JP2005129833A - Method of manufacturing semiconductor laser - Google Patents

Method of manufacturing semiconductor laser Download PDF

Info

Publication number
JP2005129833A
JP2005129833A JP2003365957A JP2003365957A JP2005129833A JP 2005129833 A JP2005129833 A JP 2005129833A JP 2003365957 A JP2003365957 A JP 2003365957A JP 2003365957 A JP2003365957 A JP 2003365957A JP 2005129833 A JP2005129833 A JP 2005129833A
Authority
JP
Japan
Prior art keywords
diffraction grating
mask
semiconductor
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365957A
Other languages
Japanese (ja)
Inventor
Koji Ajiki
浩司 安食
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003365957A priority Critical patent/JP2005129833A/en
Publication of JP2005129833A publication Critical patent/JP2005129833A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor laser in which shallowing of the depth of a diffraction grating due to the growth of a denatured layer by the activation of mass transport in crystal-growing a semiconductor layer on the diffraction grating by a metal-organic vapor-phase growth method is eliminated. <P>SOLUTION: The method of manufacturing the semiconductor laser includes a step of stacking a silicon-oxide film 102 and a photoresist film 11 on an n-type InP substrate 2, a step of patterning the photoresist film 11 to form a photoresist mask 11a, a step of patterning the silicon-oxide film 102 using the photoresist mask 11a to form a silicon-oxide-film mask 102a, a step of forming a diffraction grating 3a on the surface of the n-type InP substrate 2 using the silicon-oxide-film mask 102a by dry etching, a step of crystal-growing a first semiconductor layer 4a up to the thickness of filling the diffraction grating 3a while leaving the silicon-oxide-film mask 102a as a protection mask for crystal growth inhibition, and a step of crystal-growing a second semiconductor layer 4b to form a guiding layer 4 after removing the silicon-oxide-film mask 102a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体レーザの製造方法に関し、特に、半導体基板表面に形成した回折格子の上に半導体層を有機金属気相成長法(MOVPE)で結晶成長させる際に生じるマストランスポート(mass-transport)の活性化を抑制できる半導体レーザの製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor laser, and in particular, a mass transport generated when a semiconductor layer is crystal-grown on a diffraction grating formed on the surface of a semiconductor substrate by metal organic chemical vapor deposition (MOVPE). The present invention relates to a method for manufacturing a semiconductor laser capable of suppressing the activation of.

近年急激に伸びている通信需要に対応するため、1本の光ファイバ中に異なる波長の光信号を伝送させることにより、光ファイバを新たに増設することなく大幅に通信容量を拡大できる波長分割多重(WDM:wavelength division multiplexing)光通信システムが進展してきている。このWDM光通信システムには、発振波長(発振スペクトル)純度の高い光源が必要なため、単一波長出力が可能な分布帰還型(DFB:distributed feedback)半導体レーザが用いられる。この分布帰還型半導体レーザの分布帰還動作による単一波長出力動作は、半導体光導波路内部に周期的な屈折率変化を発生させる回折格子を導入することで実現される。そして、この回折格子の凹凸の形状や深さ(凹凸の段差寸法)を最適なものにすることは単一波長発振をより安定させるために非常に重要である。   Wavelength division multiplexing that can greatly expand communication capacity without adding new optical fibers by transmitting optical signals of different wavelengths in one optical fiber in order to respond to the rapidly increasing communication demand in recent years (WDM: wavelength division multiplexing) Optical communication systems have been developed. Since this WDM optical communication system requires a light source having high oscillation wavelength (oscillation spectrum) purity, a distributed feedback (DFB) semiconductor laser capable of outputting a single wavelength is used. The single wavelength output operation by the distributed feedback operation of this distributed feedback semiconductor laser is realized by introducing a diffraction grating that generates a periodic refractive index change inside the semiconductor optical waveguide. And, it is very important to optimize the shape and depth of the concave and convex portions of the diffraction grating (the step size of the concave and convex portions) in order to further stabilize the single wavelength oscillation.

尚、回折格子は、その周期に対応した波長の光のみを選択的に反射する特性を有しており、回折格子の周期で決まる特定の波長のみが回折格子により反射され、分布帰還型半導体レーザ内で相互作用(帰還)し増幅され定在波ができる。即ち、出力光の波長は所定の深さを有する回折格子の周期によって決定され単一波長出力が実現する。   Note that the diffraction grating has a characteristic of selectively reflecting only light having a wavelength corresponding to the period, and only a specific wavelength determined by the period of the diffraction grating is reflected by the diffraction grating. It interacts (feeds back) within it and is amplified to form a standing wave. That is, the wavelength of the output light is determined by the period of the diffraction grating having a predetermined depth, thereby realizing a single wavelength output.

従来の半導体レーザの一例として分布帰還型半導体レーザ(以降、DFBレーザと呼ぶ)を図5に示す。図5(a)は、DFBレーザを光導波路方向に水平な面で切った縦断面図、図5(b)は、半導体基板表面に形成した回折格子の斜視図である。   FIG. 5 shows a distributed feedback semiconductor laser (hereinafter referred to as a DFB laser) as an example of a conventional semiconductor laser. FIG. 5A is a longitudinal sectional view of the DFB laser cut along a plane horizontal to the optical waveguide direction, and FIG. 5B is a perspective view of a diffraction grating formed on the surface of the semiconductor substrate.

DFBレーザ1は、n型InP基板2表面に形成した多数本の凹凸のラインパターンから成る回折格子3と、その回折格子3を埋め込んでさらにその上に一定の厚さ成長させたn型InGaAsPで成るガイド層4と、その上に形成した多重井戸構造の活性層5と、その上に形成したp型InPで成るクラッド層6と、その上に形成したInGaAsPで成るキャップ層7と、Ti/Auなどで成る表面及び裏面にそれぞれ形成したp側電極8及びn側電極9とで構成されている。   The DFB laser 1 is composed of a diffraction grating 3 composed of a large number of concave and convex line patterns formed on the surface of an n-type InP substrate 2 and n-type InGaAsP embedded with the diffraction grating 3 and further grown to a certain thickness. A guide layer 4 formed thereon, a multi-well active layer 5 formed thereon, a clad layer 6 formed of p-type InP formed thereon, a cap layer 7 formed of InGaAsP formed thereon, Ti / The p-side electrode 8 and the n-side electrode 9 are formed on the front and back surfaces made of Au or the like, respectively.

