JP2007315276A - Multi-hole type injector - Google Patents

Multi-hole type injector Download PDF

Info

Publication number
JP2007315276A
JP2007315276A JP2006145305A JP2006145305A JP2007315276A JP 2007315276 A JP2007315276 A JP 2007315276A JP 2006145305 A JP2006145305 A JP 2006145305A JP 2006145305 A JP2006145305 A JP 2006145305A JP 2007315276 A JP2007315276 A JP 2007315276A
Authority
JP
Japan
Prior art keywords
hole
inner diameter
main nozzle
spray
nozzle port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006145305A
Other languages
Japanese (ja)
Inventor
Daijiro Arai
大二郎 新井
Masahiro Fukuzumi
雅洋 福住
Mitsuyasu Akagi
三泰 赤木
Katsuaki Uchiyama
克昭 内山
Yuuya Hakamata
雄哉 袴田
Daisuke Takagi
大介 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006145305A priority Critical patent/JP2007315276A/en
Publication of JP2007315276A publication Critical patent/JP2007315276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To properly disperse fuel density of a spray injected from a main nozzle port, while securing spray achieving force of the main nozzle port, for enhancing stability of ignition and combustion in a low speed-low load area, in a spark ignition type cylinder direct injection engine having a spark plug arranged in a combustion chamber and a multi-hole injector for injecting fuel into the combustion chamber. <P>SOLUTION: This multi-hole type injector 1 has the main nozzle port 10 having the injection center pointing to the spark plug 2, and a sub-nozzle port having the injection center pointing in the direction different from the injection center of the main nozzle port. While setting spray achieving force of the sub-nozzle port so as to reduce more than the spray achieving force of the main nozzle port 10, in the cross-sectional area of the main nozzle port 10, an inner diameter of an outlet part 12 is set larger than an inner diameter of an inlet part 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、火花点火式筒内直噴エンジンに好適なマルチホール型インジェクタに関する。   The present invention relates to a multi-hole injector suitable for a spark ignition in-cylinder direct injection engine.

従来から、燃費の向上を図るため、燃焼室内に配置される点火プラグと、燃焼室に燃料を噴射するマルチホール型インジェクタと、を備え、点火プラグ周辺に燃料を成層化する、火花点火式筒内直噴エンジンが知られている。   Conventionally, in order to improve fuel efficiency, a spark ignition type cylinder having an ignition plug disposed in a combustion chamber and a multi-hole type injector for injecting fuel into the combustion chamber and stratifying fuel around the ignition plug An internal direct injection engine is known.

このようなエンジンにおいては、噴射中心が点火プラグを指向する主噴孔と、噴射中心が主噴孔の噴射中心と異なる方向を指向する副噴孔と、を備えるマルチホール型インジェクタが使用され、低速低負荷域においては、点火プラグ周辺に混合気を層状に偏在する状態で燃焼させるべく、圧縮上死点付近で燃料を噴射する一方、回転や負荷が高くなると、燃料室に均一な混合気を生成して燃焼させるべく、吸気行程中期において、燃料を噴射する。   In such an engine, a multi-hole type injector having a main injection hole whose injection center is directed to the ignition plug and a sub injection hole whose injection center is directed in a direction different from the injection center of the main injection hole is used. In the low-speed and low-load region, fuel is injected near the compression top dead center in order to burn the air-fuel mixture in a layered manner around the spark plug. In the middle of the intake stroke, fuel is injected to generate and burn.

特許文献1においては、噴孔を流れる燃料の流速を変えることにより、同一の噴孔からの燃料の噴射方向を変更しえるようにしたものが開示される。
特開2005−023846号
Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique in which the fuel injection direction from the same nozzle hole can be changed by changing the flow velocity of the fuel flowing through the nozzle hole.
JP 2005-023846 A

