JP2005134079A - Condensation method and condenser for polystyrene pyrolysis gas - Google Patents

Condensation method and condenser for polystyrene pyrolysis gas Download PDF

Info

Publication number
JP2005134079A
JP2005134079A JP2003373251A JP2003373251A JP2005134079A JP 2005134079 A JP2005134079 A JP 2005134079A JP 2003373251 A JP2003373251 A JP 2003373251A JP 2003373251 A JP2003373251 A JP 2003373251A JP 2005134079 A JP2005134079 A JP 2005134079A
Authority
JP
Japan
Prior art keywords
condenser
cooling pipe
polystyrene
pyrolysis gas
scraping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003373251A
Other languages
Japanese (ja)
Inventor
Yoshinori Koyama
佳則 小山
Masahiro Ogasawara
昌弘 小笠原
Yoichi Kobayashi
洋一 小林
Masaki Nagai
雅規 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2003373251A priority Critical patent/JP2005134079A/en
Publication of JP2005134079A publication Critical patent/JP2005134079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove the contamination of in cooling tubes of in a condenser for condensing polystyrene pyrolysis gas. <P>SOLUTION: The cooling tubes 8 are arranged within the condenser 6 to pass a coolant therein. The polystyrene pyrolysis gas from a thermal decomposition device 1 is supplied to the condenser 6, in which it is cooled by the heat-exchange with the coolant in the cooling tubes 8, and a high boiling-point component containing styrene is condensed as an oil. When the surfaces of the cooling tubes 8 are contaminated, the oil obtained by the condensation is sprayed onto the surface of the cooling tubes 8 by a spray means 22, and the contamination is removed by the cleaning effect by spraying. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリスチレンの熱分解により生成する熱分解ガスを凝縮器に供給し、凝縮器内部に配置した冷却管の表面に接触させて凝縮する方法およびその凝縮器に関する。   The present invention relates to a method of supplying a pyrolysis gas generated by pyrolysis of polystyrene to a condenser and bringing it into contact with the surface of a cooling pipe disposed inside the condenser to condense, and the condenser.

工場や家庭からは多量のプラスチック類が廃棄物として排出されるが、これら廃プラスチックの中でポリスチレンは極めて多い。ポリスチレンには食品トレイ、梱包材および緩衝材として使用された発泡ポリスチレンと、家電製品などの射出成形品やブロー成形品等の非発泡ポリスチレンがある。このようなポリスチレンにはホモポリマーとAS樹脂やABS樹脂等のコポリマーがあるが、本発明ではこれらを全てポリスチレンとして扱う。   A large amount of plastics is discharged from factories and households as waste, and among these waste plastics, polystyrene is extremely large. Polystyrene includes foamed polystyrene used as food trays, packing materials and cushioning materials, and non-foamed polystyrene such as injection molded products such as home appliances and blow molded products. Such polystyrene includes homopolymers and copolymers such as AS resin and ABS resin. In the present invention, these are all handled as polystyrene.

ポリスチレンの多くは熱分解装置により酸素不存在下で低分子に熱分解して燃料やスチレンモノマーとして回収される。熱分解装置は槽型の熱分解器(熱分解槽)または管型の熱分解器(反応管)を備えており、槽型の熱分解器は底部が円錐形に形成された筒状の槽本体に攪拌及び残渣掻き取り用のスクレーパを設けたもので、ある程度の滞留時間をかけてバッチ式でポリスチレンを熱分解するのに適している。また管型の熱分解器は内部にポリスチレンを通過させながら熱分解するもので、連続運転に適している。   Most polystyrene is thermally decomposed into low molecules in the absence of oxygen by a thermal decomposition apparatus and recovered as fuel or styrene monomer. The pyrolyzer has a tank-type pyrolyzer (pyrolysis tank) or a tube-type pyrolyzer (reaction tube), and the tank-type pyrolyzer has a cylindrical tank whose bottom is formed in a conical shape. The main body is provided with a scraper for stirring and scraping off residues, and is suitable for thermally decomposing polystyrene in a batch manner with a certain residence time. The tube-type pyrolyzer decomposes while passing polystyrene inside, and is suitable for continuous operation.

ポリスチレンの熱分解は常圧状態と減圧状態のいずれも可能であるが、スチレンモノマーを高い収率で回収する場合は2kPa〜10kPa程度の減圧状態で熱分解することが望ましい。減圧状態で熱分解するとエチルベンゼンやトルエン等の低沸点成分やスチレンのトリマーやダイマー等の重質成分などの望ましくない副生物の生成を抑制できる。このようにポリスチレンを減圧状態で熱分解する方法は特許文献1に記載されている。   Polystyrene can be thermally decomposed in either a normal pressure state or a reduced pressure state. However, when recovering a styrene monomer in a high yield, it is desirable to thermally decompose in a reduced pressure state of about 2 kPa to 10 kPa. Pyrolysis under reduced pressure can suppress the formation of undesirable by-products such as low-boiling components such as ethylbenzene and toluene and heavy components such as styrene trimer and dimer. A method for thermally decomposing polystyrene in a reduced pressure state is described in Patent Document 1.

しかし、例えば減圧状態の管型の熱分解器でポリスチレンを熱分解すると、内部の熱分解ガスの流速が増加し、出口側の配管からの未分解ポリスチレン、炭化物および無機物粉などの不純物の流出が多くなる。熱分解器の出口側の配管には熱分解ガスを冷却して凝縮する凝縮器が設置されるが、これら不純物が凝縮器内に流入すると内部に配置した冷却管の表面に汚れとして付着し、その冷却効率を低下させる。   However, for example, when polystyrene is pyrolyzed in a tube-type pyrolyzer under reduced pressure, the flow rate of the internal pyrolysis gas increases, and impurities such as undecomposed polystyrene, carbide and inorganic powder flow out from the piping on the outlet side. Become more. The condenser on the outlet side of the pyrolyzer is installed with a condenser that cools and condenses the pyrolysis gas, but when these impurities flow into the condenser, they adhere to the surface of the cooling pipe placed inside as dirt, The cooling efficiency is reduced.

一方、ポリスチレンの熱分解温度は高いほど熱分解効率が向上する。例えば熱分解温度を600℃〜800℃程度の高温でポリスチレンを熱分解すると、スチレンモノマーの収率を70%程度まで高めることが可能になる。しかし例えば高い熱分解温度に維持した管型の熱分解器でポリスチレンを熱分解したときには、前記と同様に内部の熱分解ガスの流速が増加し、出口側の配管から流出する不純物の量が多くなり、凝縮器における冷却管表面の汚れを増大させる。   On the other hand, the higher the thermal decomposition temperature of polystyrene, the higher the thermal decomposition efficiency. For example, when polystyrene is thermally decomposed at a high temperature of about 600 ° C. to 800 ° C., the yield of styrene monomer can be increased to about 70%. However, for example, when polystyrene is pyrolyzed with a tubular pyrolyzer maintained at a high pyrolysis temperature, the flow rate of the internal pyrolysis gas increases as described above, and the amount of impurities flowing out from the piping on the outlet side is large. This increases the contamination of the cooling pipe surface in the condenser.

