JP2005134324A - Analytical method and quality control method for transparent conductive film, and solar cell - Google Patents

Analytical method and quality control method for transparent conductive film, and solar cell Download PDF

Info

Publication number
JP2005134324A
JP2005134324A JP2003372949A JP2003372949A JP2005134324A JP 2005134324 A JP2005134324 A JP 2005134324A JP 2003372949 A JP2003372949 A JP 2003372949A JP 2003372949 A JP2003372949 A JP 2003372949A JP 2005134324 A JP2005134324 A JP 2005134324A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
light
wavelengths
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003372949A
Other languages
Japanese (ja)
Other versions
JP4544846B2 (en
Inventor
暁巳 ▲高▼野
Giyoumi Takano
Masami Iida
政巳 飯田
Harumi Yasuda
晴美 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003372949A priority Critical patent/JP4544846B2/en
Publication of JP2005134324A publication Critical patent/JP2005134324A/en
Application granted granted Critical
Publication of JP4544846B2 publication Critical patent/JP4544846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analytical method for a transparent conductive film capable of measuring a film thickness without using a light interference method, and capable of measuring easily a haze rate. <P>SOLUTION: White light is emitted from a line illuminator 3a toward a glass substrate 11 with the transparent conductive film, reflected light is dispersed spectrally into three wavelengths of R (red), G (green) and B (blue) by a color line sensor camera 2a, and light intensities of the wavelengths are computed to calculate the film thickness or the haze rate of the transparent conductive film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば太陽電池のガラス基板上に形成される透明導電膜の分析方法に関するものである。   The present invention relates to a method for analyzing a transparent conductive film formed on, for example, a glass substrate of a solar cell.

太陽電池や液晶表示装置には、透明なガラス基板上に透明導電膜が形成されている。このような透明導電膜は、膜厚を測定することによって品質管理がなされている(特許文献1参照)。
また、透明導電膜が形成されたガラス基板のヘイズ率を測定することによって品質管理がなされている。
In solar cells and liquid crystal display devices, a transparent conductive film is formed on a transparent glass substrate. Such a transparent conductive film is quality controlled by measuring the film thickness (see Patent Document 1).
Moreover, quality control is made | formed by measuring the haze rate of the glass substrate in which the transparent conductive film was formed.

特開平9−133517号公報(段落[0002]〜[0009],及び図1〜図2)JP-A-9-133517 (paragraphs [0002] to [0009] and FIGS. 1 to 2)

しかしながら、透明導電膜は、その製膜条件にもよるが、表面に凹凸が残された形状となる。特に、太陽電池に用いられる透明導電膜は、光閉じ込め効果を狙って、積極的に凹凸が表面に形成される。凹凸の程度としては、例えば、0.8μmの膜厚に対して、0.3μm程度の凹凸となっている。このように凹凸の程度が大きい透明導電膜では、膜厚測定のために光を照射しても、部分コヒーレントが生じて光の干渉が得られず、膜厚の測定ができないという問題がある。   However, although the transparent conductive film depends on the film forming conditions, the transparent conductive film has a shape with unevenness on the surface. In particular, the transparent conductive film used in the solar cell is actively formed with irregularities on the surface for the purpose of confining light. As the degree of unevenness, for example, the unevenness is about 0.3 μm with respect to a film thickness of 0.8 μm. In such a transparent conductive film having a large degree of unevenness, there is a problem that even if light is irradiated for film thickness measurement, partial coherence occurs, light interference cannot be obtained, and the film thickness cannot be measured.

一方、ヘイズ率の測定は一般に市販のヘイズメータによって行われており、その装置構成からいって製造ラインに組み込むことは困難である。特に、1m角程度といった大型の太陽電池基板を一度に測定するヘイズメータは市販されておらず、実際には、抜き取り検査に頼らざるを得ない。これでは、歩留まりの低下を来たし、製品保証ができないという問題がある。   On the other hand, the measurement of the haze ratio is generally performed by a commercially available haze meter, and it is difficult to incorporate the haze ratio into a production line because of the device configuration. In particular, a haze meter that measures a large-sized solar cell substrate of about 1 m square at a time is not commercially available, and in practice, it must be relied on a sampling inspection. In this case, there is a problem that the yield is lowered and the product cannot be guaranteed.

本発明は、以上の事情に鑑みてなされたものであって、光干渉法を用いずに膜厚を測定でき、簡便にヘイズ率を測定できる透明導電膜分析方法および透明導電膜品質管理方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a transparent conductive film analysis method and a transparent conductive film quality control method capable of measuring a film thickness without using an optical interference method and easily measuring a haze ratio. The purpose is to provide.

上記課題を解決するために、本発明は以下の手段を採用する。
すなわち、本発明にかかる透明導電膜分析方法によれば、光を透明導電膜に照射し、反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって前記透明導電膜の膜厚を算出することを特徴とする。
In order to solve the above problems, the present invention employs the following means.
That is, according to the transparent conductive film analyzing method according to the present invention, the transparent conductive film is irradiated with light, the reflected light is dispersed into at least two wavelengths, and the light intensity at these wavelengths is calculated to calculate the transparent conductive film. The film thickness of the film is calculated.