火花点火式筒内直噴エンジンにおいては、ボア径が大きい場合、点火プラグとインジェクタとの距離が長く、主噴孔の噴霧貫徹力を強めることが要求される。しかし、燃料の噴射力を高めると、主噴孔の噴霧貫徹力ばかりでなく、副噴孔の噴霧貫徹力も強まるため、低速低負荷域において、副噴孔からの噴射燃料が圧縮上死点付近にあるピストン冠面やボア壁に付着しやすく、スモークの発生やHCの増加を招いてしまう。そのため、副噴孔の噴霧貫徹力を主噴孔の噴霧貫徹力よりも小さく設定する。言い換えれば、主噴孔の噴霧貫徹力のみを大きく設定することが考えられるが、主噴孔から噴射される噴霧が点火プラグ周辺に留まり、噴霧の燃料密度が高くなり、点火プラグ周辺の空燃比がオーバリッチとなり、着火や燃焼の安定性が損なわれ、HCが増加しやすくなる。   In a spark-ignition in-cylinder direct injection engine, when the bore diameter is large, the distance between the spark plug and the injector is long, and it is required to increase the spray penetration force of the main injection hole. However, when the fuel injection force is increased, not only the spray penetration force of the main injection hole, but also the spray penetration force of the sub injection hole is strengthened, so that the injection fuel from the sub injection hole is near the compression top dead center in the low speed and low load range. It tends to adhere to the piston crown surface and bore wall, and causes smoke and HC. Therefore, the spray penetration force of the sub nozzle hole is set smaller than the spray penetration force of the main nozzle hole. In other words, it is conceivable that only the spray penetration force of the main nozzle hole is set large, but the spray injected from the main nozzle hole stays around the spark plug, the fuel density of the spray becomes high, and the air-fuel ratio around the spark plug Becomes overrich, the stability of ignition and combustion is impaired, and HC tends to increase.

この発明は、このような課題に着目してなされたものであり、火花点火式筒内直噴エンジンにおいて、低速低負荷域の着火や燃焼の安定度を高めるため、主噴孔の噴霧貫徹力を確保しつつ、主噴孔から噴射される噴霧の燃料密度を適度に分散しえる、マルチホール型インジェクタの提供を目的とする。   The present invention has been made paying attention to such a problem, and in a spark-ignition in-cylinder direct injection engine, in order to improve the stability of ignition and combustion in a low-speed and low-load region, the spray penetration force of the main injection hole It is an object of the present invention to provide a multi-hole type injector capable of appropriately dispersing the fuel density of the spray injected from the main injection hole while ensuring the above.

この発明は、燃焼室内に配置される点火プラグと、燃焼室に燃料を噴射するマルチホール型インジェクタと、を備える火花点火式筒内直噴エンジンにおいて、マルチホール型インジェクタは、噴射中心が点火プラグを指向する主噴孔と、噴射中心が主噴孔と異なる方向を指向する副噴孔と、を備えるものであって、主噴孔の断面積については、出口部の内径を入口部の内径よりも大きく設定したことを特徴とする。   The present invention relates to a spark ignition type in-cylinder direct injection engine having an ignition plug disposed in a combustion chamber and a multi-hole injector for injecting fuel into the combustion chamber. The multi-hole injector has an injection center at the injection center. And a secondary injection hole whose injection center is oriented in a direction different from that of the main injection hole, and the cross-sectional area of the main injection hole is the inner diameter of the outlet part. It is characterized by being set larger than the above.

この発明においては、主噴孔を流れる燃料の噴流は、低速低負荷域において、主噴孔の内面に沿って流れ、内径が入口部よりも大きく出口部により、噴流の断面積が拡がり、燃料の噴射角が拡大する。このため、主噴孔について、入口部の内径(噴孔の口径)を変えずに出口部の内径を大きく設定すると、噴射量は一定のままであるため、全体の空燃比を変えることなく、噴射角が広がることにより、噴霧の燃料密度が適度に分散され、着火に好適な空燃比の混合気塊を点火プラグ周辺に生成しえるのである。   In this invention, the jet of fuel flowing through the main nozzle hole flows along the inner surface of the main nozzle hole in the low speed and low load region, the inner diameter is larger than the inlet part, and the sectional area of the jet is expanded by the outlet part. Increases the injection angle. For this reason, for the main nozzle hole, if the inner diameter of the outlet part is set large without changing the inner diameter of the inlet part (the diameter of the nozzle hole), the injection amount remains constant, so without changing the overall air-fuel ratio, By widening the injection angle, the fuel density of the spray is moderately dispersed, and an air-fuel ratio air-fuel mixture suitable for ignition can be generated around the spark plug.