熱分解器から流出する不純物が凝縮器へ流入することをできるだけ抑制するため、熱分解器の出口側に直結して立ち上がる冷却器を設ける方法が特許文献2に提案されている。この方法は熱分解器から流出する熱分解ガスを冷却器で冷却し、凝縮し易い不純物を熱分解器内に戻すことにより、凝縮器への不純物の流入を抑制するものである。   In order to suppress as much as possible the impurities flowing out from the pyrolyzer from flowing into the condenser, Patent Document 2 proposes a method of providing a cooler that is directly connected to the outlet side of the pyrolyzer. In this method, the pyrolysis gas flowing out from the pyrolyzer is cooled by a cooler, and impurities that are likely to condense are returned into the pyrolyzer, thereby suppressing the inflow of impurities into the condenser.

特開平11−199875号公報Japanese Patent Laid-Open No. 11-199875 特願2003−64420号Japanese Patent Application No. 2003-64420

特許文献2に記載された冷却器を設置すると、凝縮器への不純物の流入量は大幅に抑制される。しかし冷却器で完全に不純物を捕捉することは困難であり、捕捉できなかった不純物は下流側に設置した凝縮器に流入する。そのため凝縮器を長時間運転すると冷却管の表面には次第に不純物が汚れとして付着し、伝熱を阻害して凝縮効率が低下していく。   When the cooler described in Patent Document 2 is installed, the amount of impurities flowing into the condenser is greatly suppressed. However, it is difficult to completely capture the impurities with the cooler, and the impurities that could not be trapped flow into the condenser installed downstream. For this reason, when the condenser is operated for a long time, impurities gradually adhere to the surface of the cooling pipe as dirt, which inhibits heat transfer and lowers the condensation efficiency.

凝縮効率を回復させるには定期的に熱分解システムの運転を中断して凝縮器を分解し、内部の冷却管表面に付着した汚れを清掃等により除去する必要がある。しかし管型の熱分解器は本来連続運転することを目的として設置することが多いので、それに接続した凝縮器を定期的に停止することは好ましくない。それを回避する方法として複数の凝縮器を並列に設置し、それらを切り換えて連続運転することも考えられるが、その場合には設備コストや運転コストの増大を招くので経済的でない。   In order to recover the condensation efficiency, it is necessary to periodically discontinue the operation of the thermal decomposition system, disassemble the condenser, and remove the dirt adhering to the internal cooling pipe surface by cleaning or the like. However, since a tube-type pyrolyzer is often installed for the purpose of continuous operation, it is not preferable to periodically stop the condenser connected thereto. As a method of avoiding this, it is conceivable to install a plurality of condensers in parallel and switch them to operate continuously.

そこで本発明は従来の熱分解装置における上記問題を解決することを課題とし、そのための新しい凝縮方法の提供を第1の目的とする。また本発明は該凝縮方法に適した構造を有する凝縮器の提供を第2の目的とする。   SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-mentioned problems in the conventional pyrolysis apparatus, and a first object is to provide a new condensation method therefor. The second object of the present invention is to provide a condenser having a structure suitable for the condensation method.

前記課題を解決する本発明に係る第1の発明は、ポリスチレンの熱分解により生成する熱分解ガスを凝縮器に供給し、凝縮器内部に配置した冷却管の表面にそれを接触させて凝縮する方法である。そして本方法は、冷却管の表面に汚れが付着したとき、凝縮により得られた油分を冷却管の表面に散布してその汚れを除去することを特徴とする(請求項1)。   The first invention according to the present invention that solves the above-mentioned problems is that the pyrolysis gas generated by the thermal decomposition of polystyrene is supplied to the condenser, and is condensed by bringing it into contact with the surface of the cooling pipe disposed inside the condenser. Is the method. And when this method adheres dirt on the surface of a cooling pipe, the oil content obtained by condensation is sprinkled on the surface of a cooling pipe, and the dirt is removed (claim 1).

また前記課題を解決する本発明に係る第2の発明は、ポリスチレンの熱分解により生成する熱分解ガスを凝縮器に供給し、凝縮器内部に配置した冷却管の表面にそれを接触させて凝縮する方法である。そして本方法は、冷却管の表面に汚れが付着したとき、その汚れを掻取手段で掻き取って除去することを特徴とする(請求項2)。   Further, the second invention according to the present invention for solving the above-mentioned problem is that the pyrolysis gas generated by the thermal decomposition of polystyrene is supplied to the condenser and condensed by bringing it into contact with the surface of the cooling pipe arranged inside the condenser. It is a method to do. And when this method adheres dirt on the surface of a cooling pipe, the dirt is scraped off and removed by a scraping means (claim 2).

また前記課題を解決する本発明に係る第3の発明は、ポリスチレンの熱分解により生成する熱分解ガスの凝縮器である。そして本凝縮器は内部に冷却管を配置した槽本体と、凝縮によって得られる油分を前記冷却管の表面に散布する油分散布手段を備えていることを特徴とする(請求項3)。   A third invention according to the present invention for solving the above-mentioned problems is a condenser for pyrolysis gas produced by thermal decomposition of polystyrene. And this condenser is equipped with the tank main body which has arrange | positioned the cooling pipe inside, and the oil dispersion | distribution cloth means which spreads the oil component obtained by condensation on the surface of the said cooling pipe (Claim 3).

また課題を解決する本発明に係る第4の発明は、ポリスチレンの熱分解により生成する熱分解ガスの凝縮器である。そして本凝縮器は内部に冷却管を配置した槽本体と、冷却管の表面の汚れを掻き取る掻取手段を備えていることを特徴とする(請求項4)。   A fourth invention according to the present invention for solving the problem is a condenser for pyrolysis gas produced by thermal decomposition of polystyrene. And this condenser is equipped with the tank main body which has arrange | positioned the cooling pipe inside, and the scraping means which scrapes off the dirt of the surface of a cooling pipe (Claim 4).

上記第4の発明に係る凝縮器において、前記掻取手段は、前記冷却管の表面に沿って往復移動可能に配置された掻取部と、掻取部に設けた従動マグネットと、槽本体の外側に設けた駆動マグネットを有することができる(請求項5)。   In the condenser according to the fourth aspect of the present invention, the scraping means includes a scraping portion disposed so as to be capable of reciprocating along the surface of the cooling pipe, a driven magnet provided in the scraping portion, and a tank body. A drive magnet provided on the outside can be provided.

また上記第4の発明に係る凝縮器において、前記掻取手段は、前記冷却管の表面に沿って往復移動可能に配置された掻取部と、掻取部から槽本体の外側に延長する駆動軸と、前記駆動軸の延長部に連結された往復駆動部を有することができる(請求項6)。   In the condenser according to the fourth aspect of the invention, the scraping means includes a scraping portion that is reciprocally movable along the surface of the cooling pipe, and a drive that extends from the scraping portion to the outside of the tank body. A shaft and a reciprocating drive unit connected to an extension of the drive shaft can be provided.

