JP2005136205A - Method for manufacturing laminated ceramic electronic component - Google Patents

Method for manufacturing laminated ceramic electronic component Download PDF

Info

Publication number
JP2005136205A
JP2005136205A JP2003370844A JP2003370844A JP2005136205A JP 2005136205 A JP2005136205 A JP 2005136205A JP 2003370844 A JP2003370844 A JP 2003370844A JP 2003370844 A JP2003370844 A JP 2003370844A JP 2005136205 A JP2005136205 A JP 2005136205A
Authority
JP
Japan
Prior art keywords
kgf
pressure
press
electronic component
press pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370844A
Other languages
Japanese (ja)
Inventor
Takaya Kato
貴也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003370844A priority Critical patent/JP2005136205A/en
Publication of JP2005136205A publication Critical patent/JP2005136205A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing laminated ceramic electronic components, by which pressure for press-fitting a lamination can be easily set to a suitable value and the generation of structural defects (cracks and inter-layer peelings) and defective insulation which may be generated, when the lamination is press-fitted by inappropriate pressing can be prevented. <P>SOLUTION: In a process for laminating a plurality of ceramic green sheets on which electrode patterns are formed and press-fitting the ceramic sheets, a depression rate B which is the rate of change in the thickness of the lamination, before and after pressurizing the lamination, is found out, the relation between the difference ΔA (kgf/cm<SP>2</SP>) of the pressure A and the difference ΔB (%) of the pressure reduction rate B corresponding to the ΔA is found out and the lamination is press-fitted in a pressure area, satisfying the condition ΔB/ΔA≤0.005 (%/(kgf/cm<SP>2</SP>)). In a process for press-fitting the lamination, the lamination is press-fitted in a pressure area ≥ pressure P (kgf/cm<SP>2</SP>), satisfying ΔB/ΔA≤0.005 (%/(kgf/cm<SP>2</SP>)) and ≤ (P+200) (kgf/cm<SP>2</SP>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層セラミック電子部品の製造方法に関し、詳しくは、電極パターンが形成されたセラミックグリーンシートを積層、圧着する工程を経て製造される積層セラミックコンデンサなどの積層セラミック電子部品の製造方法に関する。   The present invention relates to a method for manufacturing a multilayer ceramic electronic component, and more particularly to a method for manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor manufactured through a process of laminating and pressing a ceramic green sheet on which an electrode pattern is formed.

代表的な積層セラミック電子部品の一つに、例えば図1に示すような構造を有するチップ型の積層セラミックコンデンサがある。
この積層セラミックコンデンサは、セラミック素子1の内部に、セラミック層2を介して複数の内部電極3a,3bが互いに対向するように配設され、かつ、その一端側が交互にセラミック素子1の異なる側の端面5a,5bに引き出されているとともに、セラミック素子1の両端側に、内部電極3a,3bと導通するように一対の外部電極4a,4bが配設された構造を有している。
One typical multilayer ceramic electronic component is, for example, a chip-type multilayer ceramic capacitor having a structure as shown in FIG.
In this multilayer ceramic capacitor, a plurality of internal electrodes 3a and 3b are arranged inside a ceramic element 1 with a ceramic layer 2 therebetween, and one end side of the ceramic element 1 is alternately arranged on a different side of the ceramic element 1. It has a structure in which a pair of external electrodes 4 a and 4 b are provided on both end sides of the ceramic element 1 so as to be electrically connected to the internal electrodes 3 a and 3 b while being drawn out to the end faces 5 a and 5 b.

このような積層セラミックコンデンサの製造方法としては、例えば、図5に示すように、セラミックグリーンシート51aと導電体層52aとを積層した後、上下プレス板55a,55bを介して、所定の圧力で圧着することにより積層体53を形成し、所定の大きさに切断して焼成した後、所定の位置に導電体層52aと電気的に接続するように外部電極を形成する方法が知られている。   As a method for manufacturing such a multilayer ceramic capacitor, for example, as shown in FIG. 5, after the ceramic green sheet 51a and the conductor layer 52a are laminated, the upper and lower press plates 55a and 55b are used at a predetermined pressure. A method is known in which a laminated body 53 is formed by pressure bonding, cut into a predetermined size, fired, and then an external electrode is formed at a predetermined position so as to be electrically connected to the conductor layer 52a. .

また、上下プレス板55a,55bに代えて、フィルムで積層体を密閉化して静水圧で圧着することにより積層体を形成する方法も知られている。そして、この方法においては、例えば、1000kgf/cm2以上の高圧力で圧着することによりデラミネーション等の構造欠陥を防止することが行われている(例えば、特許文献1参照)。 In addition, a method of forming a laminate by sealing the laminate with a film and press-bonding with hydrostatic pressure instead of the upper and lower press plates 55a and 55b is also known. In this method, for example, structural defects such as delamination are prevented by pressure bonding at a high pressure of 1000 kgf / cm 2 or more (see, for example, Patent Document 1).