発明者等は、異なる少なくとも2つの波長の反射光の強度を演算した値が膜厚に強い相関を有することを見出した。演算式としては、例えば、2番目に強い光強度を最も強い光強度で除したものに第1の定数を乗じ、これに第2の定数を加えたものである。
このように、反射光が得られれば、光の干渉が得られなくても、透明導電膜の膜厚を算出することができる。
The inventors have found that a value obtained by calculating the intensity of reflected light of at least two different wavelengths has a strong correlation with the film thickness. As an arithmetic expression, for example, a value obtained by dividing the second strongest light intensity by the strongest light intensity is multiplied by the first constant, and the second constant is added thereto.
Thus, if the reflected light is obtained, the film thickness of the transparent conductive film can be calculated even if the light interference is not obtained.

本発明による透明導電膜分析方法によれば、光を透明導電膜に照射し、反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって前記透明導電膜のヘイズ率を算出することを特徴とする。   According to the transparent conductive film analysis method of the present invention, the transparent conductive film is irradiated with light, the reflected light is dispersed into at least two wavelengths, and the light intensity at these wavelengths is calculated to calculate the haze of the transparent conductive film. The rate is calculated.

発明者等は、異なる少なくとも2つの波長の反射光の強度を演算した値がヘイズ率に強い相関を有することを見出した。演算式としては、例えば、これらの強度を線形結合したものである。
このように、反射光が得られれば、別途ヘイズメータを用意しなくても、透明導電膜のヘイズ率を算出することができる。
The inventors have found that a value obtained by calculating the intensity of reflected light of at least two different wavelengths has a strong correlation with the haze ratio. As an arithmetic expression, for example, these intensities are linearly combined.
Thus, if the reflected light is obtained, the haze ratio of the transparent conductive film can be calculated without preparing a haze meter separately.

本発明による透明導電膜分析方法によれば、前記透明導電膜に照射する光は、白色光とされ、反射した光は、赤、緑および青の三色に分光されることを特徴とする。   According to the transparent conductive film analysis method of the present invention, the light applied to the transparent conductive film is white light, and the reflected light is split into three colors of red, green and blue.

透明導電膜に照射する光として白色光を用いることとすれば、一般に入手可能な安価な光源(蛍光灯等)を用いることができる。そして、白色光であれば当然、光の三原色である赤(R)、緑(G)、青(B)の波長を有している。これら光の三原色を有する白色光の反射光を三原色に分光するには、一般のカラーカメラを用いれば良い。
このように、簡便な構成により、本発明の透明導電膜分析方法を実施することができる。
If white light is used as the light applied to the transparent conductive film, a generally available inexpensive light source (such as a fluorescent lamp) can be used. And if it is white light, naturally it has the wavelength of red (R), green (G), and blue (B) which are the three primary colors of light. In order to split the reflected light of white light having the three primary colors of light into the three primary colors, a general color camera may be used.
Thus, the transparent conductive film analysis method of the present invention can be carried out with a simple configuration.

本発明の透明導電膜品質管理方法は、上記透明導電膜分析方法を用いて、透明導電膜の品質を管理することを特徴とする。   The transparent conductive film quality control method of the present invention is characterized by managing the quality of the transparent conductive film using the transparent conductive film analysis method.

本発明による透明導電膜分析方法は、反射光さえ得られれば透明導電膜の膜厚またはヘイズ率を算出することができるので、簡便な光学系によって実現できる。したがって、この分析方法を実現する装置は、透明導電膜製造ラインに容易に組み込むことができる。これにより、透明導電膜の全数検査が可能となり、品質管理が極めて良好に行なわれる。   The transparent conductive film analysis method according to the present invention can be realized by a simple optical system because the film thickness or haze ratio of the transparent conductive film can be calculated as long as reflected light is obtained. Therefore, an apparatus for realizing this analysis method can be easily incorporated into the transparent conductive film production line. As a result, 100% inspection of the transparent conductive film is possible, and quality control is performed extremely well.

本発明の太陽電池は、上記透明導電膜品質管理方法によって品質管理された透明導電膜付きガラス基板を備えていることを特徴とする。   The solar cell of this invention is equipped with the glass substrate with a transparent conductive film quality-controlled by the said transparent conductive film quality control method, It is characterized by the above-mentioned.

太陽電池に用いられる透明導電膜は、光閉じ込め効果を狙って、積極的に表面に凹凸が設けられているため、光の干渉が得られ難くなっている。本発明の透明導電膜分析方法を用いれば、反射光さえ得られれば膜厚またはヘイズ率を算出できるので、太陽電池に用いられる透明導電膜の品質管理に適している。
また、本発明による透明導電膜品質管理方法によって品質管理された太陽電池は、全数検査が可能となるため、歩留まりが向上し、製品保証が確実となる。
Since the transparent conductive film used for the solar cell is provided with irregularities on the surface for the purpose of confining light, it is difficult to obtain light interference. If the transparent conductive film analysis method of the present invention is used, the film thickness or the haze ratio can be calculated as long as the reflected light is obtained, which is suitable for quality control of the transparent conductive film used in the solar cell.
In addition, since all the solar cells quality-controlled by the transparent conductive film quality control method according to the present invention can be inspected, the yield is improved and product guarantee is ensured.