前記第1の発明に係る凝縮方法は、冷却管の表面に汚れが付着したときに、凝縮により得られた油分を冷却管の表面に散布してその汚れを除去するので、凝縮器の運転を継続しながらその汚れを除去することができる。なお実験によれば冷却管の表面に付着した不純物の付着力は比較的弱く、散布圧力をそれ程高くしなくても油分の散布により容易に剥離して分離できる。また不純物に含まれる未分解ポリスチレンの一部は、凝縮により得られたスチレンを主成分とする油分により溶解し易いので、その面からも不純物の剥離・分離が容易に行われる。   In the condensation method according to the first aspect of the present invention, when dirt adheres to the surface of the cooling pipe, the oil obtained by condensation is sprayed on the surface of the cooling pipe to remove the dirt. The dirt can be removed while continuing. According to the experiment, the adhesion force of the impurities attached to the surface of the cooling pipe is relatively weak and can be easily separated and separated by spraying the oil without the spraying pressure being so high. Moreover, since a part of undecomposed polystyrene contained in the impurities is easily dissolved by the oil mainly composed of styrene obtained by the condensation, the impurities can be easily separated and separated from the surface.

さらに散布する洗浄液は凝縮によって得られたものであるから、特別な洗浄液を供給する装置を設ける必要がなく、洗浄後の油分は元に戻して再利用できるので運転コストも低い。また本方法は管型の熱交換器を用いてポリスチレンを熱分解する場合に特にその効果を発揮する。   Furthermore, since the cleaning liquid to be sprayed is obtained by condensation, it is not necessary to provide a device for supplying a special cleaning liquid, and the oil content after cleaning can be returned to the original state and reused, so the operating cost is low. This method is particularly effective when polystyrene is pyrolyzed using a tubular heat exchanger.

前記第2の発明にかかる凝縮方法は、冷却管の表面に汚れが付着したときに、その汚れを掻取手段で掻き取って除去するので、凝縮器の運転を継続しながらその汚れを除去することができる。また本方法は汚れの除去に要する時間を短くできる。さらに本方法は管型の熱交換器を用いてポリスチレンを熱分解する場合に特にその効果を発揮する。   In the condensation method according to the second aspect of the present invention, when dirt adheres to the surface of the cooling pipe, the dirt is scraped off and removed by the scraping means, so that the dirt is removed while the operation of the condenser is continued. be able to. In addition, this method can shorten the time required for removing the dirt. Furthermore, the present method is particularly effective when pyrolyzing polystyrene using a tubular heat exchanger.

前記第3の発明にかかる凝縮器は、油分排出部から排出する油分を前記冷却管の表面に散布する油分散布手段を備えているので、本凝縮器を用いることにより前記第1の発明の凝縮方法を好適に実施することができる。   The condenser according to the third aspect of the present invention includes oil dispersion cloth means for spraying the oil discharged from the oil discharge section onto the surface of the cooling pipe, so that the condensation according to the first aspect of the present invention is achieved by using this condenser. The method can be suitably carried out.

前記第4の発明にかかる凝縮器は、冷却管の表面の汚れを掻き取る掻取手段を備えているので、本凝縮器を用いることにより前記第2の発明の凝縮方法を好適に実施することができる。   Since the condenser according to the fourth invention is provided with scraping means for scraping off the dirt on the surface of the cooling pipe, the condensation method according to the second invention is preferably carried out by using this condenser. Can do.

次に図面により本発明を実施する最良の形態を説明する。図1は本発明の凝縮方法を実施する熱分解システムのプロセスフロー図である。図中、1は熱分解装置、2は管型の熱分解器、3は残渣滞留槽、4はポリスチレンの供給装置、5は加熱ガス発生装置、6は凝縮器、7は貯油槽、8は冷却管、9は第1の蒸留装置、10は第2の蒸留装置、11はホッパ、11aは溶融部、12は押出部、12aは筒体、12bは回転スクリュー、12cはモータ、13は残渣排出装置、14〜17はポンプ、18は真空ポンプ等の減圧装置、19はモータ、20は加熱部、21は排出弁、22は散布手段、23は散布ノズル、24は熱分解ガスの冷却器、25は槽本体、26は熱分解ガス供給部、27は油分排出部、28は未凝縮ガス排出部、a〜kは配管、l,mはダクトである。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram of a pyrolysis system for carrying out the condensation method of the present invention. In the figure, 1 is a thermal decomposition apparatus, 2 is a tubular thermal decomposition apparatus, 3 is a residue retention tank, 4 is a polystyrene supply apparatus, 5 is a heated gas generator, 6 is a condenser, 7 is an oil storage tank, and 8 is a storage tank. Cooling pipe, 9 is the first distillation apparatus, 10 is the second distillation apparatus, 11 is the hopper, 11a is the melting section, 12 is the extrusion section, 12a is the cylinder, 12b is the rotating screw, 12c is the motor, 13 is the residue Ejector, 14-17 is a pump, 18 is a decompressor such as a vacuum pump, 19 is a motor, 20 is a heating unit, 21 is a discharge valve, 22 is a spraying means, 23 is a spray nozzle, 24 is a pyrolysis gas cooler , 25 is a tank body, 26 is a pyrolysis gas supply unit, 27 is an oil content discharge unit, 28 is an uncondensed gas discharge unit, a to k are pipes, and l and m are ducts.

供給装置4は一般にプラスチックの射出成形用として用いられている押出機またはそれに類する構造の押出機により構成できる。図示の供給装置4はそのような押出機により構成したもので、図示しない粉砕機等で細かく粉砕され空気搬送機やベルトコンベアにより搬送されてくるポリスチレン片を受け入れるホッパ11と、ホッパから供給されるポリスチレン片をヒータで加熱し溶融する溶融部11aと、溶融部で得られた溶融ポリスチレンを押出す押出部12を備えている。なお、ホッパ11には所望により図示しないブリッジブレーカが設けられる。   The supply device 4 can be constituted by an extruder generally used for plastic injection molding or an extruder having a similar structure. The supply device 4 shown in the figure is constituted by such an extruder, and is supplied from a hopper 11 that receives polystyrene pieces finely pulverized by a pulverizer (not shown) or the like and conveyed by an air conveyor or a belt conveyor. A melting part 11a for heating and melting the polystyrene piece with a heater and an extrusion part 12 for extruding the molten polystyrene obtained in the melting part are provided. The hopper 11 is provided with a bridge breaker (not shown) as desired.

押出部12は筒体12aとその内部に設けた回転スクリュー12bを有し、回転スクリュー12bはモータ12cで回転駆動される。そして回転スクリュー12bの回転により押出部12から押出される200℃〜250℃程度の溶融ポリスチレンは断熱層で被覆された配管aを経て熱分解装置1に供給される。   The extrusion unit 12 has a cylindrical body 12a and a rotary screw 12b provided therein, and the rotary screw 12b is driven to rotate by a motor 12c. And the molten polystyrene about 200 to 250 degreeC extruded from the extrusion part 12 by rotation of the rotating screw 12b is supplied to the thermal decomposition apparatus 1 through the piping a coat | covered with the heat insulation layer.

熱分解装置1はポリスチレンを熱分解する管型の熱分解器2と、その出口側に連通した熱分解滞留槽3と、それらを囲む加熱部20を有する。熱分解器2は細長いステンレス管等により構成され、その寸法は所望の処理能力等により変化するが、通常、管径50A〜200A程度、長さ5m〜数十m程度の範囲から選択される。   The pyrolysis apparatus 1 has a tubular pyrolyzer 2 for pyrolyzing polystyrene, a pyrolysis residence tank 3 communicated with the outlet side thereof, and a heating unit 20 surrounding them. The pyrolyzer 2 is composed of an elongated stainless steel tube or the like, and its dimensions vary depending on the desired processing capacity and the like, but are usually selected from a range of a tube diameter of about 50A to 200A and a length of about 5m to several tens of meters.