しかしながら、これらの方法の場合、種々の圧力で圧着して積層体を形成し、得られた製品(例えば、積層セラミックコンデンサ)について、積層体を圧着する際の圧力と構造欠陥(クラックや層間剥離)の発生の有無の関係を調べてから圧着の際のプレス圧を決定することが必要になるため、プレス圧を決定するのに多大の時間を要し、製造コストの増大を招くという問題点がある。   However, in these methods, a laminated body is formed by pressure bonding under various pressures, and the pressure and structural defects (cracks and delamination) of the obtained product (for example, a multilayer ceramic capacitor) when the laminated body is pressure-bonded. ), It is necessary to determine the press pressure at the time of crimping after investigating the relationship between the occurrence of the pressure), and it takes a lot of time to determine the press pressure, resulting in an increase in manufacturing cost. There is.

また、積層体を圧着する際のプレス圧が高くなりすぎると、セラミックグリーンシートの圧縮率が高くなりすぎて内部電極(導電体層)どうしが短絡する絶縁不良を引き起こすという問題点がある。
特開平11−40457号公報
Moreover, if the press pressure at the time of press-bonding the laminate is too high, there is a problem that the compression ratio of the ceramic green sheet becomes too high, causing an insulation failure in which the internal electrodes (conductor layers) are short-circuited.
Japanese Patent Laid-Open No. 11-40457

本発明は、上記従来の問題点を解決して、積層体を圧着する際のプレス圧を容易に、かつ、適正な値に設定することが可能で、不適切なプレス力で積層体を圧着した場合に生じるような構造欠陥(クラックや層間剥離)や絶縁不良の発生を防止することが可能な積層セラミック電子部品の製造方法を提供することを課題としている。   The present invention solves the above-mentioned conventional problems, and can easily set the press pressure when crimping the laminate to an appropriate value, and crimps the laminate with an inappropriate pressing force. It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component capable of preventing the occurrence of structural defects (cracks and delamination) and insulation defects that may occur in such a case.

上記課題を解決するために、本発明(請求項1)の積層セラミック電子部品の製造方法は、
電極パターンが形成されたセラミックグリーンシートを積層、圧着する工程を経て製造される積層セラミック電子部品の製造方法であって、
電極パターンが形成されたセラミックグリーンシートを複数枚積層し、圧着する工程において、各プレス圧Aにおける、プレス前後の積層体厚みの変化率である圧下率Bを求めるとともに、
プレス圧Aの差ΔA(kgf/cm2)と、該ΔAに対応する圧下率Bの差ΔB(%)の関係を求め、
ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で前記圧着を行うこと
を特徴としている。
In order to solve the above-described problem, a method for manufacturing a multilayer ceramic electronic component of the present invention (Claim 1) includes:
A method of manufacturing a multilayer ceramic electronic component manufactured through a process of laminating and pressing a ceramic green sheet on which an electrode pattern is formed,
In the step of laminating and crimping a plurality of ceramic green sheets on which electrode patterns are formed, in each pressing pressure A, a reduction rate B, which is the rate of change in the thickness of the laminate before and after pressing,
The relationship between the difference ΔA (kgf / cm 2 ) of the pressing pressure A and the difference ΔB (%) of the rolling reduction B corresponding to the ΔA is obtained,
The pressure bonding is performed in a press pressure region that satisfies the condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )).

また、請求項2の積層セラミック電子部品の製造方法は、プレス圧Aの差ΔA(kgf/cm2)を100〜200とした場合において、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で前記圧着を行うことを特徴としている。 The method for manufacturing a multilayer ceramic electronic component according to claim 2 is such that ΔB / ΔA ≦ 0.005 (% / (kgf / cm) when the difference ΔA (kgf / cm 2 ) of the pressing pressure A is 100 to 200. 2 )) It is characterized in that the pressure bonding is performed in a press pressure region that satisfies the condition.

また、請求項3の積層セラミック電子部品の製造方法は、
前記電極パターンが形成されたセラミックグリーンシートを複数枚積層し、圧着する工程において、
ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧P(kgf/cm2)以上で、(P+200)(kgf/cm2)以下のプレス圧領域で前記圧着を行うこと
を特徴としている。
The method for producing a multilayer ceramic electronic component according to claim 3 comprises:
In the step of laminating a plurality of ceramic green sheets on which the electrode pattern is formed and crimping,
The above-mentioned pressure bonding is performed in a press pressure region of not less than (P + 200) (kgf / cm 2 ) but not less than a pressing pressure P (kgf / cm 2 ) that satisfies ΔB / ΔA = 0.005 (% / (kgf / cm 2 )). It is characterized by this.

また、請求項4の積層セラミック電子部品の製造方法は、積層セラミックコンデンサを製造する場合に用いられるものであることを特徴としている。   According to a fourth aspect of the present invention, there is provided a multilayer ceramic electronic component manufacturing method that is used when a multilayer ceramic capacitor is manufactured.

