JP2010129784A - Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device - Google Patents

Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device Download PDF

Info

Publication number
JP2010129784A
JP2010129784A JP2008303004A JP2008303004A JP2010129784A JP 2010129784 A JP2010129784 A JP 2010129784A JP 2008303004 A JP2008303004 A JP 2008303004A JP 2008303004 A JP2008303004 A JP 2008303004A JP 2010129784 A JP2010129784 A JP 2010129784A
Authority
JP
Japan
Prior art keywords
film thickness
cell layer
layer
transmittance
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008303004A
Other languages
Japanese (ja)
Inventor
Hiroshi Mashima
浩 真島
Tatsuyuki Nishimiya
立享 西宮
Tomotsugu Sakai
智嗣 坂井
Tomoyoshi Baba
智義 馬場
Hiroomi Miyahara
弘臣 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008303004A priority Critical patent/JP2010129784A/en
Publication of JP2010129784A publication Critical patent/JP2010129784A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of highly accurately measuring the film thickness of a second cell layer, a film thickness measuring apparatus, and to provide a method of manufacturing a photoelectric conversion device for forming the second cell layer so as to uniformize the film thickness within a substrate surface using the film thickness measuring method. <P>SOLUTION: The film thickness measuring method includes a process of calculating the film thickness of the second cell layer on the basis of transmissivity at an optional position within the substrate surface where a transparent electrode layer and a photoelectric conversion layer are formed and a transparent electrode layer haze ratio and a first cell layer film thickness measured beforehand. The film thickness measuring apparatus includes a second cell layer film thickness calculation unit for calculating the film thickness of the second cell layer by the film thickness measuring method. The method of manufacturing the photoelectric conversion device includes a process of calculating the film thickness of the second cell layer at the optional position within the substrate surface on the basis of the film thickness measuring method and a process of adjusting a second cell layer film forming condition when the film thickness of the second cell layer is out of an allowable film thickness range. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換層の膜厚計測方法及び膜厚計測装置、並びに、該膜厚計測方法を適用した光電変換装置の製造方法に関する。   The present invention relates to a method for measuring a film thickness of a photoelectric conversion layer, a film thickness measuring device, and a method for manufacturing a photoelectric conversion device to which the film thickness measuring method is applied.

太陽光のエネルギーを電気エネルギーに変換する太陽電池としては、透明基板上にp型シリコン系半導体(p層)、i型シリコン系半導体(i層)及びn型シリコン系半導体(n層)の薄膜をプラズマCVD法等で製膜して形成した光電変換層を備えた薄膜シリコン系太陽電池が知られている。薄膜シリコン系太陽電池の変換効率、すなわち、発電出力を増加させるために、吸収波長帯域が異なる発電セル層を2段重ねた光電変換層とすることによって、入射光を効率良く吸収させて高い発電効率を得るタンデム型太陽電池が提案されている。透明基板側から太陽光が入射するスーパーストレート型のタンデム型太陽電池においては、例えば、基板側から順に、非晶質シリコンからなる第1セル層及び結晶質シリコンからなる第2セル層が形成される。   Solar cells that convert sunlight energy into electrical energy include thin films of p-type silicon-based semiconductor (p-layer), i-type silicon-based semiconductor (i-layer), and n-type silicon-based semiconductor (n-layer) on a transparent substrate. A thin film silicon solar cell including a photoelectric conversion layer formed by forming a film by plasma CVD or the like is known. In order to increase the conversion efficiency of thin-film silicon solar cells, that is, the power generation output, a photoelectric conversion layer with two layers of power generation cell layers with different absorption wavelength bands is used to efficiently absorb incident light and generate high power. Tandem solar cells have been proposed to obtain efficiency. In a super straight type tandem solar cell in which sunlight enters from the transparent substrate side, for example, a first cell layer made of amorphous silicon and a second cell layer made of crystalline silicon are formed in this order from the substrate side. The

タンデム型太陽電池の生産において、発電出力のばらつきや変動が生じることが問題となっていた。発電電力のばらつきや変動の要因の一つとして、光電変換層の各層の膜厚が製膜バッチ毎に変動することが挙げられる。特に、厚膜とされる結晶質シリコンi層の膜厚変動の影響が大きい。図9に、第2セル層のi層膜厚とモジュール出力との関係を示す。同図において、横軸は第2セル層のi層膜厚、縦軸は規格化されたモジュール出力である。このように、第2セル層のi層膜厚とモジュール出力との間には強い相関があり、バッチごとに第2セル層のi層膜厚が変動すると、モジュール出力にばらつきが発生する。従って、性能向上及び安定化を図るには、結晶質シリコンi層の膜厚を計測し、管理することが求められる。   In the production of tandem solar cells, there has been a problem that variations and fluctuations in power generation output occur. As one of the factors of variation and fluctuation of the generated power, the film thickness of each layer of the photoelectric conversion layer varies for each film-forming batch. In particular, the influence of film thickness variation of the crystalline silicon i layer, which is a thick film, is large. FIG. 9 shows the relationship between the i-layer thickness of the second cell layer and the module output. In the figure, the horizontal axis represents the i-layer thickness of the second cell layer, and the vertical axis represents the normalized module output. Thus, there is a strong correlation between the i-layer thickness of the second cell layer and the module output. When the i-layer thickness of the second cell layer varies from batch to batch, the module output varies. Therefore, in order to improve and stabilize the performance, it is required to measure and manage the thickness of the crystalline silicon i layer.

i層の膜厚変動は、放電電極や製膜室内壁へのシリコン膜の堆積、給電ケーブルの劣化などにより、製膜条件が変動することが原因とされる。堆積シリコン膜を除去するために、所定の製膜バッチ数毎にフッ素含有ガスを用いたセルフクリーニング処理が実施されるが、セルフクリーニング後の残留フッ素の影響によっても、i層の膜厚が変動する。
特許文献1には、アモルファスシリコン薄膜からなる1層の光電変換層を形成した太陽電池について、透過膜厚計により光電変換層(i層膜)の膜厚を計測し、計測された光電変換層の膜厚が基準膜厚で一定になるように、セルフクリーニング後のバッチ数に応じて高周波電力パワー及び電力投入時間を制御する薄膜製造方法及び薄膜製造システムが開示されている。
特開2008−56949号公報
The variation in the film thickness of the i layer is caused by fluctuations in the film forming conditions due to the deposition of a silicon film on the discharge electrode and the inner wall of the film forming, the deterioration of the power supply cable, and the like. In order to remove the deposited silicon film, a self-cleaning process using a fluorine-containing gas is carried out for each predetermined number of film-forming batches. However, the film thickness of the i layer varies due to the influence of residual fluorine after self-cleaning. To do.
In Patent Document 1, the thickness of a photoelectric conversion layer (i-layer film) is measured with a transmission film thickness meter for a solar cell on which one photoelectric conversion layer made of an amorphous silicon thin film is formed, and the measured photoelectric conversion layer A thin film manufacturing method and a thin film manufacturing system are disclosed in which the high-frequency power and the power-on time are controlled in accordance with the number of batches after self-cleaning so that the film thickness is constant at the reference film thickness.
JP 2008-56949 A

タンデム型太陽電池の生産において第2セル層膜厚計測に透過膜厚計を適用する場合、シングル型太陽電池よりも層数が増えるために、より計測精度を高めることが求められていた。   In the production of a tandem solar cell, when a transmission film thickness meter is applied to the measurement of the second cell layer thickness, the number of layers is increased as compared with a single solar cell, so that it has been required to further improve measurement accuracy.

第2セル層の膜厚を高精度で計測し、製膜条件変動の監視や膜厚制御にフィードバックさせることにより、バッチ間での発電出力のばらつきを抑制できる。大面積基板を用いたタンデム型太陽電池では、供給電力密度の分布、基板近傍での供給ガスや残留フッ素の分布などにより、基板面内における膜厚分布が生じやすい。従って、大面積基板太陽電池においては、第2セル層膜厚分布、主としてi層の膜厚分布を把握し、i層膜厚が面内で均一になるように製膜条件を調整する必要があった。   By measuring the film thickness of the second cell layer with high accuracy and feeding it back to monitoring of film forming condition fluctuations and film thickness control, it is possible to suppress variations in power generation output between batches. In a tandem solar cell using a large-area substrate, a film thickness distribution in the substrate surface is likely to occur due to the distribution of power supply density, the distribution of supply gas and residual fluorine in the vicinity of the substrate, and the like. Therefore, in the large-area substrate solar cell, it is necessary to grasp the thickness distribution of the second cell layer, mainly the thickness of the i layer, and adjust the film forming conditions so that the thickness of the i layer is uniform in the plane. there were.

本発明は、タンデム型太陽電池における第2セル層の膜厚を、より高精度で計測可能な膜厚計測方法及び膜厚計測装置を提供する。また、該膜厚計測方法を用いて、第2セル層、特に第2セル層のi層を、基板面内で膜厚が均一になるように制御して製膜する光電変換装置の製造方法を提供する。   The present invention provides a film thickness measuring method and a film thickness measuring apparatus capable of measuring the film thickness of a second cell layer in a tandem solar cell with higher accuracy. In addition, a method of manufacturing a photoelectric conversion device that forms a film by controlling the film thickness of the second cell layer, particularly the i layer of the second cell layer, to be uniform within the substrate surface using the film thickness measurement method. I will provide a.