熱分解器2と残渣滞留槽3の周囲を取り囲む加熱部20はセラミックファイバーやキャスタブルで断熱された壁により形成され、内部を流通する加熱ガスで加熱部20を加熱する。加熱部20に流通する加熱ガスは加熱ガス発生装置5からダクトlで供給され、熱分解器2との間で熱交換した後の排ガスはダクトmから排出する。なお加熱ガス発生装置5は液体燃料または気体燃料をバーナで燃焼し、発生する800℃〜1000℃程度の高温の燃焼ガスを加熱ガスとして加熱部20に供給する。   The heating unit 20 surrounding the pyrolyzer 2 and the residue retention tank 3 is formed by walls insulated with ceramic fibers or castable, and the heating unit 20 is heated with a heating gas flowing inside. The heated gas flowing through the heating unit 20 is supplied from the heated gas generator 5 through the duct l, and the exhaust gas after heat exchange with the thermal decomposer 2 is discharged from the duct m. The heated gas generator 5 burns liquid fuel or gaseous fuel with a burner, and supplies the generated high-temperature combustion gas of about 800 ° C. to 1000 ° C. to the heating unit 20 as a heated gas.

前記供給部12から熱分解装置1に供給された溶融ポリスチレンは、熱分解器2の内部を移動する間に周囲の加熱部20から加熱されて600℃〜800℃程度の熱分解温度で熱分解される。熱分解する際には残渣が生成するが、この残渣は生成する熱分解ガスと一緒に下流側に連通する残渣滞留槽3に排出される。   The molten polystyrene supplied from the supply unit 12 to the thermal decomposition apparatus 1 is heated from the surrounding heating unit 20 while moving inside the thermal decomposer 2 and is pyrolyzed at a thermal decomposition temperature of about 600 ° C. to 800 ° C. Is done. When pyrolyzing, a residue is generated, and this residue is discharged together with the generated pyrolysis gas to a residue retaining tank 3 communicating downstream.

残渣滞留槽3は熱分解器2の出口側から流出する熱分解ガスから残渣を分離して一時的に内部に貯留する。この残渣滞留槽3は熱分解器2の3〜5倍程度の内径を有する縦型の槽により構成され、その内部に残渣攪拌用の攪拌機とその下方に残渣排出口からなる残渣排出装置13が設けられる。そして残渣滞留槽3に貯留した残渣は排出弁21を随時開けることにより配管kから図示しない残渣回収槽に回収される。なお残渣滞留槽3は横向きの槽により構成することもできる。   The residue retention tank 3 separates the residue from the pyrolysis gas flowing out from the outlet side of the pyrolyzer 2 and temporarily stores it inside. The residue retention tank 3 is composed of a vertical tank having an inner diameter of about 3 to 5 times that of the thermal cracker 2, and a residue discharge device 13 comprising a stirrer for stirring the residue and a residue discharge port therebelow. Provided. And the residue stored in the residue retention tank 3 is collect | recovered by the residue collection tank which is not illustrated from the piping k by opening the discharge valve 21 at any time. In addition, the residue residence tank 3 can also be comprised with a horizontal tank.

残渣滞留槽3で分離された熱分解ガスはその上部のガス流出部から配管bに流出する。流出した熱分解ガスは配管bの途中に設けた冷却器24で冷却され、同伴する不純物の一部が冷却されて凝縮分離し、配管bの立ち上がり部を流下して残渣滞留部3に戻る。そして冷却器24の出口側からは分離できなかった僅かな不純物を含む熱分解ガスが流出して下流側の凝縮器6に流入する。   The pyrolysis gas separated in the residue retention tank 3 flows out from the gas outflow part at the upper part thereof to the pipe b. The pyrolysis gas that has flowed out is cooled by a cooler 24 provided in the middle of the pipe b, and a part of the accompanying impurities is cooled and condensed and separated, and flows down the rising part of the pipe b and returns to the residue retaining part 3. A pyrolysis gas containing a small amount of impurities that could not be separated flows out from the outlet side of the cooler 24 and flows into the condenser 6 on the downstream side.

凝縮器6は熱分解ガス供給部26、油分排出部27および未凝縮ガス排出部28を有する槽本体25と、槽本体25の内部に配置した冷却管8と、油分排出部27から排出する油分を前記冷却管8の表面に散布する油分散布手段22を備えている。冷却管8の内部には冷却水や冷却空気が流通し、表面に接する熱分解ガスを熱交換により冷却する。熱分解ガス供給部26は前記配管bに連通し、油分排出部27は配管dに連通し、その配管dの先端が貯油槽7に連通する。さらに未凝縮ガス排出部28は配管fに連通し、配管fの途中に真空ポンプ等の減圧装置18が設けられる。なお、配管fから流出する未凝縮ガスは例えば前記加熱ガス発生装置5の燃料として利用される。   The condenser 6 includes a tank body 25 having a pyrolysis gas supply unit 26, an oil component discharge unit 27 and an uncondensed gas discharge unit 28, a cooling pipe 8 disposed inside the tank body 25, and an oil component discharged from the oil component discharge unit 27. Is provided on the surface of the cooling pipe 8 with oil dispersion cloth means 22. Cooling water and cooling air circulate inside the cooling pipe 8 to cool the pyrolysis gas in contact with the surface by heat exchange. The pyrolysis gas supply unit 26 communicates with the piping b, the oil discharge unit 27 communicates with the piping d, and the tip of the piping d communicates with the oil storage tank 7. Further, the uncondensed gas discharge unit 28 communicates with the pipe f, and a decompression device 18 such as a vacuum pump is provided in the middle of the pipe f. The uncondensed gas flowing out from the pipe f is used as fuel for the heated gas generator 5, for example.

冷却管8は直線状に形成した冷却管要素を複数並列接続して構成され、全体が槽本体25の下方に横向きに配置される。油分散布手段22は槽本体25内の上部に配置した散布ノズル23と、散布ノズル23に貯油槽7に貯留した油分を供給する配管cと、配管cに設けたポンプ14により構成される。散布ノズル23は油分が供給されるヘッダに多数の噴出孔を設けたもので、冷却管8全体に上方から細かい油滴を均一に噴出して散布できるようになっている。   The cooling pipe 8 is configured by connecting a plurality of cooling pipe elements formed in a straight line in parallel, and the whole is arranged horizontally below the tank body 25. The oil dispersion cloth means 22 includes a spray nozzle 23 disposed in the upper part of the tank body 25, a pipe c for supplying the oil stored in the oil storage tank 7 to the spray nozzle 23, and a pump 14 provided in the pipe c. The spray nozzle 23 is provided with a large number of jet holes in a header to which oil is supplied, so that fine oil droplets can be sprayed uniformly from above on the entire cooling pipe 8 and sprayed.