本発明(請求項1)の積層セラミック電子部品の製造方法は、電極パターンが形成されたセラミックグリーンシートを複数枚積層し、圧着する工程において、各プレス圧Aにおける、プレス前後の積層体厚みの変化率である圧下率B(%)を求めるとともに、プレス圧Aの差ΔA(kgf/cm2)と、該ΔA(kgf/cm2)に対応する圧下率Bの差ΔB(%)の関係を求め、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で圧着を行うようにしているので、積層体を圧着する際のプレス圧を容易に、かつ、適正な値に設定することが可能になり、不適切なプレス圧で積層体を圧着した場合に生じるような構造欠陥(クラックや層間剥離)や絶縁不良の発生を防止することが可能になる。 The method for manufacturing a multilayer ceramic electronic component according to the present invention (Claim 1) includes a step of laminating a plurality of ceramic green sheets on which an electrode pattern is formed, and in the step of pressure bonding, While calculating the reduction rate B (%), which is the rate of change, the relationship between the difference ΔA (kgf / cm 2 ) of the press pressure A and the difference ΔB (%) of the reduction rate B corresponding to the ΔA (kgf / cm 2 ) Is pressed in the press pressure region that satisfies the condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )). And it becomes possible to set to an appropriate value, and it is possible to prevent the occurrence of structural defects (cracks and delamination) and insulation defects that occur when the laminate is pressed with an inappropriate press pressure. Become.

すなわち、本発明の方法によれば、各プレス圧Aにおける圧下率Bを求めるとともに、プレス圧Aの差ΔA(kgf/cm2)と、該ΔAに対応する圧下率Bの差ΔB(%)の関係を求め、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で圧着を行うようにしているので、従来のように、種々のプレス圧で圧着して積層体を形成し、得られた製品(積層セラミック電子部品)について、圧着の際のプレス圧と構造欠陥の有無の関係などを調べてから圧着時のプレス圧を決定するという複雑な処理を行うことが不要になるため、生産効率を向上させることが可能になるとともに、適切なプレス圧で圧着することが可能になるため、圧着時のプレス圧が低すぎた場合に生じるようなクラックや層間剥離などの構造欠陥、圧着時のプレス圧が高すぎた場合に生じるような絶縁不良の発生を防止して、信頼性の高い積層セラミック電子部品を効率よく製造することが可能になる。 That is, according to the method of the present invention, the reduction ratio B at each press pressure A is obtained, and the difference ΔA (kgf / cm 2 ) of the press pressure A and the difference ΔB (%) of the reduction ratio B corresponding to the ΔA. Since the pressure is applied in the press pressure region that satisfies the condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )), the pressure is applied with various press pressures as in the past. A complex process in which a laminated body is formed, and the resulting product (multilayer ceramic electronic component) is subjected to the relationship between the press pressure during crimping and the presence or absence of structural defects, and then the press pressure during crimping is determined. Since it is not necessary to perform the process, it is possible to improve the production efficiency, and it is possible to perform the crimping with an appropriate press pressure, so that a crack that occurs when the press pressure during the crimping is too low. And structural defects such as delamination, To prevent the insulation defective as occurs when less pressure is too high, it becomes possible to manufacture a highly reliable multilayer ceramic electronic component efficiently.

また、請求項2の積層セラミック電子部品の製造方法のように、プレス圧Aの差ΔA(kgf/cm2)を100〜200とした場合において、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で圧着を行うようにした場合、適正な条件で積層体の圧着を行うことが可能になり、本発明を実効あらしめることができるようになる。 Further, when the difference ΔA (kgf / cm 2 ) of the press pressure A is set to 100 to 200 as in the method for manufacturing a multilayer ceramic electronic component according to claim 2, ΔB / ΔA ≦ 0.005 (% / (kgf / Cm 2 ) When the pressure bonding is performed in the press pressure region that satisfies the condition, it becomes possible to press the laminated body under appropriate conditions, and the present invention can be effectively realized.

なお、プレス圧Aの差ΔA(kgf/cm2)を100〜200としたのは、ΔAが100未満になると、ΔAとΔBの検出が困難になり、また、ΔAが200を超えると、ΔAの値が適切であればΔB/ΔA≦0.005(%/(kgf/cm2))の要件を満たすような場合にも、見かけ上、要件を満たさない場合が生じることになり、本発明の効果を損なう結果となることによる。 Note that the difference ΔA (kgf / cm 2 ) of the press pressure A is set to 100 to 200 because when ΔA is less than 100, it becomes difficult to detect ΔA and ΔB, and when ΔA exceeds 200, ΔA If the value of is appropriate, even if the requirement of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )) is satisfied, there may be cases where the requirement is not satisfied. The result is that the effect of is impaired.

また、請求項3の積層セラミック電子部品の製造方法のように、積層体を圧着する工程において、ΔB/ΔA≦0.005(%/(kgf/cm2))となるプレス圧P(kgf/cm2)以上で、かつ、(P+200)(kgf/cm2)以下のプレス圧領域で圧着することにより、さらに適正な条件で積層体の圧着を行うことが可能になり、本発明をさらに実効あらしめることができる。 Further, as in the method of manufacturing a multilayer ceramic electronic component according to claim 3, in the step of crimping the multilayer body, a press pressure P (kgf / cm) satisfying ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )). It is possible to press the laminated body under more appropriate conditions by press-bonding in a press pressure region not less than (cm 2 ) and not more than (P + 200) (kgf / cm 2 ). It can be announced.