本発明は、基板上に、透明電極層と、該透明電極層側から順に第1セル層及び第2セル層で構成される光電変換層とを備える光電変換装置における光電変換層の膜厚計測方法であって、前記透明電極層及び前記光電変換層が形成された前記基板面内の任意の位置における透過率を計測する工程と、該計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記第2セル層の膜厚を算出する工程とを含む。   The present invention provides a film thickness measurement of a photoelectric conversion layer in a photoelectric conversion device comprising a transparent electrode layer and a photoelectric conversion layer composed of a first cell layer and a second cell layer in this order from the transparent electrode layer side. A method of measuring a transmittance at an arbitrary position in the substrate surface on which the transparent electrode layer and the photoelectric conversion layer are formed, the measured transmittance, and the transparent electrode measured in advance Calculating the film thickness of the second cell layer based on the haze ratio of the layer and the film thickness of the first cell layer measured in advance.

透過光量に基づいて第2セル層の膜厚を測定する場合、透明電極層及び光電変換層(第1セル層及び第2セル層)が形成された基板に対して計測光が照射され、計測光の透過率が測定される。本発明では、透明電極層のヘイズ率と第1セル層の膜厚とによる補正を考慮して、透明電極層及び光電変換層が形成された基板面内の任意の位置における計測光の透過率から第2セル層の膜厚を算出する。このように、透過光量に基づく第2セル層の膜厚測定に、透明電極層の表面形状に起因する光散乱及び第1セル層での光吸収の影響を考慮することにより、第2セル層の膜厚測定精度を向上させることができる。   When measuring the film thickness of the second cell layer based on the amount of transmitted light, the measurement light is irradiated to the substrate on which the transparent electrode layer and the photoelectric conversion layer (first cell layer and second cell layer) are formed. The light transmittance is measured. In the present invention, in consideration of correction by the haze ratio of the transparent electrode layer and the film thickness of the first cell layer, the transmittance of measurement light at an arbitrary position within the substrate surface on which the transparent electrode layer and the photoelectric conversion layer are formed. From the above, the film thickness of the second cell layer is calculated. As described above, the second cell layer is measured by taking into consideration the influence of light scattering caused by the surface shape of the transparent electrode layer and light absorption in the first cell layer in the film thickness measurement of the second cell layer based on the amount of transmitted light. The film thickness measurement accuracy can be improved.

上記発明において、前記ヘイズ率及び前記第1セル層の膜厚が、前記基板面内における前記透過率が計測された位置と同一位置のヘイズ率及び膜厚とされることが好ましい。   In the above invention, the haze ratio and the film thickness of the first cell layer are preferably the same as the position where the transmittance is measured in the substrate plane.

このように、透過率が計測された位置と同一の基板面内位置でのヘイズ率及び第1セル層膜厚を用いて補正することにより、第2セル層膜厚の測定精度が更に向上する。   As described above, the measurement accuracy of the second cell layer thickness is further improved by correcting using the haze rate and the first cell layer thickness at the same in-plane position as the position where the transmittance is measured. .

上記発明において、前記基板面内の任意の複数位置における前記第2セル層の膜厚を算出することが好ましい。これにより、特に基板面内での製膜条件の変動が発生しやすい大面積基板について、第2セル層のより正確な面内膜厚分布を得ることができる。   In the above invention, it is preferable to calculate the film thickness of the second cell layer at an arbitrary plurality of positions in the substrate surface. Thereby, it is possible to obtain a more accurate in-plane film thickness distribution of the second cell layer particularly for a large-area substrate in which the film forming conditions are likely to vary within the substrate plane.

本発明は、透明電極層と第1セル層及び第2セル層で構成される光電変換層とが形成された基板に対して所定波長の計測光を照射する照射部と、前記基板を透過した前記計測光の透過光を受光する検出部と、前記計測光の強度及び前記透過光の強度から透過率を算出する透過率算出部を備える透過率計測部と、該透過率計測部で計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記第2セル層の膜厚を算出する膜厚算出部とを備える膜厚計測装置を提供する。   In the present invention, an irradiation unit that irradiates measurement light of a predetermined wavelength to a substrate on which a transparent electrode layer and a photoelectric conversion layer composed of a first cell layer and a second cell layer are formed, and the substrate is transmitted. Measured by the transmittance measuring unit including a detection unit that receives the transmitted light of the measurement light, a transmittance calculating unit that calculates the transmittance from the intensity of the measurement light and the intensity of the transmitted light, and the transmittance measuring unit. A film thickness calculating unit that calculates the film thickness of the second cell layer based on the measured transmittance, the haze ratio of the transparent electrode layer measured in advance, and the film thickness of the first cell layer measured in advance. A film thickness measuring device is provided.

本発明の膜厚計測装置は、第2セル層膜厚算出部において、透明電極層による光散乱及び第1セル層での光吸収を考慮して第2セル層膜厚を算出する。そのため、本発明の膜厚計測装置を用いれば、透明電極層及び第1セル層上に形成された第2セル層の膜厚を、高精度で計測することが可能である。   In the film thickness measuring apparatus of the present invention, the second cell layer film thickness calculation unit calculates the second cell layer film thickness in consideration of light scattering by the transparent electrode layer and light absorption in the first cell layer. Therefore, if the film thickness measuring device of the present invention is used, the film thickness of the second cell layer formed on the transparent electrode layer and the first cell layer can be measured with high accuracy.

また、本発明は、基板上に、透明電極層と、該透明電極層側から順に第1セル層及び第2セル層で構成される光電変換層とを備える光電変換装置の製造方法であって、前記透明電極層及び前記光電変換層が形成された前記基板面内の任意位置における透過率を計測する工程と、該計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記基板面内の任意位置における前記第2セル層の膜厚を算出する工程と、該算出された第2セル層の膜厚を、予め設定された許容膜厚範囲と比較する工程と、前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記第2セル層の製膜条件を調整する工程とを含む光電変換装置に製造方法を提供する。   Moreover, this invention is a manufacturing method of a photoelectric conversion apparatus provided on a board | substrate with a transparent electrode layer and the photoelectric converting layer comprised in order from this transparent electrode layer side by a 1st cell layer and a 2nd cell layer, Measuring the transmittance at an arbitrary position within the substrate surface on which the transparent electrode layer and the photoelectric conversion layer are formed; the measured transmittance; and the haze ratio of the transparent electrode layer measured in advance. Calculating the film thickness of the second cell layer at an arbitrary position in the substrate surface based on the film thickness of the first cell layer measured in advance, and the calculated film thickness of the second cell layer Comparing the film forming conditions of the second cell layer when the film thickness of the second cell layer deviates from the allowable film thickness range, A manufacturing method is provided for a photoelectric conversion device including:

本発明は、2層の発電セル層を備える光電変換装置の製造において、透明電極層のヘイズ率と第1セル層の膜厚により補正された第2セル層の膜厚値を用いて、予め設定された許容膜厚範囲と比較し、比較結果に基づいて第2セル層製膜条件の調整を実施する。調整される製膜条件は、例えば、放電電極に投入される高周波電力密度、原料ガス圧力、原料ガス流量、製膜時間とされる。あるいは、高周波電源やガス流量計などの機器の調整により、製膜条件を調整しても良い。透明電極層の表面形状及び第1セル層での吸収を考慮した補正を行うことにより、第2セル層の膜厚測定精度が高くなる。高精度で計測された膜厚に基づいて、第2セル層製膜条件の調整を実施するため、膜厚制御精度が向上する。このため、第2セル層膜厚のバッチ間での変動を抑制することができる。その結果、バッチ間での出力のばらつきが抑えられ、一定出力の光電変換装置を安定して生産することができる。   In the manufacture of a photoelectric conversion device including two power generation cell layers, the present invention uses the film thickness value of the second cell layer corrected in advance by the haze ratio of the transparent electrode layer and the film thickness of the first cell layer. Compared with the set allowable film thickness range, the second cell layer deposition condition is adjusted based on the comparison result. The film forming conditions to be adjusted are, for example, the high frequency power density input to the discharge electrode, the raw material gas pressure, the raw material gas flow rate, and the film forming time. Alternatively, the film forming conditions may be adjusted by adjusting devices such as a high-frequency power source and a gas flow meter. By performing correction in consideration of the surface shape of the transparent electrode layer and the absorption in the first cell layer, the film thickness measurement accuracy of the second cell layer is increased. Since the second cell layer deposition conditions are adjusted based on the film thickness measured with high accuracy, the film thickness control accuracy is improved. For this reason, the fluctuation | variation between batches of a 2nd cell layer film thickness can be suppressed. As a result, variation in output between batches is suppressed, and a constant output photoelectric conversion device can be stably produced.

上記発明において、前記透過率を計測する工程において、前記基板面内の任意の複数位置での透過率を計測し、前記第2セル層の膜厚を算出する工程において、前記任意の複数位置での透過率と、前記透明電極層のヘイズ率と、前記第1セル層の膜厚とに基づき、前記基板面内の任意の複数位置における前記第2セル層の膜厚を算出し、少なくとも一の位置における前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記第2セル層の製膜条件を調整することが好ましい。   In the above invention, in the step of measuring the transmittance, the transmittance at any plurality of positions in the substrate surface is measured, and in the step of calculating the film thickness of the second cell layer, at the plurality of arbitrary positions. And calculating the film thickness of the second cell layer at any of a plurality of positions in the substrate surface based on the transmittance of the transparent electrode layer, the haze ratio of the transparent electrode layer, and the film thickness of the first cell layer. When the film thickness of the second cell layer at the position deviates from the allowable film thickness range, it is preferable to adjust the film forming conditions of the second cell layer.