本発明の透明導電膜分析装置は、透明導電膜に光を照射する光照射手段と、前記透明導電膜で反射した光を少なくとも2つの波長に分光する分光手段と、これら分光された光の強度を演算して前記透明導電膜の膜厚および/またはヘイズ率を算出する演算手段とを備えていることを特徴とする。   The transparent conductive film analyzer of the present invention includes a light irradiating means for irradiating light to the transparent conductive film, a spectroscopic means for splitting the light reflected by the transparent conductive film into at least two wavelengths, and the intensity of the split light. And calculating means for calculating the film thickness and / or haze ratio of the transparent conductive film.

透明導電膜において反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって透明導電膜の膜厚またはヘイズ率を算出することとしたので、反射光さえ得られれば、表面に凹凸が存在して干渉光が得られない透明導電膜であっても、膜厚またはヘイズ率を算出することができる。
このように、簡便な光学系によって膜厚またはヘイズ率を算出することができるので、製造ラインに容易に組み込むことができ、透明導電膜の全数検査が可能となる。
Since the light reflected at the transparent conductive film is divided into at least two wavelengths and the film thickness or haze ratio of the transparent conductive film is calculated by calculating the light intensity of these wavelengths, only the reflected light can be obtained. The film thickness or haze ratio can be calculated even for a transparent conductive film in which unevenness is present on the surface and interference light cannot be obtained.
Thus, since the film thickness or haze ratio can be calculated by a simple optical system, it can be easily incorporated into the production line, and 100% inspection of the transparent conductive film becomes possible.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
図1に、太陽電池パネルに用いられる透明導電膜分析装置10の構成を示す。
この透明導電膜分析装置10には、約1m角の透明ガラス基板に、ITO(Indium Tin Oxide)、酸化亜鉛、酸化錫等の透明導電膜(TCO:Transparent
Conductive Oxide)が製膜された透明導電膜付きガラス基板11が搬送される。この透明導電膜付きガラス基板11は、透明導電膜が上面となるように搬送される。なお、透明導電膜とガラス基板との間に、ガラス基板からのアルカリ成分の拡散防止のため、下地膜としてSiO膜を製膜しても良い。
透明導電膜分析装置10は、搬送コンベア1a、カラーラインセンサカメラ(分光手段)2a、ライン照明器(光照射手段)3a、調光器4a、光電スイッチ5a、ロータリーエンコーダ6a、画像処理装置(演算手段)7a、表示装置8aを主として具備している。
Embodiments according to the present invention will be described below with reference to the drawings.
In FIG. 1, the structure of the transparent conductive film analyzer 10 used for a solar cell panel is shown.
This transparent conductive film analyzer 10 has a transparent glass substrate of about 1 m square and a transparent conductive film (TCO: Transparent) made of ITO (Indium Tin Oxide), zinc oxide, tin oxide or the like.
A glass substrate 11 with a transparent conductive film on which Conductive Oxide) is formed is conveyed. This glass substrate 11 with a transparent conductive film is conveyed so that a transparent conductive film may become an upper surface. Note that an SiO 2 film may be formed as a base film between the transparent conductive film and the glass substrate in order to prevent diffusion of alkali components from the glass substrate.
The transparent conductive film analyzer 10 includes a conveyor 1a, a color line sensor camera (spectral means) 2a, a line illuminator (light irradiating means) 3a, a dimmer 4a, a photoelectric switch 5a, a rotary encoder 6a, an image processing apparatus (calculation). Means) 7a and display device 8a are mainly provided.

搬送コンベア1aには、透明導電膜付きガラス基板11を搬送するための複数のローラ1A−1,1A−2,・・・が設けられている。これらのローラ1A−1,1A−2,・・・が同時に所定の回転速度で、所定方向に回転することによって、透明導電膜付きガラス基板11が搬送方向Yへ向かって搬送される。   The conveyor 1a is provided with a plurality of rollers 1A-1, 1A-2,... For conveying the glass substrate 11 with a transparent conductive film. These rollers 1A-1, 1A-2,... Simultaneously rotate at a predetermined rotation speed in a predetermined direction, whereby the glass substrate 11 with a transparent conductive film is conveyed in the conveyance direction Y.

カラーラインセンサカメラ2a及びライン照明器3aは、搬送コンベア1aの上方に位置するように設置されている。
図2には、カラーラインセンサカメラ2a及びライン照明器3aの位置関係が示されている。
ライン照明器3aは、光源が蛍光灯とされており、白色光を照射する。このライン照明器3aは、シート状の照射光L1を照射するようになっており、透明導電膜付きガラス基板11の表面上に、このガラス基板11の進行方向に直交するライン状(所定幅を有する線状)の光を照射する。照射された照射光L1は、透明導電膜付きガラス基板11によって反射され、反射光L2としてカラーラインセンサカメラ2aに入射する。
The color line sensor camera 2a and the line illuminator 3a are installed so as to be positioned above the conveyor 1a.
FIG. 2 shows the positional relationship between the color line sensor camera 2a and the line illuminator 3a.
The line illuminator 3a is a fluorescent light source and emits white light. The line illuminator 3a is configured to irradiate the sheet-shaped irradiation light L1, and on the surface of the glass substrate 11 with a transparent conductive film, a line shape (having a predetermined width) orthogonal to the traveling direction of the glass substrate 11. (Linear) having light. The irradiated light L1 is reflected by the glass substrate 11 with a transparent conductive film, and enters the color line sensor camera 2a as reflected light L2.