すなわち、積層体を圧着する際のプレス圧を、ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧P(kgf/cm2)以上で、(P+200)(kgf/cm2)以下とすることにより、プレス圧が低くなりすぎた場合のクラックや層間剥離などの構造欠陥の発生を防止するとともに、プレス圧が高くなりすぎた場合における、セラミックグリーンシートの圧縮率が高くなりすぎて内部電極どうしが短絡する絶縁不良の発生を防止することが可能になり、より確実に、信頼性の高い積層セラミック電子部品を製造することが可能になる。 That is, the press pressure at the time of press-bonding the laminate is not less than the press pressure P (kgf / cm 2 ) that satisfies ΔB / ΔA = 0.005 (% / (kgf / cm 2 )), and (P + 200) (kgf / cm 2 ) or less to prevent the occurrence of structural defects such as cracks and delamination when the press pressure becomes too low, and the compressibility of the ceramic green sheet when the press pressure becomes too high. It becomes possible to prevent the occurrence of insulation failure in which the internal electrodes are short-circuited due to being too high, and it becomes possible to manufacture a highly reliable multilayer ceramic electronic component more reliably.

また、積層セラミックコンデンサは小型、大容量の要求に応えるため、薄層化、多層化が進んでおり、積層体を圧着する際のプレス圧が不適切になると、クラック、層間剥離などの構造欠陥や、絶縁不良などが発生しやすいが、請求項4のように、このような積層セラミックコンデンサを製造する場合に本発明を適用することにより、信頼性の高い積層セラミックコンデンサを効率よく製造することが可能になり、特に有意義である。   In addition, multilayer ceramic capacitors are becoming thinner and multilayered to meet the demands for small size and large capacity, and structural defects such as cracks and delamination can occur if the press pressure when crimping the laminate is inappropriate. In addition, the present invention is applied to the production of such a multilayer ceramic capacitor as described in claim 4 to efficiently produce a highly reliable multilayer ceramic capacitor. Is possible and is particularly meaningful.

以下に、本発明の実施例を示して、その特徴とするところをさらに詳しく説明する。   In the following, examples of the present invention will be shown and the features thereof will be described in more detail.

この実施例1では、図1に示すように、セラミック素子(セラミック電子部品素子)1の内部に、セラミック層2を介して複数の内部電極3a,3bが互いに対向するように配設され、かつ、その一端側が交互にセラミック素子1の異なる側の端面5a,5bに引き出されているとともに、セラミック素子1の両端側に、内部電極3a,3bと導通するように一対の外部電極4a,4bが配設された構造を有する積層セラミックコンデンサを製造するにあたって、セラミックグリーンシートを積層した積層体を圧着する場合を例にとって説明する。   In the first embodiment, as shown in FIG. 1, a plurality of internal electrodes 3a and 3b are disposed inside a ceramic element (ceramic electronic component element) 1 so as to face each other with a ceramic layer 2 interposed therebetween, and The one end side is alternately drawn out to the end faces 5a and 5b on different sides of the ceramic element 1, and a pair of external electrodes 4a and 4b are connected to the both end sides of the ceramic element 1 so as to be electrically connected to the internal electrodes 3a and 3b. In the case of manufacturing a multilayer ceramic capacitor having an arranged structure, a case where a laminated body in which ceramic green sheets are laminated is crimped will be described as an example.

(1)まず、BaTiO3を主成分とする誘電体粉末と有機バインダ、分散剤及び溶剤を混合してセラミックスラリーを調整し、このセラミックスラリーを成形することにより複数枚のセラミックグリーンシートを形成する。
(2)それから、Pd粉末と有機ビヒクルを混錬して作成した内部電極形成用の導電性ペーストをセラミックグリーンシートの表面に印刷して内部電極パターンを形成する。
(3)そして、内部電極パターンが形成されたセラミックグリーンシートを所定枚数積層するとともに、その上下に、内部電極パターンの形成されていないセラミックグリーンシートを積層した後、圧着することにより、積層体(圧着積層体)を形成した。
積層体の圧着工程においては、表1に示すようにプレス圧Aを600〜1300(kgf/cm2)に設定して圧着を行った。なお、表1にはPaを単位とするプレス圧を併せて示している。
そして、各プレス圧Aにおけるプレス前後の積層体厚みの変化率である圧下率Bを調べるとともに、その結果から、プレス圧Aの差ΔA(kgf/cm2)と、該ΔA(kgf/cm2)に対応する圧下率Bの差ΔB(%)の関係、すなわち、ΔB/ΔA(%/(kgf/cm2))を求めた。
(4)次に、この積層体を所定形状に切断して個々のチップ(セラミック素子))に分割し、1300℃で焼成して、磁器化させた。
(5)それから、このようにして得た焼成後のセラミック素子1(図1)の、内部電極3a,3bの露出している端面5a,5bに、外部電極として銅ペーストを塗布し、焼き付けることにより外部電極4a,4bを形成し、さらに、はんだ付け性を向上させるためにめっき処理を施して、図1に示すような積層セラミックコンデンサを得た。
(1) First, a ceramic powder is prepared by mixing a dielectric powder containing BaTiO 3 as a main component, an organic binder, a dispersant and a solvent, and forming the ceramic slurry to form a plurality of ceramic green sheets. .
(2) Then, an internal electrode pattern is formed by printing on the surface of the ceramic green sheet a conductive paste for forming an internal electrode prepared by kneading Pd powder and an organic vehicle.
(3) Then, a predetermined number of ceramic green sheets on which internal electrode patterns are formed are laminated, and ceramic green sheets on which no internal electrode patterns are formed are laminated on the upper and lower sides of the ceramic green sheets. Pressure-bonded laminate) was formed.
In the press bonding process of the laminate, the press pressure A was set to 600 to 1300 (kgf / cm 2 ) as shown in Table 1, and the press bonding was performed. Table 1 also shows the press pressure in units of Pa.
Then, the examined reduction rate B is the rate of change of the laminate thickness before and after pressing in the pressing pressure A, from the result, the difference between the press pressure A ΔA (kgf / cm 2) , the ΔA (kgf / cm 2 ) Corresponding to the difference ΔB (%) in the rolling reduction B, that is, ΔB / ΔA (% / (kgf / cm 2 )).
(4) Next, this laminated body was cut into a predetermined shape and divided into individual chips (ceramic elements), which were fired at 1300 ° C. to be porcelain.
(5) Then, a copper paste is applied as an external electrode and baked on the exposed end faces 5a and 5b of the internal electrodes 3a and 3b of the fired ceramic element 1 (FIG. 1) thus obtained. Then, the external electrodes 4a and 4b were formed, and further plated to improve solderability to obtain a multilayer ceramic capacitor as shown in FIG.