熱分解ガス供給部26から凝縮器6内に流入する熱分解ガスは冷却管8で冷却される。冷却によりスチレンを主成分とする高沸点成分が凝縮し、得られた油分は油分排出部27から配管dを経て貯油槽7に流出し、凝縮されないエチルベンゼンやトルエン等の低沸点成分が未凝縮ガス排出部28から配管fに流出する。なお凝縮器6の内圧は減圧装置18の吸引力を調整することにより変化できるが、その調整した減圧レベルに熱分解器2の内圧も連動する。   The pyrolysis gas flowing into the condenser 6 from the pyrolysis gas supply unit 26 is cooled by the cooling pipe 8. The high-boiling components mainly composed of styrene are condensed by cooling, and the obtained oil is discharged from the oil discharge unit 27 to the oil storage tank 7 through the pipe d, and low-boiling components such as ethylbenzene and toluene are not condensed. It flows out from the discharge part 28 to the pipe f. Although the internal pressure of the condenser 6 can be changed by adjusting the suction force of the decompression device 18, the internal pressure of the pyrolyzer 2 is also linked to the adjusted decompression level.

凝縮器6で凝縮したスチレンを主成分とする油分は、配管dから貯油槽7に一時的に貯留され、その一部はポンプ15を運転することにより第1の蒸留塔9の中段に供給される。油分は第1の蒸留塔9内で蒸留され、分離されたベンゼン、トルエン等の低沸点成分が塔頂部から配管hに流出する。配管hに流出した低沸点成分は、例えば前記加熱ガス発生装置5の燃料として供給される。   The oil mainly composed of styrene condensed in the condenser 6 is temporarily stored in the oil storage tank 7 from the pipe d, and a part thereof is supplied to the middle stage of the first distillation column 9 by operating the pump 15. The The oil is distilled in the first distillation column 9, and the separated low-boiling components such as benzene and toluene flow out to the pipe h from the top of the column. The low boiling point component that has flowed out to the pipe h is supplied as fuel for the heating gas generator 5, for example.

第1の蒸留塔9の塔底部にはスチレンを主体とする高沸点成分が分離される。塔底部の高沸点成分はポンプ16を運転することにより第2の蒸留塔10の中段に供給される。第2の蒸留塔10内で高沸点成分は蒸留され、分離されたスチレンは塔頂部から配管jに流出して図示しないスチレン回収槽に回収される。また塔底部には重質油が分離されて滞留するが、この重質油はポンプ17を運転することにより配管iから図示しない重質油回収槽に回収される。なお、重質油回収槽に貯留された重質油も前記加熱ガス発生装置5の燃料として供給することができる。   A high boiling point component mainly composed of styrene is separated at the bottom of the first distillation column 9. The high boiling point component at the bottom of the column is supplied to the middle stage of the second distillation column 10 by operating the pump 16. The high boiling point components are distilled in the second distillation column 10, and the separated styrene flows out from the top of the column to the pipe j and is recovered in a styrene recovery tank (not shown). Further, heavy oil is separated and stays at the bottom of the tower, but this heavy oil is recovered from the pipe i to a heavy oil recovery tank (not shown) by operating the pump 17. The heavy oil stored in the heavy oil recovery tank can also be supplied as fuel for the heated gas generator 5.

これら熱分解装置から蒸留装置までのシステムを用い、前記の熱分解温度および減圧状態でポリスチレンの熱分解操作を連続的に行うと、例えば純度99.7%以上のスチレンがポリスチレンの投入量の55から60重量%の割合で回収できる。   When the system from these pyrolyzers to distillation units is used and the pyrolysis operation of polystyrene is carried out continuously at the above-mentioned pyrolysis temperature and reduced pressure, for example, styrene having a purity of 99.7% or more is the polystyrene input 55. To 60% by weight.

凝縮器6を長時間運転すると前記のように内部に配置した冷却管8の表面に不純物が汚れとして次第に付着してくる。そこで定期的に油分散布手段22を運転し、冷却管8の表面に油分を散布して汚れを除去する。すなわちポンプ14を運転すると貯油槽7に貯留した油部が配管cから散布ノズル23に供給され、散布ノズル23から油部が冷却管8に散布されて汚れを清掃する。なお、油分散布手段22の運転時期は凝縮器6の運転中または停止中のいずれでもよい。また、散布は連続的または間欠的(もしくは断続的)のいずれの方法も可能である。   When the condenser 6 is operated for a long time, impurities gradually adhere as dirt on the surface of the cooling pipe 8 arranged inside as described above. Therefore, the oil dispersion cloth means 22 is periodically operated, and the dirt is removed by spraying oil on the surface of the cooling pipe 8. That is, when the pump 14 is operated, the oil part stored in the oil storage tank 7 is supplied from the pipe c to the spray nozzle 23, and the oil part is sprayed from the spray nozzle 23 to the cooling pipe 8 to clean the dirt. The operating time of the oil dispersion cloth means 22 may be either during the operation of the condenser 6 or when it is stopped. Further, the spraying can be performed continuously or intermittently (or intermittently).

冷却管8の汚れを除去するには掻取手段30で物理的に汚れを掻き取る方式を採用することもできる。なおこの掻き取り方式は上記の油分散布手段22を用いた洗浄方式の代わりに、またはそれと併用することができる。   In order to remove the dirt from the cooling pipe 8, a method of physically scraping the dirt by the scraping means 30 may be employed. This scraping method can be used in place of or in combination with the cleaning method using the oil dispersion cloth means 22 described above.

図2(a)は凝縮器6の槽本体25に設置した掻取手段30の横断面図、図2(b)はそのA−A断面図である。この掻取手段30は、所定間隔で配列した複数の挿通孔31を有する円板により構成される掻取部32と、掻取部32の周縁部に90度間隔で固定した4つの従動マグネット33と、従動マグネットに対応して槽本体25の外側に配置した4つの駆動マグネット34を備えている。   2A is a transverse sectional view of the scraping means 30 installed in the tank body 25 of the condenser 6, and FIG. 2B is a sectional view taken along the line AA. The scraping means 30 includes a scraping portion 32 composed of a disc having a plurality of insertion holes 31 arranged at predetermined intervals, and four driven magnets 33 fixed to the peripheral portion of the scraping portion 32 at intervals of 90 degrees. And four drive magnets 34 arranged outside the tank body 25 corresponding to the driven magnets.

直線状に形成されて並列する複数の冷却管8を各挿通孔31に挿通することにより、掻取部32が冷却管8に装着された状態となる。4つの駆動マグネット34は連結環(図示せず)により互いに連結され、その連結環を図示しない手動ハンドルまたはシリンダ等の往復駆動手段に連結する。その際、連結環のガタツキを防止するためにガイド手段を設けることもできる。なお挿通孔31の内面と冷却管8の外周面の間隙は1〜2mm程度に設定することが望ましい。   By inserting a plurality of cooling pipes 8 formed in a straight line in parallel through the insertion holes 31, the scraping portion 32 is attached to the cooling pipe 8. The four drive magnets 34 are connected to each other by a connection ring (not shown), and the connection ring is connected to a reciprocating drive means such as a manual handle or a cylinder (not shown). In that case, a guide means can be provided in order to prevent rattling of the connecting ring. The gap between the inner surface of the insertion hole 31 and the outer peripheral surface of the cooling pipe 8 is preferably set to about 1 to 2 mm.