この発明の実施形態を添付の図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

図1において、3はエンジンの燃焼室であり、シリンダブロック21とシリンダヘッド22とピストン30とから画成される。41は吸気ポート31の燃焼室3側の開口部をピストン30に連動して開閉する吸気バルブであり、42は排気ポート32の燃焼室3側の開口部をピストン30に連動して開閉する排気バルブであり、2は燃焼室3の天井の略中央に配置される点火プラグであり、1は燃焼室3の側方に配置されるマルチホール型インジェクタである。   In FIG. 1, reference numeral 3 denotes an engine combustion chamber, which is defined by a cylinder block 21, a cylinder head 22, and a piston 30. 41 is an intake valve that opens and closes the opening on the combustion chamber 3 side of the intake port 31 in conjunction with the piston 30, and 42 is an exhaust that opens and closes the opening on the combustion chamber 3 side of the exhaust port 32 in conjunction with the piston 30. 1 is a multi-hole type injector disposed at the side of the combustion chamber 3.

インジェクタ1は、図示の場合、先端部を燃焼室3の周縁に臨ませてシリンダヘッド22に組み付けられ、先端部1aに主噴孔および複数の副噴孔が設けられる。図1において、F1は主噴孔から噴射される噴霧であり、F2〜F4は各副噴孔から噴射される噴霧であり、主噴孔の軸心は点火プラグ2の電極を指向するように設定され、各副噴孔の軸心は主噴孔の軸心と異なる方向を指向するように設定される。図示の場合、各副噴孔の軸心は、主噴孔の軸心に対して下方(ピストン側)をそれぞれ異なる角度方向へ指向するようになっている。   In the illustrated case, the injector 1 is assembled to the cylinder head 22 with its tip end facing the peripheral edge of the combustion chamber 3, and a main injection hole and a plurality of sub injection holes are provided at the front end part 1a. In FIG. 1, F <b> 1 is spray sprayed from the main nozzle hole, F <b> 2 to F <b> 4 are spray sprayed from each sub nozzle hole, and the axis of the main nozzle hole is directed to the electrode of the spark plug 2. The axis of each sub nozzle hole is set so as to be directed in a direction different from the axis of the main nozzle hole. In the illustrated case, the axis of each sub injection hole is directed downward (piston side) in different angular directions with respect to the axis of the main injection hole.

インジェクタ1は、低速低負荷域においては、点火プラグ2の周辺に混合気を層状に偏在する状態で燃焼させるべく、圧縮上死点付近で燃料を先端部1aの各噴孔から噴射する一方、回転や負荷が高くなると、燃料室3に均一な混合気を生成して燃焼させるべく、吸気行程中期において、燃料を先端部1aの各噴孔から噴射するのである。   In the low-speed and low-load region, the injector 1 injects fuel from each injection hole of the tip 1a in the vicinity of the compression top dead center so that the air-fuel mixture is burnt in a layered manner around the spark plug 2. When the rotation and load increase, fuel is injected from each nozzle hole in the tip portion 1a in the middle of the intake stroke so as to generate a uniform air-fuel mixture in the fuel chamber 3 and burn it.

図1に示す、低速低負荷域の圧縮上死点付近において、主噴孔から噴射される噴霧F1は、点火プラグ3に到達する長さA1が確保され、副噴孔から噴射される噴霧F2〜F4は、主噴孔からの噴霧F1に対して下方をそれぞれ異なる角度方向へ指向するが、いずれもピストン30の冠面に到達しない長さ(A2,A3,A4)に抑えられる。噴孔から噴射される噴霧の長さA1〜A4(噴霧貫徹力)は、噴孔の径が一定の場合、各噴孔の有効長に略比例するため、各噴孔の有効長についても、A1>A2>A3>A4、と同等の関係に設定されるのである。   In the vicinity of the compression top dead center in the low speed and low load region shown in FIG. 1, the spray F1 injected from the main injection hole has a length A1 that reaches the spark plug 3, and is supplied from the sub injection hole F2. ˜F4 are directed downward in different angular directions with respect to the spray F1 from the main nozzle hole, but all are suppressed to a length (A2, A3, A4) that does not reach the crown surface of the piston 30. Since the spray lengths A1 to A4 (spray penetration force) sprayed from the nozzle holes are substantially proportional to the effective length of each nozzle hole when the diameter of the nozzle hole is constant, the effective length of each nozzle hole is also A1> A2> A3> A4 is set to the same relationship.