そして、得られた積層セラミックコンデンサについて、構造欠陥の発生率を調べた。その結果を表1に示す。   And the incidence rate of the structural defect was investigated about the obtained multilayer ceramic capacitor. The results are shown in Table 1.

Figure 2005136205
Figure 2005136205

表1に示すように、ΔB/ΔAが0.005(%/(kgf/cm2))を超える、600〜800kgf/cm2、800〜900kgf/cm2、900〜1000kgf/cm2の区間では、積層体の内部に多くの空隙が含まれ、内部電極とセラミックシートとの密着力が不十分になる結果、プレス圧Aが600〜900kgf/cm2の場合には構造欠陥が発生した。 As shown in Table 1, ΔB / ΔA exceeds 0.005 (% / (kgf / cm 2)), 600~800kgf / cm 2, 800~900kgf / cm 2, in a section 900~1000kgf / cm 2 is A large number of voids were contained inside the laminate, and as a result of insufficient adhesion between the internal electrode and the ceramic sheet, structural defects occurred when the press pressure A was 600 to 900 kgf / cm 2 .

これに対し、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件が満たされるプレス圧1000〜1100kgf/cm2、1100〜1200kgf/cm2、1200〜1300kgf/cm2の区間を含む、プレス圧Aが1000〜1300kgf/cm2の場合には、構造欠陥の発生は認められなかった。これは、十分なプレス圧で圧着される結果、内部電極がセラミックグリーンシートに埋没するような態様で圧着が行われることから、内部電極とセラミックグリーンシートの密着力が向上したためであると考えられる。 In contrast, ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2)) press pressure 1000~1100kgf / cm 2 the conditions are met, 1100~1200kgf / cm 2, 1200~1300kgf / cm 2 sections In the case where the press pressure A is 1000 to 1300 kgf / cm 2 , the occurrence of structural defects was not observed. This is considered to be because the adhesion between the internal electrode and the ceramic green sheet is improved because the internal electrode is buried in the ceramic green sheet as a result of being crimped with a sufficient press pressure. .

なお、図2は、積層体を圧着する際のプレス圧Aと圧下率Bとの関係を示す図である。図2より、プレス圧Aと圧下率Bの関係には、その傾向が大きく変化する変位点Xがあり、この変位点Xよりプレス圧が高い領域では、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件が実現されることがわかる。 In addition, FIG. 2 is a figure which shows the relationship between the press pressure A and the rolling reduction B at the time of crimping | bonding a laminated body. From FIG. 2, there is a displacement point X where the tendency changes greatly in the relationship between the press pressure A and the reduction ratio B. In a region where the press pressure is higher than the displacement point X, ΔB / ΔA ≦ 0.005 (% / It can be seen that the condition (kgf / cm 2 )) is realized.

上述のように、この実施例1の方法によれば、積層体の圧下率を調べるだけで、構造欠陥を抑制することが可能な適切なプレス圧を容易に設定することが可能になるとともに、従来のように、種々のプレス圧で圧着して積層体を形成し、最終的に得られた製品(積層セラミックコンデンサ)について、圧着の際のプレス圧と構造欠陥の有無の関係などを調べてから圧着時のプレス圧を決定するというような面倒な作業が不要になるため、生産効率を向上させることが可能になる。   As described above, according to the method of Example 1, it is possible to easily set an appropriate press pressure capable of suppressing structural defects only by examining the rolling reduction of the laminate. As in the past, press bonding with various press pressures to form a laminate, and the final product (multilayer ceramic capacitor) was examined for the relationship between the press pressure during pressing and the presence or absence of structural defects. From this, troublesome work such as determining the press pressure at the time of crimping is not required, so that production efficiency can be improved.

この実施例2では、上記実施例1の場合と同様の方法により形成した積層体について、表2に示すプレス圧900、1000、1100、1200、1300、1400、1500kgf/cm2で圧着を行い、各プレス圧Aにおける圧下率B、ΔB/ΔAを調べるとともに、得られた試料について構造欠陥の発生率及び絶縁不良の発生率を調べた。
その結果を表2に示す。
In Example 2, the laminated body formed by the same method as in Example 1 was subjected to pressure bonding at a press pressure of 900, 1000, 1100, 1200, 1300, 1400, 1500 kgf / cm 2 shown in Table 2, The reduction ratio B and ΔB / ΔA at each press pressure A were examined, and the occurrence rate of structural defects and the occurrence rate of insulation defects were examined for the obtained samples.
The results are shown in Table 2.