搬送コンベア1aに対する垂線L3と照射光L1とのなす角度α1、及び垂線L3と反射光L2とのなす角度α2の各々は、透明導電膜付きガラス基板11に対する撮像条件を考慮して、16〜20°の程度の範囲内に収まるように設定されている。   Each of the angle α1 formed between the perpendicular line L3 and the irradiation light L1 and the angle α2 formed between the perpendicular line L3 and the reflected light L2 with respect to the transport conveyor 1a is 16 to 20 in consideration of imaging conditions for the glass substrate 11 with a transparent conductive film. It is set so that it is within the range of about °.

図1に示されているように、カラーラインセンサカメラ2aは、画像処理装置7aからトリガ信号Tを受信すると、透明導電膜付きガラス基板11の撮像領域を認識し、認識された撮像領域を撮像してパネル画像PSを生成し、生成されたパネル画像PSを画像処理装置7aに送信する。この際に、カラーラインセンサカメラ2aは、撮像した画像情報をR(赤)、G(緑)、B(青)の光の三原色に分光し、それぞれの輝度をパネル画像PSとして画像処理装置7aに送信する。
ライン照明器3aからのライン状の照射領域を透明導電膜付きガラス基板の搬送に伴い走査することによって、透明導電膜付きガラス基板11全体のパネル画像PSが生成される。
調光器4aは、照射光L1の強度が、所定強度となるように調節する。
As shown in FIG. 1, when the color line sensor camera 2a receives the trigger signal T from the image processing device 7a, the color line sensor camera 2a recognizes the imaging region of the glass substrate 11 with a transparent conductive film, and images the recognized imaging region. Then, the panel image PS is generated, and the generated panel image PS is transmitted to the image processing device 7a. At this time, the color line sensor camera 2a splits the captured image information into the three primary colors of R (red), G (green), and B (blue) light, and uses the respective luminances as the panel image PS as the image processing device 7a. Send to.
By scanning the line-shaped irradiation region from the line illuminator 3a as the glass substrate with a transparent conductive film is transported, a panel image PS of the entire glass substrate 11 with the transparent conductive film is generated.
The dimmer 4a adjusts the intensity of the irradiation light L1 to be a predetermined intensity.

光電スイッチ5aは、撮像対象である透明導電膜付きガラス基板11が所定位置に所在するか否かを検出する。光電スイッチ5aは、その検出を行ったときに、透明導電膜付きガラス基板11が所定位置にあることを通知する通知信号Nを画像処理装置7aに送信する。   The photoelectric switch 5a detects whether or not the glass substrate 11 with a transparent conductive film to be imaged is located at a predetermined position. When the photoelectric switch 5a performs the detection, the photoelectric switch 5a transmits a notification signal N for notifying that the glass substrate 11 with a transparent conductive film is in a predetermined position to the image processing device 7a.

ローラ1A−1,1A−2,・・・には、ロータリーエンコーダ6aが設けられており、ローラの回転速度および回転角を検出する。このロータリーエンコーダ6aの出力は、パルス信号Pとして画像処理装置7aに送信される。   The rollers 1A-1, 1A-2,... Are provided with a rotary encoder 6a, which detects the rotation speed and rotation angle of the rollers. The output of the rotary encoder 6a is transmitted as a pulse signal P to the image processing device 7a.

画像処理装置7aは、カラーラインセンサカメラ2aにおいて分光されたR,G,Bの各輝度を演算して透明導電膜の膜厚およびヘイズ率を算出する演算手段を備えている。
画像処理装置7aには、表示装置8aおよび印字装置9aが接続されており、画像処理結果が出力されるようになっている。
The image processing apparatus 7a includes a calculation unit that calculates the R, G, and B luminances separated by the color line sensor camera 2a to calculate the film thickness and haze ratio of the transparent conductive film.
A display device 8a and a printing device 9a are connected to the image processing device 7a so that an image processing result is output.

上記構成の透明導電膜分析装置10によって、後述するように、透明導電膜の膜厚およびヘイズ率が測定される。このように、製造ライン上に透明導電膜分析装置10が設けられているので、全ての透明導電膜付きガラス基板11について検査が行われるようになっている。
その後、下流側に位置するプラズマCVD装置によってアモルファスシリコン薄膜を製膜することにより光電変換層が形成され、裏面電極等が取り付けられて太陽電池が製造される。
The transparent conductive film analyzer 10 having the above configuration measures the film thickness and haze ratio of the transparent conductive film, as will be described later. Thus, since the transparent conductive film analyzer 10 is provided on the production line, all the glass substrates 11 with a transparent conductive film are inspected.
Then, a photoelectric conversion layer is formed by forming an amorphous silicon thin film with a plasma CVD apparatus located on the downstream side, and a back electrode or the like is attached to manufacture a solar cell.