これにより、副噴孔の噴霧貫徹力が主噴孔の噴霧貫徹力よりも小さくなるように設定されるので、低速低負荷域において、副噴孔から噴射される燃料が圧縮上死点付近にあるピストン30の冠面やボア壁に付着するのを防止しつつ、主噴孔に必要な噴霧貫徹力を確保することが可能となる。噴霧貫徹力が強まると、噴霧の燃料密度が高くなる傾向がある。このため、主噴孔については、必要な噴霧貫徹力を確保しつつ、噴霧の燃料密度を適度に分散しえるように構成される。   As a result, the spray penetration force of the sub injection hole is set to be smaller than the spray penetration force of the main injection hole, so that the fuel injected from the sub injection hole is near the compression top dead center in the low speed and low load region. It is possible to ensure the spray penetration force necessary for the main nozzle hole while preventing the piston 30 from adhering to the crown surface and the bore wall. When the spray penetration force increases, the fuel density of the spray tends to increase. For this reason, the main injection hole is configured so that the fuel density of the spray can be appropriately dispersed while ensuring the necessary spray penetration force.

図2の場合、主噴孔10は、入口部11と出口部12とからなり、出口部12の内径d1が入口部11の内径Dよりも大きく設定される。入口部11および出口部12は、互いに同軸上を内径D,d1が一定の流路に形成され、これらの境に段差(内径の差)が設定される。   In the case of FIG. 2, the main injection hole 10 includes an inlet portion 11 and an outlet portion 12, and the inner diameter d1 of the outlet portion 12 is set larger than the inner diameter D of the inlet portion 11. The inlet portion 11 and the outlet portion 12 are coaxially formed in a flow path having constant inner diameters D and d1, and a step (difference in inner diameter) is set at the boundary between them.

D<d1のため、主噴孔10を流れる燃料の噴流は、低速低負荷域において、主噴孔10の内面に沿って流れ、内径d1が入口部11の内径Dよりも大きく出口部12により、噴流の断面積が拡がり、燃料の噴射角が拡大する。このため、主噴孔10について、入口部の内径Dを変えず、出口部12の内径d1を入口部11の内径Dよりも大きく設定すると、噴射量は一定のままであるため、全体の空燃比を変えることなく、噴射角が広がることにより、噴霧の燃料密度が適度に分散され、着火および燃料に好適な空燃比の混合気塊を点火プラグ3の周辺に生成しえるのである。   Since D <d1, the jet of fuel flowing through the main nozzle hole 10 flows along the inner surface of the main nozzle hole 10 in the low-speed and low-load region, and the inner diameter d1 is larger than the inner diameter D of the inlet portion 11 due to the outlet portion 12. The cross-sectional area of the jet is expanded, and the fuel injection angle is expanded. For this reason, if the inner diameter d1 of the outlet portion 12 is set larger than the inner diameter D of the inlet portion 11 without changing the inner diameter D of the inlet portion for the main injection hole 10, the injection amount remains constant, so By expanding the injection angle without changing the fuel ratio, the fuel density of the spray is moderately dispersed, and an air-fuel ratio air mass suitable for ignition and fuel can be generated around the spark plug 3.

図3の場合、主噴孔10は、入口部11と出口部12とからなり、出口部12の内径d2が入口部11の内径Dよりも大きく設定される。入口部11は内径Dが一定の流路に形成され、出口部12は内径d2が入口部11との境(内径D)へ向けてテーパ角aをもって縮径する流路に形成される。   In the case of FIG. 3, the main injection hole 10 includes an inlet portion 11 and an outlet portion 12, and the inner diameter d <b> 2 of the outlet portion 12 is set larger than the inner diameter D of the inlet portion 11. The inlet portion 11 is formed in a flow path having a constant inner diameter D, and the outlet portion 12 is formed in a flow path whose inner diameter d2 is reduced in diameter toward the boundary (inner diameter D) with the inlet portion 11 with a taper angle a.

主噴孔10を流れる燃料の噴流は、低速低負荷域において、主噴孔10の内面に沿って流れ、入口部11からその内径Dを内径d2へテーパ角aをもって拡大する出口部12により、噴流の断面積が円滑に拡がると共に、テーパ角aにより、図2の場合よりも、噴射角が大きくなり、噴霧の燃料密度の分散も早められることになる。   The jet of fuel flowing through the main nozzle hole 10 flows along the inner surface of the main nozzle hole 10 in the low speed and low load region, and the outlet part 12 expands the inner diameter D from the inlet part 11 to the inner diameter d2 with a taper angle a. The cross-sectional area of the jet spreads smoothly, and the taper angle a makes the injection angle larger than in the case of FIG. 2, and the dispersion of the fuel density of the spray is also accelerated.