手動ハンドルに連結した場合は、手動で4つの駆動マグネット34を冷却管8の長さ方向に同期して往復駆動することができる。各駆動マグネット34が往復駆動されると、それらに磁気結合した各従動マグネット33が追従して往復駆動される。すると掻取部32が往復駆動し、それに設けた各挿通孔31の内面で各冷却管8の表面の汚れを掻き取ることができる。往復駆動手段に連結した場合は、その往復駆動手段を操作盤等から遠隔操作することにより、前記手動の場合と同様に各挿通孔31の内面で各冷却管8の表面の汚れを掻き取ることができる。なお、掻取手段30の駆動時期は凝縮器6の運転中または停止中のいずれでもよい。また駆動形態は連続的または間欠的(もしくは断続的)のいずれの方法も可能である。   When connected to the manual handle, the four drive magnets 34 can be manually driven to reciprocate in synchronization with the length direction of the cooling pipe 8. When each drive magnet 34 is driven to reciprocate, each driven magnet 33 magnetically coupled thereto follows and is driven to reciprocate. Then, the scraping unit 32 is driven to reciprocate, and the surface of each cooling pipe 8 can be scraped off by the inner surface of each insertion hole 31 provided therein. When connected to the reciprocating drive means, the surface of each cooling pipe 8 is scraped off from the inner surface of each insertion hole 31 as in the case of the manual operation by remotely operating the reciprocating drive means from an operation panel or the like. Can do. The drive timing of the scraping means 30 may be either during operation or stop of the condenser 6. Further, the driving form can be either continuous or intermittent (or intermittent).

前記掻取手段30は掻取部32の挿通孔31の内面で各冷却管8の表面の汚れを掻き取るようにしたが、掻き取り効果の向上や往復駆動に際しての摩擦抵抗の低減を目的として、挿通孔31の内側に特別な接触部を設けることもできる。なお、接触部を設ける場合は挿通孔31の内径をその分大きく設定する。   The scraping means 30 scrapes off the dirt on the surface of each cooling pipe 8 on the inner surface of the insertion hole 31 of the scraping portion 32. For the purpose of improving the scraping effect and reducing the frictional resistance during reciprocating driving. A special contact portion can also be provided inside the insertion hole 31. In addition, when providing a contact part, the internal diameter of the insertion hole 31 is set large correspondingly.

図3は挿通孔31の内側に接触部35として金属や樹脂で加工した薄い板材36を溶着や接着により装着した例である。板材36の厚さは掻取部32より小さく設定され、それによって形成される鋭い内周面で効率よく冷却管8の表面に付着した汚れを掻き取ることができる。また板材36と冷却管8の表面との接触面積も小さいので、往復駆動における摩擦抵抗が低減される。   FIG. 3 shows an example in which a thin plate material 36 processed with metal or resin is attached as the contact portion 35 inside the insertion hole 31 by welding or adhesion. The thickness of the plate member 36 is set to be smaller than that of the scraping portion 32, and the dirt adhered to the surface of the cooling pipe 8 can be efficiently scraped by the sharp inner peripheral surface formed thereby. Further, since the contact area between the plate member 36 and the surface of the cooling pipe 8 is small, the frictional resistance in the reciprocating drive is reduced.

図4は挿通孔31の内側に接触部35として環状のブラシ37を接着等により装着した例である。ブラシ37は硬質のプラスチックの細線や金属線などを束ねて形成することができ、その毛先の掻き取り作用により効率よく冷却管8の表面に付着した汚れが除去される。またブラシ37の毛先と冷却管8の表面との接触面積は小さいので、往復駆動における摩擦抵抗が低減される。   FIG. 4 shows an example in which an annular brush 37 is attached to the inside of the insertion hole 31 as a contact portion 35 by adhesion or the like. The brush 37 can be formed by bundling hard plastic thin wires, metal wires, and the like, and dirt attached to the surface of the cooling pipe 8 is efficiently removed by the scraping action of the hair tips. Further, since the contact area between the tip of the brush 37 and the surface of the cooling pipe 8 is small, the frictional resistance in the reciprocating drive is reduced.

図5は接触部35として挿通孔31の内側に沿って先端の比較的鋭い多数の突起体38を多数連続して設けた例である。突起体38は掻取部32に一体的に形成することができるが、多数の突起を設けた帯体を掻取部32の挿通孔31の内周面に接着や溶着により取付けることもできる。そして掻取部32を往復駆動すると、これら突起体38により効率よく冷却管8の表面に付着した汚れを掻き取ることができる。また突起体38の先端と冷却管8の表面との接触面積は小さいので、往復駆動における摩擦抵抗が低減される。   FIG. 5 shows an example in which a large number of protrusions 38 having relatively sharp tips are continuously provided along the inside of the insertion hole 31 as the contact portion 35. The protrusion 38 can be formed integrally with the scraping portion 32, but a band provided with a large number of protrusions can be attached to the inner peripheral surface of the insertion hole 31 of the scraping portion 32 by adhesion or welding. When the scraping portion 32 is driven to reciprocate, dirt attached to the surface of the cooling pipe 8 can be efficiently scraped by the protrusions 38. Further, since the contact area between the tip of the protrusion 38 and the surface of the cooling pipe 8 is small, the frictional resistance in the reciprocating drive is reduced.

図6は掻取手段30の他の実施形態を示す横断面図である。この掻取手段30は所定間隔で配列した複数の挿通孔31を有する円板により構成される掻取部32と、掻取部32から垂直に槽本体25の外側に延長する駆動軸39と、駆動軸39の延長部、すなわち槽本体25の外側に連結されたシリンダ等の往復駆動部40を備えている。そして駆動軸39が槽本体25を貫通する部分は、グランドパッキンやオイルシール等のシール部を備えたスライド軸受41で軸支されている。   FIG. 6 is a cross-sectional view showing another embodiment of the scraping means 30. This scraping means 30 is a scraping portion 32 constituted by a disc having a plurality of insertion holes 31 arranged at predetermined intervals, a drive shaft 39 extending vertically from the scraping portion 32 to the outside of the tank body 25, and An extension part of the drive shaft 39, that is, a reciprocating drive part 40 such as a cylinder connected to the outside of the tank body 25 is provided. And the part which the drive shaft 39 penetrates the tank main body 25 is pivotally supported by the slide bearing 41 provided with seal parts, such as a gland packing and an oil seal.

本実施形態においても往復駆動部40を往復駆動すると、それに連結された掻取部32が冷却管8の表面に沿って往復移動し、掻取部32に設けた各挿通孔31の内面で各冷却管8の表面の汚れが掻き取られる。なお図6の掻取手段30の駆動時期や駆動形態は図2の例と同様である。さらに図6の掻取手段30についても掻き取り効果の向上や往復駆動に際しての摩擦抵抗の低減を目的として、各挿通孔31の内面に図3〜図5のような接触部35を設けることができる。   Also in this embodiment, when the reciprocating drive unit 40 is reciprocated, the scraping unit 32 connected thereto reciprocates along the surface of the cooling pipe 8, and each inner surface of each insertion hole 31 provided in the scraping unit 32 Dirt on the surface of the cooling pipe 8 is scraped off. The driving timing and driving mode of the scraping means 30 in FIG. 6 are the same as in the example of FIG. Further, the scraping means 30 of FIG. 6 is also provided with a contact portion 35 as shown in FIGS. 3 to 5 on the inner surface of each insertion hole 31 for the purpose of improving the scraping effect and reducing the frictional resistance during reciprocating driving. it can.

以上の実施形態では冷却管8の表面に付着した汚れを除去する方式として、油分の散布による洗浄方式または物理的な掻取方式を採用しているが、場合によっては両者を併用することもできる。   In the above embodiment, as a method for removing dirt adhering to the surface of the cooling pipe 8, a cleaning method by spraying oil or a physical scraping method is adopted, but in some cases, both may be used in combination. .