また、回折格子3は所定の深さd(凹凸の段差寸法;以降、回折格子深さdと呼ぶ)を有する一定周期Λの凹凸形状であり、この場合、後述するように、ウェットエッチング(等方性)で形成されているため断面形状は比較的コーナ部が丸い波形状(略V字形)となっている。   The diffraction grating 3 has an irregular shape with a predetermined period Λ having a predetermined depth d (step size of the irregularities; hereinafter referred to as the diffraction grating depth d). In this case, as will be described later, wet etching (etc. The cross-sectional shape is a wave shape (substantially V-shaped) with a relatively round corner.

また、回折格子3の凹部には、n型InGaAsPで成るガイド層4とは組成が異なるInAsPで成る変成層10が堆積している。尚、この変成層10は、後述する有機金属気相成長法(MOVPE)でガイド層4を形成するときに生じる。   In addition, a metamorphic layer 10 made of InAsP having a different composition from the guide layer 4 made of n-type InGaAsP is deposited in the concave portion of the diffraction grating 3. This metamorphic layer 10 is generated when the guide layer 4 is formed by metal organic vapor phase epitaxy (MOVPE) described later.

ここで、ブラッグ反射を起こすための回折格子3の周期Λと発振波長λとの間には、以下の関係がある。   Here, there is the following relationship between the period Λ of the diffraction grating 3 for causing Bragg reflection and the oscillation wavelength λ.

(数1)
Λ=m・λ/(2・n
(m;正の整数、n;DFBレーザ内部の光導波路の等価屈折率)
(Equation 1)
Λ = m · λ / (2 · ne )
(M: positive integer, ne : equivalent refractive index of optical waveguide inside DFB laser)

そして、上記の数式中の等価屈折率(n)を精度よく得るためには、回折格子深さdが重要な寸法となってくる。 In order to accurately obtain the equivalent refractive index (n e ) in the above formula, the diffraction grating depth d is an important dimension.

しかしながら、変成層10はガイド層4とは屈折率が異なる上に、その凹部への堆積によって回折格子深さdを変化(浅化)させるため、等価屈折率(n)を変動させる要因となった。 However, metamorphic layer 10 is formed on the refractive index different from that of the guide layer 4, for varying the diffraction grating depth d by deposition of the recess (shallowing), a factor to vary the equivalent refractive index (n e) became.

次に、このDFBレーザ1の製造方法を図6,図7を用いて説明する。図6,図7は製造方法の工程順を示す断面図である。   Next, a method for manufacturing the DFB laser 1 will be described with reference to FIGS. 6 and 7 are sectional views showing the order of steps of the manufacturing method.

先ず、n型InP基板2表面に回折格子を形成する。回折格子の形成方法は、図6(a)に示すように、n型InP基板2上にポジ型のフォトレジスト膜11を塗布形成する。   First, a diffraction grating is formed on the surface of the n-type InP substrate 2. The diffraction grating is formed by coating and forming a positive photoresist film 11 on an n-type InP substrate 2 as shown in FIG.

次に、図6(b)に示すように、電子ビーム露光法により電子ビームでフォトレジスト膜に所定の周期Λを有する回折格子パターンを直接描画した後、現像してフォトレジストマスク11aを得る。   Next, as shown in FIG. 6B, a diffraction grating pattern having a predetermined period Λ is directly drawn on the photoresist film by an electron beam by an electron beam exposure method, and then developed to obtain a photoresist mask 11a.

尚、ここでは、フォトレジストマスク11aの形成方法として電子ビーム露光法を用いて説明したが他の露光法として、干渉露光法やマスク(図示せず)のパターンを転写する方法などを採用してもよい。また、電子ビーム露光法は最も精密で微細な周期を形成できDFBレーザの製造に適しているが、描画スピードが遅くスループットの点で劣るため、回折格子をn型InP基板2全面に形成せず、実際にレーザ発振可能な活性層に対応する部分とその周辺にのみ局所的に形成するなどして描画距離及び描画時間の短縮を図ってもよい。   Here, the electron beam exposure method has been described as a method for forming the photoresist mask 11a. However, as another exposure method, an interference exposure method, a method of transferring a pattern of a mask (not shown), or the like is employed. Also good. The electron beam exposure method can form the most precise and fine period and is suitable for manufacturing a DFB laser. However, since the drawing speed is slow and the throughput is inferior, the diffraction grating is not formed on the entire surface of the n-type InP substrate 2. Alternatively, the drawing distance and the drawing time may be shortened by locally forming only the portion corresponding to the active layer capable of laser oscillation and the periphery thereof.

次に、図6(c)に示すように、フォトレジストマスク11aをエッチングマスクとして、この場合、ウェットエッチングによりn型InP基板2をエッチングして回折格子3を形成する。   Next, as shown in FIG. 6C, using the photoresist mask 11a as an etching mask, the n-type InP substrate 2 is etched by wet etching to form the diffraction grating 3.

尚、このとき、ウェットエッチングは等方的にエッチングが進むため、どうしてもフォトレジストマスク11a下にエッチング液が回り込み、回折格子3の凹凸形状は比較的コーナ部が丸い波形状(略V字形)となる。   At this time, since the wet etching isotropically proceeds, the etching solution inevitably flows under the photoresist mask 11a, and the concavo-convex shape of the diffraction grating 3 has a wave shape (substantially V-shaped) with a relatively round corner. Become.

次に、図7(d)に示すように、フォトレジストマスクを除去した後、回折格子3を埋め込んでさらに一定の厚さ、有機金属気相成長法(MOVPE)でInGaAsPを結晶成長させガイド層4を形成する。   Next, as shown in FIG. 7 (d), after removing the photoresist mask, the diffraction grating 3 is embedded, and InGaAsP is further grown to a constant thickness by metal organic vapor phase epitaxy (MOVPE). 4 is formed.