または、上記発明において、前記算出された複数位置における第2セル層の膜厚から、前記第2セル層の膜厚分布を取得する工程を更に含み、少なくとも一の位置における前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記膜厚分布を基に、前記第2セル層の形成条件を調整することが好ましい。   Alternatively, in the above invention, the method further includes a step of obtaining a film thickness distribution of the second cell layer from the calculated film thickness of the second cell layer at the plurality of positions, wherein the second cell layer at the at least one position is obtained. When the film thickness is out of the allowable film thickness range, it is preferable to adjust the formation condition of the second cell layer based on the film thickness distribution.

大面積基板を用いる場合、基板面内でのガス分布、高周波電力密度分布、セルフクリーニング時の残留フッ素などの影響により、基板面内での第2セル層膜厚の変動が生じやすい。このように、大面積基板面内の複数位置における第2セル層の膜厚を算出し、複数位置における第2セル層膜厚あるいは第2セル層膜厚分布を、第2セル層製膜条件の調整に反映させれば、第2セル層を高出力が得られる膜厚にて均一に製膜することができる。この結果、光電変換装置の出力を向上させることができる。   When a large-area substrate is used, the second cell layer film thickness is likely to vary within the substrate surface due to gas distribution within the substrate surface, high-frequency power density distribution, residual fluorine during self-cleaning, and the like. Thus, the film thickness of the second cell layer at a plurality of positions in the large-area substrate surface is calculated, and the second cell layer film thickness or the second cell layer film thickness distribution at the plurality of positions is determined as the second cell layer deposition condition. If this is reflected in the adjustment, the second cell layer can be uniformly formed with a film thickness that provides a high output. As a result, the output of the photoelectric conversion device can be improved.

上記発明において、前記透過率と、前記透過率が計測された位置と同一位置におけるヘイズ率と、前記透過率が計測された位置と同一位置における前記第1セル層の膜厚とに基づき、前記基板面内の任意位置における前記第2セル層の膜厚を算出することが好ましい。これにより、第2セル層膜厚を高精度で計測でき、第2セル層膜厚の制御精度もさらに向上する。   In the above invention, based on the transmittance, the haze ratio at the same position as the position where the transmittance was measured, and the film thickness of the first cell layer at the same position as the position where the transmittance was measured, It is preferable to calculate the film thickness of the second cell layer at an arbitrary position in the substrate plane. Thereby, the second cell layer thickness can be measured with high accuracy, and the control accuracy of the second cell layer thickness is further improved.

本発明の膜厚計測方法及び膜厚計測装置によれば、透明電極層及び第1セル層の影響を考慮して第2セル層膜厚を計測することができるため、精度良く第2セル層膜厚を計測することができる。
本発明の膜厚計測方法を用いて第2セル層の膜厚を計測し、計測値を許容膜厚範囲と比較した結果を第2セル層の製膜条件調整に反映させれば、第2セル層膜厚のバッチ間での変動を抑制することができる。その結果、バッチ間での出力のばらつきが抑えられ、一定出力の光電変換装置を安定して生産することができる。
特に、大面積基板を用いた光電変換装置の製造においては、本発明の膜厚計測方法を用いて複数位置での第2セル層膜厚を計測し、計測結果を第2セル層製膜条件の調整に反映させることにより、第2セル層膜厚を基板面内で均一とすることができる。このため、高出力の光電変換装置を製造可能となる。
According to the film thickness measuring method and film thickness measuring apparatus of the present invention, the second cell layer film thickness can be measured in consideration of the influence of the transparent electrode layer and the first cell layer, and therefore the second cell layer can be accurately measured. The film thickness can be measured.
If the film thickness measurement method of the present invention is used to measure the film thickness of the second cell layer, and the result of comparing the measured value with the allowable film thickness range is reflected in the adjustment of the film formation conditions of the second cell layer, the second Variation in cell layer thickness between batches can be suppressed. As a result, variation in output between batches is suppressed, and a constant output photoelectric conversion device can be stably produced.
In particular, in the manufacture of a photoelectric conversion device using a large-area substrate, the film thickness measurement method of the present invention is used to measure the second cell layer film thickness at a plurality of positions, and the measurement result is determined as the second cell layer film formation condition. By reflecting this adjustment, the thickness of the second cell layer can be made uniform in the substrate plane. For this reason, a high output photoelectric conversion device can be manufactured.

図1は、本発明の光電変換装置の構成を示す概略図である。光電変換装置100は、タンデム型シリコン系太陽電池であり、基板1、透明電極層2、太陽電池光電変換層3としての第1セル層91(非晶質シリコン系)及び第2セル層92(結晶質シリコン系)、及び裏面電極層4を備える。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、結晶質シリコン系とは、非晶質シリコン系以外のシリコン系を意味するものであり、微結晶シリコンや多結晶シリコンも含まれる。   FIG. 1 is a schematic diagram illustrating a configuration of a photoelectric conversion device of the present invention. The photoelectric conversion device 100 is a tandem silicon solar cell, and includes a substrate 1, a transparent electrode layer 2, a first cell layer 91 (amorphous silicon system) and a second cell layer 92 ( Crystalline silicon) and back electrode layer 4 are provided. Here, the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe). Further, the crystalline silicon system means a silicon system other than the amorphous silicon system, and includes microcrystalline silicon and polycrystalline silicon.

<第1実施形態>
第1実施形態に係る光電変換装置の製造方法を、太陽電池パネルを製造する工程を例に挙げて説明する。図2から図5は、本実施形態の太陽電池パネルの製造方法を示す概略図である。
<First Embodiment>
A method for manufacturing a photoelectric conversion device according to the first embodiment will be described by taking a process for manufacturing a solar cell panel as an example. 2 to 5 are schematic views showing a method for manufacturing the solar cell panel of the present embodiment.

(1)図2(a):
基板1として面積が1m以上、または1m角以上のソーダフロートガラス基板(例えば1.4m×1.1m×板厚:3.5mm〜4.5mm)を使用する。基板端面は熱応力や衝撃などによる破損防止にコーナー面取りやR面取り加工されていることが望ましい。
(1) FIG. 2 (a):
A soda float glass substrate (for example, 1.4 m × 1.1 m × plate thickness: 3.5 mm to 4.5 mm) having an area of 1 m 2 or more or 1 m square or more is used as the substrate 1. The end face of the substrate is preferably subjected to corner chamfering or R chamfering to prevent damage due to thermal stress or impact.

(2)図2(b):
透明電極層2として、酸化錫(SnO)を主成分とする膜厚約500nm以上800nm以下の透明導電膜を、熱CVD装置にて約500℃で製膜する。この際、透明電極膜の表面には、適当な凹凸のあるテクスチャーが形成される。透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、酸化シリコン膜(SiO)を50nm〜150nm、熱CVD装置にて約500℃で製膜処理する。
(2) FIG. 2 (b):
As the transparent electrode layer 2, a transparent conductive film having a thickness of about 500 nm to 800 nm and having tin oxide (SnO 2 ) as a main component is formed at about 500 ° C. with a thermal CVD apparatus. At this time, a texture with appropriate irregularities is formed on the surface of the transparent electrode film. As the transparent electrode layer 2, an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film in addition to the transparent electrode film. As the alkali barrier film, a silicon oxide film (SiO 2 ) is formed at a temperature of about 500 ° C. in a thermal CVD apparatus at 50 nm to 150 nm.

透明電極層2形成後、基板面内の任意位置(例えば8点×8点、計64点)における透明電極層2表面のヘイズ率Hが計測される。ヘイズ率の計測方法は、公知の手段を適用することができる。計測された各計測位置でのヘイズ率Hは、後述する第2セル層膜厚計測装置の膜厚算出部に格納される。   After the formation of the transparent electrode layer 2, the haze ratio H on the surface of the transparent electrode layer 2 at an arbitrary position within the substrate surface (for example, 8 points × 8 points, a total of 64 points) is measured. Known methods can be applied to the method for measuring the haze ratio. The measured haze ratio H at each measurement position is stored in the film thickness calculation unit of the second cell layer film thickness measurement apparatus described later.

(3)図2(c):
その後、基板1をX−Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極膜の膜面側から照射する。加工速度に適切となるようにレーザーパワーを調整して、透明電極膜を発電セルの直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝10を形成するように幅約6mmから15mmの所定幅の短冊状にレーザーエッチングする。
(3) FIG. 2 (c):
Thereafter, the substrate 1 is placed on an XY table, and the first harmonic (1064 nm) of the YAG laser is irradiated from the film surface side of the transparent electrode film as indicated by an arrow in the figure. The laser power is adjusted to be appropriate for the processing speed, and the transparent electrode film is moved relative to the direction perpendicular to the series connection direction of the power generation cells so that the substrate 1 and the laser beam are moved relative to each other to form the groove 10 And laser etching into a strip shape having a predetermined width of about 6 mm to 15 mm.