本発明の凝縮方法および凝縮器は廃ポリスチレンの熱分解装置における熱分解ガスの凝縮に利用できる。   The condensing method and the condenser of the present invention can be used for condensing pyrolysis gas in a waste polystyrene pyrolysis apparatus.

本発明の凝縮方法を実施する熱分解システムのプロセスフロー図。The process flow figure of the thermal decomposition system which enforces the condensation method of this invention. 凝縮器6の槽本体25に設置した掻取手段30の1例を示す図。The figure which shows an example of the scraping means 30 installed in the tank main body 25 of the condenser 6. FIG. 図2に示す掻取手段30に設けた接触部35の1例を示す図。The figure which shows an example of the contact part 35 provided in the scraping means 30 shown in FIG. 図2に示す掻取手段30に設けた接触部35の他の例を示す図。The figure which shows the other example of the contact part 35 provided in the scraping means 30 shown in FIG. 図2に示す掻取手段30に設けた接触部35のさらに他の例を示す図。The figure which shows the further another example of the contact part 35 provided in the scraping means 30 shown in FIG. 図2に示す掻取手段30の他の実施の形態を示す図。The figure which shows other embodiment of the scraping means 30 shown in FIG.

符号の説明Explanation of symbols

1 熱分解装置
2 熱分解器
3 残渣滞留槽
4 供給装置
5 加熱ガス発生装置
6 凝縮器
7 貯油槽
8 冷却管
9 第1の蒸留装置
DESCRIPTION OF SYMBOLS 1 Thermal decomposition apparatus 2 Thermal decomposition apparatus 3 Residue residence tank 4 Supply apparatus 5 Heated gas generator 6 Condenser 7 Oil storage tank 8 Cooling pipe 9 1st distillation apparatus

10 第2の蒸留装置
11 ホッパ
11a 溶融部
12 押出部
12a 筒体
12b 回転スクリュー
12c モータ
13 残渣排出装置
14〜17 ポンプ
18 減圧装置
19 モータ
DESCRIPTION OF SYMBOLS 10 2nd distillation apparatus 11 Hopper 11a Melting part 12 Extrusion part 12a Cylindrical body 12b Rotating screw 12c Motor 13 Residue discharging apparatus 14-17 Pump 18 Pressure reducing apparatus 19 Motor

20 加熱部
21 排出弁
22 散布手段
23 散布ノズル
24 冷却器
25 槽本体
26 熱分解ガス供給部
27 油分排出部
28 未凝縮ガス排出部
DESCRIPTION OF SYMBOLS 20 Heating part 21 Discharge valve 22 Spreading means 23 Spray nozzle 24 Cooler 25 Tank body 26 Pyrolysis gas supply part 27 Oil discharge part 28 Uncondensed gas discharge part

30 掻取手段
31 挿通孔
32 掻取部
33 従動マグネット
34 駆動マグネット
35 接触部
36 板材
37 ブラシ
38 突起体
39 駆動軸
40 往復駆動部
41 スライド軸受
a〜k 配管
l,m ダクト
30 scraping means 31 insertion hole 32 scraping portion 33 driven magnet 34 drive magnet 35 contact portion 36 plate material 37 brush 38 projection body 39 drive shaft 40 reciprocating drive portion 41 slide bearing a to k piping l, m duct

Claims (6)

ポリスチレンの熱分解により生成する熱分解ガスを凝縮器6に供給し、凝縮器6内部に配置した冷却管8の表面にそれを接触させて凝縮する方法において、冷却管8の表面に汚れが付着したとき、凝縮により得られた油分を冷却管8の表面に散布してその汚れを除去することを特徴とするポリスチレン熱分解ガスの凝縮方法。   In the method in which pyrolysis gas generated by pyrolysis of polystyrene is supplied to the condenser 6 and brought into contact with the surface of the cooling pipe 8 disposed inside the condenser 6 to condense, the surface of the cooling pipe 8 is contaminated. Then, a method for condensing polystyrene pyrolysis gas, characterized in that oil obtained by condensation is sprayed on the surface of the cooling pipe 8 to remove dirt. ポリスチレンの熱分解により生成する熱分解ガスを凝縮器6に供給し、それを凝縮器6内部に配置した冷却管8の表面に接触させて凝縮する方法において、冷却管8の表面に汚れが付着したとき、その汚れを掻取手段30で掻き取って除去することを特徴とするポリスチレン熱分解ガスの凝縮方法。   In a method in which pyrolysis gas generated by the thermal decomposition of polystyrene is supplied to the condenser 6 and brought into contact with the surface of the cooling pipe 8 disposed inside the condenser 6 to condense, the surface of the cooling pipe 8 is contaminated. Then, a method for condensing polystyrene pyrolysis gas, wherein the dirt is scraped off by the scraping means 30 and removed. ポリスチレンの熱分解により生成する熱分解ガスの凝縮器6において、内部に冷却管8を配置した槽本体25と、凝縮により得られた油分を冷却管8の表面に散布する油分散布手段22を備えていることを特徴とするポリスチレン熱分解ガスの凝縮器。   In the condenser 6 of the pyrolysis gas generated by the thermal decomposition of polystyrene, a tank body 25 having a cooling pipe 8 disposed therein, and an oil dispersion cloth means 22 for spraying the oil obtained by the condensation on the surface of the cooling pipe 8 are provided. A polystyrene pyrolysis gas condenser characterized by comprising: ポリスチレンの熱分解により生成する熱分解ガスの凝縮器6において、内部に冷却管8を配置した槽本体25と、冷却管8の表面の汚れを掻き取る掻取手段30を備えていることを特徴とするポリスチレン熱分解ガスの凝縮器。   The condenser 6 for pyrolysis gas generated by the thermal decomposition of polystyrene is provided with a tank body 25 having a cooling pipe 8 disposed therein, and a scraping means 30 for scraping off dirt on the surface of the cooling pipe 8. Polystyrene pyrolysis gas condenser. 請求項4において、前記掻取手段30は前記冷却管8の表面に沿って往復移動可能に配置された掻取部32と、掻取部32に設けた従動マグネット33と、槽本体25の外側に設けた駆動マグネット34を有することを特徴とするポリスチレン熱分解ガスの凝縮器。   5. The scraping means 30 according to claim 4, wherein the scraping means 30 is disposed so as to be able to reciprocate along the surface of the cooling pipe 8, a driven magnet 33 provided on the scraping section 32, and the outside of the tank body 25. A polystyrene pyrolysis gas condenser having a drive magnet 34 provided in the apparatus. 請求項4において、前記掻取手段30は前記冷却管8の表面に沿って往復移動可能に配置された掻取部32と、掻取部32から槽本体25の外側に延長する駆動軸39と、前記駆動軸39の延長部に連結された往復駆動部40を有することを特徴とするポリスチレン熱分解ガスの凝縮器。
In Claim 4, the said scraping means 30 is the scraping part 32 arrange | positioned so that a reciprocation is possible along the surface of the said cooling pipe 8, and the drive shaft 39 extended to the outer side of the tank main body 25 from the scraping part 32. A polystyrene pyrolysis gas condenser having a reciprocating drive unit 40 connected to an extension of the drive shaft 39.
JP2003373251A 2003-10-31 2003-10-31 Condensation method and condenser for polystyrene pyrolysis gas Pending JP2005134079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373251A JP2005134079A (en) 2003-10-31 2003-10-31 Condensation method and condenser for polystyrene pyrolysis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373251A JP2005134079A (en) 2003-10-31 2003-10-31 Condensation method and condenser for polystyrene pyrolysis gas