尚、このときの昇温で回折格子3が含む元素(In)のマストランスポートが活性化し原料ガス(AsH,PH)と反応してInAsPで成る変成層10が生じる。そしてその結果、回折格子3の凸部は消費されて高さが低くなる一方、凹部は生じた変成層10で埋め込まれ、回折格子深さdが浅くなった。(例えば、特許文献1参照。)。
特開平11−112098号公報(第2頁、0004段落、図7)
At this time, the mass transport of the element (In) included in the diffraction grating 3 is activated by the temperature rise, and reacts with the source gas (AsH 3 , PH 3 ) to generate the modified layer 10 made of InAsP. As a result, the convex portions of the diffraction grating 3 were consumed and the height thereof was lowered, while the concave portions were filled with the generated metamorphic layer 10 and the diffraction grating depth d was shallow. (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 11-112098 (page 2, paragraph 0004, FIG. 7)

また、このマストランスポートによって回折格子深さdが浅くなる現象は、回折格子3の断面形状が波形状(略V字形)に近いほど顕著で、矩形状(略U字形)に近いほど影響が少ない。   Further, the phenomenon that the diffraction grating depth d becomes shallow due to the mass transport is more remarkable as the cross-sectional shape of the diffraction grating 3 is closer to a wave shape (substantially V-shaped), and the effect is closer to a rectangular shape (substantially U-shaped). Few.

その理由の一つとして考えられることは、回折格子3の断面形状が波形状(略V字形)であると、凸部/凹部はそれぞれ先細り形状となるため、細い凸部は減りやすく、狭い凹部は埋め込まれやすいためである。そしてそれに加えて、凸部に生じたInAsPの結晶は回折格子3の斜面に沿って凹部に移動(落下)していき、その移動によって下から新たな回折格子3面が露出しマストランスポートが活性化され、次々と新たなInAsPの結晶が生じるためである。   One possible reason for this is that if the cross-sectional shape of the diffraction grating 3 is a corrugated shape (substantially V-shaped), the protrusions / recesses each have a tapered shape. This is because it is easy to be embedded. In addition, the InAsP crystal generated in the convex portion moves (drops) along the slope of the diffraction grating 3 into the concave portion, and a new diffraction grating 3 surface is exposed from below by the movement, and the mass transport is This is because activated and new InAsP crystals are formed one after another.

一方、回折格子3の断面形状が矩形状(略U字形)であると、凸部/凹部はそれぞれ一定面積の平坦面を有する平坦形状となるため、広い凸部は減りにくく、広い凹部は埋め込まれにくい。また、凸部に生じたInAsPの結晶は移動せず平坦な凸部に留まるため新たなInAsPの成長が抑制される。   On the other hand, if the cross-sectional shape of the diffraction grating 3 is rectangular (substantially U-shaped), the convex portions / concave portions have a flat shape having a flat surface with a constant area, so that the wide convex portions are difficult to reduce and the wide concave portions are embedded. It's hard to get it. Further, since the InAsP crystal generated in the convex portion does not move and remains in the flat convex portion, the growth of new InAsP is suppressed.

即ち、変成層10の凹部への堆積による回折格子深さdの変化(浅化)量は、回折格子の断面の形状に影響され、断面形状は、より矩形状に近いことが望ましいと言える。   That is, it can be said that the amount of change (shallowing) of the diffraction grating depth d due to the deposition of the metamorphic layer 10 in the recesses is affected by the cross-sectional shape of the diffraction grating, and the cross-sectional shape is desirably closer to a rectangular shape.

次に、図7(e)に示すように、ガイド層4上に順次、多重井戸構造の活性層5,p型InPで成るクラッド層6,InGaAsPで成るキャップ層7を結晶成長させる。   Next, as shown in FIG. 7E, the active layer 5, the clad layer 6 made of p-type InP 6 and the cap layer 7 made of InGaAsP are successively grown on the guide layer 4 in order.

次に、図7(f)に示すように、蒸着法またはスパッタ法で、表面及び裏面にそれぞれTi/Auなどで成るp側電極8,n側電極9を形成しDFBレーザ1が完成する。   Next, as shown in FIG. 7F, the p-side electrode 8 and the n-side electrode 9 made of Ti / Au or the like are formed on the front surface and the back surface, respectively, by vapor deposition or sputtering, and the DFB laser 1 is completed.

上述したように、従来のDFBレーザ1の製造方法では、n型InP基板2表面に形成した回折格子3上にガイド層4を有機金属気相成長法(MOVPE)で形成する際に、その昇温によって回折格子3に含まれる元素(In)のマストランスポートが活性化し、ガイド層4とは組成および屈折率が異なる変成層10が生じると共に、回折格子3の凸部が消費され高さが低くなる一方、生じた変成層10で凹部が埋め込まれるため、結果的に回折格子深さdが浅くなり、所望の等価屈折率(n)を得ることができなくなるおそれがあった。また、この回折格子深さdの変化(浅化)量は回折格子3の断面形状が波形状(略V字形)に近いほど顕著であった。 As described above, in the conventional method for manufacturing the DFB laser 1, when the guide layer 4 is formed on the diffraction grating 3 formed on the surface of the n-type InP substrate 2 by metal organic vapor phase epitaxy (MOVPE), the increase is made. The mass transport of the element (In) contained in the diffraction grating 3 is activated by the temperature, and the metamorphic layer 10 having a composition and refractive index different from that of the guide layer 4 is generated, and the convex portions of the diffraction grating 3 are consumed and the height is increased. On the other hand, since the concave portion is buried in the resulting metamorphic layer 10, the diffraction grating depth d becomes shallow as a result, and there is a possibility that a desired equivalent refractive index ( ne ) cannot be obtained. Further, the amount of change (shallowing) of the diffraction grating depth d becomes more prominent as the cross-sectional shape of the diffraction grating 3 is closer to a wave shape (substantially V-shaped).