Figure 2005136205
Figure 2005136205

なお、この実施例2では、ΔB/ΔAの値を求めるにあたって、ΔAの値を表2に示した各プレス圧Aを中心とする10(kgf/cm2)の範囲に設定して、ΔB/ΔAの値を求めた。 In Example 2, when obtaining the value of ΔB / ΔA, the value of ΔA was set to a range of 10 (kgf / cm 2 ) centered on each pressing pressure A shown in Table 2, and ΔB / The value of ΔA was determined.

そして、プレス圧Aと圧下率Bの関係をプロットするとともに(図3参照)、プレス圧AとΔB/ΔAの関係をプロットした(図4参照)。
その結果、図4に示すように、
(1)実施例2の条件では、ΔB/ΔAが0.005を超える領域と、ΔB/ΔAが0.005未満になる領域を分ける変位点Yのプレス圧A(すなわち、ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧P)が約1050(kgf/cm2)であること、
(2)ΔB/ΔAが0.005(%/(kgf/cm2))未満になる点Yにおけるプレス圧P(1050(kgf/cm2))が、図3のプレス圧Aと圧下率Bの関係が大きく変化する変位点Xのプレス圧P(1050(kgf/cm2))とほぼ一致すること
が確認された。
Then, the relationship between the press pressure A and the reduction ratio B was plotted (see FIG. 3), and the relationship between the press pressure A and ΔB / ΔA was plotted (see FIG. 4).
As a result, as shown in FIG.
(1) Under the conditions of Example 2, the pressing pressure A at the displacement point Y that divides the region where ΔB / ΔA exceeds 0.005 and the region where ΔB / ΔA is less than 0.005 (that is, ΔB / ΔA = 0). A pressing pressure P) of .005 (% / (kgf / cm 2 )) is about 1050 (kgf / cm 2 );
(2) The press pressure P (1050 (kgf / cm 2 )) at the point Y at which ΔB / ΔA is less than 0.005 (% / (kgf / cm 2 )) corresponds to the press pressure A and the reduction ratio B in FIG. it was confirmed that substantially matches the P pressing pressure of the displacement point X where the relationship is largely changed (1050 (kgf / cm 2) ).

上述のような結果を考慮しつつ、表2の構造欠陥の発生率と絶縁不良の発生率をみてみると、ΔB/ΔAが0.005(%/(kgf/cm2))未満になる変位点Yのプレス圧P(1050(kgf/cm2))以上のプレス圧で圧着した場合には、構造欠陥の発生が認められなくなっていることがわかる。但し、表2では、プレス圧P(1050(kgf/cm2))に近いプレス圧1000kgf/cm2で圧着した場合にも構造欠陥の発生は認められていない。 Taking the above-mentioned results into consideration, looking at the occurrence rate of structural defects and the occurrence rate of insulation failure in Table 2, displacement where ΔB / ΔA is less than 0.005 (% / (kgf / cm 2 )). It can be seen that the occurrence of structural defects is not observed when pressure bonding is performed at a pressure equal to or higher than the pressure Y at point Y (1050 (kgf / cm 2 )). However, in Table 2, the press pressure P (1050 (kgf / cm 2 )) the occurrence of structural defects even when the crimped close press pressure 1000 kgf / cm 2 in is not permitted.

一方、絶縁不良については、1300kgf/cm2までのプレス圧で圧着した場合には、絶縁不良はほとんど発生しないが、プレス圧Aが1400(kgf/cm2)になると5%の試料に絶縁不良が発生し、1500(kgf/cm2)では絶縁不良の発生率が20%とさらに高くなっていることがわかる。
このことから、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすことにより、構造欠陥を防止することができるが、絶縁不良の発生を抑制するためにはプレス圧を高くしすぎないようにする必要があることがわかった。
すなわち、この実施例2においては、プレス圧を、ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧Pである1050(kgf/cm2)以上で、1400(kgf/cm2)未満とすべきことがわかった。
On the other hand, insulating the failure, when pressed at a pressing pressure of up to 1300 kgf / cm 2, although insulation failure hardly occurs, pressing pressure A is 1400 (kgf / cm 2) to become the 5% sample insulation failure It can be seen that at 1500 (kgf / cm 2 ), the rate of occurrence of insulation failure is as high as 20%.
From this, it is possible to prevent structural defects by satisfying the condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )), but in order to suppress the occurrence of insulation failure, the press pressure I found that it was necessary not to make it too high.
That is, in Example 2, the press pressure is 1050 (kgf / cm 2 ) or more, which is a press pressure P at which ΔB / ΔA = 0.005 (% / (kgf / cm 2 )), and 1400 (kgf / Cm 2 ).