Publications (1)

Publication Number Publication Date
JP2005134079A true JP2005134079A (en) 2005-05-26

Family

ID=34649392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373251A Pending JP2005134079A (en) 2003-10-31 2003-10-31 Condensation method and condenser for polystyrene pyrolysis gas

Country Status (1)

Country Link
JP (1) JP2005134079A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395311A1 (en) * 2007-03-09 2011-12-14 Thermitech Solutions Ltd Scraper system for a condenser unit and method for the pyrolysis of organic waste
WO2014108154A1 (en) * 2013-01-10 2014-07-17 Brückner Maschinenbau GmbH & Co. KG Device for degassing polymer melts
WO2020249854A1 (en) * 2019-06-10 2020-12-17 Neste Oyj Method for processing plastic waste pyrolysis gas
WO2020260730A1 (en) * 2019-06-27 2020-12-30 Ruiz Herrera Luis Javier Thermolysis system and method for obtaining recovered carbon black and fuel from disused tyres
WO2021259931A1 (en) * 2020-06-22 2021-12-30 Baratti Gmbh Cleaning gases from the degassing of polymer melts
CN113908574A (en) * 2021-11-11 2022-01-11 山东法恩泰科技工程有限公司 MVR evaporator
RU2791389C1 (en) * 2019-06-27 2023-03-07 ХЕРРЕРА Луис Хавьер РУИЗ Thermolysis method and system for obtaining reduced soot and fuel from used tires
JP2023078815A (en) * 2021-11-26 2023-06-07 テギョン エスコ カンパニー リミテッド Condenser with scraper
EP4306209A1 (en) * 2022-07-11 2024-01-17 Neste Oyj Gas piping system, arrangement, use of the gas piping system, and method of operating a gas piping system
WO2024013428A1 (en) * 2022-07-11 2024-01-18 Neste Oyj Gas piping system, arrangement, use of the gas piping system, and method of operating a gas piping system
CN118079428A (en) * 2024-04-28 2024-05-28 天津市科密欧化学试剂有限公司 Rectifying device is used in production of high-purity reagent
WO2024128177A1 (en) * 2022-12-12 2024-06-20 栗田工業株式会社 Heat exchanger and method for cleaning heat transfer pipe outer surface

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395311A1 (en) * 2007-03-09 2011-12-14 Thermitech Solutions Ltd Scraper system for a condenser unit and method for the pyrolysis of organic waste
WO2014108154A1 (en) * 2013-01-10 2014-07-17 Brückner Maschinenbau GmbH & Co. KG Device for degassing polymer melts
JP2016502948A (en) * 2013-01-10 2016-02-01 ブリュックナー・マシーネンバウ・ゲーエムベーハー・ウント・コー・カーゲー Melt polymer deaerator
US9975278B2 (en) 2013-01-10 2018-05-22 Brückner Maschinenbau GmbH & Co. KG Device for degassing polymer melts
EP2943325B1 (en) 2013-01-10 2019-07-10 Brückner Maschinenbau GmbH & Co. Kg Device for degassing polymer melts
CN113891757A (en) * 2019-06-10 2022-01-04 耐思特公司 Method for treating waste pyrolysis gas of plastics
US11969689B2 (en) 2019-06-10 2024-04-30 Neste Oyj Method for processing plastic waste pyrolysis gas
WO2020249854A1 (en) * 2019-06-10 2020-12-17 Neste Oyj Method for processing plastic waste pyrolysis gas
US11471817B2 (en) 2019-06-10 2022-10-18 Neste Oyj Method for processing plastic waste pyrolysis gas
RU2791389C1 (en) * 2019-06-27 2023-03-07 ХЕРРЕРА Луис Хавьер РУИЗ Thermolysis method and system for obtaining reduced soot and fuel from used tires
WO2020260730A1 (en) * 2019-06-27 2020-12-30 Ruiz Herrera Luis Javier Thermolysis system and method for obtaining recovered carbon black and fuel from disused tyres
WO2021259931A1 (en) * 2020-06-22 2021-12-30 Baratti Gmbh Cleaning gases from the degassing of polymer melts
CN113908574A (en) * 2021-11-11 2022-01-11 山东法恩泰科技工程有限公司 MVR evaporator
JP2023078815A (en) * 2021-11-26 2023-06-07 テギョン エスコ カンパニー リミテッド Condenser with scraper
JP7391928B2 (en) 2021-11-26 2023-12-05 テギョン エスコ カンパニー リミテッド Condenser with scraper
EP4306209A1 (en) * 2022-07-11 2024-01-17 Neste Oyj Gas piping system, arrangement, use of the gas piping system, and method of operating a gas piping system
WO2024013428A1 (en) * 2022-07-11 2024-01-18 Neste Oyj Gas piping system, arrangement, use of the gas piping system, and method of operating a gas piping system
WO2024128177A1 (en) * 2022-12-12 2024-06-20 栗田工業株式会社 Heat exchanger and method for cleaning heat transfer pipe outer surface
CN118079428A (en) * 2024-04-28 2024-05-28 天津市科密欧化学试剂有限公司 Rectifying device is used in production of high-purity reagent

Similar Documents

Publication Publication Date Title
JP2005134079A (en) Condensation method and condenser for polystyrene pyrolysis gas
US20090050525A1 (en) Method for deploymerising residues containing hydrocarbons and device for carrying out said method
JP5819607B2 (en) Low pressure pyrolysis equipment and continuous oil carbonization equipment
JP3836112B2 (en) Waste plastic oil production facility
KR20090031341A (en) Process and apparatus for use in recycling composite materials
JP2006501062A (en) Processes and plants for ultra-cleaning fumes or gases in the overall recovery of synthetic contaminants
JP2009240920A (en) Method and apparatus for condensation of gas
JP4161293B2 (en) Monomer recovery method and recovery device
US20020100710A1 (en) Desorbtion process and apparatus
JP2004018563A (en) Apparatus for disposal of waste plastic
JP2003292970A (en) Liquefaction apparatus
JP2023532148A (en) Gas cleaning based on degassing of polymer melt
JP2007204516A (en) Method and apparatus for thermal decomposition of thermosetting resin
KR20230078078A (en) Condenser with scraper
JP2005132802A (en) Method for recovery of styrene and apparatus therefor
KR102638586B1 (en) Gas exhaust pipe cleaning device of waste plastic emulsification device
JP2003261880A (en) Thermal decomposition method for plastic and thermal decomposition system
JP2004189779A (en) Cleaning method and thermal decomposition method for thermal decomposition apparatus
KR101357013B1 (en) A Expansion Joint Sweeping Device
US20230085993A1 (en) Separation systems and methods for processing organic polymeric materials
CN112645807B (en) Production equipment and production method of flaky camphor
JP3385400B2 (en) Pyrolysis apparatus and pyrolysis method
JP2008297464A (en) Cleaning method and device for pyrolysis gas
KR20240063815A (en) Pyrolysis device producing the regenerative oil from the waste resin
JP2001181442A (en) Pyrolysis device and pyrolysis method