次に、上記構成の透明導電膜分析装置10によって行われる透明導電膜の膜厚測定およびヘイズ率測定について説明する。
[膜厚測定]
透明導電膜付きガラス基板11から反射した反射光は、カラーラインセンサカメラ2aに撮像されることによって、光の三原色であるR(赤色)、G(緑色)、B(青色)の3色に分光される。そして、撮像領域の各画素ごとに、R,G,Bのそれぞれの輝度(強度)が画像処理装置7aに取り込まれる。
そして、画像処理装置7aにおいて、R,G,Bの各輝度を50mm角の範囲で平均化した後に、以下の演算を行う。50mm角で平均化したのは、後に図6のデータを示して説明するように、最も誤差が少ない結果が得られるからである。
画像処理装置7aでは、R,G,Bのそれぞれの輝度を下式により演算することによって透明導電膜の膜厚を算出する。
膜厚(μm)=
(R,G,Bの輝度のうち2番目に大きな値/R,G,Bの輝度の最大値)×a+b
ここで、aおよびbは定数であり、透明導電膜の組成、膜厚、プロセス、下地膜の種類等によって変化し、予め膜厚とR,G,Bの輝度との関係を調べておくことによって決定される。
また、上記演算式についても、透明導電膜の組成等によって異なり、予め膜厚とR,G,Bの輝度との関係を調べておくことによって決定される。具体的には、R,G,Bの各輝度から最大値、中央値、最小値を決定し、これらを適宜組み合わせて実際の膜厚に最も適合する演算式を得る。
Next, the film thickness measurement and haze ratio measurement of the transparent conductive film performed by the transparent conductive film analyzer 10 having the above-described configuration will be described.
[Film thickness measurement]
The reflected light reflected from the glass substrate 11 with the transparent conductive film is imaged by the color line sensor camera 2a, so that it is spectrally divided into three primary colors R (red), G (green), and B (blue). Is done. Then, the luminance (intensity) of each of R, G, and B is taken into the image processing device 7a for each pixel in the imaging region.
Then, in the image processing apparatus 7a, the R, G, and B luminances are averaged over a range of 50 mm square, and then the following calculation is performed. The reason for averaging at 50 mm square is that the result with the least error is obtained, as will be described later with reference to the data of FIG.
In the image processing apparatus 7a, the film thickness of the transparent conductive film is calculated by calculating the respective luminances of R, G, and B according to the following equations.
Film thickness (μm) =
(The second largest value among the luminances of R, G, and B / the maximum value of the luminances of R, G, and B) × a + b
Here, a and b are constants and change depending on the composition of the transparent conductive film, the film thickness, the process, the type of the underlying film, etc., and the relationship between the film thickness and the luminance of R, G, B should be examined in advance. Determined by.
Also, the above arithmetic expression varies depending on the composition of the transparent conductive film and is determined by examining the relationship between the film thickness and the luminance of R, G, and B in advance. Specifically, the maximum value, the median value, and the minimum value are determined from the luminances of R, G, and B, and an arithmetic expression that best suits the actual film thickness is obtained by appropriately combining them.

次に、実際にR,G,Bの各輝度から透明導電膜の膜厚を算出した具体例を示す。
図3は、各サンプルに対するR,G,Bのそれぞれの輝度をプロットしたものである。
サンプルごとに、R,G,Bの輝度が逆転することが示されている。このようなR,G,Bの輝度を、次のような式で演算した結果を図4に示す。
膜厚(μm)=R,G,Bの輝度のうち2番目に大きな値/R,G,Bの輝度の最大値
すなわち、上式の場合、上述の演算式において、a=1,b=0とされている。
図4は、横軸がサンプル数、縦軸が膜厚(μm)となっている。上記演算式に基づいてプロットしたものと、実際に膜厚を測定したものとが併せて示されている。
この図から、R,G,Bの輝度から演算される結果と、膜厚とが非常に強い相関を有しており、R,G,Bの輝度のうち2つの輝度を用いれば膜厚が算出できることがわかる。
Next, a specific example in which the film thickness of the transparent conductive film is actually calculated from the respective luminances of R, G, and B will be shown.
FIG. 3 is a plot of the brightness of R, G, and B for each sample.
It is shown that the brightness of R, G, and B is reversed for each sample. FIG. 4 shows the result of calculating the luminances of R, G, and B by the following equation.
Film thickness (μm) = second largest value of luminance of R, G, B / maximum value of luminance of R, G, B In other words, in the case of the above formula, in the above calculation formula, a = 1, b = 0.
In FIG. 4, the horizontal axis represents the number of samples, and the vertical axis represents the film thickness (μm). What is plotted based on the above arithmetic expression and what is actually measured for the film thickness are shown together.
From this figure, there is a very strong correlation between the result calculated from the luminances of R, G, and B and the film thickness. If two of the luminances of R, G, and B are used, the film thickness is It can be seen that it can be calculated.

[ヘイズ率測定]
ヘイズ率測定の場合も、膜厚測定の場合と同様に、撮像領域の各画素ごとに、R,G,Bのそれぞれの輝度(強度)を画像処理装置7aに取り込み、R,G,Bの各輝度を50mm角の範囲で平均化した後に、以下の演算を行う。
ヘイズ率測定の演算も、透明導電膜の種類等によって異なり、予め膜厚とR,G,Bの各輝度との関係を調べておくことによって決定される。
発明者の知見によれば、各R,G,Bの輝度の線形結合による演算式を用いれば、ヘイズメータによって実測されたヘイズ率に最も適合することがわかっている。
[Haze ratio measurement]
In the case of haze ratio measurement, as in the case of film thickness measurement, the luminance (intensity) of each of R, G, and B is taken into the image processing device 7a for each pixel in the imaging region, and R, G, and B After each luminance is averaged over a range of 50 mm square, the following calculation is performed.
The calculation of the haze ratio measurement also differs depending on the type of the transparent conductive film and is determined by examining the relationship between the film thickness and the R, G, and B luminances in advance.
According to the inventor's knowledge, it is known that the best fit with the haze rate actually measured by the haze meter is obtained by using an arithmetic expression based on a linear combination of the luminance values of R, G, and B.