図4の場合、主噴孔10は、入口部11と出口部12とからなり、出口部12の内径d3が入口部11の内径Dよりも大きく設定される。入口部11は内径Dが一定の流路に形成され、出口部12は内径d3が入口部11との境(内径D)へ向けて湾曲Rをもって縮径する流路に形成される。   In the case of FIG. 4, the main injection hole 10 includes an inlet portion 11 and an outlet portion 12, and the inner diameter d <b> 3 of the outlet portion 12 is set larger than the inner diameter D of the inlet portion 11. The inlet portion 11 is formed in a flow path having a constant inner diameter D, and the outlet portion 12 is formed in a flow path whose inner diameter d3 is reduced in diameter toward the boundary (inner diameter D) with the inlet portion 11 with a curvature R.

主噴孔10を流れる燃料の噴流は、低速低負荷域において、主噴孔10の内面に沿って流れ、入口部11からその内径Dを内径d3へ湾曲Rをもって拡大する出口部12により、図3の場合よりも、噴流が円滑に拡がると共に噴射角が大きくなり、噴霧の燃料密度の分散も早められることになる。   The fuel jet flowing through the main nozzle hole 10 flows along the inner surface of the main nozzle hole 10 in the low speed and low load region, and the outlet part 12 expands the inner diameter D from the inlet part 11 to the inner diameter d3 with a curvature R. Compared with the case 3, the jet spreads smoothly and the injection angle becomes larger, and the fuel density dispersion of the spray can be accelerated.

図2〜図4において、d1〜d3は、内径Dの入口部11から距離Lの位置にある出口部の内径であり、従来(内径Dが入口から出口まで一定の噴孔)の噴霧角をα、図2〜図3の噴霧角をそれぞれα1,α2,α3とすると、D<d1<d2<d3、α<α1<α2<α3、の関係がある。   2 to 4, d <b> 1 to d <b> 3 are the inner diameters of the outlet portion located at a distance L from the inlet portion 11 with the inner diameter D, and the conventional spray angle (inner diameter D is a constant injection hole from the inlet to the outlet). If α and the spray angles in FIGS. 2 to 3 are α1, α2, and α3, respectively, there is a relationship of D <d1 <d2 <d3 and α <α1 <α2 <α3.

図5〜図8は、主噴孔10に係る別の変形例を表すものであり、出口部12の断面積は、外側(出口)へ向けて多段的に拡大される。入口部11は、内径Dが一定に設定される。   5-8 represents another modification concerning the main injection hole 10, and the cross-sectional area of the outlet portion 12 is expanded in multiple stages toward the outside (outlet). The inlet 11 has a constant inner diameter D.

図5の場合、出口部12は、内径dsが一定の流路部分12aと、その内径dsを出口の内径dtへ所定のテーパ角をもって拡大する流路部分12bと、から形成される。図6の場合、出口部12は、内径dsが一定の流路部分12aと、その内径dsを出口の内径dtへ湾曲Rをもって拡大する流路部分12bと、から形成される。   In the case of FIG. 5, the outlet portion 12 is formed of a flow path portion 12a having a constant inner diameter ds and a flow path portion 12b that expands the inner diameter ds to the inner diameter dt of the outlet with a predetermined taper angle. In the case of FIG. 6, the outlet portion 12 is formed of a flow path portion 12 a having a constant inner diameter ds and a flow path portion 12 b that expands the inner diameter ds to the inner diameter dt of the outlet with a curvature R.

図7の場合、出口部12は、入口部11の内径Dを出口へテーパ角a1をもって拡大する流路部分12aと、これをテーパ角a2をもってさらに拡大する流路部分12bと、から形成される。図8の場合、入口部11の内径Dを出口へテーパ角aをもって拡大する流路部分12aと、これを所定の湾曲Rをもってさらに拡大する流路部分12bと、から形成される。   In the case of FIG. 7, the outlet portion 12 is formed of a flow passage portion 12a that expands the inner diameter D of the inlet portion 11 to the outlet with a taper angle a1, and a flow passage portion 12b that further expands the inner diameter D with a taper angle a2. . In the case of FIG. 8, it is formed of a flow path portion 12 a that expands the inner diameter D of the inlet portion 11 to the outlet with a taper angle a, and a flow path portion 12 b that further expands the inner diameter D with a predetermined curvature R.