本発明の目的は、半導体基板表面に形成した回折格子上に半導体層を有機金属気相成長法(MOVPE)で結晶成長させる際に、マストランスポートの活性化により変成層が生じ、その変成層で回折格子深さが浅くなることのない半導体レーザの製造方法を提供するものである。   An object of the present invention is to produce a metamorphic layer by activating mass transport when a semiconductor layer is crystal-grown on a diffraction grating formed on the surface of a semiconductor substrate by metal organic vapor phase epitaxy (MOVPE). The present invention provides a method of manufacturing a semiconductor laser in which the diffraction grating depth does not become shallow.

本発明の半導体レーザの製造方法は、
少なくとも、
半導体基板上に回折格子を形成する工程と、
回折格子上に有機金属気相成長法で半導体層を結晶成長させる際に、回折格子に含まれる元素のマストランスポートが活性化しないように回折格子の凸部を結晶成長阻止用の保護マスクで被覆して、半導体層を結晶成長させる工程とを含むことを特徴とする半導体レーザの製造方法である。
The method for producing a semiconductor laser of the present invention comprises:
at least,
Forming a diffraction grating on a semiconductor substrate;
When a semiconductor layer is grown on a diffraction grating by metal organic vapor phase epitaxy, the convex part of the diffraction grating is covered with a protective mask for preventing crystal growth so that the mass transport of elements contained in the diffraction grating is not activated. A method of manufacturing a semiconductor laser, comprising: covering and crystal-growing a semiconductor layer.

また、さらに、本発明の半導体レーザの製造方法は、
少なくとも、
半導体基板上に結晶成長阻止用の保護マスクとなる保護膜を形成する工程と、
保護膜上にフォトレジスト膜を積層形成する工程と、
フォトレジスト膜を回折格子パターンに露光および現像しフォトレジストマスクを形成する工程と、
フォトレジストマスクを用いて保護膜をエッチングし回折格子パターンを有する保護マスクを形成する工程と、
フォトレジストマスクを除去後、保護マスクを用いて半導体基板をエッチングし回折格子を形成する工程と、
回折格子の凸部に保護マスクを残したまま、有機金属気相成長法で、丁度、回折格子を埋め込む厚さまで第1半導体層を結晶成長させる工程と、
保護マスクを除去後、さらに一定の厚さ第1半導体層と同じ材料で成る第2半導体層を結晶成長させる工程とを含むことを特徴とする半導体レーザの製造方法である。
Furthermore, the manufacturing method of the semiconductor laser of the present invention includes:
at least,
Forming a protective film serving as a protective mask for preventing crystal growth on a semiconductor substrate;
A step of laminating a photoresist film on the protective film;
Exposing and developing the photoresist film to a diffraction grating pattern to form a photoresist mask;
Etching the protective film using a photoresist mask to form a protective mask having a diffraction grating pattern;
After removing the photoresist mask, etching the semiconductor substrate using a protective mask to form a diffraction grating;
A step of crystal-growing the first semiconductor layer to a thickness for embedding the diffraction grating by metal organic vapor phase epitaxy while leaving the protective mask on the convex portion of the diffraction grating;
And a step of crystal growth of a second semiconductor layer made of the same material as the first semiconductor layer with a constant thickness after removing the protective mask.

本発明の半導体レーザの製造方法によれば、半導体基板表面に形成した回折格子上に半導体層を有機金属気相成長法(MOVPE)で形成する際に、回折格子に含まれる元素のマストランスポートが活性化し不所望な変成層が生じその結果、回折格子深さが浅くなることがないように、回折格子の凸部を結晶成長阻止用の保護マスクで被覆して結晶成長させるため、回折格子深さが維持でき、所望の等価屈折率(n)を得ることができる。また、回折格子をドライエッチング(異方性)を用いて、その断面形状を矩形状に形成すると、さらに回折格子深さdの変化(浅化)量を低減できる。 According to the semiconductor laser manufacturing method of the present invention, when a semiconductor layer is formed on a diffraction grating formed on the surface of a semiconductor substrate by metal organic chemical vapor deposition (MOVPE), mass transport of elements contained in the diffraction grating is performed. In order to prevent undesired metamorphic layers from being activated, and as a result, the diffraction grating is covered with a protective mask for preventing crystal growth so that the diffraction grating is not shallow. The depth can be maintained, and a desired equivalent refractive index ( ne ) can be obtained. In addition, when the diffraction grating is formed in a rectangular shape by dry etching (anisotropy), the amount of change (shallowing) of the diffraction grating depth d can be further reduced.

本発明の半導体レーザの一例として分布帰還型半導体レーザ(以降、DFBレーザと呼ぶ)を図1に示す。図1(a)は、DFBレーザを光導波路方向に水平な面で切った縦断面図、図1(b)は、半導体基板表面に形成した回折格子の斜視図である。尚、図5と同一部分には同一符号を付す。   As an example of the semiconductor laser of the present invention, a distributed feedback semiconductor laser (hereinafter referred to as a DFB laser) is shown in FIG. FIG. 1A is a longitudinal sectional view of a DFB laser cut along a plane horizontal to the optical waveguide direction, and FIG. 1B is a perspective view of a diffraction grating formed on the surface of a semiconductor substrate. The same parts as those in FIG.

DFBレーザ101は、n型InP基板2表面に形成した多数本の凹凸のラインパターンから成る回折格子3aと、その回折格子3aを丁度、平坦となるように埋め込んだn型InGaAsPで成る第1半導体層4a及び、その上にさらに一定の厚さ結晶成長させた同じくn型InGaAsPで成る第2半導体層4bとで構成したガイド層4と、その上に形成した多重井戸構造の活性層5と、その上に形成したp型InPで成るクラッド層6と、その上に形成したInGaAsPで成るキャップ層7と、Ti/Auなどで成る表面及び裏面にそれぞれ形成したp側電極8及びn側電極9とで構成されている。   The DFB laser 101 is a first semiconductor composed of a diffraction grating 3a formed of a large number of uneven line patterns formed on the surface of an n-type InP substrate 2 and n-type InGaAsP in which the diffraction grating 3a is embedded so as to be flat. A guide layer 4 composed of a layer 4a and a second semiconductor layer 4b made of n-type InGaAsP, on which a crystal of a certain thickness is further grown, and an active layer 5 having a multi-well structure formed thereon, A cladding layer 6 made of p-type InP formed thereon, a cap layer 7 made of InGaAsP formed thereon, and a p-side electrode 8 and an n-side electrode 9 formed on the front and back surfaces made of Ti / Au or the like, respectively. It consists of and.