そこで、この絶縁不良の発生を防止するために必要なプレス圧Aの条件をさらに詳しく調べるため、上記実施例2で用いた積層体以外にも種々の積層体を作製して、所定の条件で圧着を行い、圧下率B、ΔB/ΔAを調べるとともに、構造欠陥発生率及び絶縁不良発生率を調べた。
その結果、ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧P(kgf/cm2)以上で、(P+200)(kgf/cm2)以下のプレス圧領域で圧着を行うことにより、構造欠陥の発生を防止しつつ、絶縁不良の発生を防止できることが確認された。
Therefore, in order to investigate in more detail the conditions of the pressing pressure A necessary for preventing the occurrence of this insulation failure, various laminated bodies other than the laminated body used in Example 2 were prepared, and the predetermined conditions were used. Crimping was performed, and the reduction rate B and ΔB / ΔA were examined, and the structural defect occurrence rate and the insulation failure occurrence rate were examined.
As a result, pressure bonding is performed in a pressing pressure region of not less than (P + 200) (kgf / cm 2 ) and not more than a pressing pressure P (kgf / cm 2 ) where ΔB / ΔA = 0.005 (% / (kgf / cm 2 )). As a result, it was confirmed that it was possible to prevent the occurrence of defective insulation while preventing the occurrence of structural defects.

なお、上記実施例1及び2では、積層セラミックコンデンサを製造する場合を例にとって説明したが、本発明は、その他の種々の積層セラミック電子部品を製造する場合に適用することが可能である。   In the first and second embodiments, the case where a multilayer ceramic capacitor is manufactured has been described as an example. However, the present invention can be applied to the case where other various multilayer ceramic electronic components are manufactured.

本発明は、さらにその他の点においても上記実施例に限定されるものではなく、セラミックグリーンシートの厚みや積層数、セラミックグリーンシートを構成する材料の種類、積層体の厚みなどに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above embodiment in other points as well, and relates to the thickness and the number of laminated ceramic green sheets, the type of material constituting the ceramic green sheets, the thickness of the laminated body, etc. It is possible to add various applications and modifications.

本発明によれば、各プレス圧Aにおける、プレス前後の積層体厚みの変化率である圧下率Bを調べるだけで、クラックや層間剥離などの構造欠陥を抑制することが可能な最適プレス圧を容易に設定することができるとともに、積層体厚み変化率に基づいて定めたプレス圧Pから所定の範囲内のプレス圧((P+200)(kgf/cm2))で圧着を行うことにより、絶縁不良の発生も併せて防止することができるようになり、さらには、得られた製品について、圧着の際のプレス圧と構造欠陥の有無の関係などを調べてから圧着時のプレス圧を決定するという複雑な処理が不要になるため、生産効率を向上させることが可能になる。したがって、本発明の積層セラミック電子部品の製造方法は、積層セラミックコンデンサなどの積層セラミック電子部品を製造する場合に広く利用することが可能である。 According to the present invention, the optimum pressing pressure capable of suppressing structural defects such as cracks and delaminations is examined only by examining the rolling reduction B, which is the rate of change of the thickness of the laminate before and after pressing at each pressing pressure A. Insulation failure can be easily set and crimped at a pressing pressure ((P + 200) (kgf / cm 2 )) within a predetermined range from the pressing pressure P determined based on the thickness change rate of the laminate. In addition, it is possible to prevent the occurrence of pressure, and for the obtained product, the press pressure at the time of crimping is determined after examining the relationship between the press pressure at the time of crimping and the presence or absence of structural defects. Since complicated processing is not required, production efficiency can be improved. Therefore, the method for manufacturing a multilayer ceramic electronic component of the present invention can be widely used when manufacturing a multilayer ceramic electronic component such as a multilayer ceramic capacitor.

積層セラミックコンデンサの構造を示す断面図である。It is sectional drawing which shows the structure of a multilayer ceramic capacitor. 実施例1で調べた、積層体を圧着する際のプレス圧と圧下率との関係を示す図である。It is a figure which shows the relationship between the press pressure at the time of crimping | bonding the laminated body investigated in Example 1, and a reduction rate. 実施例2で調べた、積層体を圧着する際のプレス圧と圧下率との関係を示す図である。It is a figure which shows the relationship between the press pressure at the time of crimping | bonding the laminated body investigated in Example 2, and a reduction rate. 実施例2で調べた、プレス圧AとΔB/ΔAの関係を示す図である。It is a figure which shows the relationship between the press pressure A investigated by Example 2, and (DELTA) B / (DELTA) A. 従来の積層セラミックコンデンサの製造方法における積層体の圧着方法を説明する図である。It is a figure explaining the crimping | compression-bonding method of the laminated body in the manufacturing method of the conventional multilayer ceramic capacitor.

符号の説明Explanation of symbols

1 セラミック素子
2 セラミック層
3a,3b 内部電極
4a,4b 外部電極
5a,5b セラミック素子の端面
DESCRIPTION OF SYMBOLS 1 Ceramic element 2 Ceramic layer 3a, 3b Internal electrode 4a, 4b External electrode 5a, 5b End surface of a ceramic element

Claims (4)