次に、実際にR,G,Bの各輝度から透明導電膜付きガラス基板11のヘイズ率を算出した具体例を示す。
ヘイズ率は、R,G,Bの各輝度を用いて、次式によって算出した。
ヘイズ率=−0.086×B+0.13×Y−21×100/G−0.23×G+10×100/B+10×100/R+1.2×(R,G,Bの輝度のうち2番目に大きな値/R,G,Bの輝度の最大値)+25
ここで、Y=0.30×R+0.59×G+0.11×B
図5は、上式による計算値を横軸、ヘイズメータで測定した測定値を縦軸としてプロットしたものである。なお、ヘイズメータによるヘイズ率の測定は、JIS K7361−1997に基づいて行われた。
この図からわかるように、プロットされた各点は、y=xの直線にほぼ近いものとなっている。したがって、R,G,Bの輝度に基づいて算出したヘイズ率は、ヘイズメータによって計測されたヘイズ率に非常に強い相関を有しており、R,G,Bの輝度の線形結合による演算式を用いればヘイズ率が算出できることがわかる。
Next, a specific example in which the haze ratio of the glass substrate 11 with a transparent conductive film is actually calculated from the respective luminances of R, G, and B will be shown.
The haze ratio was calculated by the following equation using each luminance of R, G, and B.
Haze ratio = −0.086 × B + 0.13 × Y-21 × 100 / G−0.23 × G + 10 × 100 / B + 10 × 100 / R + 1.2 × (second largest among luminance of R, G, B) Value / maximum value of brightness of R, G, B) +25
Here, Y = 0.30 × R + 0.59 × G + 0.11 × B
FIG. 5 is a plot in which the calculated value by the above equation is plotted on the horizontal axis and the measured value measured with a haze meter is plotted on the vertical axis. In addition, the measurement of the haze rate by a haze meter was performed based on JIS K7361-1997.
As can be seen from this figure, each plotted point is almost close to a straight line of y = x. Therefore, the haze rate calculated based on the luminances of R, G, and B has a very strong correlation with the haze rate measured by the haze meter, and an arithmetic expression based on a linear combination of the luminances of R, G, and B is obtained. It can be seen that the haze ratio can be calculated if used.

図6には、カラーラインセンサカメラ2aによって得られた画像について、所定の面積で平均した後に算出したヘイズ率について示されている。
図6(a)は、5mm角で平均したもの、(b)は10mm角で平均したもの、(c)は50mm角で平均したものである。
図6(a)の重相関係数は0.9006、(b)の重相関係数は0.9098、(c)の重相関係数は0.9338となっている。これらから、50mm角で平均した(c)が重相関係数が最も大きくなっており、50mm角で平均化すれば、最も計測値に近いヘイズ率が算出されることがわかる。
FIG. 6 shows the haze ratio calculated after averaging an image obtained by the color line sensor camera 2a over a predetermined area.
FIG. 6A shows an average of 5 mm square, FIG. 6B shows an average of 10 mm square, and FIG. 6C shows an average of 50 mm square.
The multiple correlation coefficient in FIG. 6A is 0.9006, the multiple correlation coefficient in FIG. 6B is 0.9098, and the multiple correlation coefficient in FIG. 6C is 0.9338. From these, it can be seen that (c) averaged at 50 mm square has the largest multiple correlation coefficient, and if averaged at 50 mm square, the haze ratio closest to the measured value is calculated.

以上説明したように、本実施形態にかかる透明導電膜分析装置10によれば、以下の効果を奏する。
白色光を透明導電膜に照射し、反射した光をR,G,Bの3波長に分光し、これらの波長の輝度を演算することによって透明導電膜の膜厚を算出することとしたので、反射光さえ得られれば、光の干渉が得られなくても、表面に凹凸を有する透明導電膜であっても膜厚を算出することができる。
As described above, the transparent conductive film analyzer 10 according to the present embodiment has the following effects.
Since the transparent conductive film was irradiated with white light, the reflected light was split into three wavelengths of R, G, and B, and the film thickness of the transparent conductive film was calculated by calculating the luminance of these wavelengths. As long as the reflected light can be obtained, the film thickness can be calculated even if the interference of light is not obtained or the transparent conductive film having irregularities on the surface.

また、白色光を透明導電膜に照射し、反射した光をR,G,Bの3波長に分光し、これらの波長の輝度を演算することによって透明導電膜のヘイズ率を算出することとしたので、反射光さえ得られれば、別途ヘイズメータを用意しなくても、透明導電膜のヘイズ率を算出することができる。   Further, the transparent conductive film is irradiated with white light, the reflected light is split into three wavelengths of R, G, and B, and the haze ratio of the transparent conductive film is calculated by calculating the luminance of these wavelengths. Therefore, as long as the reflected light is obtained, the haze ratio of the transparent conductive film can be calculated without preparing a haze meter separately.

また、反射光さえ得られれば透明導電膜の膜厚またはヘイズ率を算出することができるので、簡便な構成で太陽電池製造ラインに容易に組み込むことができる。したがって、透明導電膜を有する太陽電池の全数検査が可能となり、品質管理が極めて良好に行なわれる。   Moreover, since only the reflected light can be obtained, the film thickness or haze ratio of the transparent conductive film can be calculated, so that it can be easily incorporated into the solar cell production line with a simple configuration. Therefore, 100% inspection of solar cells having a transparent conductive film is possible, and quality control is performed extremely well.