(4)図2(d):
第1セル層91として、非晶質シリコン薄膜からなるp層、i層及びn層を、プラズマCVD装置により製膜する。SiHガス及びHガスを主原料にして、減圧雰囲気:30Pa以上1000Pa以下、基板温度:約200℃にて、透明電極層2上に太陽光の入射する側から非晶質シリコンp層31、非晶質シリコンi層32、非晶質シリコンn層33の順で製膜する。非晶質シリコンp層31は非晶質のBドープシリコンを主とし、膜厚10nm以上30nm以下である。非晶質シリコンi層32は、膜厚200nm以上350nm以下である。非晶質シリコンn層33は、非晶質シリコンに微結晶シリコンを含有するPドープシリコンを主とし、膜厚30nm以上50nm以下である。非晶質シリコンp層31と非晶質シリコンi層32の間には、界面特性の向上のためにバッファー層を設けても良い。
(4) FIG. 2 (d):
As the first cell layer 91, a p layer, an i layer, and an n layer made of an amorphous silicon thin film are formed by a plasma CVD apparatus. Using SiH 4 gas and H 2 gas as main raw materials, the amorphous silicon p layer 31 from the side on which sunlight is incident on the transparent electrode layer 2 at a reduced pressure atmosphere: 30 Pa to 1000 Pa and a substrate temperature: about 200 ° C. Then, an amorphous silicon i layer 32 and an amorphous silicon n layer 33 are formed in this order. The amorphous silicon p layer 31 is mainly made of amorphous B-doped silicon and has a thickness of 10 nm to 30 nm. The amorphous silicon i layer 32 has a thickness of 200 nm to 350 nm. The amorphous silicon n layer 33 is mainly P-doped silicon containing microcrystalline silicon in amorphous silicon, and has a thickness of 30 nm to 50 nm. A buffer layer may be provided between the amorphous silicon p layer 31 and the amorphous silicon i layer 32 in order to improve interface characteristics.

第1セル層91製膜後、透過膜厚計を用いて、基板面内の任意位置における第1セル層91の膜厚が計測される。計測位置は、透明電極層2のヘイズ率が計測された位置と同一位置であることが好ましい。
具体的に、透明電極層2及び第1セル層91が製膜された基板1の各計測位置に、第1セル層91側から所定波長の計測光(例えば、波長625nmの光)が照射される。基板1を透過した透過光は、基板側に配置された検出素子で検出される。予め作成された透過光強度と第1セル層91の膜厚とを関連づけるグラフに基づき、検出された各計測位置での透過強度から各計測位置での第1セル層91の膜厚Dが算出される。計測された各計測位置での第1セル層膜厚Dは、後述する第2セル層膜厚計測装置の膜厚算出部に格納される。
After the first cell layer 91 is formed, the thickness of the first cell layer 91 at an arbitrary position within the substrate surface is measured using a transmission film thickness meter. The measurement position is preferably the same position as the position where the haze ratio of the transparent electrode layer 2 is measured.
Specifically, measurement light of a predetermined wavelength (for example, light having a wavelength of 625 nm) is irradiated from the first cell layer 91 side to each measurement position of the substrate 1 on which the transparent electrode layer 2 and the first cell layer 91 are formed. The The transmitted light that has passed through the substrate 1 is detected by a detection element arranged on the substrate side. Based on a graph that associates the transmitted light intensity and the film thickness of the first cell layer 91 that are created in advance, the film thickness D 1 of the first cell layer 91 at each measurement position is calculated from the detected transmission intensity at each measurement position. Calculated. The first cell layer thickness D 1 of the in each measurement position is measured is stored in the film thickness calculating unit of the second cell layer thickness measuring apparatus described later.

次に、第1セル層91の上に第2セル層92としての結晶質シリコンp層41、結晶質シリコンi層42、及び、結晶質シリコンn層43を順次製膜する。   Next, a crystalline silicon p layer 41, a crystalline silicon i layer 42, and a crystalline silicon n layer 43 as the second cell layer 92 are sequentially formed on the first cell layer 91.

図6は、第2セル層製膜に用いるプラズマCVD薄膜製造装置の構成の一部を示す部分斜視図である。図中に矢印でXYZ方向を示す。
大面積基板用製膜装置では、一般に、複数の放電電極が配置される。放電電極103は、本実施の形態では、8個の放電電極103a〜103hを備え、各々は、互いに略平行にX方向へ伸びる二本の横電極120と、二本の横電極120の間に設けられ互いに略平行にY方向へ伸びる複数の棒状の縦電極121とを備える。放電電極103a〜103hのそれぞれに対して、給電点153側には、整合器113at〜113htと、高周波給電伝送路112a,114a、熱媒体供給管115aおよび原料ガス配管116aがそれぞれ設けられている。また、給電点154側には、整合器113ab〜113hb(113hbは図示されず)と、高周波給電伝送路112b,114bと、熱媒体供給管115bおよび原料ガス配管116bがそれぞれ設けられている。なお図6においては、図を見やすくするために整合器113at,113ab,113htのみを表示し、他の整合器の表示を省略している。
放電電極103a〜103hの各々は、給電点153と給電点154の近傍に接続された原料ガス配管116aと116bから原料ガスを供給され、この原料ガスを、図中の矢印に示す方向(対向電極側)へ略均一に放出する。放電電極103a〜103hの給電点153には、高周波電源(不図示)から高周波電力が供給され、給電点154には、別の高周波電源(不図示)から高周波電力が供給される。
ただし、放電電極の数は必ずしも8個ではなく、これよりも多い場合と少ない場合とがあり、特に限定されるものではない。放電電極103a〜103hへの電力供給を、8個を超えるまたは8個未満の整合器113a、113b及び高周波給電伝送路114a、114bとの組みで行うことも可能である。また各々個別の高周波電源部(不図示)から電力を供給しても良い。これら場合、その組の数に対応するように、放電電極103a〜103hを加減して組分けが好ましい。
FIG. 6 is a partial perspective view showing a part of the configuration of the plasma CVD thin film manufacturing apparatus used for forming the second cell layer. XYZ directions are indicated by arrows in the figure.
In a large area substrate deposition apparatus, a plurality of discharge electrodes are generally arranged. In the present embodiment, the discharge electrode 103 includes eight discharge electrodes 103a to 103h, each of which is disposed between the two horizontal electrodes 120 extending in the X direction substantially parallel to each other and the two horizontal electrodes 120. And a plurality of rod-like vertical electrodes 121 extending in the Y direction substantially parallel to each other. Matching units 113at to 113ht, high-frequency power supply transmission lines 112a and 114a, a heat medium supply pipe 115a, and a raw material gas pipe 116a are provided on the power supply point 153 side with respect to each of the discharge electrodes 103a to 103h. Matching units 113ab to 113hb (113hb is not shown), high-frequency power supply transmission lines 112b and 114b, a heat medium supply pipe 115b, and a raw material gas pipe 116b are provided on the power supply point 154 side. In FIG. 6, only the matching units 113 at, 113 ab, and 113 ht are displayed for easy understanding of the drawing, and the other matching units are not shown.
Each of the discharge electrodes 103a to 103h is supplied with source gas from source gas pipes 116a and 116b connected in the vicinity of the feeding point 153 and the feeding point 154, and this source gas is supplied in the direction indicated by the arrow in the figure (counter electrode). To the side). High-frequency power is supplied from a high-frequency power source (not shown) to the feeding point 153 of the discharge electrodes 103a to 103h, and high-frequency power is supplied to the feeding point 154 from another high-frequency power source (not shown).
However, the number of discharge electrodes is not necessarily eight, and there are cases where the number of discharge electrodes is larger or smaller, and is not particularly limited. It is also possible to supply power to the discharge electrodes 103a to 103h by a combination of more than eight or less than eight matching units 113a and 113b and high-frequency power transmission lines 114a and 114b. Moreover, you may supply electric power from each separate high frequency power supply part (not shown). In these cases, the grouping is preferably performed by adjusting the discharge electrodes 103a to 103h so as to correspond to the number of the groups.

微結晶シリコンを主とするi層膜をプラズマCVD法で形成するにあたり、プラズマ放電電極と基板1の表面との距離は、3mm以上10mm以下にすることが好ましい。3mmより小さい場合、大型基板に対応する製膜室内の各構成機器精度から距離を一定に保つことが難しくなるとともに、近過ぎて放電が不安定になる恐れがある。10mmより大きい場合、十分な製膜速度(1nm/s以上)を得難くなるとともに、プラズマの均一性が低下しイオン衝撃により膜質が低下する。   In forming the i-layer film mainly composed of microcrystalline silicon by the plasma CVD method, the distance between the plasma discharge electrode and the surface of the substrate 1 is preferably 3 mm or more and 10 mm or less. When it is smaller than 3 mm, it is difficult to keep the distance constant from the accuracy of each component device in the film forming chamber corresponding to the large substrate, and there is a possibility that the discharge becomes unstable because it is too close. When it is larger than 10 mm, it is difficult to obtain a sufficient film forming speed (1 nm / s or more), and the uniformity of the plasma is lowered and the film quality is lowered by ion bombardment.

図6の薄膜製造装置を用い、減圧雰囲気:3000Pa以下、基板温度:約200℃、プラズマ発生周波数:40MHz以上100MHz以下にて、順に結晶質シリコンp層41、結晶質シリコンi層42、結晶質シリコンn層43を製膜し、第2セル層92を形成する。結晶質シリコンp層41はBドープした微結晶シリコンを主とし、膜厚10nm以上50nm以下である。結晶質シリコンi層42は微結晶シリコンを主とし、膜厚は1.2μm以上3.0μm以下である。結晶質シリコンn層43はPドープした微結晶シリコンを主とし、膜厚20nm以上50nm以下である。   Using the thin film manufacturing apparatus shown in FIG. 6, in a reduced pressure atmosphere: 3000 Pa or less, a substrate temperature: about 200 ° C., a plasma generation frequency: 40 MHz to 100 MHz, a crystalline silicon p layer 41, a crystalline silicon i layer 42, and a crystalline material in this order. A silicon n layer 43 is formed, and a second cell layer 92 is formed. The crystalline silicon p layer 41 is mainly made of B-doped microcrystalline silicon and has a thickness of 10 nm to 50 nm. The crystalline silicon i layer 42 is mainly made of microcrystalline silicon and has a film thickness of 1.2 μm or more and 3.0 μm or less. The crystalline silicon n layer 43 is mainly made of P-doped microcrystalline silicon and has a thickness of 20 nm to 50 nm.