電極パターンが形成されたセラミックグリーンシートを積層、圧着する工程を経て製造される積層セラミック電子部品の製造方法であって、
電極パターンが形成されたセラミックグリーンシートを複数枚積層し、圧着する工程において、各プレス圧Aにおける、プレス前後の積層体厚みの変化率である圧下率Bを求めるとともに、
プレス圧Aの差ΔA(kgf/cm2)と、該ΔAに対応する圧下率Bの差ΔB(%)の関係を求め、
ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で前記圧着を行うこと
を特徴とする積層セラミック電子部品の製造方法。
A method of manufacturing a multilayer ceramic electronic component manufactured through a process of laminating and pressing a ceramic green sheet on which an electrode pattern is formed,
In the step of laminating and crimping a plurality of ceramic green sheets on which electrode patterns are formed, in each pressing pressure A, a reduction rate B, which is the rate of change in the thickness of the laminate before and after pressing,
The relationship between the difference ΔA (kgf / cm 2 ) of the pressing pressure A and the difference ΔB (%) of the rolling reduction B corresponding to the ΔA is obtained,
A method for producing a multilayer ceramic electronic component, wherein the pressure bonding is performed in a press pressure region that satisfies a condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )).
プレス圧Aの差ΔA(kgf/cm2)を100〜200とした場合において、ΔB/ΔA≦0.005(%/(kgf/cm2))の条件を満たすプレス圧領域で前記圧着を行うこと
を特徴とする請求項1記載の積層セラミック電子部品の製造方法。
When the difference ΔA (kgf / cm 2 ) of the press pressure A is 100 to 200, the pressure bonding is performed in a press pressure region that satisfies the condition of ΔB / ΔA ≦ 0.005 (% / (kgf / cm 2 )). The method for producing a monolithic ceramic electronic component according to claim 1.
前記電極パターンが形成されたセラミックグリーンシートを複数枚積層し、圧着する工程において、
ΔB/ΔA=0.005(%/(kgf/cm2))となるプレス圧P(kgf/cm2)以上で、(P+200)(kgf/cm2)以下のプレス圧領域で前記圧着を行うこと
を特徴とする請求項1又は2記載の積層セラミック電子部品の製造方法。
In the step of laminating a plurality of ceramic green sheets on which the electrode pattern is formed and crimping,
The above-mentioned pressure bonding is performed in a press pressure region of not less than (P + 200) (kgf / cm 2 ) but not less than a pressing pressure P (kgf / cm 2 ) that satisfies ΔB / ΔA = 0.005 (% / (kgf / cm 2 )). The method for producing a multilayer ceramic electronic component according to claim 1 or 2, wherein:
積層セラミックコンデンサを製造する場合に用いられるものであることを特徴とする請求項1〜3のいずれかに記載の積層セラミック電子部品の製造方法。   4. The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein the method is used for manufacturing a multilayer ceramic capacitor.
JP2003370844A 2003-10-30 2003-10-30 Method for manufacturing laminated ceramic electronic component Pending JP2005136205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370844A JP2005136205A (en) 2003-10-30 2003-10-30 Method for manufacturing laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370844A JP2005136205A (en) 2003-10-30 2003-10-30 Method for manufacturing laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005136205A true JP2005136205A (en) 2005-05-26

Family

ID=34647731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370844A Pending JP2005136205A (en) 2003-10-30 2003-10-30 Method for manufacturing laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005136205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028762A (en) * 2010-06-24 2012-02-09 Murata Mfg Co Ltd Method of evaluating change in density of matter to be pressed and method of manufacturing multilayer ceramic electronic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779077A (en) * 1993-07-14 1995-03-20 Sumitomo Metal Ind Ltd Manufacture of ceramic board
JPH07335475A (en) * 1994-06-06 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of layered ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779077A (en) * 1993-07-14 1995-03-20 Sumitomo Metal Ind Ltd Manufacture of ceramic board
JPH07335475A (en) * 1994-06-06 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of layered ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028762A (en) * 2010-06-24 2012-02-09 Murata Mfg Co Ltd Method of evaluating change in density of matter to be pressed and method of manufacturing multilayer ceramic electronic component

Similar Documents

Publication Publication Date Title
KR102029469B1 (en) Multilayered ceramic electronic component and fabricating method thereof
KR101751079B1 (en) Multi-layered ceramic electronic parts and fabrication method thereof
KR101983129B1 (en) Multi-layered ceramic electronic parts and method of manufacturing the same
JP2008091400A (en) Laminated ceramic capacitor and its manufacturing method
KR20140003001A (en) Multi-layered ceramic electronic parts
JPH09270540A (en) Laminated piezoelectric actuator element and manufacturing method thereof
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2004356333A (en) Laminated electronic component and its manufacturing method
US6014309A (en) Laminated ceramic electronic parts
JP2005159056A (en) Laminated ceramic electronic component
JPH09190947A (en) Laminated ceramic electronic component
JP2005136205A (en) Method for manufacturing laminated ceramic electronic component
KR20180082342A (en) Method of manufacturing multilayer electronic component
JP2003045740A (en) Laminated electronic component
JP2003347146A (en) Multilayer ceramic capacitor and its manufacturing method
JP2006128282A (en) Laminated electronic component and its manufacturing method
KR101771737B1 (en) Laminated ceramic electronic parts and fabricating method thereof
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
JP3538308B2 (en) Manufacturing method of multilayer ceramic electronic component
US20220208452A1 (en) Multilayer electronic component
JP2007184333A (en) Ceramic green-sheet with embedded electrode, method for manufacturing the same, and method for manufacturing laminated ceramic electronic component utilizing the same
JPH08316093A (en) Laminated ceramic electronic component manufacturing method
JP2000173858A (en) Manufacture of laminated ceramic electronic part
JP3094769B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2001297939A (en) Laminated ceramic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406