図5〜図8においては、出口部12の断面積が外側(出口)へ向けて多段的に拡大されるため、出口部12を流れる燃料の噴流が抵抗なく円滑に拡がり、噴霧角を効率よく拡大させることができる。   5 to 8, since the cross-sectional area of the outlet portion 12 is expanded in a multistage manner toward the outside (outlet), the jet of fuel flowing through the outlet portion 12 is smoothly expanded without resistance, and the spray angle is efficiently increased. Can be enlarged.

図9〜図11は、主噴孔10に係る別の変形例を表すものであり、出口部12の断面積は、扁平な形状に拡大される。入口部11は、内径Dが一定の円形断面に設定される。   9 to 11 show another modification example related to the main injection hole 10, and the cross-sectional area of the outlet portion 12 is enlarged to a flat shape. The inlet portion 11 is set to have a circular cross section with a constant inner diameter D.

図9において、(a)は主噴孔10の縦(垂直)断面であり、(b)は主噴孔10の横(水平)断面であり、出口部12は、断面積が一定の流路に設定され、その断面形状(噴孔10の軸心と直交する断面の形状)は、長軸dh,短軸dr、の楕円型に形成される。   9A is a vertical (vertical) cross section of the main nozzle hole 10, FIG. 9B is a horizontal (horizontal) cross section of the main nozzle hole 10, and the outlet 12 has a constant cross-sectional area. The cross-sectional shape (the cross-sectional shape orthogonal to the axis of the injection hole 10) is an elliptical shape having a long axis dh and a short axis dr.

図10において、(a)は主噴孔10の縦(垂直)断面であり、(b)は主噴孔10の横(水平)断面であり、出口部12は、断面積が外側へ縦横に異なる角度av,ahを持って拡大することにより、楕円型の断面形状に形成される。   10, (a) is a vertical (vertical) cross section of the main nozzle hole 10, (b) is a horizontal (horizontal) cross section of the main nozzle hole 10, and the outlet portion 12 has a cross-sectional area extending vertically and horizontally outward. By enlarging with different angles av and ah, an elliptical cross-sectional shape is formed.

図11において、(a)は主噴孔を外側から軸心方向を直視する図であり、(b)は(a)中のx−x断面図であり、(c)は同じくy−y断面図である。出口部12は、断面積が横方向のみテーパ角ahをもって出口へ拡大される。つまり、出口部12は、横方向へ扁平に拡がる楕円型の断面形状に設定される。   In FIG. 11, (a) is a view of the main nozzle hole as viewed from the outside in the axial direction, (b) is an xx sectional view in (a), and (c) is also a yy sectional view. FIG. The exit part 12 is expanded to the exit with a taper angle ah in the cross-sectional area only in the lateral direction. That is, the outlet portion 12 is set to have an elliptical cross-sectional shape that extends flat in the lateral direction.

図9〜図11においては、出口部12の断面積を水平方向へ扁平に拡がる形状に設定することにより、主噴孔10を流れる噴流の断面積が円形から楕円型に拡がり、噴霧も水平方向へ扁平に拡がるため、インジェクタ1を取り付ける際のロバスト性を向上させることにつながるほか、噴霧の燃料密度が適度に分散され、点火プラグ2の電極に燃料が付着するのを有効に防止しえるのである。   9 to 11, by setting the cross-sectional area of the outlet portion 12 to a shape that flattenes in the horizontal direction, the cross-sectional area of the jet flowing through the main nozzle hole 10 is expanded from a circular shape to an elliptical shape, and the spray is also horizontal. Since it expands flatly, it leads to improved robustness when the injector 1 is attached, and the fuel density of the spray is moderately dispersed, so that it is possible to effectively prevent the fuel from adhering to the electrode of the spark plug 2 is there.

図示(図2〜図11)の噴孔形状については、主噴孔のみでなく、噴霧角の拡大を図る上から、副噴孔への適用も考えられる。   About the nozzle hole shape of illustration (FIGS. 2-11), the application to a sub nozzle hole is also considered from not only the main nozzle hole but aiming at expansion of a spray angle.

火花点火式直噴エンジンの概要構成図である。It is a schematic block diagram of a spark ignition direct injection engine. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する断面図である。It is sectional drawing which illustrates the structure of a main nozzle hole. 主噴孔の構成を例示する説明図である。It is explanatory drawing which illustrates the structure of a main nozzle hole.