第2セル層92製膜後、基板面内の任意位置における第2セル層92の膜厚が計測される。計測位置は、透明電極層2のヘイズ率が計測された位置と同一位置であることが好ましい。
第2セル層の膜厚測定に使用する膜厚計測装置は、透過膜厚計とされる。第2セル層膜厚計測装置は、透過率計測部と膜厚算出部とを備える。透過率計測部は、照射部と検出部と透過率算出部とを備える。
After the second cell layer 92 is formed, the film thickness of the second cell layer 92 at an arbitrary position within the substrate surface is measured. The measurement position is preferably the same position as the position where the haze ratio of the transparent electrode layer 2 is measured.
The film thickness measuring device used for measuring the film thickness of the second cell layer is a transmission film thickness meter. The second cell layer film thickness measurement apparatus includes a transmittance measurement unit and a film thickness calculation unit. The transmittance measuring unit includes an irradiating unit, a detecting unit, and a transmittance calculating unit.

照射部は、透明電極層2及び光電変換層3が形成された基板1の各計測位置に、第2セル層92側から所定波長の計測光(例えば、波長625nmの光)を照射する。基板1を透過した透過光は、基板側に配置された検出部で検出される。
透過率算出部は、照射部から照射された計測光強度I、及び、検出部で検出された透過光強度Iから、式(1)より透過率Tを算出する。
透過率 T=I/I×100(%) ・・・(1)
The irradiation unit irradiates each measurement position of the substrate 1 on which the transparent electrode layer 2 and the photoelectric conversion layer 3 are formed with measurement light having a predetermined wavelength (for example, light having a wavelength of 625 nm) from the second cell layer 92 side. The transmitted light that has passed through the substrate 1 is detected by a detector disposed on the substrate side.
The transmittance calculation unit calculates the transmittance T from Equation (1) from the measured light intensity I 0 irradiated from the irradiation unit and the transmitted light intensity I detected by the detection unit.
Transmittance T = I / I 0 × 100 (%) (1)

一般に、透過光強度Iは、ベールの法則より、式(2)で表される。
I=I(1−R)exp(−αD) ・・・(2)
ただし、R:反射率、α:吸収係数、D:膜厚である。従って、膜厚Dは、式(3)で表される。
D=A+BT ・・・(3)
ただし、A,Bは定数である。
In general, the transmitted light intensity I is expressed by Equation (2) from Beer's law.
I = I 0 (1-R) exp (−αD) (2)
However, R: reflectance, α: absorption coefficient, D: film thickness. Therefore, the film thickness D is represented by the formula (3).
D = A + BT (3)
However, A and B are constants.

本実施形態では、式(3)に基づき、透明電極層、第1セル層及び第2セル層の物性を考慮した第2セル層膜厚算出式を導出した。
透明電極層は、計測光(入射光)を光電変換層に到達させるために、透過率が高い必要がある。一方、透明電極層の表面形状に起因する光散乱は、透明電極層の透過率及び吸収に影響を与える。従って、第2セル層膜厚算出式の導出にあたり、透明電極層のヘイズ率を考慮し、透明電極層の膜厚の影響は無視される。
第1セル層は、透明電極層を透過した計測光(入射光)を吸収する。すなわち、第1セル層の膜厚により、計測光の透過率は変化する。第1セル層の膜質は、計測光の透過率に影響しない。従って、第2セル層膜厚算出式の導出では、第1セル層の膜厚を考慮する。
第2セル層は、第1セル層を透過した計測光を吸収する。計測光の透過率は、第2セル層の膜厚により変化するが、第2セル層の膜質(結晶性)の影響は、膜厚の影響に比べて十分に小さいため、重要な要素とならない。従って、第2セル層膜厚算出式の導出では、第2セル層の膜厚を考慮する。
In the present embodiment, based on the formula (3), a formula for calculating the second cell layer thickness considering the physical properties of the transparent electrode layer, the first cell layer, and the second cell layer was derived.
The transparent electrode layer needs to have high transmittance in order to allow measurement light (incident light) to reach the photoelectric conversion layer. On the other hand, light scattering caused by the surface shape of the transparent electrode layer affects the transmittance and absorption of the transparent electrode layer. Therefore, in deriving the formula for calculating the second cell layer thickness, the influence of the thickness of the transparent electrode layer is ignored in consideration of the haze ratio of the transparent electrode layer.
The first cell layer absorbs measurement light (incident light) transmitted through the transparent electrode layer. That is, the transmittance of the measurement light varies depending on the film thickness of the first cell layer. The film quality of the first cell layer does not affect the measurement light transmittance. Therefore, in the derivation of the second cell layer thickness calculation formula, the thickness of the first cell layer is taken into consideration.
The second cell layer absorbs measurement light transmitted through the first cell layer. The transmittance of the measurement light varies depending on the film thickness of the second cell layer, but the influence of the film quality (crystallinity) of the second cell layer is sufficiently small compared with the influence of the film thickness, and thus does not become an important factor. . Therefore, in the derivation of the second cell layer thickness calculation formula, the thickness of the second cell layer is taken into consideration.

第2セル層膜厚算出式(4)は、透明電極層のヘイズ率H、第1セル層膜厚D、及び第2セル層膜厚Dを式(3)に組み込み、展開したものである。
=a+bH+c(logT)+d(logT)+eH(logT)+fD+gDH+hD(logT) ・・・(4)
式(4)中のa〜hは、第2セル層膜厚が既知サンプルの測定結果から、フィッティングにより導出した検量線定数である。式(4)の第2項bH及び第5項eH(logT)は、ヘイズ率に関する補正係数に相当する。第4項d(logT)は、フィッティング精度を向上させるために追加した項である。第6項fD及び第8項hD(logT)は、第1セル層膜厚に関する補正係数に相当する。第7項gDHは、ヘイズ率及び第1セル層膜厚に関する補正係数に相当する。
The formula (4) for calculating the second cell layer thickness is obtained by incorporating the haze ratio H of the transparent electrode layer, the first cell layer thickness D 1 , and the second cell layer thickness D 2 into the formula (3). It is.
D 2 = a + bH + c (logT) + d (logT) 2 + eH (logT) + fD 1 + gD 1 H + hD 1 (logT) (4)
In the formula (4), a to h are calibration curve constants derived by fitting from the measurement results of samples with known second cell layer thicknesses. The second term bH and the fifth term eH (logT) in Equation (4) correspond to a correction coefficient related to the haze ratio. The fourth term d (logT) 2 is a term added to improve the fitting accuracy. The sixth term fD 1 and the eighth term hD 1 (logT) correspond to a correction coefficient related to the first cell layer thickness. The seventh term gD 1 H corresponds to a correction coefficient related to the haze ratio and the first cell layer thickness.

透過率算出部で算出された基板面内の各計測位置における透過率Tは、膜厚算出部に出力される。膜厚計測装置の膜厚算出部に、式(4)が格納されている。膜厚算出部は、出力された透過率Tと、格納された各計測位置におけるヘイズ率H及び第1セル層膜厚Dとを式(4)に代入し、各計測位置での第2セル層の膜厚Dを算出する。
膜厚算出部は、各計測位置での第2セル層膜厚Dに基づき、第2セル層膜厚の基板面内分布を表す図を作成しても良い。
The transmittance T at each measurement position in the substrate surface calculated by the transmittance calculator is output to the film thickness calculator. Formula (4) is stored in the film thickness calculation unit of the film thickness measuring apparatus. The film thickness calculation unit substitutes the output transmittance T, the stored haze ratio H at each measurement position, and the first cell layer film thickness D 1 into Equation (4), and the second film thickness at each measurement position. calculating the thickness D 2 of the cell layer.
The film thickness calculating unit, based on the second cell layer thickness D 2 at each measurement position may create diagram representing the second cell layer film substrate in-plane distribution of the thickness.

各計測位置での第2セル層膜厚Dは、予め設定された許容膜厚範囲と比較される。第2セル層膜厚Dが許容膜厚範囲内である場合、製膜条件が変更されずに、第2セル層の形成が継続される。第2セル層膜厚Dが許容膜厚範囲外である場合、製膜条件の調整が行われる。 The second cell layer thickness D 2 at each measurement position is compared with preset allowable thickness range. If the second cell layer thickness D 2 is within an allowable film thickness range, the film condition is not changed, the formation of the second cell layer is continued. If the second cell layer thickness D 2 is out of the allowable film thickness range, the adjustment of the deposition conditions is performed.