また、回折格子3aは所定の深さd(凹凸の段差寸法;以降、回折格子深さdと呼ぶ)を有する一定周期Λの凹凸形状であり、この場合、後述するように、ドライエッチング(異方性)で形成されているため断面形状は比較的コーナ部が角張った矩形状(略U字形)となっている。   The diffraction grating 3a has an irregular shape with a predetermined period Λ having a predetermined depth d (a step size of the irregularities; hereinafter referred to as a diffraction grating depth d). In this case, as will be described later, dry etching (different Therefore, the cross-sectional shape is a rectangular shape (substantially U-shaped) with relatively square corners.

また、回折格子3aの凹部には不所望な変成層の堆積は見られない。   In addition, no undesired metamorphic layer is deposited in the recesses of the diffraction grating 3a.

ここで、ブラッグ反射を起こすための回折格子3aの周期Λと発振波長λとの間には、以下の関係がある。   Here, there is the following relationship between the period Λ of the diffraction grating 3a for causing Bragg reflection and the oscillation wavelength λ.

(数1)
Λ=m・λ/(2・n
(m;正の整数、n;DFBレーザ内部の光導波路の等価屈折率)
(Equation 1)
Λ = m · λ / (2 · ne )
(M: positive integer, ne : equivalent refractive index of optical waveguide inside DFB laser)

そして、上記の数式中の等価屈折率(n)を精度よく得るためには、回折格子深さdが重要な寸法となってくる。 In order to accurately obtain the equivalent refractive index (n e ) in the above formula, the diffraction grating depth d is an important dimension.

次に、このDFBレーザ101の製造方法を図2〜図4を用いて説明する。図2〜図4は製造方法の工程順を示す断面図である。尚、図6,図7と同一部分には同一符号を付す。   Next, a method for manufacturing the DFB laser 101 will be described with reference to FIGS. 2-4 is sectional drawing which shows the process order of a manufacturing method. 6 and 7 are denoted by the same reference numerals.

先ず、n型InP基板2表面に回折格子を形成する。回折格子の形成方法は、図2(a)に示すように、n型InP基板2上に、後で有機金属気相成長法(MOVPE)を用いる際に、結晶成長阻止用の保護マスクとなる予定のシリコン酸化膜102をCVD法で形成する。   First, a diffraction grating is formed on the surface of the n-type InP substrate 2. As shown in FIG. 2A, the diffraction grating is formed on the n-type InP substrate 2 as a protective mask for preventing crystal growth when metal organic vapor phase epitaxy (MOVPE) is used later. A planned silicon oxide film 102 is formed by a CVD method.

次に、図2(b)に示すように、シリコン酸化膜102上にポジ型のフォトレジスト膜11を塗布形成する。   Next, as shown in FIG. 2B, a positive photoresist film 11 is formed on the silicon oxide film 102 by coating.

次に、図2(c)に示すように、電子ビーム露光法により電子ビームでフォトレジスト膜に所定の周期Λを有する回折格子パターンを直接描画した後、現像してフォトレジストマスク11aを得る。   Next, as shown in FIG. 2C, a diffraction grating pattern having a predetermined period Λ is directly drawn on the photoresist film by an electron beam by an electron beam exposure method, and then developed to obtain a photoresist mask 11a.

尚、ここでは、フォトレジストマスク11aの形成方法として電子ビーム露光法を用いて説明したが他の露光法として、干渉露光法やマスク(図示せず)のパターンを転写する方法などを採用してもよい。また、電子ビーム露光法は最も精密で微細な周期を形成できDFBレーザの製造に適しているが、描画スピードが遅くスループットの点で劣るため、回折格子をn型InP基板2全面に形成せず、実際にレーザ発振可能な活性層に対応する部分とその周辺にのみ局所的に形成するなどして描画距離及び描画時間の短縮を図ってもよい。   Here, the electron beam exposure method has been described as a method for forming the photoresist mask 11a. However, as another exposure method, an interference exposure method, a method of transferring a pattern of a mask (not shown), or the like is employed. Also good. The electron beam exposure method can form the most precise and fine period and is suitable for manufacturing a DFB laser. However, since the drawing speed is slow and the throughput is inferior, the diffraction grating is not formed on the entire surface of the n-type InP substrate 2. Alternatively, the drawing distance and the drawing time may be shortened by locally forming only the portion corresponding to the active layer capable of laser oscillation and the periphery thereof.

次に、図3(d)に示すように、フォトレジストマスク11aをエッチングマスクとしてドライエッチング(異方性)によりシリコン酸化膜をエッチングしてシリコン酸化膜マスク102aを形成する。   Next, as shown in FIG. 3D, the silicon oxide film 102a is formed by etching the silicon oxide film by dry etching (anisotropy) using the photoresist mask 11a as an etching mask.

このとき、シリコン酸化膜をドライエッチング(異方性)で形成するのでシリコン酸化膜マスク102aのパターンエッジはシャープとなり、後でn型InP基板2をエッチングして回折格子を形成する際に、よりシャープな断面形状を有する回折格子を得るのに好適である。   At this time, since the silicon oxide film is formed by dry etching (anisotropy), the pattern edge of the silicon oxide film mask 102a becomes sharp, and the n-type InP substrate 2 is etched later to form a diffraction grating. It is suitable for obtaining a diffraction grating having a sharp cross-sectional shape.

次に、図3(e)に示すように、シリコン酸化膜マスク102aをエッチングマスクとしてドライエッチング(異方性)によりn型InP基板2を所定深さdだけエッチングして断面形状が矩形状(略U字形)の回折格子3aを形成する。   Next, as shown in FIG. 3E, the n-type InP substrate 2 is etched by a predetermined depth d by dry etching (anisotropy) using the silicon oxide film mask 102a as an etching mask, so that the cross-sectional shape is rectangular ( A substantially U-shaped) diffraction grating 3a is formed.