符号の説明Explanation of symbols

1 マルチホール型インジェクタ
2 点火プラグ
3 燃焼室
10 主噴孔
11 主噴孔の入口部
12 主噴孔の出口部
20 エンジン
F1 主噴孔からの噴霧
F2〜F4 副噴孔からの噴霧
DESCRIPTION OF SYMBOLS 1 Multi-hole type injector 2 Spark plug 3 Combustion chamber 10 Main injection hole 11 Entrance part of main injection hole 12 Outlet part of main injection hole 20 Engine F1 Spray from main injection hole F2-F4 Spray from sub injection hole

Claims (6)

燃焼室内に配置される点火プラグと、燃焼室に燃料を噴射するマルチホールインジェクタと、を備える火花点火式筒内直噴エンジンにおいて、マルチホールインジェクタは、噴射中心が点火プラグを指向する主噴孔と、噴射中心が主噴孔の噴射中心と異なる方向を指向する副噴孔と、を備えるものであって、主噴孔の断面積は、出口部の内径を入口部の内径よりも大きく設定したことを特徴とするマルチホール型インジェクタ。   In a spark ignition in-cylinder direct injection engine having an ignition plug disposed in a combustion chamber and a multi-hole injector for injecting fuel into the combustion chamber, the multi-hole injector has a main injection hole whose injection center is directed to the ignition plug And a secondary injection hole whose injection center is oriented in a direction different from the injection center of the main injection hole, and the cross-sectional area of the main injection hole is set such that the inner diameter of the outlet part is larger than the inner diameter of the inlet part A multi-hole injector characterized by 主噴孔の断面積は、外側へ向けて扁平な形状に拡大するように設定したことを特徴とする請求項1に記載のマルチホール型インジェクタ。   2. The multi-hole injector according to claim 1, wherein a cross-sectional area of the main injection hole is set so as to expand to a flat shape toward the outside. 主噴孔の断面積は、外側へ向けて多段的に拡大するように設定したことを特徴とする請求項1に記載のマルチホール型インジェクタ。   The multi-hole injector according to claim 1, wherein a cross-sectional area of the main injection hole is set to expand in a multistage manner toward the outside. 主噴孔の断面積は、外側へ向けてテーパ状に拡大するように設定したことを特徴とする請求項1に記載のマルチホール型インジェクタ。   2. The multi-hole injector according to claim 1, wherein a cross-sectional area of the main injection hole is set so as to expand in a tapered shape toward the outside. 主噴孔の断面積は、外側へ向けて湾曲状に拡大するように設定したことを特徴とする請求項1に記載のマルチホール型インジェクタ。   The multi-hole injector according to claim 1, wherein a cross-sectional area of the main injection hole is set so as to expand in a curved shape toward the outside. 主噴孔の断面積は、外側へ向けてステップ状に拡大するように設定したことを特徴とする請求項1に記載のマルチホール型インジェクタ。   2. The multi-hole injector according to claim 1, wherein a cross-sectional area of the main injection hole is set so as to expand stepwise toward the outside.
JP2006145305A 2006-05-25 2006-05-25 Multi-hole type injector Pending JP2007315276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145305A JP2007315276A (en) 2006-05-25 2006-05-25 Multi-hole type injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145305A JP2007315276A (en) 2006-05-25 2006-05-25 Multi-hole type injector

Publications (1)

Publication Number Publication Date
JP2007315276A true JP2007315276A (en) 2007-12-06

Family

ID=38849371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145305A Pending JP2007315276A (en) 2006-05-25 2006-05-25 Multi-hole type injector

Country Status (1)