第2セル層の膜厚の大部分は結晶質シリコンi層が占めるため、特に結晶質シリコンi層42の膜厚調整が重要である。
具体的に、第2セル層膜厚Dが基板全体にわたって許容膜厚範囲から外れる場合、結晶質シリコンi層42製膜時の投入電力密度、製膜圧力、及び製膜時間を調整する。第2セル層膜厚に基板面内分布があり、許容膜厚範囲から外れるDが局所的に発生している場合、結晶質シリコンi層42の製膜において、Dの分布に対応させて放電電極の投入電力密度や原料ガス配管から供給される原料ガス(Hガス、SiHガス)流量を調整する。
第2セル層膜厚DやDの基板面内分布に基づいて、高周波電源、圧力計、及び流量計など薄膜製造装置の各機器の異常を検出し、機器の調整により製膜条件を調整しても良い。
Since the crystalline silicon i layer occupies most of the film thickness of the second cell layer, it is particularly important to adjust the thickness of the crystalline silicon i layer 42.
Specifically, the second cell layer thickness D 2 may deviate from the allowable thickness range across the substrate, adjusts input power density at the crystalline silicon i-layer 42 made of film, film pressure, and the film period. When the second cell layer film thickness has a distribution in the substrate surface and D 2 that deviates from the allowable film thickness range is locally generated, in the film formation of the crystalline silicon i layer 42, it is made to correspond to the distribution of D 2. Then, the input power density of the discharge electrode and the flow rate of the source gas (H 2 gas, SiH 4 gas) supplied from the source gas pipe are adjusted.
Based on the in-plane distribution of the second cell layer thickness D 2 and D 2 , the abnormality of each device of the thin film manufacturing apparatus such as a high frequency power source, a pressure gauge, and a flow meter is detected, and the film forming conditions are adjusted by adjusting the device You may adjust it.

別の基板に対して、調整後の製膜条件にて第1セル層上に第2セル層が形成される。別基板の各計測位置について、製膜条件調整後の第2セル層膜厚D’が、上述の膜厚計測装置を用いて計測される。各計測位置における製膜条件調整後の第2セル層(結晶質シリコンi層)膜厚D’が、許容膜厚範囲を満たすまで、製膜条件調整と膜厚計測とが繰り返される。製膜条件調整後の第2セル層膜厚D’が許容膜厚範囲となると、最終的に調整された製膜条件で第2セル層の形成が継続される。 A second cell layer is formed on the first cell layer on another substrate under the adjusted film forming conditions. For each measurement position on the different substrate, the second cell layer film thickness D 2 ′ after film formation condition adjustment is measured using the above-described film thickness measurement apparatus. Film formation condition adjustment and film thickness measurement are repeated until the second cell layer (crystalline silicon i layer) film thickness D 2 ′ after film formation condition adjustment at each measurement position satisfies the allowable film thickness range. When the second cell layer film thickness D 2 ′ after the film formation condition adjustment is within the allowable film thickness range, the formation of the second cell layer is continued under the finally adjusted film formation condition.

なお、許容膜厚範囲は、膜厚計測装置の膜厚算出部が、第1セル層膜厚Dに基づき算出し設定した数値範囲とすることも可能である。 Incidentally, the allowable film thickness range, the film thickness calculating unit of the film thickness measuring apparatus, it is also possible to calculate and set the numerical value range on the basis of the first cell layer thickness D 1.

上記工程により、基板面内の第2セル層膜厚は、所定膜厚範囲内の値でほぼ一定となり、バッチ間の第2セル層膜厚の変動幅が抑制される。   By the above process, the film thickness of the second cell layer in the substrate surface becomes substantially constant at a value within a predetermined film thickness range, and the fluctuation range of the film thickness of the second cell layer between batches is suppressed.

本実施形態において、第1セル層91と第2セル層92の間に、接触性を改善するとともに電流整合性を取るために半反射膜となる中間コンタクト層を設けても良い。中間コンタクト層として、膜厚:20nm以上100nm以下のGZO(GaドープZnO)膜を、ターゲット:GaドープZnO焼結体を用いてスパッタリング装置により製膜する。また、中間コンタクト層5を設けない場合もある。   In the present embodiment, an intermediate contact layer serving as a semi-reflective film may be provided between the first cell layer 91 and the second cell layer 92 in order to improve the contact property and obtain current matching. As an intermediate contact layer, a GZO (Ga-doped ZnO) film having a thickness of 20 nm to 100 nm is formed by sputtering using a target: Ga-doped ZnO sintered body. Further, the intermediate contact layer 5 may not be provided.

(5)図2(e):
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から照射する。パルス発振:10kHzから20kHzとして、加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約100μmから150μmの横側を、溝11を形成するようにレーザーエッチングする。またこのレーザーは基板1側から照射しても良く、この場合は光電変換層3の非晶質シリコン系の第1セル層で吸収されたエネルギーで発生する高い蒸気圧を利用して光電変換層3をエッチングできるので、更に安定したレーザーエッチング加工を行うことが可能となる。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め公差を考慮して選定する。
(5) FIG. 2 (e):
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the film surface side of the photoelectric conversion layer 3 as indicated by an arrow in the figure. Pulse oscillation: 10 kHz to 20 kHz, laser power is adjusted so as to be suitable for the processing speed, and laser etching is performed so that grooves 11 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from about 100 μm to 150 μm. To do. Further, this laser may be irradiated from the substrate 1 side. In this case, the photoelectric conversion layer is formed by utilizing a high vapor pressure generated by the energy absorbed in the amorphous silicon-based first cell layer of the photoelectric conversion layer 3. Since 3 can be etched, a more stable laser etching process can be performed. The position of the laser etching line is selected in consideration of positioning tolerances so as not to intersect with the etching line in the previous process.

(6)図3(a):
裏面電極層4としてAg膜/Ti膜を、スパッタリング装置により、減圧雰囲気、製膜温度:150℃から200℃にて製膜する。本実施形態では、Ag膜:150nm以上500nm以下、これを保護するものとして防食効果の高いTi膜:10nm以上20nm以下を、この順に積層する。あるいは、裏面電極層4を、25nmから100nmの膜厚を有するAg膜と、15nmから500nmの膜厚を有するAl膜との積層構造としても良い。結晶質シリコンn層43と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間に、スパッタリング装置により、膜厚:50nm以上100nm以下のGZO(GaドープZnO)膜を製膜して設けても良い。
(6) FIG. 3 (a):
An Ag film / Ti film is formed as the back electrode layer 4 by a sputtering apparatus at a reduced pressure atmosphere and at a film forming temperature of 150 ° C. to 200 ° C. In this embodiment, an Ag film: 150 nm or more and 500 nm or less, and a Ti film having a high anticorrosion effect: 10 nm or more and 20 nm or less are stacked in this order to protect them. Alternatively, the back electrode layer 4 may have a laminated structure of an Ag film having a thickness of 25 nm to 100 nm and an Al film having a thickness of 15 nm to 500 nm. For the purpose of reducing the contact resistance between the crystalline silicon n layer 43 and the back electrode layer 4 and improving the light reflection, a film thickness of 50 nm or more and 100 nm or less is formed between the photoelectric conversion layer 3 and the back electrode layer 4 by a sputtering apparatus. A GZO (Ga-doped ZnO) film may be formed and provided.

(7)図3(b):
基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から照射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの250μmから400μmの横側を、溝12を形成するようにレーザーエッチングする。
(7) FIG. 3 (b):
The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is irradiated from the substrate 1 side as indicated by the arrow in the figure. The laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time. Pulse oscillation: laser power is adjusted so as to be suitable for the processing speed from 1 kHz to 10 kHz, and laser etching is performed so that grooves 12 are formed on the lateral side of the laser etching line of the transparent electrode layer 2 from 250 μm to 400 μm. .

(8)図3(c)と図3(a):
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX−Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から照射する。レーザー光が透明電極層2と光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1kHz以上10kHz以下として加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5nmから20mmの位置を、図3(c)に示すように、X方向絶縁溝15を形成するようにレーザーエッチングする。なお、図3(c)では、光電変換層3が直列に接続された方向に切断したX方向断面図となっているため、本来であれば絶縁溝15位置には裏面電極層4/光電変換層3/透明電極層2の膜研磨除去をした周囲膜除去領域14がある状態(図3(a)参照)が表れるべきであるが、基板1の端部への加工の説明の便宜上、この位置にY方向断面を表して形成された絶縁溝をX方向絶縁溝15として説明する。このとき、Y方向絶縁溝は後工程で基板1周囲膜除去領域の膜面研磨除去処理を行うので、設ける必要がない。
(8) FIG. 3 (c) and FIG. 3 (a):
The power generation region is divided to eliminate the influence that the serial connection portion due to laser etching is likely to be short-circuited at the film edge around the substrate edge. The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is irradiated from the substrate 1 side. The laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 is removed. Pulse oscillation: 1 kHz or more and 10 kHz or less, the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 nm to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove as shown in FIG. Laser etching is performed to form 15. In addition, in FIG.3 (c), since it becomes X direction sectional drawing cut | disconnected in the direction in which the photoelectric converting layer 3 was connected in series, the back surface electrode layer 4 / photoelectric conversion is originally in the position of the insulating groove 15 A state (see FIG. 3A) where there is a peripheral film removal region 14 obtained by polishing and removing the layer 3 / transparent electrode layer 2 should appear, but for the convenience of explanation of processing to the end of the substrate 1, The insulating groove formed to represent the Y-direction cross section at the position will be described as the X-direction insulating groove 15. At this time, the Y-direction insulating groove does not need to be provided because the film surface polishing removal processing of the peripheral film removal region of the substrate 1 is performed in a later process.

絶縁溝15は基板1の端より5nmから15mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール6内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。   The insulating groove 15 exhibits an effective effect in suppressing external moisture intrusion into the solar cell module 6 from the end of the solar cell panel by terminating the etching at a position of 5 nm to 15 mm from the end of the substrate 1. Therefore, it is preferable.

尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。   In addition, although the laser beam in the above process is made into a YAG laser, there exists what can use a YVO4 laser, a fiber laser, etc. similarly.

(9)図4(a:太陽電池膜面側から見た図、b:受光面の基板側から見た図):
後工程のEVA等を介したバックシート24との健全な接着・シール面を確保するために、基板1周辺(周囲膜除去領域14)の積層膜は、段差があるとともに剥離し易いため、この膜を除去して周囲膜除去領域14を形成する。基板1の端から5〜20mmで基板1の全周囲にわたり膜を除去するにあたり、X方向は前述の図3(c)工程で設けた絶縁溝15よりも基板端側において、Y方向は基板端側部付近の溝10よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。
研磨屑や砥粒は基板1を洗浄処理して除去した。
(9) FIG. 4 (a: view seen from solar cell film surface side, b: view seen from substrate side of light receiving surface):
Since the laminated film around the substrate 1 (peripheral film removal region 14) has a step and is easy to peel off in order to ensure a sound adhesion / seal surface with the back sheet 24 via EVA or the like in a later process, The film is removed to form a peripheral film removal region 14. In removing the film over the entire circumference of the substrate 1 at 5 to 20 mm from the end of the substrate 1, the X direction is closer to the substrate end than the insulating groove 15 provided in the step of FIG. The back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 are removed by using grinding stone polishing, blast polishing, or the like on the substrate end side with respect to the groove 10 near the side portion.
Polishing debris and abrasive grains were removed by cleaning the substrate 1.

(10)図5(a)(b):
端子箱23の取付け部分はバックシート24に開口貫通窓を設けて集電板を取出す。この開口貫通窓部分には絶縁材を複数層で設置して外部からの湿分などの浸入を抑制する。
直列に並んだ一方端の太陽電池発電セルと、他方端部の太陽電池発電セルとから銅箔を用いて集電して太陽電池パネル裏側の端子箱23の部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
集電用銅箔などが所定位置に配置された後に、太陽電池モジュール6の全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
EVAの上に、防水効果の高いバックシート24を設置する。バックシート24は本実施形態では防水防湿効果が高いようにPETシート/Al箔/PETシートの3層構造よりなる。
バックシート24までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150〜160℃でプレスしながら、EVAを架橋させて密着させる。
(10) FIGS. 5A and 5B:
An attachment portion of the terminal box 23 is provided with an opening through window in the back sheet 24 to take out the current collector plate. Insulating materials are installed in a plurality of layers in the opening through window portion to suppress intrusion of moisture and the like from the outside.
Processing so that power can be taken out from the terminal box 23 on the back side of the solar battery panel by collecting copper foil from one end of the photovoltaic power generation cells arranged in series and the other end of the solar power generation cell. To do. In order to prevent a short circuit with each part, the copper foil arranges an insulating sheet wider than the copper foil width.
After the current collecting copper foil or the like is disposed at a predetermined position, an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is disposed so as to cover the entire solar cell module 6 and not protrude from the substrate 1. .
A back sheet 24 having a high waterproof effect is installed on the EVA. In this embodiment, the back sheet 24 has a three-layer structure of PET sheet / Al foil / PET sheet so that the waterproof and moisture-proof effect is high.
The EVA sheet is placed in a predetermined position until the back sheet 24 is deaerated with a laminator in a reduced pressure atmosphere and pressed at about 150 to 160 ° C., and EVA is crosslinked and brought into close contact.

(11)図5(a):
太陽電池モジュール6の裏側に端子箱23を接着剤で取付ける。
(12)図5(b):
銅箔と端子箱23の出力ケーブルとをハンダ等で接続し、端子箱23の内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル50が完成する。
(13)図5(c):
図5(b)までの工程で形成された太陽電池パネル50について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m)のソーラシミュレータを用いて行う。
(14)図5(d):
発電検査(図5(c))に前後して、外観検査をはじめ所定の性能検査を行う。
(11) FIG. 5 (a):
The terminal box 23 is attached to the back side of the solar cell module 6 with an adhesive.
(12) FIG. 5 (b):
The copper foil and the output cable of the terminal box 23 are connected by solder or the like, and the inside of the terminal box 23 is filled with a sealing agent (potting agent) and sealed. Thus, the solar cell panel 50 is completed.
(13) FIG. 5 (c):
A power generation inspection and a predetermined performance test are performed on the solar cell panel 50 formed in the steps up to FIG. The power generation inspection is performed using a solar simulator of AM1.5 and solar radiation standard sunlight (1000 W / m 2 ).
(14) FIG. 5 (d):
Before and after the power generation inspection (FIG. 5C), a predetermined performance inspection is performed including an appearance inspection.

図7に、式(4)において透明電極層のヘイズ率及び第1セル層膜厚を考慮して算出した第2セル層の結晶質シリコンi層膜厚と、タンデム型太陽電池モジュールの出力との関係を示す。図8に、式(4)において第1セル層膜厚のみを考慮して算出した第2セル層の結晶質シリコンi層膜厚と、タンデム型太陽電池モジュールの出力との関係を示す。図7及び図8において、横軸は第2セル層の結晶質シリコンi層膜厚、縦軸は規格化されたモジュール出力である。
図7では、第2セル層の結晶質シリコンi層の膜厚の測定誤差が抑制されることが分かる。図8では、透明電極層のヘイズ率の影響を考慮していないため、第2セル層の結晶質シリコンi層膜厚の測定誤差が大きくなり、膜厚測定値がばらついた。
以上の結果の通り、透明電極層のヘイズ率及び第1セル層膜厚を用いて第2セル層の結晶質シリコンi層膜厚を補正すれば、第2セル層の結晶質シリコンi層膜厚の測定誤差を抑制できる。
In FIG. 7, the crystalline silicon i layer thickness of the second cell layer calculated in consideration of the haze ratio of the transparent electrode layer and the first cell layer thickness in the formula (4), and the output of the tandem solar cell module The relationship is shown. FIG. 8 shows the relationship between the crystalline silicon i layer thickness of the second cell layer calculated in consideration of only the first cell layer thickness in Equation (4) and the output of the tandem solar cell module. 7 and 8, the horizontal axis represents the crystalline silicon i-layer thickness of the second cell layer, and the vertical axis represents the normalized module output.
In FIG. 7, it can be seen that the measurement error of the film thickness of the crystalline silicon i layer of the second cell layer is suppressed. In FIG. 8, since the influence of the haze ratio of the transparent electrode layer is not taken into account, the measurement error of the crystalline silicon i layer film thickness of the second cell layer becomes large, and the film thickness measurement value varies.
As described above, if the crystalline silicon i layer thickness of the second cell layer is corrected using the haze ratio of the transparent electrode layer and the first cell layer thickness, the crystalline silicon i layer film of the second cell layer is corrected. Thickness measurement error can be suppressed.

本発明の光電変換装置の製造方法により製造される光電変換装置の構成を表す概略図である。It is the schematic showing the structure of the photoelectric conversion apparatus manufactured by the manufacturing method of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel using the manufacturing method of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel using the manufacturing method of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel using the manufacturing method of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の製造方法を用いて太陽電池パネルを製造する一実施形態を説明する概略図である。It is the schematic explaining one Embodiment which manufactures a solar cell panel using the manufacturing method of the photoelectric conversion apparatus of this invention. 本実施形態の光電変換装置の製造方法に用いる薄膜製造装置の構成の一部を示す部分斜視図である。It is a fragmentary perspective view which shows a part of structure of the thin film manufacturing apparatus used for the manufacturing method of the photoelectric conversion apparatus of this embodiment. 透明電極層のヘイズ率及び第1セル層膜厚を考慮して算出した結晶質シリコンi層膜厚と、タンデム型太陽電池モジュールの出力との関係を示すグラフである。It is a graph which shows the relationship between the crystalline silicon i layer film thickness calculated in consideration of the haze rate of the transparent electrode layer, and the 1st cell layer film thickness, and the output of a tandem type solar cell module. 第1セル層膜厚のみを考慮して算出した結晶質シリコンi層膜厚と、タンデム型太陽電池モジュールの出力との関係を示すグラフである。It is a graph which shows the relationship between the crystalline silicon i layer film thickness calculated only considering the 1st cell layer film thickness, and the output of a tandem type solar cell module. 第2セル層のi層膜厚とモジュール出力との関係を示すグラフである。It is a graph which shows the relationship between i layer thickness of a 2nd cell layer, and a module output.

