、補助噴霧26を構成する燃料が平面部11aに付着するのを一層抑制することができる。   However, when a deletion surface is provided on the outer opening 25a of the auxiliary nozzle 25 as in the present embodiment, the injection start position of the auxiliary spray 26 rises from the position 27 to the position 28, and as a result, the tip of the auxiliary spray 26 The distance 30 from the protrusion 11 to the flat surface portion 11a becomes longer, and it is possible to further suppress the fuel constituting the auxiliary spray 26 from adhering to the flat surface portion 11a.

すなわち、ノズルボディ22の噴射部20の下端に単一の補助噴口25を設け、該補助噴口25に複数の主噴口6を周設すると共に、前記補助噴口25を、ピストン9の頂部9aで燃焼室4を構成するキャビティ10の略中央に形成された突体11の平面部11aに対して、略直角に対向配置した多噴口燃料噴射ノズル21において、前記補助噴口25の噴口径d2を主噴口6の噴口径d1よりも小さく形成すると共に、補助噴口25の噴口長さL21を主噴口6の噴口長さL1よりも短くする噴口長さ調節構造を備えたので、前記主噴口6では、噴口径d1を大きく形成して噴霧量を増加し、噴射される主噴霧16の貫徹力を強く維持する一方、前記補助噴口25では、噴口径d2を小さく設定して噴霧量増加による貫徹力強化を防止した上で、噴口長さをL2からL21まで短くして噴霧角をθ2からθ21まで広げることにより、貫徹力を十分に緩和することができ、補助噴霧26の噴霧長さをS2からS21まで短縮して、平面部11aに衝突する前に燃料を微粒化し、該平面部11aへの燃料付着を確実に防止することができる。   That is, a single auxiliary injection hole 25 is provided at the lower end of the injection part 20 of the nozzle body 22, a plurality of main injection holes 6 are provided around the auxiliary injection hole 25, and the auxiliary injection hole 25 is combusted at the top 9 a of the piston 9. In the multi-injection fuel injection nozzle 21 that is disposed substantially perpendicularly to the flat surface portion 11a of the projection 11 formed substantially at the center of the cavity 10 constituting the chamber 4, the injection hole diameter d2 of the auxiliary injection port 25 is set as the main injection port. 6 has a nozzle hole length adjusting structure that is smaller than the nozzle hole length L1 of the main nozzle hole 6 and is formed smaller than the nozzle hole diameter d1 of the auxiliary nozzle 25. While increasing the spray amount by increasing the diameter d1 and maintaining the penetrating force of the main spray 16 to be injected strongly, the auxiliary nozzle 25 sets the nozzle diameter d2 small to enhance the penetrating force by increasing the spray amount. Prevented Thus, by shortening the nozzle length from L2 to L21 and increasing the spray angle from θ2 to θ21, the penetration force can be sufficiently relaxed, and the spray length of the auxiliary spray 26 is reduced from S2 to S21. The fuel can be atomized before colliding with the flat surface portion 11a, and the fuel can be reliably prevented from adhering to the flat surface portion 11a.

これにより、対向配置型の多噴口燃料噴射ノズル21であっても、該多噴口燃料噴射ノズル21直下のキャビティ10内の空気を有効に利用し、低負荷時の黒煙や始動直後の白煙の発生を抑制する等してエンジン性能を向上させることができる。   Thereby, even in the multi-hole fuel injection nozzle 21 of the opposed arrangement type, the air in the cavity 10 immediately below the multi-hole fuel injection nozzle 21 is effectively used, and black smoke at low load or white smoke immediately after start-up The engine performance can be improved by suppressing the occurrence of the engine.