次に、図3(f)に示すように、シリコン酸化膜マスク102aを回折格子3aの凸部の結晶成長阻止用の保護マスクとして残したまま、丁度、回折格子3aを埋め込む厚さまで有機金属気相成長法(MOVPE)でn型InGaAsPで成る第1半導体層4aを結晶成長させガイド層の一部を形成する。   Next, as shown in FIG. 3 (f), the metal oxide film 102a is left just as thick as the diffraction grating 3a is embedded, leaving the silicon oxide film mask 102a as a protective mask for preventing crystal growth of the convex portions of the diffraction grating 3a. The first semiconductor layer 4a made of n-type InGaAsP is crystal-grown by phase growth (MOVPE) to form part of the guide layer.

尚、このときの昇温の際に、回折格子3aの凸部は、本発明の特徴である結晶成長阻止用の保護マスクとしてのシリコン酸化膜マスク102aで被覆されているため不所望な変成層は生じにくい。そのため、回折格子3aの凸部が消費されたり、凹部が変成層で埋め込まれたりせず、回折格子深さdが維持できる。   In this case, since the convex portion of the diffraction grating 3a is covered with the silicon oxide film mask 102a as a protective mask for preventing crystal growth, which is a feature of the present invention, the undesired metamorphic layer is formed. Is unlikely to occur. Therefore, the convex part of the diffraction grating 3a is not consumed, and the concave part is not filled with the metamorphic layer, and the diffraction grating depth d can be maintained.

また、回折格子3aはドライエッチング(異方性)によって断面形状が矩形状(略U字形)に形成されている点でも回折格子深さdの変化(浅化)量を低減できる。   Further, the amount of change (shallowing) of the diffraction grating depth d can be reduced also in that the diffraction grating 3a is formed in a rectangular shape (substantially U-shaped) by dry etching (anisotropy).

次に、回折格子3aの埋め込みが完了したら、シリコン酸化膜マスクをフッ酸で除去した後、図4(g)に示すように、同じくn型InGaAsPで成る第2半導体層4bをさらに一定の厚さ有機金属気相成長法(MOVPE)で結晶成長させ、第1半導体層4aと第2半導体層4bとで構成するガイド層4を完成させる。   Next, after the burying of the diffraction grating 3a is completed, the silicon oxide film mask is removed with hydrofluoric acid, and then the second semiconductor layer 4b made of n-type InGaAsP is further fixed to a certain thickness as shown in FIG. Then, crystal growth is performed by metal organic vapor phase epitaxy (MOVPE) to complete the guide layer 4 composed of the first semiconductor layer 4a and the second semiconductor layer 4b.

次に、図4(h)に示すように、ガイド層4上に順次、多重井戸構造の活性層5,p型InPで成るクラッド層6,InGaAsPで成るキャップ層7を結晶成長させる。   Next, as shown in FIG. 4H, the active layer 5, the clad layer 6 made of p-type InP 6 and the cap layer 7 made of InGaAsP are sequentially grown on the guide layer 4 in order.

次に、図4(i)に示すように、蒸着法またはスパッタ法で、表面及び裏面にそれぞれTi/Auなどで成るp側電極8,n側電極9を形成しDFBレーザ101が完成する。   Next, as shown in FIG. 4 (i), the p-side electrode 8 and the n-side electrode 9 made of Ti / Au or the like are formed on the front and back surfaces, respectively, by vapor deposition or sputtering to complete the DFB laser 101.

このようにn型InP基板2表面に形成した回折格子3a上にガイド層4を有機金属気相成長法(MOVPE)で形成する際に、回折格子3aの凸部を結晶成長阻止用のシリコン酸化膜マスク102aで保護して結晶成長させるとマストランスポートの活性化を抑制でき変成層が生じにくく、その結果として回折格子深さdが維持できる。また、回折格子3aの断面形状を矩形状(略U字形)に形成したので、さらに回折格子深さdの変化(浅化)量を低減できる。   Thus, when the guide layer 4 is formed on the diffraction grating 3a formed on the surface of the n-type InP substrate 2 by metal organic vapor phase epitaxy (MOVPE), the convex portion of the diffraction grating 3a is formed by silicon oxide for preventing crystal growth. When the crystal is grown while being protected by the film mask 102a, activation of the mass transport can be suppressed and a metamorphic layer is hardly formed, and as a result, the diffraction grating depth d can be maintained. Further, since the cross-sectional shape of the diffraction grating 3a is rectangular (substantially U-shaped), the amount of change (shallowing) of the diffraction grating depth d can be further reduced.

尚、上記では、回折格子3aをドライエッチング(異方性)で形成し断面形状を矩形状(略U字形)とすることで説明したが、例えば、回折格子をウェットエッチング(等方性)で形成し断面形状が波形状(略V字形)となった場合であっても、回折格子の凸部を結晶成長阻止用の保護マスクで被覆して結晶成長させることによるマストランスポートの抑制効果はそれなりに得ることができることは言うまでもない。   In the above description, the diffraction grating 3a is formed by dry etching (anisotropic) and the cross-sectional shape is rectangular (substantially U-shaped). However, for example, the diffraction grating is wet-etched (isotropic). Even when the cross-sectional shape is formed into a wave shape (substantially V-shaped), the effect of suppressing mass transport by covering the convex part of the diffraction grating with a protective mask for preventing crystal growth and growing the crystal is It goes without saying that it can be obtained as such.

また、上記では、結晶成長阻止用の保護マスクの材料として、シリコン酸化膜で説明したが、特にこれに限るものではなく、例えば、シリコン窒化膜などであってもよい。但し、この場合、ホットリン酸などで除去する必要がある。   In the above description, the silicon oxide film has been described as the material for the protective mask for preventing crystal growth. However, the present invention is not limited to this. For example, a silicon nitride film may be used. In this case, however, it must be removed with hot phosphoric acid or the like.

半導体基板表面に形成した回折格子上に半導体層を有機金属気相成長法(MOVPE)で形成する際に、回折格子の凸部を結晶成長阻止用の保護マスクで被覆して結晶成長させることで不所望な変成層を生じさせず、その結果、回折格子深さを維持できる半導体レーザの製造方法に適用できる。   When the semiconductor layer is formed on the diffraction grating formed on the surface of the semiconductor substrate by metal organic vapor phase epitaxy (MOVPE), the convex portion of the diffraction grating is covered with a protective mask for preventing crystal growth to grow the crystal. The present invention can be applied to a method for manufacturing a semiconductor laser that does not generate an undesired metamorphic layer and as a result can maintain the diffraction grating depth.

本発明の半導体レーザの一例としてのDFBレーザの要部断面図及び回折格子の斜視図Sectional view of principal part of DFB laser as an example of semiconductor laser of the present invention and perspective view of diffraction grating 本発明のDFBレーザの製造方法の工程順を示す断面図Sectional drawing which shows the process order of the manufacturing method of the DFB laser of this invention 本発明のDFBレーザの製造方法の工程順を示す断面図Sectional drawing which shows the process order of the manufacturing method of the DFB laser of this invention 本発明のDFBレーザの製造方法の工程順を示す断面図Sectional drawing which shows the process order of the manufacturing method of the DFB laser of this invention 従来の半導体レーザの一例としてのDFBレーザの要部断面図及び回折格子の斜視図Cross-sectional view of a main part of a DFB laser as an example of a conventional semiconductor laser and a perspective view of a diffraction grating 従来のDFBレーザの製造方法の工程順を示す断面図Sectional drawing which shows the process order of the manufacturing method of the conventional DFB laser 従来のDFBレーザの製造方法の工程順を示す断面図Sectional drawing which shows the process order of the manufacturing method of the conventional DFB laser

符号の説明Explanation of symbols

1 従来のDFBレーザ
2 n型InP基板
3 従来の回折格子
3a 本発明の回折格子
4 ガイド層
4a 第1半導体層
4b 第2半導体層
5 活性層
6 クラッド層
7 キャップ層
8 p側電極
9 n側電極
10 変成層
11 フォトレジスト膜
11a フォトレジストマスク
101 本発明のDFBレーザ
102 シリコン酸化膜
102a シリコン酸化膜マスク
d 回折格子深さ(凹凸の段差寸法)
Λ 回折格子の周期
DESCRIPTION OF SYMBOLS 1 Conventional DFB laser 2 n-type InP substrate 3 Conventional diffraction grating 3a Diffraction grating of the present invention 4 Guide layer 4a First semiconductor layer 4b Second semiconductor layer 5 Active layer 6 Clad layer 7 Cap layer 8 P-side electrode 9 N-side Electrode 10 Metamorphic layer
11 Photoresist film 11a Photoresist mask 101 DFB laser of the present invention 102 Silicon oxide film 102a Silicon oxide film mask
Λ Grating period

Claims (6)

少なくとも、
半導体基板上に回折格子を形成する工程と、
前記回折格子上に有機金属気相成長法で半導体層を結晶成長させる際に、前記回折格子に含まれる元素のマストランスポートが活性化しないように前記回折格子の凸部を結晶成長阻止用の保護マスクで被覆して、前記半導体層を結晶成長させる工程とを含むことを特徴とする半導体レーザの製造方法。
at least,
Forming a diffraction grating on a semiconductor substrate;
When the semiconductor layer is crystal-grown on the diffraction grating by metal organic vapor phase epitaxy, the convex portion of the diffraction grating is used to prevent crystal growth so that the mass transport of the elements contained in the diffraction grating is not activated. A method of manufacturing a semiconductor laser, comprising: covering with a protective mask and growing the crystal of the semiconductor layer.
本発明の半導体レーザの製造方法は、
少なくとも、
半導体基板上に結晶成長阻止用の保護マスクとなる保護膜を形成する工程と、
前記保護膜上にフォトレジスト膜を積層形成する工程と、
前記フォトレジスト膜を回折格子パターンに露光および現像しフォトレジストマスクを形成する工程と、
前記フォトレジストマスクを用いて前記保護膜をエッチングし回折格子パターンを有する保護マスクを形成する工程と、
前記フォトレジストマスクを除去後、前記保護マスクを用いて前記半導体基板をエッチングし回折格子を形成する工程と、
前記回折格子の凸部に前記保護マスクを残したまま、有機金属気相成長法で、丁度、前記回折格子を埋め込む厚さまで第1半導体層を結晶成長させる工程と、
前記保護マスクを除去後、さらに一定の厚さ前記第1半導体層と同じ材料で成る第2半導体層を結晶成長させる工程とを含むことを特徴とする半導体レーザの製造方法。
The method for producing a semiconductor laser of the present invention comprises:
at least,
Forming a protective film serving as a protective mask for preventing crystal growth on a semiconductor substrate;
Laminating a photoresist film on the protective film;
Exposing and developing the photoresist film to a diffraction grating pattern to form a photoresist mask;
Etching the protective film using the photoresist mask to form a protective mask having a diffraction grating pattern;
After removing the photoresist mask, etching the semiconductor substrate using the protective mask to form a diffraction grating;
Crystal growth of the first semiconductor layer to a thickness for embedding the diffraction grating by metal organic vapor phase epitaxy while leaving the protective mask on the convex portions of the diffraction grating;
And a step of crystal growth of a second semiconductor layer made of the same material as that of the first semiconductor layer after removing the protective mask.
前記第1半導体層および前記第2半導体層で構成される半導体層は分布帰還型半導体レーザのガイド層であり、前記ガイド層上にさらに活性層を形成する工程を含むことを特徴とする請求項1、または、請求項2に記載の半導体レーザの製造方法。   The semiconductor layer constituted by the first semiconductor layer and the second semiconductor layer is a guide layer of a distributed feedback semiconductor laser, and further includes a step of forming an active layer on the guide layer. A method of manufacturing a semiconductor laser according to claim 1 or 2. 前記保護マスクは、シリコン酸化膜、または、シリコン窒化膜で成ることを特徴とする請求項1から3のいずれかに記載の半導体レーザの製造方法。   4. The method of manufacturing a semiconductor laser according to claim 1, wherein the protective mask is made of a silicon oxide film or a silicon nitride film. 前記保護マスクを形成するエッチング方法は、ドライエッチングであって、前記保護マスクのパターンエッジをシャープに形成することを特徴とする請求項2から4のいずれかに記載の半導体レーザの製造方法。   5. The method of manufacturing a semiconductor laser according to claim 2, wherein an etching method for forming the protective mask is dry etching, and a pattern edge of the protective mask is sharply formed. 6. 前記半導体基板表面に前記回折格子を形成するエッチング方法は、ドライエッチングであって、前記回折格子の光導波路方向に水平な面で切った断面形状が矩形状になるように形成することを特徴とする請求項2から5のいずれかに記載の半導体レーザの製造方法。   The etching method for forming the diffraction grating on the surface of the semiconductor substrate is dry etching, and is formed so that a cross-sectional shape cut by a plane horizontal to the optical waveguide direction of the diffraction grating is rectangular. A method of manufacturing a semiconductor laser according to claim 2.
JP2003365957A 2003-10-27 2003-10-27 Method of manufacturing semiconductor laser Pending JP2005129833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365957A JP2005129833A (en) 2003-10-27 2003-10-27 Method of manufacturing semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365957A JP2005129833A (en) 2003-10-27 2003-10-27 Method of manufacturing semiconductor laser

Publications (1)

Publication Number Publication Date
JP2005129833A true JP2005129833A (en) 2005-05-19

Family

ID=34644454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365957A Pending JP2005129833A (en) 2003-10-27 2003-10-27 Method of manufacturing semiconductor laser

Country Status (1)

Country Link
JP (1) JP2005129833A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294774A (en) * 2006-04-27 2007-11-08 Opnext Japan Inc Semiconductor laser device and its manufacturing method
JP2008028375A (en) * 2006-06-20 2008-02-07 Nichia Chem Ind Ltd Nitride semiconductor laser device
WO2011013836A3 (en) * 2009-07-30 2011-12-08 Canon Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
JP2012212920A (en) * 2006-06-20 2012-11-01 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2013536452A (en) * 2010-06-29 2013-09-19 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Spectral filter with structured film on a subwavelength scale and method for manufacturing such a filter
KR101378858B1 (en) * 2007-11-01 2014-03-28 엘지디스플레이 주식회사 Encapsulation Substrate Manufacturing Method
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
KR101446348B1 (en) * 2007-11-01 2014-10-02 엘지디스플레이 주식회사 Encapsulation Substrate Manufacturing Method
CN110611244A (en) * 2019-09-20 2019-12-24 中国科学院半导体研究所 Method for preparing single-mode gallium arsenide-based quantum dot laser
WO2021131760A1 (en) * 2019-12-26 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetection element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294774A (en) * 2006-04-27 2007-11-08 Opnext Japan Inc Semiconductor laser device and its manufacturing method
JP2008028375A (en) * 2006-06-20 2008-02-07 Nichia Chem Ind Ltd Nitride semiconductor laser device
JP2012212920A (en) * 2006-06-20 2012-11-01 Nichia Chem Ind Ltd Nitride semiconductor laser element
KR101378858B1 (en) * 2007-11-01 2014-03-28 엘지디스플레이 주식회사 Encapsulation Substrate Manufacturing Method
KR101446348B1 (en) * 2007-11-01 2014-10-02 엘지디스플레이 주식회사 Encapsulation Substrate Manufacturing Method
WO2011013836A3 (en) * 2009-07-30 2011-12-08 Canon Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
US8842710B2 (en) 2009-07-30 2014-09-23 Canon Kabushiki Kaisha Process for producing semiconductor device and semiconductor device
JP2013536452A (en) * 2010-06-29 2013-09-19 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Spectral filter with structured film on a subwavelength scale and method for manufacturing such a filter
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
CN110611244A (en) * 2019-09-20 2019-12-24 中国科学院半导体研究所 Method for preparing single-mode gallium arsenide-based quantum dot laser
CN110611244B (en) * 2019-09-20 2021-05-18 中国科学院半导体研究所 Method for preparing single-mode gallium arsenide-based quantum dot laser
WO2021131760A1 (en) * 2019-12-26 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetection element

Similar Documents

Publication Publication Date Title
JP5280614B2 (en) Embedded heterostructure devices incorporating waveguide gratings fabricated by single step MOCVD
JP5177285B2 (en) Optical element and manufacturing method thereof
JP5190115B2 (en) Multi-cavity etch facet DFB laser
JP5182362B2 (en) Optical element and manufacturing method thereof
JPH0878386A (en) Semiconductor etching method, manufacture of semiconductor device, semiconductor laser and its manufacture
JPH09283841A (en) Distributed feed back semiconductor laser device, manufacturing method thereof and exposing method
JP3339488B2 (en) Optical semiconductor device and method of manufacturing the same
JP2005333144A (en) Photonic integrated device using reverse-mesa structure and method for fabricating same
JP2005129833A (en) Method of manufacturing semiconductor laser
JP4618854B2 (en) Semiconductor device and manufacturing method thereof
US7855093B2 (en) Semiconductor laser device and method of manufacturing the same
JP3745985B2 (en) Complex coupled type distributed feedback semiconductor laser device
US8409889B2 (en) Method for producing semiconductor optical device
JP4006729B2 (en) Semiconductor light-emitting device using self-assembled quantum dots
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JPS63213383A (en) Semiconductor laser
US20130128911A1 (en) Diode laser and method for manufacturing a high-efficiency diode laser
JP2953449B2 (en) Optical semiconductor device and method of manufacturing the same
JPH0621570A (en) Manufacture of semiconductor light emitting device
JP2609776B2 (en) Semiconductor laser
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser
JP2010098200A (en) Distribution feedback type semiconductor laser element and manufacturing method thereof
JP5445272B2 (en) Method for manufacturing optical semiconductor element
JP2004095806A (en) Distributed feedback semiconductor laser and method of manufacturing the same