符号の説明Explanation of symbols

1 基板
2 透明電極層
3 光電変換層
4 裏面電極層
6 太陽電池モジュール
31 非晶質シリコンp層
32 非晶質シリコンi層
33 非晶質シリコンn層
41 結晶質シリコンp層
42 結晶質シリコンi層
43 結晶質シリコンn層
91 第1セル層
92 第2セル層
100 光電変換装置
103a〜103h 放電電極
113at,113ht,113ab 整合器
112a,114a,112b,114b 高周波給電伝送路
115a,115b 熱媒体供給管
116a,116b 原料ガス配管
153,154 給電点
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent electrode layer 3 Photoelectric conversion layer 4 Back electrode layer 6 Solar cell module 31 Amorphous silicon p layer 32 Amorphous silicon i layer 33 Amorphous silicon n layer 41 Crystalline silicon p layer 42 Crystalline silicon i Layer 43 Crystalline silicon n layer 91 1st cell layer 92 2nd cell layer 100 Photoelectric conversion device 103a to 103h Discharge electrode 113at, 113ht, 113ab Matching device 112a, 114a, 112b, 114b High-frequency power transmission path 115a, 115b Heat medium supply Pipe 116a, 116b Raw material gas pipe 153, 154 Feed point

Claims (8)

基板上に、透明電極層と、該透明電極層側から順に第1セル層及び第2セル層で構成される光電変換層とを備える光電変換装置における光電変換層の膜厚計測方法であって、
前記透明電極層及び前記光電変換層が形成された前記基板面内の任意の位置における透過率を計測する工程と、
該計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記第2セル層の膜厚を算出する工程とを含む膜厚計測方法。
A method for measuring a film thickness of a photoelectric conversion layer in a photoelectric conversion device comprising a transparent electrode layer and a photoelectric conversion layer composed of a first cell layer and a second cell layer in order from the transparent electrode layer side on a substrate. ,
Measuring the transmittance at an arbitrary position in the substrate surface on which the transparent electrode layer and the photoelectric conversion layer are formed;
Calculating the thickness of the second cell layer based on the measured transmittance, the haze rate of the transparent electrode layer measured in advance, and the thickness of the first cell layer measured in advance; A film thickness measuring method including
前記ヘイズ率及び前記第1セル層の膜厚が、前記基板面内における前記透過率が計測された位置と同一位置のヘイズ率及び膜厚とされる請求項1に記載の膜厚計測方法。   The film thickness measuring method according to claim 1, wherein the haze ratio and the film thickness of the first cell layer are the same as the position where the transmittance is measured in the substrate surface. 前記基板面内の任意の複数位置における前記第2セル層の膜厚を算出する請求項1または請求項2に記載の膜厚計測方法。   The film thickness measurement method according to claim 1, wherein the film thickness of the second cell layer at any plurality of positions in the substrate surface is calculated. 透明電極層と第1セル層及び第2セル層で構成される光電変換層とが形成された基板に対して所定波長の計測光を照射する照射部と、前記基板を透過した前記計測光の透過光を受光する検出部と、前記計測光の強度及び前記透過光の強度から透過率を算出する透過率算出部とを備える透過率計測部と、
該透過率計測部で計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記第2セル層の膜厚を算出する膜厚算出部とを備える膜厚計測装置。
An irradiation unit for irradiating measurement light of a predetermined wavelength to a substrate on which a transparent electrode layer and a photoelectric conversion layer composed of a first cell layer and a second cell layer are formed; and the measurement light transmitted through the substrate A transmittance measuring unit comprising: a detecting unit that receives transmitted light; and a transmittance calculating unit that calculates the transmittance from the intensity of the measurement light and the intensity of the transmitted light;
Based on the transmittance measured by the transmittance measuring unit, the haze rate of the transparent electrode layer measured in advance, and the thickness of the first cell layer measured in advance, the thickness of the second cell layer A film thickness measurement device comprising: a film thickness calculation unit that calculates
基板上に、透明電極層と、該透明電極層側から順に第1セル層及び第2セル層で構成される光電変換層とを備える光電変換装置の製造方法であって、
前記透明電極層及び前記光電変換層が形成された前記基板面内の任意位置における透過率を計測する工程と、
該計測された透過率と、予め測定された前記透明電極層のヘイズ率と、予め測定された前記第1セル層の膜厚とに基づき、前記基板面内の任意位置における前記第2セル層の膜厚を算出する工程と、
該算出された第2セル層の膜厚を、予め設定された許容膜厚範囲と比較する工程と、
前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記第2セル層の製膜条件を調整する工程とを含む光電変換装置の製造方法。
A method for producing a photoelectric conversion device comprising a transparent electrode layer and a photoelectric conversion layer composed of a first cell layer and a second cell layer in order from the transparent electrode layer side on a substrate,
Measuring the transmittance at an arbitrary position within the substrate surface on which the transparent electrode layer and the photoelectric conversion layer are formed;
Based on the measured transmittance, the haze rate of the transparent electrode layer measured in advance, and the thickness of the first cell layer measured in advance, the second cell layer at an arbitrary position in the substrate plane Calculating the film thickness of
Comparing the calculated thickness of the second cell layer with a preset allowable thickness range;
And adjusting the film forming conditions of the second cell layer when the film thickness of the second cell layer is out of the allowable film thickness range.
前記透過率を計測する工程において、前記基板面内の任意の複数位置での透過率を計測し、
前記第2セル層の膜厚を算出する工程において、前記任意の複数位置での透過率と、前記透明電極層のヘイズ率と、前記第1セル層の膜厚とに基づき、前記基板面内の任意の複数位置における前記第2セル層の膜厚を算出し、
少なくとも一の位置における前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記第2セル層の製膜条件を調整する請求項5に記載の光電変換装置の製造方法。
In the step of measuring the transmittance, the transmittance at any of a plurality of positions in the substrate surface is measured,
In the step of calculating the film thickness of the second cell layer, based on the transmittance at the plurality of arbitrary positions, the haze ratio of the transparent electrode layer, and the film thickness of the first cell layer, The film thickness of the second cell layer at any of a plurality of positions is calculated,
The method for manufacturing a photoelectric conversion device according to claim 5, wherein the film forming condition of the second cell layer is adjusted when the film thickness of the second cell layer at at least one position is out of the allowable film thickness range.
前記算出された複数位置における第2セル層の膜厚から、前記第2セル層の膜厚分布を取得する工程を更に含み、
少なくとも一の位置における前記第2セル層の膜厚が、前記許容膜厚範囲から外れる場合に、前記膜厚分布を基に、前記第2セル層の形成条件を調整する請求項6に記載の光電変換装置の製造方法。
Further including obtaining a film thickness distribution of the second cell layer from the calculated film thickness of the second cell layer at the plurality of positions,
The formation condition of the second cell layer is adjusted based on the film thickness distribution when the film thickness of the second cell layer in at least one position is out of the allowable film thickness range. A method for manufacturing a photoelectric conversion device.
前記透過率と、前記透過率が計測された位置と同一位置におけるヘイズ率と、前記透過率が計測された位置と同一位置における前記第1セル層の膜厚とに基づき、前記基板面内の任意位置における前記第2セル層の膜厚を算出する請求項5乃至請求項7のいずれか1項に記載の光電変換装置の製造方法。   Based on the transmittance, the haze rate at the same position as the position where the transmittance was measured, and the film thickness of the first cell layer at the same position as the position where the transmittance was measured, The method for manufacturing a photoelectric conversion device according to claim 5, wherein the film thickness of the second cell layer at an arbitrary position is calculated.
JP2008303004A 2008-11-27 2008-11-27 Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device Pending JP2010129784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303004A JP2010129784A (en) 2008-11-27 2008-11-27 Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303004A JP2010129784A (en) 2008-11-27 2008-11-27 Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2010129784A true JP2010129784A (en) 2010-06-10

Family

ID=42329975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303004A Pending JP2010129784A (en) 2008-11-27 2008-11-27 Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2010129784A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146533A (en) * 1998-11-12 2000-05-26 Sumitomo Metal Ind Ltd Instrument and method for measuring thickness of light- transmission body
JP2005134324A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Analytical method and quality control method for transparent conductive film, and solar cell
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer
JP2008203090A (en) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd Wavelength selection method, film thickness measurement method, film thickness measuring device, and system for manufacturing thin-film silicon-based device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146533A (en) * 1998-11-12 2000-05-26 Sumitomo Metal Ind Ltd Instrument and method for measuring thickness of light- transmission body
JP2005134324A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Analytical method and quality control method for transparent conductive film, and solar cell
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer
JP2008203090A (en) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd Wavelength selection method, film thickness measurement method, film thickness measuring device, and system for manufacturing thin-film silicon-based device

Similar Documents

Publication Publication Date Title
WO2010052953A1 (en) Photoelectric conversion device manufacturing method and photoelectric conversion device
JP5174179B2 (en) Method for manufacturing photoelectric conversion device
JP2009246029A (en) Photoelectric conversion device
JP5030745B2 (en) Method for manufacturing photoelectric conversion device
WO2011070805A1 (en) Process for production of photoelectric conversion device
JP2011061017A (en) Method of manufacturing photoelectric converter
JP5254917B2 (en) Method for manufacturing photoelectric conversion device
WO2010064455A1 (en) Photoelectric conversion device
WO2011040078A1 (en) Photoelectric conversion device
JP5324966B2 (en) Photoelectric conversion device manufacturing method and film forming device
JP2010129784A (en) Method and apparatus for measuring film thickness, and method of manufacturing photoelectric conversion device
KR101116945B1 (en) Method for manufacturing photoelectric conversion device, and photoelectric conversion device
JP5308225B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2011109011A (en) Photoelectric conversion device
WO2012036074A1 (en) Method for producing photovoltaic devices
WO2012014550A1 (en) Method for production of photoelectric conversion device
JP2010056238A (en) Photoelectric conversion device, and method of manufacturing the same
JP5308226B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2010251424A (en) Photoelectric conversion apparatus
JP2010199305A (en) Method of manufacturing photoelectric conversion device
JP2011096848A (en) Method of manufacturing photoelectric conversion device
JP2013055083A (en) Film forming condition setting method and method of manufacturing photoelectric conversion device
JP2012094763A (en) Film formation device and film formation method
JP2010118695A (en) Photoelectric conversion apparatus, and method of manufacturing the same
JP2011077380A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402