更に、前記噴口長さ調節構造は、前記補助噴口25の開口外側25aに削除面である水平下面20bを形成して成るので、該水平下面20b形成によって補助噴口25の開口外側25aを前記平面部11aから離間させ、該平面部11aに補助噴霧26の先部を接触しにくくして平面部11aへの燃料付着を一層抑制することができ、エンジン性能の更なる向上を図ることができる。   Further, since the nozzle hole length adjusting structure is formed by forming a horizontal lower surface 20b as a deletion surface on the outer opening 25a of the auxiliary nozzle 25, the outer outer surface 25a of the auxiliary nozzle 25 is formed on the plane portion by forming the horizontal lower surface 20b. It can be separated from 11a, the front part of the auxiliary spray 26 can be made difficult to contact the flat part 11a, and the fuel adhesion to the flat part 11a can be further suppressed, and the engine performance can be further improved.

また、以上の如く、補助噴口25の噴口径d2を主噴口6の噴口径d1よりも小さく維持しつつ、補助噴口25の噴口長さL21を主噴口6の噴口長さL1よりも短く設定した場合であっても、図4に示すように、前記補助噴口25の形状係数L21/d2が主噴口6の形状係数L1/d1よりも大きすぎると、噴口長さL21が極端に長くなって噴霧角θ21が狭くなり、噴霧長さS21が長くなる。例えば、形状係数L21/d2がL1/d1からF1まで増加すると、黒煙濃度はC1からC2まで増加する。   Further, as described above, while maintaining the nozzle diameter d2 of the auxiliary nozzle 25 smaller than the nozzle diameter d1 of the main nozzle 6, the nozzle length L21 of the auxiliary nozzle 25 is set shorter than the nozzle length L1 of the main nozzle 6. Even in this case, as shown in FIG. 4, when the shape factor L21 / d2 of the auxiliary nozzle 25 is too larger than the shape factor L1 / d1 of the main nozzle 6, the nozzle length L21 becomes extremely long and spraying occurs. The angle θ21 becomes narrower and the spray length S21 becomes longer. For example, when the shape factor L21 / d2 increases from L1 / d1 to F1, the black smoke density increases from C1 to C2.

逆に、補助噴口25の形状係数L21/d2が主噴口6の形状係数L1/d1よりも小さすぎると、噴口長さL21が極端に短くなって補助噴口25近傍の部材厚が極めて薄くなる。例えば、形状係数L21/d2がL1/d1からF2まで減少すると、黒煙濃度はC1からほとんど変化しないにもかかわらず、補助噴口25近傍の部材に微小クラック等が発生して耐圧・耐熱等の強度が著しく低下する。従って、補助噴口25の形状係数L21/d2は主噴口6の形状係数L1/d1と略同一であることが好ましい。   On the other hand, if the shape factor L21 / d2 of the auxiliary nozzle 25 is too smaller than the shape factor L1 / d1 of the main nozzle 6, the nozzle length L21 becomes extremely short and the thickness of the member near the auxiliary nozzle 25 becomes extremely thin. For example, when the shape factor L21 / d2 decreases from L1 / d1 to F2, the black smoke density hardly changes from C1, but a minute crack or the like is generated in the member near the auxiliary nozzle 25, and the pressure resistance and heat resistance are reduced. The strength is significantly reduced. Therefore, it is preferable that the shape factor L21 / d2 of the auxiliary nozzle 25 is substantially the same as the shape factor L1 / d1 of the main nozzle 6.

すなわち、前記噴口長さ調節構造により、前記補助噴口25における噴口径d2に対する噴口長さL21の割合と、前記主噴口6における噴口径d1に対する噴口長さL1の割合を略同一に設定するので、補助噴口25の噴口長さL21が長すぎて噴霧角θ21が狭くなり、貫徹力が増加して補助噴霧26の噴霧長さS21が長くなったり、補助噴口25の噴口長さL21が短すぎて補助噴口25近傍の部材厚が減少し、耐圧・耐熱等の強度が低下して多噴口燃料噴射ノズル21全体の耐久性が悪化するのを、確実に防止して良好なエンジン性能とノズル耐久性を確保することができる。   That is, the ratio of the nozzle length L21 to the nozzle diameter d2 in the auxiliary nozzle 25 and the ratio of the nozzle length L1 to the nozzle diameter d1 in the main nozzle 6 are set to be substantially the same by the nozzle length adjustment structure. The nozzle length L21 of the auxiliary nozzle 25 is too long and the spray angle θ21 is narrowed, the penetration force is increased and the spray length S21 of the auxiliary nozzle 26 is increased, or the nozzle length L21 of the auxiliary nozzle 25 is too short. Good engine performance and nozzle durability can be reliably prevented by reducing the thickness of the member near the auxiliary nozzle 25 and reducing the durability of the multi-nozzle fuel injection nozzle 21 by reducing the strength such as pressure resistance and heat resistance. Can be secured.