なお、本実施形態において、R,G,Bの3波長を用いて膜厚およびヘイズ率を算出することとしたが、本発明は特にR,G,Bの3波長に限定されるものではなく、R,G,B程度に離れた波長であれば2波長の光を用いて膜厚およびヘイズ率を算出しても良く、あるいは、補色であるC(Cyan)、M(Magenta),Y(Yellow)及びG(Green)の4波長を用いても良い。   In the present embodiment, the film thickness and the haze ratio are calculated using the three wavelengths of R, G, and B. However, the present invention is not particularly limited to the three wavelengths of R, G, and B. , R, G, and B may be used to calculate the film thickness and haze ratio using two wavelengths of light, or C (Cyan), M (Magenta), and Y (complementary colors). Four wavelengths of Yellow) and G (Green) may be used.

本発明の透明導電膜分析装置を示した斜視図である。It is the perspective view which showed the transparent conductive film analyzer of this invention. 図1の要部を示した側面図である。It is the side view which showed the principal part of FIG. 反射光のR,G,Bの輝度をサンプルごとに示した図である。It is the figure which showed the brightness | luminance of R, G, B of reflected light for every sample. 本発明による演算式により算出した透明導電膜の膜厚を、計測値とともに示した図である。It is the figure which showed the film thickness of the transparent conductive film computed with the computing equation by this invention with the measured value. 本発明による演算式により算出した透明導電膜のヘイズ率を、計測値とともに示した図である。It is the figure which showed the haze rate of the transparent conductive film computed with the computing equation by this invention with the measured value. 所定面積ごとにR,G,Bの各輝度を平均化した後に演算したヘイズ率について、計測値とともに示した図である。It is the figure which showed the haze rate computed after averaging each brightness | luminance of R, G, B for every predetermined area with a measured value.

符号の説明Explanation of symbols

2a カラーラインセンサカメラ(分光手段)
3a ライン照明器(光照射手段)
10 透明導電膜分析装置
11 透明導電膜付きガラス基板
2a Color line sensor camera (spectral means)
3a Line illuminator (light irradiation means)
10 Transparent conductive film analyzer 11 Glass substrate with transparent conductive film

Claims (6)

光を透明導電膜に照射し、反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって前記透明導電膜の膜厚を算出することを特徴とする透明導電膜分析方法。   A transparent conductive film characterized in that the transparent conductive film is irradiated with light, the reflected light is dispersed into at least two wavelengths, and the film thickness of the transparent conductive film is calculated by calculating the light intensity of these wavelengths. Analysis method. 光を透明導電膜に照射し、反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって前記透明導電膜のヘイズ率を算出することを特徴とする透明導電膜分析方法。   A transparent conductive film characterized in that the transparent conductive film is irradiated with light, the reflected light is dispersed into at least two wavelengths, and the haze ratio of the transparent conductive film is calculated by calculating the light intensity of these wavelengths. Analysis method. 前記透明導電膜に照射する光は、白色光とされ、
反射した光は、赤、緑および青の三色に分光されることを特徴とする請求項1または2に記載の透明導電膜分析方法。
The light applied to the transparent conductive film is white light,
3. The transparent conductive film analysis method according to claim 1, wherein the reflected light is split into three colors of red, green and blue.
請求項1から3のいずれかに記載の透明導電膜分析方法を用いて、透明導電膜の品質を管理することを特徴とする透明導電膜品質管理方法。   A transparent conductive film quality control method, wherein the quality of the transparent conductive film is managed using the transparent conductive film analysis method according to claim 1. 請求項4記載の透明導電膜品質管理方法によって品質管理された透明導電膜付きガラス基板を備えていることを特徴とする太陽電池。   A solar cell comprising a glass substrate with a transparent conductive film quality-controlled by the transparent conductive film quality control method according to claim 4. 透明導電膜に光を照射する光照射手段と、
前記透明導電膜で反射した光を少なくとも2つの波長に分光する分光手段と、
これら分光された光の強度を演算して前記透明導電膜の膜厚および/またはヘイズ率を算出する演算手段と、
を備えていることを特徴とする透明導電膜分析装置。
A light irradiation means for irradiating the transparent conductive film with light;
A spectroscopic means for splitting the light reflected by the transparent conductive film into at least two wavelengths;
A computing means for computing the intensity of the dispersed light to calculate the film thickness and / or haze ratio of the transparent conductive film;
The transparent conductive film analyzer characterized by the above-mentioned.
JP2003372949A 2003-10-31 2003-10-31 Transparent conductive film analysis method, transparent conductive film quality control method, and solar cell Expired - Fee Related JP4544846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372949A JP4544846B2 (en) 2003-10-31 2003-10-31 Transparent conductive film analysis method, transparent conductive film quality control method, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372949A JP4544846B2 (en) 2003-10-31 2003-10-31 Transparent conductive film analysis method, transparent conductive film quality control method, and solar cell

Publications (2)

Publication Number Publication Date
JP2005134324A true JP2005134324A (en) 2005-05-26
JP4544846B2 JP4544846B2 (en) 2010-09-15