Country Link
JP (1) JP2007315276A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270448A (en) * 2008-05-01 2009-11-19 Mitsubishi Electric Corp Fuel injection valve
JP2012077665A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Fuel injection valve
JP2014202078A (en) * 2013-04-01 2014-10-27 トヨタ自動車株式会社 Fuel injection valve
JP2014202100A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Fuel injection valve
JP2015021390A (en) * 2013-07-16 2015-02-02 富士重工業株式会社 Injector
JP2015078604A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Fluid injection valve and spark ignition engine
JP2015169106A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Fuel injection valve, fuel spray generation device including the same, and direct-injection engine
JP2015200214A (en) * 2014-04-07 2015-11-12 株式会社デンソー fuel injection valve
JP2015209772A (en) * 2014-04-24 2015-11-24 三菱電機株式会社 Fluid injection valve, spay generation device including the same, and engine
JP2015227622A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Fuel injection valve
CN108071539A (en) * 2016-11-18 2018-05-25 本田技研工业株式会社 Fuel injector
WO2018207582A1 (en) * 2017-05-12 2018-11-15 日立オートモティブシステムズ株式会社 Fuel injection valve
WO2018221076A1 (en) * 2017-05-31 2018-12-06 日立オートモティブシステムズ株式会社 Fuel injection valve and engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312353A (en) * 1995-05-15 1996-11-26 Yamaha Motor Co Ltd Fuel injection type internal combustion engine
JP2001027167A (en) * 1999-07-13 2001-01-30 Toyota Motor Corp Fuel injection valve for internal combustion engine
JP2003506626A (en) * 1999-08-11 2003-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve and method for manufacturing a discharge opening of the valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312353A (en) * 1995-05-15 1996-11-26 Yamaha Motor Co Ltd Fuel injection type internal combustion engine
JP2001027167A (en) * 1999-07-13 2001-01-30 Toyota Motor Corp Fuel injection valve for internal combustion engine
JP2003506626A (en) * 1999-08-11 2003-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve and method for manufacturing a discharge opening of the valve

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610631B2 (en) * 2008-05-01 2011-01-12 三菱電機株式会社 Fuel injection valve
US8191800B2 (en) 2008-05-01 2012-06-05 Mitsubishi Electric Corporation Fuel injection valve
JP2009270448A (en) * 2008-05-01 2009-11-19 Mitsubishi Electric Corp Fuel injection valve
JP2012077665A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Fuel injection valve
JP2014202078A (en) * 2013-04-01 2014-10-27 トヨタ自動車株式会社 Fuel injection valve
US10001101B2 (en) 2013-04-02 2018-06-19 Toyota Jidosha Kabushiki Kaisha Fuel injection valve
JP2014202100A (en) * 2013-04-02 2014-10-27 トヨタ自動車株式会社 Fuel injection valve
JP2015021390A (en) * 2013-07-16 2015-02-02 富士重工業株式会社 Injector
JP2015078604A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Fluid injection valve and spark ignition engine
JP2015169106A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Fuel injection valve, fuel spray generation device including the same, and direct-injection engine
JP2015200214A (en) * 2014-04-07 2015-11-12 株式会社デンソー fuel injection valve
JP2015209772A (en) * 2014-04-24 2015-11-24 三菱電機株式会社 Fluid injection valve, spay generation device including the same, and engine
JP2015227622A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Fuel injection valve
CN108071539A (en) * 2016-11-18 2018-05-25 本田技研工业株式会社 Fuel injector
WO2018207582A1 (en) * 2017-05-12 2018-11-15 日立オートモティブシステムズ株式会社 Fuel injection valve
US11098686B2 (en) 2017-05-12 2021-08-24 Hitachi Automotive Systems, Ltd. Fuel injection valve
WO2018221076A1 (en) * 2017-05-31 2018-12-06 日立オートモティブシステムズ株式会社 Fuel injection valve and engine system

Similar Documents

Publication Publication Date Title
JP2007315276A (en) Multi-hole type injector
US9803538B2 (en) Ducted combustion systems utilizing duct structures
JP4280928B2 (en) Direct injection spark ignition internal combustion engine
US10352231B2 (en) Internal combustion engine
JP6049450B2 (en) Sub-chamber gas engine
JP2009197704A (en) Sub-chamber type gas engine
JP2004519605A (en) Fuel injection system
JP2003534486A (en) Fuel injection system and injection method
JP2007138779A (en) Cylinder injection internal combustion engine
JP2007291934A (en) Multi-hole injector
JP4069750B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2015200214A (en) fuel injection valve
JP4228881B2 (en) In-cylinder internal combustion engine
US6672276B2 (en) Direct fuel injection engine
JP2007315279A (en) Multi-hole type injector
JP2007077809A (en) Fuel injection valve of port injection type engine, and port injection type engine
US11909179B2 (en) Spark plug and internal combustion engine equipped with the same
JP2005194929A (en) Cylinder injection internal combustion engine
JP2008286181A (en) Internal combustion engine
JP2019120205A (en) Internal combustion engine
JP2023057808A (en) Combustion chamber structure of internal combustion engine
JP2006307825A (en) Cylinder direct injection type internal combustion engine and fuel injection valve
JP2022041577A (en) Combustion chamber of engine
JP2003269176A (en) Cylinder direct injection engine
JP2003314286A (en) Cylinder injection type spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207