本発明は、ノズルボディの噴射部の下端に単一の補助噴口を設け、該補助噴口に複数の主噴口を周設すると共に、前記補助噴口を、ピストン頂部で燃焼室を構成するキャビティの略中央に形成された突体の平面部に対して、略直角に対向配置した、全ての多噴口燃料噴射ノズルに適用することができる。   The present invention provides a single auxiliary injection port at the lower end of the injection part of the nozzle body, and a plurality of main injection ports are provided around the auxiliary injection port. The auxiliary injection port is an abbreviation of a cavity that constitutes a combustion chamber at the top of the piston. The present invention can be applied to all the multi-injection fuel injection nozzles arranged to face each other at a substantially right angle with respect to the flat portion of the projection formed at the center.

本発明に係わる多噴口燃料噴射ノズルの先部の側面一部断面図である。It is side surface partial sectional drawing of the front part of the multi-injection fuel injection nozzle concerning this invention. 同じく拡大図である。It is also an enlarged view. 本発明に係わる多噴口燃料噴射ノズルによる噴霧状況を示す、燃焼室近傍の側面一部断面図である。It is side surface partial sectional drawing of the combustion chamber vicinity which shows the spray condition by the multi-injection fuel injection nozzle concerning this invention. 低負荷時の黒煙濃度に及ぼす補助噴口の形状係数の影響を示す説明図である。It is explanatory drawing which shows the influence of the shape factor of an auxiliary nozzle hole on the black smoke density | concentration at the time of low load. 従来の多噴口燃料噴射ノズルの先部の側面一部断面図である。It is side surface partial sectional drawing of the front part of the conventional multi-injection fuel-injection nozzle. 従来の多噴口燃料噴射ノズルによる噴霧状況を示す、燃焼室近傍の側面一部断面図である。It is side surface partial sectional drawing of the combustion chamber vicinity which shows the spray condition by the conventional multi-injection fuel-injection nozzle.

符号の説明Explanation of symbols

4 燃焼室
6 主噴口
9 ピストン
9a 頂部
10 キャビティ
11 突体
11a 平面部
20 噴射部
20b 削除面
21 多噴口燃料噴射ノズル
22 ノズルボディ
25 補助噴口
25a 開口外側
d1 主噴口の噴口径
d2 補助噴口の噴口径
L1 主噴口の噴口長さ
L21 補助噴口の噴口長さ
4 Combustion chamber 6 Main injection port 9 Piston 9a Top 10 Cavity 11 Projection 11a Flat surface 20 Injection unit 20b Deletion surface 21 Multi-injection fuel injection nozzle 22 Nozzle body 25 Auxiliary injection port 25a Outer opening d1 Main injection port diameter d2 Injection of auxiliary injection port Diameter L1 Main nozzle hole length L21 Auxiliary nozzle hole length

Claims (3)

ノズルボディの噴射部に単一の補助噴口を設け、該補助噴口に複数の主噴口を周設すると共に、前記補助噴口を、ピストン頂部で燃焼室を構成するキャビティの略中央に形成された突体の平面部に対して、略直角に対向配置した多噴口燃料噴射ノズルにおいて、前記補助噴口の噴口径を主噴口の噴口径よりも小さく形成すると共に、前記補助噴口の噴口長さを主噴口の噴口長さよりも短く設定する噴口長さ調節構造を備えたことを特徴とする多噴口燃料噴射ノズル。   A single auxiliary injection port is provided in the injection part of the nozzle body, and a plurality of main injection ports are provided around the auxiliary injection port, and the auxiliary injection port is formed at a substantially central portion of the cavity constituting the combustion chamber at the piston top. In the multi-injection fuel injection nozzle arranged opposite to the plane portion of the body at a substantially right angle, the auxiliary injection hole has a nozzle diameter smaller than the main injection hole diameter, and the auxiliary injection nozzle length is set to the main injection hole. A multi-nozzle fuel injection nozzle comprising a nozzle length adjusting structure that is set to be shorter than the nozzle hole length. 前記噴口長さ調節構造は、前記補助噴口の開口外側に削除面を形成して成ることを特徴とする請求項1記載の多噴口燃料噴射ノズル。   2. The multi-nozzle fuel injection nozzle according to claim 1, wherein the nozzle length adjusting structure is formed by forming a deletion surface outside the opening of the auxiliary nozzle. 前記噴口長さ調節構造により、前記補助噴口における噴口径に対する噴口長さの割合と、前記主噴口における噴口径に対する噴口長さの割合を略同一に設定することを特徴とする請求項1または請求項2に記載の多噴口燃料噴射ノズル。   The ratio of the nozzle hole length to the nozzle hole diameter in the auxiliary nozzle hole and the ratio of the nozzle hole length to the nozzle hole diameter in the main nozzle hole are set substantially the same by the nozzle hole length adjusting structure. Item 3. The multi-hole fuel injection nozzle according to Item 2.
JP2008052576A 2008-03-03 2008-03-03 Multiple injection hole fuel injection nozzle Pending JP2009209742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052576A JP2009209742A (en) 2008-03-03 2008-03-03 Multiple injection hole fuel injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052576A JP2009209742A (en) 2008-03-03 2008-03-03 Multiple injection hole fuel injection nozzle

Publications (1)

Publication Number Publication Date
JP2009209742A true JP2009209742A (en) 2009-09-17

Family

ID=41183146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052576A Pending JP2009209742A (en) 2008-03-03 2008-03-03 Multiple injection hole fuel injection nozzle

Country Status (1)

Country Link
JP (1) JP2009209742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015797A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Fuel injection valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015797A1 (en) * 2013-08-02 2015-02-05 株式会社デンソー Fuel injection valve
JP2015031212A (en) * 2013-08-02 2015-02-16 株式会社デンソー Fuel injection valve
CN105473844A (en) * 2013-08-02 2016-04-06 株式会社电装 Fuel injection valve
US9828961B2 (en) 2013-08-02 2017-11-28 Denso Corporation Fuel injector
US10260470B2 (en) 2013-08-02 2019-04-16 Denso Corporation Fuel injector

Similar Documents

Publication Publication Date Title
JP6072284B2 (en) Sub-chamber gas engine
US7740002B2 (en) Fuel injector
JP4508142B2 (en) Fuel injection valve for internal combustion engine
JP2008202483A (en) Cylinder injection type internal combustion engine and injector used therefor
JP2007051624A (en) Fuel injection nozzle
KR20010067041A (en) Direct injection fuel injector and internal combustion engine mounting the same
JP2007315276A (en) Multi-hole type injector
JP2007231852A (en) Fuel injection device
JP4306656B2 (en) Fuel injection valve
WO2014188736A1 (en) Direct injection diesel engine
JP4306710B2 (en) Fuel injection nozzle
JP4228881B2 (en) In-cylinder internal combustion engine
JP2007138779A (en) Cylinder injection internal combustion engine
US20020000483A1 (en) Fuel injector nozzle
JP2005248857A (en) Combustion control device for internal combustion engine
JP2009209742A (en) Multiple injection hole fuel injection nozzle
JP2007315279A (en) Multi-hole type injector
JP2007231913A (en) Fuel injection device for internal combustion engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JP2008286181A (en) Internal combustion engine
JP2004324558A (en) Fuel injection valve for internal combustion engine
JP4036175B2 (en) Fuel injection valve
JP2009144647A (en) Premixed compression ignition diesel engine
JP2007327501A (en) Fuel injection valve
JP4222256B2 (en) Control device for internal combustion engine