Family

ID=34649181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372949A Expired - Fee Related JP4544846B2 (en) 2003-10-31 2003-10-31 Transparent conductive film analysis method, transparent conductive film quality control method, and solar cell

Country Status (1)

Country Link
JP (1) JP4544846B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness
JP2007225418A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Evaluation device of transparent conductive film and evaluation method of transparent conductive film
JP2007234720A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Inspection equipment of solar cell panel, film polish inspection method, and process for manufacturing solar cell panel
WO2008114471A1 (en) * 2007-02-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Film thickness measuring method, its apparatus, and manufacturing system for thin-film device
WO2010018717A1 (en) * 2008-08-11 2010-02-18 三菱重工業株式会社 Resistivity checking method and device therefor
US7679739B2 (en) 2005-09-02 2010-03-16 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
JP2010129784A (en) * 2008-11-27 2010-06-10 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device
JP2010203813A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Apparatus and method for testing thin film
KR101108706B1 (en) * 2009-11-24 2012-01-30 주식회사 디알텍 Apparatus and Method for checking for making process of digital x-ray detector
CN104197849A (en) * 2014-09-26 2014-12-10 菏泽市产品质量监督检验所 Measuring device for thickness of conducting wire insulation layer
CN104215207B (en) * 2014-09-26 2017-04-05 菏泽学院 A kind of multicore cable thickness of insulating layer measuring instrument

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness
US7952703B2 (en) 2005-09-02 2011-05-31 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
US7679739B2 (en) 2005-09-02 2010-03-16 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
JP2007225418A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Evaluation device of transparent conductive film and evaluation method of transparent conductive film
JP2007234720A (en) * 2006-02-28 2007-09-13 Mitsubishi Heavy Ind Ltd Inspection equipment of solar cell panel, film polish inspection method, and process for manufacturing solar cell panel
WO2008114471A1 (en) * 2007-02-20 2008-09-25 Mitsubishi Heavy Industries, Ltd. Film thickness measuring method, its apparatus, and manufacturing system for thin-film device
US8184303B2 (en) 2007-02-20 2012-05-22 Mitsubishi Heavy Industries, Ltd. Film-thickness measurement method and apparatus therefor, and thin-film device fabrication system
US7956999B2 (en) 2008-08-11 2011-06-07 Mitsubishi Heavy Industries, Ltd. Resistivity testing method and device therefor
WO2010018717A1 (en) * 2008-08-11 2010-02-18 三菱重工業株式会社 Resistivity checking method and device therefor
JP2010129784A (en) * 2008-11-27 2010-06-10 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device
JP2010203813A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Apparatus and method for testing thin film
US8497991B2 (en) 2009-02-27 2013-07-30 Mitsubishi Heavy Industries, Ltd. Thin-film inspection apparatus and inspection method
KR101108706B1 (en) * 2009-11-24 2012-01-30 주식회사 디알텍 Apparatus and Method for checking for making process of digital x-ray detector
CN104197849A (en) * 2014-09-26 2014-12-10 菏泽市产品质量监督检验所 Measuring device for thickness of conducting wire insulation layer
CN104215207B (en) * 2014-09-26 2017-04-05 菏泽学院 A kind of multicore cable thickness of insulating layer measuring instrument

Also Published As

Publication number Publication date
JP4544846B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US8184303B2 (en) Film-thickness measurement method and apparatus therefor, and thin-film device fabrication system
JP4544846B2 (en) Transparent conductive film analysis method, transparent conductive film quality control method, and solar cell
US7755777B2 (en) Wavelength selection method, film thickness measurement method, film thickness measurement apparatus, and system for producing thin film silicon device
EP2397840B1 (en) Image inspecting apparatus, image inspecting method, image forming apparatus
US5887077A (en) Method for the recognition and evaluation of defects in reflective surface coatings
US7907276B2 (en) Film quality evaluation method, apparatus therefor, and production system for thin-film device
JP5268094B2 (en) Inspection equipment using color illumination
CZ9301924A3 (en) Method for determining thickness and uniformity of a transparent coating and apparatus for making the same
JP2010223613A (en) Optical examining device
WO2008004555A1 (en) Surface inspection device
JP2005181070A (en) Flaw detecting method of transparent plate-shaped body and flaw detector therefor
JP2000055826A (en) Quality-inspecting device
JP4175475B2 (en) Method and apparatus for evaluating transparent conductive film for solar cell
JP2004095731A (en) Solar cell panel color unevenness inspection device
JP2004309287A (en) Defect detection device and defect detection method
KR20180136421A (en) System and method for defect detection
JP3944693B2 (en) Film thickness measuring device
JPH10142101A (en) Method for inspecting pigmented film
JP3304239B2 (en) Apparatus and method for measuring coating thickness of bottle
JP2009212148A (en) Film quality measuring apparatus of crystalline silicone film, film quality measuring method of crystalline silicone film, and film quality evaluation method of crystalline silicone film
KR20150057255A (en) Transmittance inspection device for printed pattern for ir sensor
JP2002236004A (en) Method and apparatus for measuring thickness of light transmission body
JP2009075044A (en) Film thickness defective inspection device for conductive polymer layer of organic el panel substrate, and method for inspecting film thickness defective using the same
JP2020041835A (en) Metal strip surface inspection method and metal strip surface inspection device
JP2007205921A (en) Defect detector for laminate film, and method of detecting defect of laminate film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080513

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees