WO2021131760A1 - Semiconductor photodetection element - Google Patents

Semiconductor photodetection element Download PDF

Info

Publication number
WO2021131760A1
WO2021131760A1 PCT/JP2020/046133 JP2020046133W WO2021131760A1 WO 2021131760 A1 WO2021131760 A1 WO 2021131760A1 JP 2020046133 W JP2020046133 W JP 2020046133W WO 2021131760 A1 WO2021131760 A1 WO 2021131760A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
main surface
region
semiconductor region
polysilicon layer
Prior art date
Application number
PCT/JP2020/046133
Other languages
French (fr)
Japanese (ja)
Inventor
晃永 山本
隆裕 近藤
弘典 園部
輝昌 永野
龍太郎 土屋
守弘 幸田
鈴木 義之
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2021131760A1 publication Critical patent/WO2021131760A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present invention relates to a semiconductor photodetector.
  • a known semiconductor photodetector includes a silicon substrate having a first main surface and a second main surface facing each other (see, for example, Patent Document 1). Irregular irregularities are formed on the silicon substrate included in this semiconductor photodetector. In Patent Document 1, irregular irregularities are formed by irradiating a silicon substrate with a laser beam.
  • the light incident on the semiconductor photodetector is reflected, scattered, or diffused in the region where irregular irregularities are formed, and travels a long distance in the silicon substrate. Most of the light incident on the semiconductor photodetector is difficult to pass through the silicon substrate and is absorbed by the silicon substrate. The mileage of the light incident on the semiconductor photodetector becomes longer, and the distance at which the light is absorbed also becomes longer. Therefore, the semiconductor photodetector improves the spectral sensitivity characteristic in the near infrared wavelength band.
  • Crystal damage may occur in the region where irregular irregularities are formed on the silicon substrate, and the crystallinity of the silicon substrate may deteriorate.
  • the crystallinity of the silicon substrate deteriorates, electric charges may be generated on the silicon substrate regardless of the incident of light.
  • the electric charge generated regardless of the incident of light may generate a dark current.
  • One aspect of the present invention is to provide a semiconductor photodetector that improves the spectral sensitivity characteristics in the near infrared wavelength band and suppresses the generation of dark current.
  • the semiconductor photodetector includes a first conductive silicon substrate having a first main surface and a second main surface facing each other, and a third main surface and a second main surface facing each other. It is provided with a polysilicon layer having four main surfaces.
  • the polysilicon layer is arranged on the silicon substrate so that the third main surface faces the first main surface.
  • the silicon substrate includes a first region including a part of the first main surface and a second region including another part of the first main surface.
  • a second conductive type first semiconductor region is formed in the first region. In the second region, a first conductive type second semiconductor region is formed.
  • the polysilicon layer is arranged on a part of the first main surface included in the first region.
  • the polysilicon layer is formed with a plurality of depressions that open on the fourth main surface.
  • the above one aspect when light is incident on the fourth main surface, the light is scattered on the fourth main surface of the polysilicon layer in which a plurality of depressions are formed.
  • the scattered light travels in the polysilicon layer, enters the silicon substrate from the first main surface, and travels in various directions in the silicon substrate. Therefore, the above one aspect increases the mileage of light in the silicon substrate as compared with the configuration in which the polysilicon layer is not arranged. Since the light incident on the silicon substrate travels a long distance in the silicon substrate, more light is converted into electric charges. As a result, the above-mentioned one aspect improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • the first conductive type third semiconductor region having a higher impurity concentration than the silicon substrate contained in the first region is closer to the second main surface than the first semiconductor region. It may be formed.
  • the silicon substrate is located between the first conductive type epitaxial semiconductor region including the first region and the second region, and the second main surface and the axial semiconductor region. It may have a conductive type fourth semiconductor region. In this case, the fourth semiconductor region has a higher impurity concentration than the epitaxial semiconductor region.
  • the plurality of depressions may be formed in the polysilicon layer so as to be regularly arranged.
  • the shape or size of the irregularities may differ from product to product. If the shape or size of the unevenness is different, the spectral sensitivity characteristics may vary between products. The configuration in which the plurality of depressions are regularly arranged in the polysilicon layer is unlikely to cause variations in the spectral sensitivity characteristics.
  • the polysilicon layer may be of the second conductive type, and the first semiconductor region and the polysilicon layer may be in contact with each other.
  • the polysilicon layer can function as an electrode. Therefore, the need to newly provide an electrode for extracting the electric charge from the first semiconductor region is reduced. A portion of the charge generated by the polysilicon layer can be included in the output signal. Therefore, the configuration in which the polysilicon layer is the second conductive type and the first semiconductor region and the polysilicon layer are in contact with each other improves the spectral sensitivity characteristics in the near infrared wavelength band.
  • One aspect described above may include an insulating layer arranged between the silicon substrate and the polysilicon layer.
  • the formation of a plurality of depressions in the polysilicon layer can be easily performed while further suppressing the influence on the silicon substrate.
  • the plurality of depressions may also be open to the third main surface, and a part of the insulating layer may be exposed in the plurality of depressions.
  • the depth of each recess is defined by the thickness of the polysilicon layer, the depth of each recess is controlled with high accuracy.
  • each surface of the plurality of depressions may be curved.
  • the plurality of depressions may be formed by isotropic etching.
  • the above one aspect may include a reflective film arranged on the second main surface.
  • the light traveling through the silicon substrate and reaching the second main surface is incident on the reflective film and reflected by the reflective film.
  • the light reflected by the reflective film travels further in the silicon substrate. Therefore, the mileage of light in the silicon substrate is further increased, and more light is converted into electric charges.
  • the configuration in which the reflective film is arranged on the second main surface further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • the above one aspect may include a support substrate arranged so as to face the second main surface.
  • the support substrate improves the mechanical strength of the semiconductor photodetector.
  • the silicon substrate may have a plurality of cells including a first region and a second region, and the plurality of cells may be electrically connected in parallel.
  • trenches for physically separating adjacent cells among a plurality of cells may be formed in a grid pattern on the silicon substrate when viewed from a direction orthogonal to the first main surface.
  • the polysilicon layer does not have to be located on the trench.
  • One or more aspects of the present invention provide a semiconductor photodetector that improves spectral sensitivity characteristics in the near-infrared wavelength band and suppresses the generation of dark current.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to the first embodiment.
  • FIG. 2 is a diagram showing an example of an arrangement of a plurality of depressions.
  • FIG. 3 is a diagram showing an example of an arrangement of a plurality of depressions.
  • FIG. 4 is a diagram showing a process of forming a plurality of depressions.
  • FIG. 5 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the first modification of the first embodiment.
  • FIG. 6 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a second modification of the first embodiment.
  • FIG. 7 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment.
  • FIG. 8 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the second embodiment.
  • FIG. 10 is a plan view showing a semiconductor photodetector according to the second embodiment.
  • FIG. 11 is a diagram showing a cross-sectional configuration of the semiconductor photodetector.
  • FIG. 12 is a diagram showing a cross-sectional configuration of the semiconductor photodetector.
  • FIG. 13 is a diagram showing a cross-sectional configuration of the semiconductor photodetector.
  • FIG. 14 is a diagram showing a cross-sectional configuration of the semiconductor photodetector.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to the first embodiment.
  • the semiconductor photodetector 1 is, for example, a surface incident type avalanche photodiode.
  • the semiconductor photodetector 1 includes a semiconductor substrate 11.
  • the semiconductor substrate 11 is a substrate made of silicon (Si).
  • the semiconductor substrate 11 has a main surface 11a and a main surface 11b facing each other.
  • the main surface 11a is a light incident surface on the semiconductor substrate 11.
  • the main surface 11a is the front surface and the main surface 11b is the back surface.
  • the main surface 11a and the main surface 11b are flat surfaces.
  • the thickness of the semiconductor substrate 11 is, for example, 100 to 625 ⁇ m.
  • the main surface 11a constitutes the first main surface
  • the main surface 11b constitutes the second main surface.
  • the semiconductor substrate 11 has a first conductive type epitaxial semiconductor region 12a and a first conductive type semiconductor region 12b.
  • the semiconductor region 12b constitutes the substrate of the semiconductor substrate 11.
  • the epitaxial semiconductor region 12a is formed on the semiconductor region 12b by the epitaxial growth method.
  • the epitaxial semiconductor region 12a is a region including the main surface 11a.
  • the semiconductor region 12b is located closer to the main surface 11b than the epitaxial semiconductor region 12a.
  • the semiconductor region 12b is located between the epitaxial semiconductor region 12a and the main surface 11b.
  • the semiconductor region 12b is a region including the main surface 11b.
  • the semiconductor substrate 11 is composed of an epitaxial semiconductor region 12a and a semiconductor region 12b.
  • the first conductive type is, for example, the p type.
  • the second conductive type is, for example, n type.
  • the p-type impurity contains, for example, a Group 13 element
  • the n-type impurity contains, for example, a Group 15 element.
  • the n-type impurities are, for example, nitrogen (N), phosphorus (P), arsenic (As), or antimony (Sb).
  • the p-type impurity is, for example, boron (B) or aluminum (Al).
  • the first conductive type may be n type
  • the second conductive type may be p type.
  • the impurity concentration in the semiconductor region 12b is higher than the impurity concentration in the epitaxial semiconductor region 12a.
  • the impurity concentration in the semiconductor region 12b is, for example, 1 ⁇ 10 18 cm -3 .
  • the impurity concentration in the epitaxial semiconductor region 12a is, for example, 1 ⁇ 10 14 cm -3 .
  • the semiconductor substrate 11 has a second conductive type semiconductor region 13, a first conductive type semiconductor region 15, and a first conductive type semiconductor region 17.
  • the semiconductor regions 13, 15 and 17 are formed in the epitaxial semiconductor region 12a.
  • the semiconductor region 13 and the semiconductor region 15 are arranged on the main surface 11a side of the semiconductor substrate 11.
  • the semiconductor region 13 and the semiconductor region 15 are regions including the main surface 11a.
  • the semiconductor region 17 is located closer to the main surface 11b than the semiconductor region 13.
  • the semiconductor region 13 and the semiconductor region 17 are formed so as to be separated from each other.
  • the semiconductor region 13 and the semiconductor region 17 may be formed so as to be in contact with each other.
  • Each of the semiconductor regions 13, 15 and 17 has a high impurity concentration. Each of the semiconductor regions 13, 15 and 17 has a higher impurity concentration than the epitaxial semiconductor region 12a.
  • the impurity concentration of the semiconductor region 13 is, for example, 1 ⁇ 10 19 cm -3 .
  • the impurity concentration of the semiconductor region 15 is, for example, 1 ⁇ 10 19 cm -3 .
  • the impurity concentration of the semiconductor region 17 is, for example, 1 ⁇ 10 16 cm -3 .
  • the thickness of the semiconductor region 13 is, for example, 0.5 ⁇ m.
  • the thickness of the semiconductor region 15 is, for example, 1.0 ⁇ m.
  • the thickness of the semiconductor region 17 is, for example, 2.0 ⁇ m.
  • the epitaxial semiconductor region 12a and the semiconductor region 13 form a pn junction.
  • the pn junction is formed at the boundary between the epitaxial semiconductor region 12a and the semiconductor region 13.
  • the semiconductor region 13 and the semiconductor region 17 form a pn junction.
  • the semiconductor region 13 and the semiconductor region 15 are separated from each other.
  • the semiconductor region 15 is located outside the semiconductor region 13 so as to surround the semiconductor region 13.
  • the semiconductor region 15 is formed continuously or intermittently outside the semiconductor region 13.
  • the semiconductor region 15 is formed in a region on the main surface 11a side of the semiconductor substrate 11 where the semiconductor region 13 is not formed.
  • the semiconductor substrate 11 includes a region R1 in which the semiconductor regions 13 and 17 are formed and a region R2 in which the semiconductor region 15 is formed.
  • Region R1 includes a part of the main surface 11a.
  • the region R2 includes another part of the main surface 11a that is different from the part of the main surface 11a included in the region R1.
  • the epitaxial semiconductor region 12a includes a region R1 and a region R2.
  • the region R1 constitutes the first region
  • the region R2 constitutes the second region.
  • the semiconductor region 13 constitutes the first semiconductor region
  • the semiconductor region 15 constitutes the second semiconductor region
  • the semiconductor region 17 constitutes the third semiconductor region
  • the semiconductor region 12b constitutes the fourth semiconductor region. ..
  • the semiconductor photodetector 1 includes an electrode electrically connected to the semiconductor region 13 (not shown) and an electrode electrically connected to the semiconductor region 15 (not shown).
  • the semiconductor light detection element 1 includes a polysilicon layer 19.
  • the polysilicon layer 19 has a main surface 19a and a main surface 19b facing each other.
  • the polysilicon layer 19 is arranged on the semiconductor substrate 11 so that the main surface 19a faces the main surface 11a.
  • the polysilicon layer 19 is arranged directly on the semiconductor substrate 11.
  • the main surface 19a constitutes the third main surface
  • the main surface 19b constitutes the fourth main surface.
  • the main surface 19a is a flat surface.
  • the thickness of the polysilicon layer 19 is, for example, 0.1 to 1.0 ⁇ m.
  • the polysilicon layer 19 is arranged on a part of the main surface 11a included in the region R1.
  • the polysilicon layer 19 is arranged on the semiconductor region 13.
  • the polysilicon layer 19 is not disposed on another part of the main surface 11a included in the region R2.
  • the polysilicon layer 19 is in contact with the main surface 11a.
  • the polysilicon layer 19 is in contact with the semiconductor region 13.
  • the polysilicon layer 19 may be of the second conductive type. In this case, for example, phosphorus (P) may be added to the polysilicon layer 19.
  • a plurality of recesses 21 are formed in the polysilicon layer 19. Each recess 21 is open to the main surface 19b. The plurality of recesses 21 are formed in the polysilicon layer 19 so as to be regularly arranged.
  • the depth of the recess 21 is, for example, 0.1 to 1.0 ⁇ m. In the present embodiment, the depth of the recess 21 may be smaller than the maximum thickness of the polysilicon layer 19.
  • the semiconductor substrate 11 semiconductor region 13
  • the depth of the recess formed in the semiconductor substrate 11 may be less than the thickness of the semiconductor region 13.
  • the depth of the recess formed over the polysilicon layer 19 and the semiconductor region 13 is larger than the maximum thickness of the polysilicon layer 19.
  • the thickness of the polysilicon layer 19 varies according to the surface shape of the plurality of recesses 21.
  • the region of the main surface 19b where the recess 21 is not formed is flat.
  • the plurality of recesses 21 may be arranged two-dimensionally, for example, as shown in FIGS. 2 and 3. In this case, the plurality of recesses 21 may be arranged at equal intervals in two directions orthogonal to each other.
  • the plurality of depressions 21 shown in FIGS. 2 and 3 are arranged at equal intervals in the X and Y directions orthogonal to each other.
  • a flat surface formed by the main surface 19b may be located between the recesses 21 adjacent to each other. The flat surface may be continuous so as to surround the opening of each recess 21. In this case, the flat surface has a substantially grid pattern.
  • 2 and 3 are diagrams showing an example of an arrangement of a plurality of depressions. FIG.
  • each recess 21 may be curved, as shown in FIG. That is, the surface of each recess 21 may have a concave shape.
  • the shape of the inner space of the recess 21 is a partial sphere.
  • Each recess 21 has the same shape. Deepest position of the recesses 21 adjacent to each other, i.e., the apex of the inner space of the recess 21, the spacing in the X direction (pitch) P X is, for example, 0.1 ⁇ 2.0 .mu.m.
  • the deepest position of the recesses 21 adjacent to each other, that is, the interval (pitch) P Y of the vertices of the inner space of the recesses 21 in the Y direction is, for example, 0.1 to 2.0 ⁇ m.
  • the distance P X and spacing P Y are equivalent.
  • the interval P X and spacing P Y may be different.
  • Each recess 21 may be formed by, for example, the following process. In the following process, each recess 21 is formed by isotropic etching.
  • a mask MK is formed on the main surface 19b of the polysilicon layer 19 (see (a) in FIG. 4).
  • an opening MKa is formed at a position corresponding to a region to be formed of each recess 21.
  • the mask MK is, for example, a hard mask.
  • the hard mask is made of silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ).
  • the mask MK may be, for example, a resist mask.
  • the resist mask is made of a resist material.
  • FIG. 4 is a diagram showing a process of forming a plurality of depressions. In FIG. 4, hatching representing a cross section is omitted.
  • the polysilicon layer 19 (semiconductor substrate 11) on which the mask MK is formed is arranged in the chamber of the chemical dry etching (CDE) apparatus. Then, the polysilicon layer 19 is subjected to isotropic etching (isotropic dry etching) by the etching gas. When the etching gas reaches the polysilicon layer 19 through the opening MKa, the etching gas erodes the polysilicon layer 19 (see FIG. 4B). In this case, the etching proceeds isotropically. The region of the polysilicon layer 19 immediately below the mask MK remains unetched. As a result, a plurality of recesses 21 are formed in the polysilicon layer 19 (see (c) of FIG. 4). The surface of the recess 21 is curved.
  • the etching gas is, for example, SF 6 , C 2 F 6 , NF 2 , or Cl F 3 .
  • the mask MK is removed (see (d) in FIG. 4).
  • the region of the polysilicon layer 19 immediately below the mask MK includes a flat surface.
  • the main surface 19b of the polysilicon layer 19 is exposed as a flat surface.
  • the width of the flat surface is adjusted, for example, by the etching time. The longer the etching time, the smaller the width of the flat surface.
  • Each recess 21 may be formed by anisotropic dry etching. In this case, the etching gas is, for example, Cl 2 or HBr.
  • the semiconductor photodetector 1 includes an insulating layer 23.
  • the insulating layer 23 is arranged on the main surface 11a except for a part of the main surface 11a included in the region R1.
  • the semiconductor substrate 11 and the insulating layer 23 are in contact with each other.
  • the insulating layer 23 is, for example, an oxide film.
  • the insulating layer 23 is made of silicon oxide (SiO 2 ).
  • the insulating layer 23 may be made of silicon nitride (Si 3 N 4 ).
  • the thickness of the insulating layer 23 is, for example, 0.2 ⁇ m.
  • the polysilicon layer 19 is arranged on a part of the main surface 11a included in the region R1.
  • the polysilicon layer 19 is formed with a plurality of recesses 21 that open to the main surface 19b.
  • the light is incident on the main surface 19b of the polysilicon layer 19, the light is scattered on the main surface 19b of the polysilicon layer 19 in which the plurality of recesses 21 are formed.
  • the scattered light travels in the polysilicon layer 19 and enters the semiconductor substrate 11 from the main surface 11a.
  • the light that has entered the semiconductor substrate 11 travels in the semiconductor substrate 11 in various directions.
  • the semiconductor photodetector 1 improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • the semiconductor photodetector 1 also improves the spectral sensitivity characteristic in the wavelength band of visible light.
  • the semiconductor photodetector 1 a plurality of recesses 21 are formed in the polysilicon layer 19. Therefore, the semiconductor substrate 11 is unlikely to suffer crystal damage due to the formation of the plurality of recesses 21. That is, the crystallinity of the semiconductor substrate 11 is unlikely to deteriorate. As a result, the semiconductor photodetector 1 suppresses the generation of dark current. In the present embodiment, since the semiconductor substrate 11 does not have a recess, the crystallinity of the semiconductor substrate 11 is less likely to deteriorate.
  • the crystallinity of the semiconductor substrate 11 is deteriorated as compared with the configuration in which the plurality of recesses are directly formed on the main surface 11a of the semiconductor substrate 11. It's hard.
  • the semiconductor substrate 11 does not have a recess, the crystallinity of the semiconductor substrate 11 is less likely to deteriorate.
  • the semiconductor photodetector 1 As described above, a plurality of recesses 21 are formed in the polysilicon layer 19. Therefore, the semiconductor photodetector 1 suppresses the influence of the formation of the plurality of recesses 21 on the pn junction. As a result, the semiconductor photodetector 1 not only suppresses the generation of dark current, but also suppresses the deterioration of withstand voltage characteristics.
  • the shape or size of the irregularities may differ from product to product. If the shape or size of the unevenness is different, the spectral sensitivity characteristics may vary between products.
  • the semiconductor photodetector 1 the plurality of recesses 21 are formed in the polysilicon layer 19 so as to be regularly arranged. Therefore, the semiconductor photodetector 1 is unlikely to cause variations in spectral sensitivity characteristics.
  • the configuration in which irregular irregularities are formed on the polysilicon layer 19 makes it difficult to control the shape of the irregularities.
  • the configuration in which the plurality of recesses 21 are regularly arranged makes it easy to control the shape of each recess 21. Therefore, the semiconductor photodetector 1 can easily control the optical characteristics for a specific wavelength by controlling the shape of each recess 21.
  • the shape of the recess 21 includes the depth of the recess 21, the width of the recess 21, or the spacing of the recess 21.
  • the polysilicon layer 19 can function as an electrode. Therefore, the need to newly provide an electrode for extracting the electric charge from the semiconductor region 13 is reduced. A part of the electric charge generated in the polysilicon layer 19 may be included in the output signal. Therefore, the semiconductor photodetector 1 improves the spectral sensitivity characteristic in the near infrared wavelength band. The charge may be extracted only from the polysilicon layer 19 without newly providing an electrode for extracting the charge from the semiconductor region 13.
  • the semiconductor substrate 11 has a semiconductor region 12b and an epitaxial semiconductor region 12a laminated on the semiconductor region 12b, the charge absorbed by the semiconductor region 12b is in the near-infrared wavelength band. It is difficult to contribute to spectral sensitivity.
  • the configuration in which the polysilicon layer 19 in which the plurality of recesses 21 are formed is provided on the main surface 11a reduces the electric charge generated near the main surface 11b of the semiconductor substrate 11. Since the charge absorbed by the semiconductor region 12b is reduced, the spectral sensitivity in the near-infrared wavelength band is improved.
  • a semiconductor substrate 11 having an epitaxial semiconductor region 12a and a first conductive type semiconductor region 12b is prepared.
  • the semiconductor region 13 is formed by implanting impurities into the epitaxial semiconductor region 12a from the main surface 11a at a high concentration by using a mask having an open central portion or the like.
  • the semiconductor region 15 is formed by diffusing impurities from the main surface 11a into the epitaxial semiconductor region 12a at a high concentration by using another mask or the like having an open peripheral portion.
  • the semiconductor region 13 is formed by implanting impurities into the epitaxial semiconductor region 12a from the main surface 11a at a high concentration by using another mask having an open central portion or the like.
  • the insulating layer 23 is formed on the main surface 11a of the semiconductor substrate 11. After that, the portion of the insulating layer 23 corresponding to the region to be formed of the polysilicon layer 19 is removed.
  • the region to be formed of the polysilicon layer 19 includes the above-mentioned part of the main surface 11a included in the region R1.
  • the insulating layer 23 is removed by etching, for example.
  • the polysilicon layer 19 is formed on the semiconductor region 13.
  • n-type impurities may be added to the polysilicon layer 19.
  • a plurality of recesses 21 are formed in the polysilicon layer 19.
  • the plurality of recesses 21 are formed by isotropic etching as described above. Through these processes, the semiconductor photodetector 1 is obtained.
  • FIG. 5 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the first modification of the first embodiment.
  • the first modification is generally similar to or the same as the first embodiment, but the present modification is different from the first embodiment with respect to the insulating layer 23.
  • the differences between the first embodiment and the first modification will be mainly described.
  • the insulating layer 23 is also arranged on a part of the main surface 11a included in the region R1.
  • the insulating layer 23 is formed on the entire main surface 11a.
  • the polysilicon layer 19 is arranged on the insulating layer 23.
  • the polysilicon layer 19 is indirectly arranged on the semiconductor substrate 11 so that the insulating layer 23 is located between the semiconductor substrate 11 and the polysilicon layer 19.
  • the semiconductor substrate 11 and the insulating layer 23 are in contact with each other, and the insulating layer 23 and the polysilicon layer 19 are in contact with each other.
  • the insulating layer 23 is arranged between the semiconductor substrate 11 and the polysilicon layer 19. Therefore, the formation of the plurality of recesses 21 in the polysilicon layer 19 can be easily performed while further suppressing the influence on the semiconductor substrate 11.
  • FIG. 6 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a second modification of the first embodiment.
  • the second modification is generally similar to or the same as the first modification, but this modification is different from the first modification in terms of the shape of each recess 21.
  • the differences between the first modification and the second modification will be mainly described.
  • the plurality of recesses 21 are also open to the main surface 19a.
  • Each recess 21 is formed so as to penetrate the polysilicon layer 19. Therefore, a part of the insulating layer 23 is exposed in the plurality of recesses 21.
  • the depth of each recess 21 is defined by the thickness of the polysilicon layer 19. Therefore, the depth of each recess 21 is accurately controlled.
  • the shape of the recess 21 shown in FIG. 6 is easily realized by the insulating layer 23 made of silicon oxide functioning as an etching stop layer.
  • the polysilicon layer 19 may be a first conductive type or a second conductive type.
  • the first conductive type polysilicon layer 19 is realized, for example, by adding boron (B) to the polysilicon layer 19.
  • FIG. 7 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment.
  • the third modification is generally similar to or the same as the first embodiment, but this modification is different from the first embodiment with respect to the support substrate 31.
  • the differences between the first embodiment and the third modification will be mainly described.
  • the semiconductor photodetector 1 includes a support substrate 31.
  • the support substrate 31 has a main surface 31a and a main surface 31b facing each other.
  • the support substrate 31 is arranged on the semiconductor substrate 11 so as to face the main surface 11b.
  • the main surface 31a and the main surface 11b face each other.
  • the support substrate 31 is, for example, a silicon substrate or a glass substrate.
  • the semiconductor region 12b is thinned from the main surface 11b side.
  • a resin layer RL is arranged between the semiconductor substrate 11 and the support substrate 31.
  • the resin layer RL is composed of, for example, a resin whose main component is any one of propylene glycol monomethyl ether acetate (PGMEA), polyethylene terephthalate (PET), and an epoxy resin.
  • PMEA propylene glycol monomethyl ether acetate
  • PET polyethylene terephthalate
  • the support substrate 31 is adhered to the semiconductor substrate 11 by the resin layer RL.
  • the resin layer RL is optically transparent.
  • a dielectric layer may be arranged between the semiconductor substrate 11 and the support substrate 31.
  • the dielectric layer is made of, for example, silicon oxide (SiO 2 ).
  • a reflective film RF is arranged on the main surface 31a of the support substrate 31.
  • the reflective film RF is in contact with the resin layer RL.
  • the reflective film RF is made of, for example, metal.
  • the reflective film RF is composed of, for example, a metal whose main component is either C aluminum (Al), silver (Ag), or gold (Au).
  • the support substrate 31 is indirectly arranged on the semiconductor substrate 11 in a state where the resin layer RL and the reflective film RF are located between the support substrate 31 and the semiconductor substrate 11.
  • the reflective film RF is indirectly arranged on the semiconductor substrate 11 in a state where the resin layer RL is located between the reflective film RF and the semiconductor substrate 11.
  • the main surface 31a and the main surface 11b indirectly face each other with the resin layer RL and the reflective film RF sandwiched between the main surface 31a and the main surface 11b.
  • the semiconductor region 12b may be thinned by, for example, the following process.
  • the temporary support substrate is temporarily bonded to the main surface 11a side of the semiconductor substrate 11 on which the semiconductor regions 13, 15, 17, the polysilicon layer 19, and the insulating layer 23 are formed.
  • the temporary support substrate is bonded to the semiconductor substrate 11 with an adhesive resin.
  • the semiconductor region 12b is thinned from the main surface 11b side.
  • the thinning of the semiconductor region 12b is performed, for example, by mechanical polishing (grinding) with a grindstone, chemical mechanical polishing (CMP), or etching.
  • n-type impurities may be diffused to a high concentration from the main surface 11b in the semiconductor region 12b.
  • the support substrate 31 is joined to the semiconductor substrate 11.
  • the support substrate 31 is joined to the semiconductor substrate 11 by the resin layer RL in a state where the reflective film RF faces the main surface 11b.
  • the temporary support substrate is peeled off from the semiconductor substrate 11. Through these processes, the semiconductor photodetector 1 shown in FIG. 7 is obtained.
  • the semiconductor photodetector 1 includes a support substrate 31.
  • the support substrate 31 improves the mechanical strength of the semiconductor photodetector 1.
  • the semiconductor photodetector 1 includes a reflective film RF arranged on the main surface 11b. Light traveling through the semiconductor substrate 11 and reaching the main surface 11b is incident on the reflective film RF and reflected by the reflective film RF. The light reflected by the reflective film RF further travels in the semiconductor substrate 11. Therefore, the mileage of light in the semiconductor substrate 11 is further increased, and more light is converted into electric charges. As a result, the semiconductor photodetector 1 further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • a plurality of recessed RFa may be formed on the surface of the reflective film RF.
  • the plurality of recesses RFa are formed, for example, by etching the reflective film RF using a mask in which a plurality of openings are formed.
  • the plurality of recesses RFa may be formed so as to be arranged regularly, or may be formed so as to be arranged irregularly.
  • the semiconductor photodetector 1 shown in FIG. 8 the light incident on the reflective film RF is diffusely reflected by the reflective film RF in which a plurality of recesses RFa are formed.
  • the diffusely reflected light travels in the semiconductor substrate 11 in various directions. Therefore, the mileage of light in the semiconductor substrate 11 is further increased.
  • the semiconductor photodetector 1 further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the second embodiment.
  • FIG. 10 is a plan view showing a semiconductor photodetector according to the second embodiment.
  • the semiconductor photodetector 2 is, for example, a surface incident type avalanche photodiode array.
  • hatching representing a cross section is omitted.
  • FIG. 10 a part of the insulating layer 63, which will be described later, has been removed.
  • the semiconductor light detection element 2 includes a semiconductor substrate 41.
  • the semiconductor substrate 41 is a substrate made of silicon (Si).
  • the semiconductor substrate 41 has a main surface 41a and a main surface 41b facing each other.
  • the main surface 41a is a light incident surface on the semiconductor substrate 41.
  • the main surface 41a is the front surface, and the main surface 41b is the back surface.
  • the main surface 41a and the main surface 41b are flat surfaces.
  • the thickness of the semiconductor substrate 41 is, for example, 100 to 625 ⁇ m. For example, when the main surface 41a constitutes the first main surface, the main surface 41b constitutes the second main surface.
  • the semiconductor substrate 41 has a first conductive type epitaxial semiconductor region 42a and a second conductive type semiconductor region 42c.
  • the semiconductor region 42c constitutes the substrate of the semiconductor substrate 41.
  • the epitaxial semiconductor region 42a is formed on the semiconductor region 42c by the epitaxial growth method.
  • the epitaxial semiconductor region 42a is a region including the main surface 41a.
  • the semiconductor region 42c is a region including the main surface 41b.
  • the semiconductor region 42c is located between the epitaxial semiconductor region 42a and the main surface 41b.
  • the semiconductor substrate 41 is composed of an epitaxial semiconductor region 42a and a semiconductor region 42c.
  • the first conductive type is, for example, p type
  • the second conductive type is, for example, n type.
  • the impurity concentration in the epitaxial semiconductor region 42a is, for example, 1 ⁇ 10 14 cm -3 .
  • the semiconductor region 42c has a high impurity concentration.
  • the impurity concentration in the semiconductor region 42c is, for example, 1 ⁇ 10 18 cm -3 .
  • the semiconductor substrate 41 has a plurality of cells U.
  • the plurality of cells U are arranged two-dimensionally in a matrix, for example.
  • the plurality of cells U may be arranged one-dimensionally.
  • a signal corresponding to the incident light incident on each cell U is output from each cell U.
  • Each cell U contains one or more avalanche photodiodes.
  • each cell U includes one avalanche photodiode APD.
  • the avalanche photodiode APD may have, for example, the same configuration as the semiconductor photodetector 2 shown in the first embodiment.
  • the avalanche photodiode APD included in each cell U includes a semiconductor region 43 and a semiconductor region 45.
  • the semiconductor regions 43 and 45 are formed in the epitaxial semiconductor region 42a.
  • the semiconductor region 43 is arranged on the main surface 41a side of the semiconductor substrate 41.
  • the semiconductor region 43 is a region including the main surface 41a.
  • the semiconductor region 45 is located closer to the main surface 41b than the semiconductor region 43.
  • the semiconductor region 43 and the semiconductor region 45 are formed so as to be separated from each other.
  • the semiconductor region 43 and the semiconductor region 45 may be formed so as to be in contact with each other.
  • the semiconductor region 43 is a second conductive type.
  • the semiconductor region 45 is a first conductive type.
  • the semiconductor region 43 and the semiconductor region 45 form a pn junction.
  • the pn junction is formed at the boundary between the semiconductor region 43 and the semiconductor region 45.
  • the semiconductor region 43 and the semiconductor region 45 form a light-sensitive region.
  • the light-sensitive region is a region in which an electric charge is generated according to the incident light.
  • the light-sensitive region also includes a region in the epitaxial semiconductor region 42a that becomes depleted when a bias voltage is applied.
  • Each of the semiconductor regions 43 and 45 has a high impurity concentration. Each of the semiconductor regions 43 and 45 has a higher impurity concentration than the epitaxial semiconductor region 42a.
  • the impurity concentration of the semiconductor region 43 is, for example, 1 ⁇ 10 19 cm -3 .
  • the impurity concentration in the semiconductor region 45 is, for example, 1 ⁇ 10 17 cm -3 .
  • the thickness of the semiconductor region 43 is, for example, 0.5 ⁇ m.
  • the thickness of the semiconductor region 45 is, for example, 1.5 ⁇ m.
  • a trench TR is formed on the semiconductor substrate 41.
  • the trench TR is open to the main surface 41a.
  • the depth direction of the trench TR is the thickness direction of the semiconductor substrate 41.
  • the trench TR physically separates cells U adjacent to each other among the plurality of cells U.
  • the trench TR surrounds each cell U when viewed from a direction orthogonal to the main surface 41a.
  • the cells U adjacent to each other are electrically separated from each other by the trench TR.
  • the trench TR is formed in a grid pattern on the semiconductor substrate 41 when viewed from a direction orthogonal to the main surface 41a.
  • a light-shielding member 53 is arranged in the trench TR.
  • the light-shielding member 53 is made of a material that reflects light.
  • the light-shielding member 53 may be made of a material that absorbs light.
  • the light-shielding member 53 is made of, for example, tungsten (W).
  • the light-shielding member 53 is formed by filling the trench TR with a material that reflects or absorbs light.
  • the light-shielding member 53 has a surface exposed to the main surface 41a at the opening of the trench TR.
  • the surface of the light-shielding member 53 is covered with an insulating layer 55.
  • the light-shielding member 53 is formed in the trench TR by, for example, low-pressure chemical vapor deposition (LP-CVD).
  • LP-CVD low-pressure chemical vapor deposition
  • the side surface and the bottom surface of the trench TR are composed of the semiconductor region 47.
  • the semiconductor region 47 is a first conductive type.
  • the semiconductor region 47 has a higher impurity concentration than the epitaxial semiconductor region 42a.
  • the impurity concentration of the semiconductor region 47 is, for example, 1 ⁇ 10 17 cm -3 .
  • the semiconductor region 47 is formed, for example, by ion-implanting a first conductive type impurity at a high concentration from the surface of the epitaxial semiconductor region 42a exposed in the trench TR.
  • the depth of the trench TR may be equal to or greater than the thickness of the epitaxial semiconductor region 42a.
  • the semiconductor substrate 41 has a semiconductor region 49.
  • the semiconductor region 49 is formed in the epitaxial semiconductor region 42a.
  • the semiconductor region 49 is a region including the main surface 41a.
  • the semiconductor region 49 is arranged along the edge of the semiconductor substrate 41 so as to surround a region in which a plurality of cells U are located.
  • the semiconductor region 49 is continuously formed so as to surround the entire region in which the plurality of cells U are located when viewed from a direction orthogonal to the main surface 41a.
  • the semiconductor region 49 has a higher impurity concentration than the epitaxial semiconductor region 42a.
  • the impurity concentration of the semiconductor region 49 is, for example, 1 ⁇ 10 17 cm -3 .
  • the semiconductor region 43 and the semiconductor region 47 are separated from each other.
  • the semiconductor region 47 is located outside the semiconductor region 43 so as to surround the semiconductor region 43 when viewed from a direction orthogonal to the main surface 41a.
  • the semiconductor region 47 is continuously formed outside the semiconductor region 43.
  • the semiconductor region 47 is formed in a region on the main surface 41a side of the semiconductor substrate 41 where the semiconductor region 43 is not formed.
  • the semiconductor substrate 41 includes a region R1 in which the semiconductor regions 43 and 45 are formed and a region R2 in which the semiconductor region 47 is formed.
  • Region R1 includes a part of the main surface 41a.
  • the region R2 includes another part of the main surface 41a that is different from the part of the main surface 41a included in the region R1.
  • the epitaxial semiconductor region 42a includes a region R1 and a region R2.
  • the region R1 constitutes the first region
  • the region R2 constitutes the second region.
  • the semiconductor region 43 constitutes the first semiconductor region
  • the semiconductor region 47 constitutes the second semiconductor region
  • the semiconductor region 45 constitutes the third semiconductor region
  • the semiconductor region 42c constitutes the fourth semiconductor region. .
  • Each cell U includes a region R1 and a region R2.
  • the semiconductor light detection element 2 includes a wiring layer 61.
  • the wiring layer 61 is arranged on the main surface 41a of the semiconductor substrate 41.
  • the wiring layer 61 includes an insulating layer 63, a polysilicon layer 19, a plurality of connecting conductors 65, a plurality of quenching resistors 67, and a common conductor 69.
  • the insulating layer 63 is made of a material that has electrical insulation and transmits light to be detected.
  • the insulating layer 63 is made of, for example, silicon oxide (SiO 2 ).
  • Each connecting conductor 65 is arranged in the insulating layer 63 and has one end and the other end. One end of the connecting conductor 65 is connected to the semiconductor region 43 included in the corresponding cell U among the plurality of cells U. The other end of the connecting conductor 65 is connected to the corresponding quenching resistor 67 among the plurality of quenching resistors 67. Each connecting conductor 65 electrically connects the semiconductor region 43 and the quenching resistor 67 corresponding to each other.
  • the quenching resistor 67 is formed in the insulating layer 63.
  • the quenching resistor 67 is arranged along the peripheral edge of the semiconductor region 43 when viewed from a direction orthogonal to the main surface 41a.
  • Each quenching resistor 67 has one end connected to the corresponding connecting conductor 65 and the other end electrically connected to the common conductor 69.
  • the common conductor 69 is electrically connected to each other end of the plurality of quenching resistors 67.
  • the common conductor 69 is electrically connected to an electrode pad 71 arranged so as to be exposed from the insulating layer 63.
  • the electrode pad 71 is electrically connected to the semiconductor region 43 included in each cell U through a common conductor 69, each quenching resistor 67, and each connection conductor 65.
  • the plurality of cells U are electrically connected in parallel through the common conductor 69.
  • a bonding wire configured to take out a signal is connected to the electrode pad 71, for example.
  • the semiconductor region 43 constitutes a cathode in an avalanche photodiode APD.
  • the wiring layer 61 includes a conducting wire 73 that is electrically connected to the semiconductor region 49.
  • the conductor 73 is electrically connected to an electrode pad 75 that is arranged so as to be exposed from the insulating layer 63.
  • the conductor 73 has one end that is electrically connected to the semiconductor region 49 and the other end that is electrically connected to the electrode pad 75.
  • a bonding wire configured to apply a bias voltage is connected to the electrode pad 75, for example.
  • the electrode pad 75 is electrically connected to the epitaxial semiconductor region 42a through the conducting wire 73 and the semiconductor region 49.
  • the semiconductor region 49 constitutes an anode in an avalanche photodiode APD.
  • Each of the conducting wires 65, 69, 73 and each of the electrode pads 71, 75 is made of, for example, a metal material.
  • the conductors 65, 69, 73 and the electrode pads 71, 75 are made of, for example, aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), gold (Au), or platinum (Pt). ..
  • the quenching resistor 67 is made of a material having a higher electrical resistance than the metal material constituting each of the conducting wires 65, 69, 73 and each of the electrode pads 71, 75.
  • the quenching resistor 67 is made of, for example, silicon chromium (SiCr), polysilicon, nickel chromium (NiCr), or ferrochrome (FeCr).
  • the polysilicon layer 19 is arranged in the insulating layer 63.
  • the polysilicon layer 19 is in contact with the insulating layer 63.
  • the polysilicon layer 19 is arranged on the semiconductor substrate 41 so that the main surface 19a faces the main surface 41a.
  • the polysilicon layer 19 is indirectly arranged on the semiconductor substrate 41 so that a part of the insulating layer 63 is located between the semiconductor substrate 41 and the polysilicon layer 19.
  • the above-mentioned part of the insulating layer 63 exists between the polysilicon layer 19 and the semiconductor substrate 41, and the polysilicon layer 19 is not in contact with the semiconductor substrate 41.
  • the polysilicon layer 19 may be in contact with the semiconductor substrate 41.
  • the polysilicon layer 19 is arranged on a part of the main surface 41a included in the region R1.
  • the polysilicon layer 19 is arranged on the semiconductor region 43.
  • the polysilicon layer 19 is located inside the quenching resistor 67 when viewed from the direction orthogonal to the main surface 41a.
  • the polysilicon layer 19 is separated from the quenching resistor 67.
  • the polysilicon layer 19 is not arranged on another part of the main surface 41a included in the region R2.
  • the polysilicon layer 19 is not located on the trench TR.
  • the semiconductor region 43 has a region to which the connecting conductor 65 is connected.
  • the polysilicon layer 19 is located so as to overlap the semiconductor region 43 when viewed from the direction orthogonal to the main surface 41a, except for the region to which the connecting conductor 65 is connected.
  • the polysilicon layer 19 is separated from the semiconductor region 43.
  • the polysilicon layer 19 is electrically insulated from the semiconductor region 43 and the polysilicon layer 19.
  • the quenching resistor 67 When the quenching resistor 67 is made of polysilicon, impurities may be added to the polysilicon constituting the quenching resistor 67 in order to adjust the resistance value of the quenching resistor 67.
  • the quenching resistor 67 and the polysilicon layer 19 are formed at the same time, the same impurities as those added to the polysilicon layer 19 may be added to the polysilicon layer 19. Impurities may not be added to the polysilicon layer 19.
  • the impurities are, for example, phosphorus (P) or boron (B).
  • the quenching resistor 67 and the polysilicon layer 19 may be formed individually.
  • the polysilicon layer 19 may be formed so as to be in contact with the semiconductor substrate 41 (semiconductor region 43). In this case, impurities may not be added to the polysilicon layer 19.
  • a plurality of recesses 21 are formed in the polysilicon layer 19 as in each polysilicon layer 19 included in the semiconductor photodetector 1. Since the above-mentioned part of the insulating layer 63 exists between the polysilicon layer 19 and the semiconductor substrate 41, each recess 21 may penetrate the polysilicon layer 19.
  • the polysilicon layer 19 is arranged on a part of the main surface 41a included in the region R1.
  • the polysilicon layer 19 is formed with a plurality of recesses 21 that open to the main surface 19b.
  • the light is incident on the main surface 19b of the polysilicon layer 19, the light is scattered on the main surface 19b of the polysilicon layer 19 in which the plurality of recesses 21 are formed.
  • the scattered light travels in the polysilicon layer 19 and enters the semiconductor substrate 41 from the main surface 41a.
  • the light that has entered the semiconductor substrate 41 travels in the semiconductor substrate 41 in various directions.
  • the semiconductor photodetector 2 improves the spectral sensitivity characteristics in the near-infrared wavelength band.
  • the semiconductor photodetector 2 also improves the spectral sensitivity characteristic in the wavelength band of visible light.
  • the semiconductor photodetector 2 suppresses the generation of dark current and suppresses the deterioration of withstand voltage characteristics. Even in this embodiment, since the semiconductor substrate 41 does not have a recess, the crystallinity of the semiconductor substrate 41 is less likely to deteriorate.
  • the semiconductor photodetector 2 is unlikely to cause variations in spectral sensitivity characteristics.
  • the semiconductor photodetector 2 can also easily control the optical characteristics for a specific wavelength by controlling the shape of each recess 21.
  • the light traveling in the semiconductor substrate 41 reaches the region where the plurality of depressions are formed, the light is formed with the plurality of depressions. It is diffusely reflected in the area where it is. In this case, the diffusely reflected light may enter the adjacent cells U without being blocked by the trench TR, and optical crosstalk may occur between the adjacent cells U.
  • the semiconductor photodetector 2 the polysilicon layer 19 in which a plurality of recesses 21 are formed is arranged on the main surface 41a, and the polysilicon layer 19 is relatively close to the pn junction. Therefore, even when the light is scattered by the polysilicon layer 19, the spread of the light is relatively small.
  • the semiconductor photodetector 2 is unlikely to cause the above-mentioned optical crosstalk.
  • the trench TR is formed on the semiconductor substrate 41 from the main surface 41a. Therefore, the semiconductor photodetector 2 is less likely to cause optical crosstalk on the main surface 41a side.
  • an element When it is stated in the specification that an element is placed on another element, the element may be placed directly on the other element or indirectly placed on the other element. It may have been done.
  • an element When an element is indirectly placed on another element, an intervening element exists between one element and another. If one element is placed directly on top of another, the intervening element does not exist between one element and another.
  • the element When it is described herein that an element is located on another element, the element may be located directly on the other element or indirectly on the other element. You may be doing it.
  • an element is indirectly located on another element, an intervening element exists between one element and another. If one element is located directly on another, the intervening element does not exist between one element and another.
  • the plurality of recesses 21 may be formed so as to be irregularly arranged in the polysilicon layer 19.
  • the fact that a plurality of dents 21 are formed so as to be irregularly means that the distance between the deepest positions of the dents 21 adjacent to each other is irregularly changed, and that the depth of the dents 21 is irregularly changed. Includes at least one of what you are doing.
  • a configuration in which the plurality of recesses 21 are formed so as to be irregularly arranged can be realized, for example, by forming the recesses 21 as follows.
  • the polysilicon layer 19 is etched using masks in which the positions and sizes of the openings are irregularly different.
  • the plurality of recesses 21 may include recesses having different depths.
  • the plurality of depressions 21 may include a plurality of first depressions having a first depth and a plurality of second depressions having a second depth larger than the first depth.
  • the width of the first recess and the width of the second recess may be different.
  • the plurality of recesses 21 include the plurality of first recesses and the plurality of second recesses, the plurality of first recesses and the plurality of second recesses are formed so as to be regularly arranged.
  • the plurality of first depressions and the plurality of second depressions may be alternately located.
  • the region where the first depression of the first number is continuously located and the region where the second depression of the second number is continuously located may be alternately located.
  • the first number is a value greater than or equal to "2"
  • the second number is greater than the first number.
  • the plurality of depressions 21 may include a plurality of depressions having different depths.
  • the p-type and n-type conductive types may be interchanged so as to be opposite to the above-mentioned conductive type.
  • Appendix 1 above includes the following plurality of aspects.
  • the same reference numerals are used for the same elements or elements having the same function, and duplicate description will be omitted.
  • Each aspect is generally similar to or the same as the semiconductor photodetector described in Patent Document 1.
  • the semiconductor photodetector shown in FIG. 11 includes a silicon substrate 101 and a support substrate 111.
  • This semiconductor photodetector is, for example, a front-mounted or back-mounted photodiode.
  • the silicon substrate 101 has a main surface 101a and a main surface 101b that face each other.
  • the main surface 101a and the main surface 101b are flat surfaces.
  • the silicon substrate 101 has a first conductive type semiconductor region 103 and a second conductive type semiconductor region 105.
  • the semiconductor region 103 and the semiconductor region 105 form a pn junction. Therefore, the silicon substrate 101 has a pn junction.
  • the silicon substrate 101 has a first conductive type semiconductor region 107.
  • the semiconductor region 107 is located outside the semiconductor region 105 so as to surround the semiconductor region 105 when viewed from a direction orthogonal to the main surface 101a.
  • the semiconductor photodetector includes an insulating film 109 arranged on the main surface 101a of the silicon substrate 101.
  • the semiconductor photodetector includes an electrode E1 that is electrically connected to the semiconductor region 105 and an electrode E2 that is electrically connected to the semiconductor region 107.
  • the silicon substrate 101 has an accumulation layer 108.
  • the accumulation layer 108 is arranged on the main surface 101b side of the silicon substrate 101.
  • the surface of the accumulation layer 108 constitutes the main surface 101b.
  • the accumulation layer 108 is the same conductive type as the semiconductor region 103.
  • the impurity concentration of the accumulation layer 108 is higher than the impurity concentration of the semiconductor region 103.
  • the support substrate 111 has a main surface 111a and a main surface 111b facing each other.
  • the support substrate 111 is arranged on the silicon substrate 101 so as to face the main surface 101b.
  • the main surface 111a faces the silicon substrate 101 (main surface 101b).
  • a resin layer 113 is arranged between the silicon substrate 101 and the support substrate 111.
  • the support substrate 111 is adhered to the silicon substrate 101 by the resin layer 113.
  • the resin layer 113 is optically transparent.
  • a plurality of recesses 121 are formed on the main surface 111a.
  • the plurality of recesses 121 are formed in 111a so as to be regularly arranged.
  • the surface of each recess 121 may include, for example, a plurality of inclined surfaces.
  • the surface of each recess 121 may be curved, for example.
  • the plurality of recesses 121 may be formed by, for example, an etch.
  • the plurality of recesses 121 may be formed, for example, by an isotropic etch.
  • the plurality of recesses 121 may be formed, for example, by anisotropic etching. Light incident on a region where a plurality of depressions 121 are formed is diffusely reflected or scattered in the region.
  • the semiconductor photodetector shown in FIG. 11 improves the spectral sensitivity characteristics in the near infrared wavelength band.
  • the plurality of recesses 121 may be formed so as to be arranged irregularly.
  • the semiconductor photodetector shown in FIG. 12 includes a silicon substrate 131 and a support substrate 111.
  • This semiconductor photodetector is, for example, a front-mounted or back-mounted avalanche photodiode.
  • the silicon substrate 131 has a main surface 131a and a main surface 131b facing each other.
  • the main surface 131a and the main surface 131b are flat surfaces.
  • the silicon substrate 131 has a first conductive type semiconductor region 133, a second conductive type semiconductor region 135, a first conductive type semiconductor region 137, and a first conductive type semiconductor region 139. ..
  • the semiconductor region 135 and the semiconductor region 137 form a pn junction. Therefore, the silicon substrate 131 has a pn junction.
  • the semiconductor region 139 is located outside the semiconductor region 135 so as to surround the semiconductor region 135.
  • the semiconductor photodetector includes an insulating film 140 arranged on the main surface 131a of the silicon substrate 131.
  • the semiconductor photodetector includes an electrode E11 electrically connected to the semiconductor region 135 and an electrode E21 electrically connected to the semiconductor region 139.
  • the silicon substrate 131 has an accumulation layer 138.
  • the accumulation layer 138 is arranged on the main surface 131b side of the silicon substrate 131.
  • the surface of the accumulation layer 138 constitutes the main surface 131b.
  • the accumulation layer 138 is the same conductive type as the semiconductor region 133.
  • the impurity concentration of the accumulation layer 138 is higher than the impurity concentration of the semiconductor region 133.
  • the support substrate 111 is arranged on the silicon substrate 131 so as to face the main surface 131b.
  • the main surface 111a faces the silicon substrate 131 (main surface 131b).
  • a resin layer 113 is arranged between the silicon substrate 131 and the support substrate 111.
  • the support substrate 111 is adhered to the silicon substrate 131 by the resin layer 113.
  • a plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 131 increases.
  • the semiconductor photodetector shown in FIG. 12 improves the spectral sensitivity characteristics in the near infrared wavelength band.
  • the semiconductor photodetector shown in FIG. 13 includes a silicon substrate 141 and a support substrate 111.
  • This semiconductor photodetector is, for example, a front-mounted or back-mounted avalanche photodiode array.
  • the silicon substrate 141 has a main surface 141a and a main surface 141b facing each other.
  • the silicon substrate 141 has a first conductive type semiconductor layer 143, a second conductive type semiconductor layer 145, and a second conductive type plurality of semiconductor regions 147.
  • the semiconductor layer 143 and the semiconductor layer 145 form a pn junction. Therefore, the silicon substrate 141 has a pn junction.
  • the silicon substrate 141 has a first conductive type separating portion 149 that separates the semiconductor layer 145.
  • the semiconductor photodetector includes an insulating film 151 arranged on the main surface 141a of the silicon substrate 141.
  • the semiconductor photodetector includes a plurality of connecting conductors 153 and a plurality of resistors 155 arranged on the insulating film 151.
  • the semiconductor layer 145 and the resistor 155 corresponding to each other are connected to each other via the connecting conductor 153.
  • Each resistor 155 is connected to a common conductor (not shown).
  • Each semiconductor layer 145 is electrically connected in parallel through a corresponding connecting wire 153, a corresponding resistor 155, and a common wire.
  • the support substrate 111 is arranged on the silicon substrate 141 so as to face the main surface 141b.
  • the main surface 111a faces the silicon substrate 141 (main surface 141b).
  • a resin layer 113 is arranged between the silicon substrate 141 and the support substrate 111.
  • the support substrate 111 is adhered to the silicon substrate 131 by the resin layer 113.
  • a plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 141 increases.
  • the semiconductor photodetector shown in FIG. 13 improves the spectral sensitivity characteristics in the near infrared wavelength band.
  • the semiconductor photodetector shown in FIG. 14 includes a silicon substrate 161 and a support substrate 111.
  • This semiconductor photodetector is, for example, a front-side incident type or back-side incident type solid-state image sensor.
  • the silicon substrate 161 has a main surface 161a and a main surface 161b that face each other.
  • the silicon substrate 161 has a first conductive type semiconductor region 163 and a second conductive type semiconductor region 165.
  • the semiconductor region 163 and the semiconductor region 165 form a pn junction. Therefore, the silicon substrate 161 has a pn junction.
  • the semiconductor photodetector includes an insulating film 167 arranged on the main surface 161a of the silicon substrate 161 and a plurality of charge transfer electrodes 169 arranged on the insulating film 167.
  • the silicon substrate 161 has an accumulation layer 168.
  • the accumulation layer 168 is arranged on the main surface 161b side of the silicon substrate 161.
  • the surface of the accumulation layer 168 constitutes the main surface 161b.
  • the accumulation layer 168 is the same conductive type as the semiconductor region 163.
  • the impurity concentration of the accumulation layer 168 is higher than the impurity concentration of the semiconductor region 163.
  • the support substrate 111 is arranged on the silicon substrate 161 so as to face the main surface 161b.
  • the main surface 111a faces the silicon substrate 161 (main surface 161b).
  • a resin layer 113 is arranged between the silicon substrate 161 and the support substrate 111.
  • the support substrate 111 is adhered to the silicon substrate 161 by the resin layer 113.
  • a plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 161 increases.
  • the semiconductor photodetector shown in FIG. 14 improves the spectral sensitivity characteristics in the near infrared wavelength band.
  • the present invention can be used for a semiconductor photodetector element provided with a silicon substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A semiconductor photodetection element (1) comprises: a first-conductivity-type silicon substrate (11) comprising a first main surface (11a) and second main surface (11b) that are opposite from each other, and a polysilicon layer (19) comprising a third main surface (19a) and fourth main surface (19b) that are opposite from each other. The polysilicon layer (19) is disposed on the silicon substrate (11) such that the third main surface (19a) faces the first main surface (11a). The silicon substrate (11) comprises a first area (R1) including a part of the first main surface (11a), and a second area (R2) including another part of the first main surface (11a). A second-conductivity-type first semiconductor area (13) is formed in the first area (R1). A first-conductivity-type second semiconductor area (15) is formed in the second area (R2). A plurality of depressions (21) that are open at the fourth main surface (19b) are formed in the polysilicon layer (19).

Description

半導体光検出素子Semiconductor photodetector
 本発明は、半導体光検出素子に関する。 The present invention relates to a semiconductor photodetector.
 知られている半導体光検出素子は、互いに対向している第一主面と第二主面とを有しているシリコン基板を備えている(たとえば、特許文献1参照)。この半導体光検出素子が備えるシリコン基板には、不規則な凹凸が形成されている。特許文献1では、不規則な凹凸は、レーザ光をシリコン基板に照射することにより形成されている。 A known semiconductor photodetector includes a silicon substrate having a first main surface and a second main surface facing each other (see, for example, Patent Document 1). Irregular irregularities are formed on the silicon substrate included in this semiconductor photodetector. In Patent Document 1, irregular irregularities are formed by irradiating a silicon substrate with a laser beam.
 半導体光検出素子に入射した光は、不規則な凹凸が形成されている領域にて反射、散乱、又は拡散されて、シリコン基板内を長い距離進む。半導体光検出素子に入射した光の大部分は、シリコン基板を透過しがたく、シリコン基板で吸収される。半導体光検出素子に入射した光の走行距離が長くなり、光が吸収される距離も長くなる。したがって、半導体光検出素子は、近赤外の波長帯域での分光感度特性を向上する。 The light incident on the semiconductor photodetector is reflected, scattered, or diffused in the region where irregular irregularities are formed, and travels a long distance in the silicon substrate. Most of the light incident on the semiconductor photodetector is difficult to pass through the silicon substrate and is absorbed by the silicon substrate. The mileage of the light incident on the semiconductor photodetector becomes longer, and the distance at which the light is absorbed also becomes longer. Therefore, the semiconductor photodetector improves the spectral sensitivity characteristic in the near infrared wavelength band.
特開2010-226071号公報Japanese Unexamined Patent Publication No. 2010-226071
 シリコン基板における不規則な凹凸が形成された領域には、結晶損傷(結晶欠陥)が生じ、シリコン基板の結晶性が劣化するおそれがある。シリコン基板の結晶性が劣化する場合、光の入射によらずに、電荷がシリコン基板に発生するおそれがある。光の入射によらずに発生する電荷は、暗電流を発生させるおそれがある。 Crystal damage (crystal defects) may occur in the region where irregular irregularities are formed on the silicon substrate, and the crystallinity of the silicon substrate may deteriorate. When the crystallinity of the silicon substrate deteriorates, electric charges may be generated on the silicon substrate regardless of the incident of light. The electric charge generated regardless of the incident of light may generate a dark current.
 本発明の一つの態様は、近赤外の波長帯域での分光感度特性を向上し、かつ、暗電流の発生を抑制する半導体光検出素子を提供することを目的とする。 One aspect of the present invention is to provide a semiconductor photodetector that improves the spectral sensitivity characteristics in the near infrared wavelength band and suppresses the generation of dark current.
 一つの態様に係る半導体光検出素子は、互いに対している第一主面と第二主面とを有している第一導電型のシリコン基板と、互いに対向している第三主面と第四主面とを有しているポリシリコン層と、を備えている。ポリシリコン層は、第三主面が第一主面と対向するようにシリコン基板上に配置されている。シリコン基板は、第一主面の一部を含む第一領域と、第一主面の別の一部を含む第二領域と、を含んでいる。第一領域には、第二導電型の第一半導体領域が形成されている。第二領域には、第一導電型の第二半導体領域が形成されている。ポリシリコン層は、第一領域に含まれる第一主面の一部上に配置されている。ポリシリコン層には、第四主面に開口する複数の窪みが形成されている。 The semiconductor photodetector according to one embodiment includes a first conductive silicon substrate having a first main surface and a second main surface facing each other, and a third main surface and a second main surface facing each other. It is provided with a polysilicon layer having four main surfaces. The polysilicon layer is arranged on the silicon substrate so that the third main surface faces the first main surface. The silicon substrate includes a first region including a part of the first main surface and a second region including another part of the first main surface. A second conductive type first semiconductor region is formed in the first region. In the second region, a first conductive type second semiconductor region is formed. The polysilicon layer is arranged on a part of the first main surface included in the first region. The polysilicon layer is formed with a plurality of depressions that open on the fourth main surface.
 上記一つの態様では、光が第四主面に入射する場合、光は、複数の窪みが形成されているポリシリコン層の第四主面にて散乱される。散乱された光は、ポリシリコン層内を進み、第一主面からシリコン基板に入り、シリコン基板内を様々な方向に進む。したがって、上記一つの態様は、ポリシリコン層が配置されていない構成に比して、シリコン基板内での光の走行距離を増加させる。シリコン基板に入射した光は、シリコン基板内を長い距離進むので、より多くの光が電荷に変換される。この結果、上記一つの態様は、近赤外の波長帯域での分光感度特性を向上する。 In the above one aspect, when light is incident on the fourth main surface, the light is scattered on the fourth main surface of the polysilicon layer in which a plurality of depressions are formed. The scattered light travels in the polysilicon layer, enters the silicon substrate from the first main surface, and travels in various directions in the silicon substrate. Therefore, the above one aspect increases the mileage of light in the silicon substrate as compared with the configuration in which the polysilicon layer is not arranged. Since the light incident on the silicon substrate travels a long distance in the silicon substrate, more light is converted into electric charges. As a result, the above-mentioned one aspect improves the spectral sensitivity characteristics in the near-infrared wavelength band.
 上記一つの態様では、シリコン基板には、複数の窪みの形成に起因する結晶損傷が生じがたい。したがって、シリコン基板の結晶性が劣化しがたい。この結果、上記一つの態様は、暗電流の発生を抑制する。 In the above one aspect, crystal damage due to the formation of a plurality of depressions is unlikely to occur on the silicon substrate. Therefore, the crystallinity of the silicon substrate is unlikely to deteriorate. As a result, the above-mentioned one aspect suppresses the generation of dark current.
 上記一つの態様では、第一領域には、第一領域に含まれているシリコン基板より不純物濃度が高い第一導電型の第三半導体領域が、第一半導体領域よりも第二主面寄りに形成されていてもよい。 In the above one aspect, in the first region, the first conductive type third semiconductor region having a higher impurity concentration than the silicon substrate contained in the first region is closer to the second main surface than the first semiconductor region. It may be formed.
 上記一つの態様では、シリコン基板は、第一領域と第二領域とを含んでいる第一導電型のエピタキシャル半導体領域と、第二主面とピタキシャル半導体領域との間に位置している第一導電型の第四半導体領域と、を有していてもよい。この場合、第四半導体領域は、エピタキシャル半導体領域より不純物濃度が高い。 In the above one aspect, the silicon substrate is located between the first conductive type epitaxial semiconductor region including the first region and the second region, and the second main surface and the axial semiconductor region. It may have a conductive type fourth semiconductor region. In this case, the fourth semiconductor region has a higher impurity concentration than the epitaxial semiconductor region.
 上記一つの態様では、複数の窪みは、規則的に配置されるようにポリシリコン層に形成されていてもよい。
 不規則な凹凸がポリシリコン層に形成されている場合、製品毎に、凹凸の形状又はサイズが異なるおそれがある。凹凸の形状又はサイズが異なっている場合、分光感度特性が製品間でばらつくおそれがある。
 複数の窪みが、規則的に配置されるようにポリシリコン層に形成されている構成は、分光感度特性のばらつきを生じさせがたい。
In one aspect described above, the plurality of depressions may be formed in the polysilicon layer so as to be regularly arranged.
When irregular irregularities are formed on the polysilicon layer, the shape or size of the irregularities may differ from product to product. If the shape or size of the unevenness is different, the spectral sensitivity characteristics may vary between products.
The configuration in which the plurality of depressions are regularly arranged in the polysilicon layer is unlikely to cause variations in the spectral sensitivity characteristics.
 上記一つの態様では、ポリシリコン層は、第二導電型であってもよく、第一半導体領域とポリシリコン層とは、互いに接していてもよい。この場合、ポリシリコン層が電極として機能し得る。したがって、第一半導体領域から電荷を取り出すための電極を新たに設ける必要性が低下する。ポリシリコン層で発生した電荷の一部が、出力信号に含まれ得る。したがって、ポリシリコン層が第二導電型であると共に第一半導体領域とポリシリコン層とが互いに接している構成は、近赤外の波長帯域での分光感度特性を向上する。 In the above one aspect, the polysilicon layer may be of the second conductive type, and the first semiconductor region and the polysilicon layer may be in contact with each other. In this case, the polysilicon layer can function as an electrode. Therefore, the need to newly provide an electrode for extracting the electric charge from the first semiconductor region is reduced. A portion of the charge generated by the polysilicon layer can be included in the output signal. Therefore, the configuration in which the polysilicon layer is the second conductive type and the first semiconductor region and the polysilicon layer are in contact with each other improves the spectral sensitivity characteristics in the near infrared wavelength band.
 上記一つの態様は、シリコン基板とポリシリコン層との間に配置されている絶縁層を備えていてもよい。この場合、ポリシリコン層への複数の窪みの形成が、シリコン基板に及ぼす影響をより一層抑制しつつ、容易に行える。 One aspect described above may include an insulating layer arranged between the silicon substrate and the polysilicon layer. In this case, the formation of a plurality of depressions in the polysilicon layer can be easily performed while further suppressing the influence on the silicon substrate.
 上記一つの態様では、複数の窪みは、第三主面にも開口していてもよく、絶縁層の一部は、複数の窪みにおいて露出されていてもよい。この場合、各窪みの深さがポリシリコン層の厚みで規定されるので、各窪みの深さが精度よく制御される。 In the above one aspect, the plurality of depressions may also be open to the third main surface, and a part of the insulating layer may be exposed in the plurality of depressions. In this case, since the depth of each recess is defined by the thickness of the polysilicon layer, the depth of each recess is controlled with high accuracy.
 上記一つの態様では、複数の窪みの各表面は、湾曲していてもよい。 In the above one aspect, each surface of the plurality of depressions may be curved.
 上記一つの態様では、複数の窪みは、等方性エッチングにより形成されていてもよい。 In the above one aspect, the plurality of depressions may be formed by isotropic etching.
 上記一つの態様は、第二主面上に配置されている反射膜を備えていてもよい。この場合、シリコン基板内を進み、第二主面に達する光は、反射膜に入射し、反射膜で反射される。反射膜で反射された光は、シリコン基板内を更に進む。したがって、シリコン基板内での光の走行距離がより一層増加し、より多くの光が電荷に変換される。この結果、反射膜が第二主面上に配置されている構成は、近赤外の波長帯域での分光感度特性をより一層向上する。 The above one aspect may include a reflective film arranged on the second main surface. In this case, the light traveling through the silicon substrate and reaching the second main surface is incident on the reflective film and reflected by the reflective film. The light reflected by the reflective film travels further in the silicon substrate. Therefore, the mileage of light in the silicon substrate is further increased, and more light is converted into electric charges. As a result, the configuration in which the reflective film is arranged on the second main surface further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
 上記一つの態様は、第二主面と対向するように配置されている支持基板を備えていてもよい。この場合、支持基板は、半導体光検出素子の機械的強度を向上する。 The above one aspect may include a support substrate arranged so as to face the second main surface. In this case, the support substrate improves the mechanical strength of the semiconductor photodetector.
 上記一つの態様では、シリコン基板は、第一領域と第二領域とをそれぞれ含む複数のセルを有していてもよく、複数のセルは、電気的に並列接続されていてもよい。 In the above one aspect, the silicon substrate may have a plurality of cells including a first region and a second region, and the plurality of cells may be electrically connected in parallel.
 上記一つの態様では、シリコン基板には、複数のセルのうち互いに隣り合うセル同士を物理的に分離するトレンチが、第一主面に直交する方向から見て格子状に形成されていてもよく、ポリシリコン層は、トレンチ上には位置していなくてもよい。 In the above one aspect, trenches for physically separating adjacent cells among a plurality of cells may be formed in a grid pattern on the silicon substrate when viewed from a direction orthogonal to the first main surface. , The polysilicon layer does not have to be located on the trench.
 本発明の一以上の態様は、近赤外の波長帯域での分光感度特性を向上し、かつ、暗電流の発生を抑制する半導体光検出素子を提供する。 One or more aspects of the present invention provide a semiconductor photodetector that improves spectral sensitivity characteristics in the near-infrared wavelength band and suppresses the generation of dark current.
図1は、第一実施形態に係る半導体光検出素子の断面構成を示す図である。FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to the first embodiment. 図2は、複数の窪みの配列の一例を示す図である。FIG. 2 is a diagram showing an example of an arrangement of a plurality of depressions. 図3は、複数の窪みの配列の一例を示す図である。FIG. 3 is a diagram showing an example of an arrangement of a plurality of depressions. 図4は、複数の窪みの形成過程を示す図である。FIG. 4 is a diagram showing a process of forming a plurality of depressions. 図5は、第一実施形態の第一変形例に係る半導体光検出素子の断面構成を示す図である。FIG. 5 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the first modification of the first embodiment. 図6は、第一実施形態の第二変形例に係る半導体光検出素子の断面構成を示す図である。FIG. 6 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a second modification of the first embodiment. 図7は、第一実施形態の第三変形例に係る半導体光検出素子の断面構成を示す図である。FIG. 7 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment. 図8は、第一実施形態の第三変形例に係る半導体光検出素子の断面構成を示す図である。FIG. 8 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment. 図9は、第二実施形態に係る半導体光検出素子の断面構成を示す図である。FIG. 9 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the second embodiment. 図10は、第二実施形態に係る半導体光検出素子を示す平面図である。FIG. 10 is a plan view showing a semiconductor photodetector according to the second embodiment. 図11は、半導体光検出素子の断面構成を示す図である。FIG. 11 is a diagram showing a cross-sectional configuration of the semiconductor photodetector. 図12は、半導体光検出素子の断面構成を示す図である。FIG. 12 is a diagram showing a cross-sectional configuration of the semiconductor photodetector. 図13は、半導体光検出素子の断面構成を示す図である。FIG. 13 is a diagram showing a cross-sectional configuration of the semiconductor photodetector. 図14は、半導体光検出素子の断面構成を示す図である。FIG. 14 is a diagram showing a cross-sectional configuration of the semiconductor photodetector.
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals will be used for the same elements or elements having the same function, and duplicate description will be omitted.
 (第一実施形態)
 図1を参照して、第一実施形態に係る半導体光検出素子1の構成を説明する。図1は、第一実施形態に係る半導体光検出素子の断面構成を示す図である。第一実施形態では、半導体光検出素子1は、たとえば、表面入射型のアバランシェフォトダイオードである。
(First Embodiment)
The configuration of the semiconductor photodetector 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to the first embodiment. In the first embodiment, the semiconductor photodetector 1 is, for example, a surface incident type avalanche photodiode.
 半導体光検出素子1は、図1に示されるように、半導体基板11を備えている。半導体基板11は、シリコン(Si)からなる基板である。半導体基板11は、互いに対向している主面11a及び主面11bを有している。主面11aは、半導体基板11への光入射面である。主面11aが表面であり、主面11bが裏面である。本実施形態では、主面11aと主面11bとは、平坦面である。半導体基板11の厚みは、たとえば、100~625μmである。たとえば、主面11aが第一主面を構成する場合、主面11bは第二主面を構成する。 As shown in FIG. 1, the semiconductor photodetector 1 includes a semiconductor substrate 11. The semiconductor substrate 11 is a substrate made of silicon (Si). The semiconductor substrate 11 has a main surface 11a and a main surface 11b facing each other. The main surface 11a is a light incident surface on the semiconductor substrate 11. The main surface 11a is the front surface and the main surface 11b is the back surface. In the present embodiment, the main surface 11a and the main surface 11b are flat surfaces. The thickness of the semiconductor substrate 11 is, for example, 100 to 625 μm. For example, when the main surface 11a constitutes the first main surface, the main surface 11b constitutes the second main surface.
 半導体基板11は、第一導電型のエピタキシャル半導体領域12aと、第一導電型の半導体領域12bとを有している。半導体領域12bは、半導体基板11の基体を構成する。エピタキシャル半導体領域12aは、エピタキシャル成長法により半導体領域12b上に形成されている。エピタキシャル半導体領域12aは、主面11aを含んでいる領域である。半導体領域12bは、エピタキシャル半導体領域12aよりも主面11b寄りに位置している。半導体領域12bは、エピタキシャル半導体領域12aと主面11bとの間に位置している。本実施形態では、半導体領域12bは、主面11bを含んでいる領域である。本実施形態では、半導体基板11は、エピタキシャル半導体領域12aと、半導体領域12bとで構成されている。 The semiconductor substrate 11 has a first conductive type epitaxial semiconductor region 12a and a first conductive type semiconductor region 12b. The semiconductor region 12b constitutes the substrate of the semiconductor substrate 11. The epitaxial semiconductor region 12a is formed on the semiconductor region 12b by the epitaxial growth method. The epitaxial semiconductor region 12a is a region including the main surface 11a. The semiconductor region 12b is located closer to the main surface 11b than the epitaxial semiconductor region 12a. The semiconductor region 12b is located between the epitaxial semiconductor region 12a and the main surface 11b. In the present embodiment, the semiconductor region 12b is a region including the main surface 11b. In the present embodiment, the semiconductor substrate 11 is composed of an epitaxial semiconductor region 12a and a semiconductor region 12b.
 第一導電型は、たとえば、p型である。第二導電型は、たとえば、n型である。半導体基板11がSiからなる場合、p型不純物は、たとえば、第13族元素を含み、n型不純物は、たとえば、第15族元素を含む。n型不純物は、たとえば、窒素(N)、リン(P)、ヒ素(As)、又はアンチモン(Sb)である。p型不純物は、たとえば、ホウ素(B)又はアルミニウム(Al)である。第一導電型が、n型であり、第二導電型が、p型であってもよい。
 半導体領域12bの不純物濃度は、エピタキシャル半導体領域12aの不純物濃度より高い。半導体領域12bの不純物濃度は、たとえば、1×1018cm-3である。エピタキシャル半導体領域12aの不純物濃度は、たとえば、1×1014cm-3である。
The first conductive type is, for example, the p type. The second conductive type is, for example, n type. When the semiconductor substrate 11 is made of Si, the p-type impurity contains, for example, a Group 13 element, and the n-type impurity contains, for example, a Group 15 element. The n-type impurities are, for example, nitrogen (N), phosphorus (P), arsenic (As), or antimony (Sb). The p-type impurity is, for example, boron (B) or aluminum (Al). The first conductive type may be n type, and the second conductive type may be p type.
The impurity concentration in the semiconductor region 12b is higher than the impurity concentration in the epitaxial semiconductor region 12a. The impurity concentration in the semiconductor region 12b is, for example, 1 × 10 18 cm -3 . The impurity concentration in the epitaxial semiconductor region 12a is, for example, 1 × 10 14 cm -3 .
 半導体基板11は、第二導電型の半導体領域13と、第一導電型の半導体領域15と、第一導電型の半導体領域17と、を有している。各半導体領域13,15,17は、エピタキシャル半導体領域12aに形成されている。半導体領域13と半導体領域15とは、半導体基板11の主面11a側に配置されている。半導体領域13と半導体領域15とは、主面11aを含んでいる領域である。半導体領域17は、半導体領域13よりも主面11b寄りに位置している。半導体領域13と半導体領域17とは、互いに離間するように形成されている。半導体領域13と半導体領域17とは、互いに接するように形成されていてもよい。 The semiconductor substrate 11 has a second conductive type semiconductor region 13, a first conductive type semiconductor region 15, and a first conductive type semiconductor region 17. The semiconductor regions 13, 15 and 17 are formed in the epitaxial semiconductor region 12a. The semiconductor region 13 and the semiconductor region 15 are arranged on the main surface 11a side of the semiconductor substrate 11. The semiconductor region 13 and the semiconductor region 15 are regions including the main surface 11a. The semiconductor region 17 is located closer to the main surface 11b than the semiconductor region 13. The semiconductor region 13 and the semiconductor region 17 are formed so as to be separated from each other. The semiconductor region 13 and the semiconductor region 17 may be formed so as to be in contact with each other.
 各半導体領域13,15,17は、高不純物濃度である。各半導体領域13,15,17は、エピタキシャル半導体領域12aよりも不純物濃度が高い。半導体領域13の不純物濃度は、たとえば、1×1019cm-3である。半導体領域15の不純物濃度は、たとえば、1×1019cm-3である。半導体領域17の不純物濃度は、たとえば、1×1016cm-3である。半導体領域13の厚みは、たとえば、0.5μmである。半導体領域15の厚みは、たとえば、1.0μmである。半導体領域17の厚みは、たとえば、2.0μmである。 Each of the semiconductor regions 13, 15 and 17 has a high impurity concentration. Each of the semiconductor regions 13, 15 and 17 has a higher impurity concentration than the epitaxial semiconductor region 12a. The impurity concentration of the semiconductor region 13 is, for example, 1 × 10 19 cm -3 . The impurity concentration of the semiconductor region 15 is, for example, 1 × 10 19 cm -3 . The impurity concentration of the semiconductor region 17 is, for example, 1 × 10 16 cm -3 . The thickness of the semiconductor region 13 is, for example, 0.5 μm. The thickness of the semiconductor region 15 is, for example, 1.0 μm. The thickness of the semiconductor region 17 is, for example, 2.0 μm.
 エピタキシャル半導体領域12aと半導体領域13とは、pn接合を構成している。pn接合は、エピタキシャル半導体領域12aと半導体領域13との境界に形成されている。半導体領域13と半導体領域17とが、互いに接するように形成されている構成では、半導体領域13と半導体領域17とが、pn接合を構成する。半導体領域13と半導体領域15とは、互いに離間している。主面11aに直交する方向から見て、半導体領域15は、半導体領域13を囲むように、半導体領域13の外側に位置している。半導体領域15は、半導体領域13の外側で、連続的又は断続的に形成されている。半導体領域15は、半導体基板11の主面11a側の、半導体領域13が形成されていない領域に形成されている。 The epitaxial semiconductor region 12a and the semiconductor region 13 form a pn junction. The pn junction is formed at the boundary between the epitaxial semiconductor region 12a and the semiconductor region 13. In the configuration in which the semiconductor region 13 and the semiconductor region 17 are formed so as to be in contact with each other, the semiconductor region 13 and the semiconductor region 17 form a pn junction. The semiconductor region 13 and the semiconductor region 15 are separated from each other. When viewed from the direction orthogonal to the main surface 11a, the semiconductor region 15 is located outside the semiconductor region 13 so as to surround the semiconductor region 13. The semiconductor region 15 is formed continuously or intermittently outside the semiconductor region 13. The semiconductor region 15 is formed in a region on the main surface 11a side of the semiconductor substrate 11 where the semiconductor region 13 is not formed.
 半導体基板11は、半導体領域13,17が形成されている領域R1と、半導体領域15が形成されている領域R2と、を含んでいる。領域R1は、主面11aの一部を含んでいる。領域R2は、領域R1が含んでいる主面11aの一部とは異なる、主面11aの別の一部を含んでいる。エピタキシャル半導体領域12aは、領域R1と、領域R2とを含んでいる。たとえば、領域R1が第一領域を構成する場合、領域R2は第二領域を構成する。たとえば、半導体領域13が第一半導体領域を構成する場合、半導体領域15は第二半導体領域を構成し、半導体領域17は第三半導体領域を構成し、半導体領域12bは第四半導体領域を構成する。半導体光検出素子1は、半導体領域13に電気的に接続されている電極(図示せず)と、半導体領域15に電気的に接続されている電極(図示せず)と、を備えている。 The semiconductor substrate 11 includes a region R1 in which the semiconductor regions 13 and 17 are formed and a region R2 in which the semiconductor region 15 is formed. Region R1 includes a part of the main surface 11a. The region R2 includes another part of the main surface 11a that is different from the part of the main surface 11a included in the region R1. The epitaxial semiconductor region 12a includes a region R1 and a region R2. For example, when the region R1 constitutes the first region, the region R2 constitutes the second region. For example, when the semiconductor region 13 constitutes the first semiconductor region, the semiconductor region 15 constitutes the second semiconductor region, the semiconductor region 17 constitutes the third semiconductor region, and the semiconductor region 12b constitutes the fourth semiconductor region. .. The semiconductor photodetector 1 includes an electrode electrically connected to the semiconductor region 13 (not shown) and an electrode electrically connected to the semiconductor region 15 (not shown).
 半導体光検出素子1は、ポリシリコン層19を備えている。ポリシリコン層19は、互いに対向している主面19a及び主面19bを有している。ポリシリコン層19は、主面19aが主面11aと対向するように、半導体基板11上に配置されている。本実施形態では、ポリシリコン層19は、半導体基板11上に直接的に配置されている。たとえば、主面19aが第三主面を構成する場合、主面19bは第四主面を構成する。本実施形態では、主面19aは、平坦面である。ポリシリコン層19の厚みは、たとえば、0.1~1.0μmである。 The semiconductor light detection element 1 includes a polysilicon layer 19. The polysilicon layer 19 has a main surface 19a and a main surface 19b facing each other. The polysilicon layer 19 is arranged on the semiconductor substrate 11 so that the main surface 19a faces the main surface 11a. In this embodiment, the polysilicon layer 19 is arranged directly on the semiconductor substrate 11. For example, when the main surface 19a constitutes the third main surface, the main surface 19b constitutes the fourth main surface. In this embodiment, the main surface 19a is a flat surface. The thickness of the polysilicon layer 19 is, for example, 0.1 to 1.0 μm.
 ポリシリコン層19は、領域R1が含んでいる主面11aの一部上に配置されている。ポリシリコン層19は、半導体領域13上に配置されている。ポリシリコン層19は、領域R2が含んでいる主面11aの別の一部上には配置されていない。本実施形態では、ポリシリコン層19は、主面11aと接している。ポリシリコン層19は、半導体領域13と接している。ポリシリコン層19は、半導体領域13と接している構成では、ポリシリコン層19は、第二導電型であってもよい。この場合、ポリシリコン層19は、たとえば、リン(P)が添加されていてもよい。 The polysilicon layer 19 is arranged on a part of the main surface 11a included in the region R1. The polysilicon layer 19 is arranged on the semiconductor region 13. The polysilicon layer 19 is not disposed on another part of the main surface 11a included in the region R2. In this embodiment, the polysilicon layer 19 is in contact with the main surface 11a. The polysilicon layer 19 is in contact with the semiconductor region 13. In a configuration in which the polysilicon layer 19 is in contact with the semiconductor region 13, the polysilicon layer 19 may be of the second conductive type. In this case, for example, phosphorus (P) may be added to the polysilicon layer 19.
 ポリシリコン層19には、複数の窪み21が形成されている。各窪み21は、主面19bに開口している。複数の窪み21は、規則的に配置されるように、ポリシリコン層19に形成されている。窪み21の深さは、たとえば、0.1~1.0μmである。本実施形態では、窪み21の深さは、ポリシリコン層19の最大厚みより小さくてもよい。
 半導体基板11(半導体領域13)に、窪み21に連続する窪みが形成されていてもよい。この場合、半導体基板11に形成される窪みは、半導体領域13とエピタキシャル半導体領域12aとの界面に達していなければよい。すなわち、半導体基板11に形成される窪みの深さが、半導体領域13の厚み未満であればよい。窪み21に連続する窪みが半導体領域13に形成されている構成では、ポリシリコン層19と半導体領域13とにわたって形成されている窪みの深さは、ポリシリコン層19の最大厚みより大きい。
 ポリシリコン層19の厚みは、複数の窪み21の表面形状に対応して変化している。主面19bにおける、窪み21が形成されていない領域は、平坦である。
A plurality of recesses 21 are formed in the polysilicon layer 19. Each recess 21 is open to the main surface 19b. The plurality of recesses 21 are formed in the polysilicon layer 19 so as to be regularly arranged. The depth of the recess 21 is, for example, 0.1 to 1.0 μm. In the present embodiment, the depth of the recess 21 may be smaller than the maximum thickness of the polysilicon layer 19.
The semiconductor substrate 11 (semiconductor region 13) may be formed with a recess continuous with the recess 21. In this case, the recess formed in the semiconductor substrate 11 does not have to reach the interface between the semiconductor region 13 and the epitaxial semiconductor region 12a. That is, the depth of the recess formed in the semiconductor substrate 11 may be less than the thickness of the semiconductor region 13. In the configuration in which the recess 21 continuous with the recess 21 is formed in the semiconductor region 13, the depth of the recess formed over the polysilicon layer 19 and the semiconductor region 13 is larger than the maximum thickness of the polysilicon layer 19.
The thickness of the polysilicon layer 19 varies according to the surface shape of the plurality of recesses 21. The region of the main surface 19b where the recess 21 is not formed is flat.
 複数の窪み21は、たとえば、図2及び図3に示されるように、二次元配列されていてもよい。この場合、複数の窪み21は、互いに直交する二つの方向に、等間隔で並んでいてもよい。図2及び図3に示された複数の窪み21は、互いに直交するX方向及びY方向に、等間隔で並んでいる。互いに隣り合う窪み21の間には、主面19bにより構成される平坦面が位置していてもよい。この平坦面は、各窪み21の開口を囲むように、連続していてもよい。この場合、平坦面は、略格子状を呈する。図2及び図3は、複数の窪みの配列の一例を示す図である。図3は、複数の窪み21が形成されている主面19bを、半導体基板11の平面(主面11a)に直交する方向が0°であると規定された場合に、斜め65°から観察したSEM画像である。 The plurality of recesses 21 may be arranged two-dimensionally, for example, as shown in FIGS. 2 and 3. In this case, the plurality of recesses 21 may be arranged at equal intervals in two directions orthogonal to each other. The plurality of depressions 21 shown in FIGS. 2 and 3 are arranged at equal intervals in the X and Y directions orthogonal to each other. A flat surface formed by the main surface 19b may be located between the recesses 21 adjacent to each other. The flat surface may be continuous so as to surround the opening of each recess 21. In this case, the flat surface has a substantially grid pattern. 2 and 3 are diagrams showing an example of an arrangement of a plurality of depressions. FIG. 3 is an observation of the main surface 19b in which the plurality of recesses 21 are formed from an angle of 65 ° when the direction orthogonal to the plane (main surface 11a) of the semiconductor substrate 11 is defined as 0 °. It is an SEM image.
 各窪み21の表面は、図3に示されるように、湾曲していてもよい。すなわち、各窪み21の表面は、凹面形状を呈していてもよい。窪み21の内側空間の形状は、部分球体状である。各窪み21は、同じ形状である。互いに隣り合う窪み21の最深位置、すなわち、窪み21の内側空間の頂点の、X方向での間隔(ピッチ)Pは、たとえば、0.1~2.0μmである。互いに隣り合う窪み21の最深位置、すなわち、窪み21の内側空間の頂点の、Y方向での間隔(ピッチ)Pは、たとえば、0.1~2.0μmである。本実施形態では、間隔Pと間隔Pとは、同等である。間隔Pと間隔Pとは、異なっていてもよい。 The surface of each recess 21 may be curved, as shown in FIG. That is, the surface of each recess 21 may have a concave shape. The shape of the inner space of the recess 21 is a partial sphere. Each recess 21 has the same shape. Deepest position of the recesses 21 adjacent to each other, i.e., the apex of the inner space of the recess 21, the spacing in the X direction (pitch) P X is, for example, 0.1 ~ 2.0 .mu.m. The deepest position of the recesses 21 adjacent to each other, that is, the interval (pitch) P Y of the vertices of the inner space of the recesses 21 in the Y direction is, for example, 0.1 to 2.0 μm. In the present embodiment, the distance P X and spacing P Y, are equivalent. The interval P X and spacing P Y, may be different.
 各窪み21は、たとえば、以下の過程により形成されてもよい。以下の過程では、各窪み21は、等方性エッチングにより形成される。 Each recess 21 may be formed by, for example, the following process. In the following process, each recess 21 is formed by isotropic etching.
 マスクMKが、ポリシリコン層19の主面19bに形成される(図4の(a)を参照)。マスクMKには、各窪み21の形成予定領域に対応する位置に開口MKaが形成されている。マスクMKは、たとえば、ハードマスクである。ハードマスクは、酸化シリコン(SiO)又は窒化シリコン(Si)からなる。マスクMKは、たとえば、レジストマスクでもよい。レジストマスクは、レジスト材料からなる。図4は、複数の窪みの形成過程を示す図である。図4では、断面を表すハッチングが省略されている。 A mask MK is formed on the main surface 19b of the polysilicon layer 19 (see (a) in FIG. 4). In the mask MK, an opening MKa is formed at a position corresponding to a region to be formed of each recess 21. The mask MK is, for example, a hard mask. The hard mask is made of silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ). The mask MK may be, for example, a resist mask. The resist mask is made of a resist material. FIG. 4 is a diagram showing a process of forming a plurality of depressions. In FIG. 4, hatching representing a cross section is omitted.
 マスクMKが形成されているポリシリコン層19(半導体基板11)が、ケミカルドライエッチング(CDE)装置のチャンバ内に配置される。その後、エッチングガスにより、ポリシリコン層19に対して、等方性エッチング(等方性ドライエッチング)が施される。エッチングガスが、開口MKaを通してポリシリコン層19に達すると、エッチングガスは、ポリシリコン層19を侵食する(図4の(b)を参照)。この場合、エッチングは、等方的に進む。ポリシリコン層19における、マスクMK直下の領域は、エッチングされることなく残る。この結果、複数の窪み21が、ポリシリコン層19に形成される(図4の(c)を参照)。窪み21の表面は、湾曲している。エッチングガスは、たとえば、SF、C、NF、又はClFである。 The polysilicon layer 19 (semiconductor substrate 11) on which the mask MK is formed is arranged in the chamber of the chemical dry etching (CDE) apparatus. Then, the polysilicon layer 19 is subjected to isotropic etching (isotropic dry etching) by the etching gas. When the etching gas reaches the polysilicon layer 19 through the opening MKa, the etching gas erodes the polysilicon layer 19 (see FIG. 4B). In this case, the etching proceeds isotropically. The region of the polysilicon layer 19 immediately below the mask MK remains unetched. As a result, a plurality of recesses 21 are formed in the polysilicon layer 19 (see (c) of FIG. 4). The surface of the recess 21 is curved. The etching gas is, for example, SF 6 , C 2 F 6 , NF 2 , or Cl F 3 .
 複数の窪み21がポリシリコン層19に形成された後、マスクMKが除去される(図4の(d)を参照)。ポリシリコン層19における、マスクMK直下の領域は、平坦面を含む。マスクMKが除去されることにより、ポリシリコン層19の主面19bが、平坦面として露出する。平坦面の幅は、たとえば、エッチング時間により調整される。エッチング時間が長いほど、平坦面の幅は小さくなる。各窪み21は、異方性ドライエッチングにより形成されてもよい。この場合、エッチングガスは、たとえば、Cl又はHBrである。 After the plurality of recesses 21 are formed in the polysilicon layer 19, the mask MK is removed (see (d) in FIG. 4). The region of the polysilicon layer 19 immediately below the mask MK includes a flat surface. By removing the mask MK, the main surface 19b of the polysilicon layer 19 is exposed as a flat surface. The width of the flat surface is adjusted, for example, by the etching time. The longer the etching time, the smaller the width of the flat surface. Each recess 21 may be formed by anisotropic dry etching. In this case, the etching gas is, for example, Cl 2 or HBr.
 半導体光検出素子1は、絶縁層23を備えている。絶縁層23は、領域R1に含まれている主面11aの一部を除き、主面11a上に配置されている。半導体基板11と絶縁層23とは、互いに接している。絶縁層23は、たとえば、酸化膜である。本実施形態では、絶縁層23は、酸化シリコン(SiO)からなる。絶縁層23は、窒化シリコン(Si)からなっていてもよい。絶縁層23の厚みは、たとえば、0.2μmである。 The semiconductor photodetector 1 includes an insulating layer 23. The insulating layer 23 is arranged on the main surface 11a except for a part of the main surface 11a included in the region R1. The semiconductor substrate 11 and the insulating layer 23 are in contact with each other. The insulating layer 23 is, for example, an oxide film. In the present embodiment, the insulating layer 23 is made of silicon oxide (SiO 2 ). The insulating layer 23 may be made of silicon nitride (Si 3 N 4 ). The thickness of the insulating layer 23 is, for example, 0.2 μm.
 以上のように、第一実施形態では、ポリシリコン層19は、領域R1に含まれる主面11aの一部上に配置されている。ポリシリコン層19には、主面19bに開口する複数の窪み21が形成されている。
 光がポリシリコン層19の主面19bに入射する場合、光は、複数の窪み21が形成されているポリシリコン層19の主面19bにて散乱される。散乱された光は、ポリシリコン層19内を進み、主面11aから半導体基板11に入る。半導体基板11に入った光は、半導体基板11内を様々な方向に進む。したがって、半導体光検出素子1では、ポリシリコン層19が配置されていない構成に比して、半導体基板11内での光の走行距離が増加する。半導体基板11に入射した光は、半導体基板11内を長い距離進む。したがって、より多くの光が、電荷に変換される。この結果、半導体光検出素子1は、近赤外の波長帯域での分光感度特性を向上する。半導体光検出素子1は、可視光の波長帯域での分光感度特性も向上する。
As described above, in the first embodiment, the polysilicon layer 19 is arranged on a part of the main surface 11a included in the region R1. The polysilicon layer 19 is formed with a plurality of recesses 21 that open to the main surface 19b.
When the light is incident on the main surface 19b of the polysilicon layer 19, the light is scattered on the main surface 19b of the polysilicon layer 19 in which the plurality of recesses 21 are formed. The scattered light travels in the polysilicon layer 19 and enters the semiconductor substrate 11 from the main surface 11a. The light that has entered the semiconductor substrate 11 travels in the semiconductor substrate 11 in various directions. Therefore, in the semiconductor photodetector 1, the mileage of light in the semiconductor substrate 11 increases as compared with the configuration in which the polysilicon layer 19 is not arranged. The light incident on the semiconductor substrate 11 travels a long distance in the semiconductor substrate 11. Therefore, more light is converted into electric charge. As a result, the semiconductor photodetector 1 improves the spectral sensitivity characteristics in the near-infrared wavelength band. The semiconductor photodetector 1 also improves the spectral sensitivity characteristic in the wavelength band of visible light.
 半導体光検出素子1では、複数の窪み21がポリシリコン層19に形成されている。したがって、半導体基板11には、複数の窪み21の形成に起因する結晶損傷が生じがたい。すなわち、半導体基板11の結晶性が劣化しがたい。この結果、半導体光検出素子1は、暗電流の発生を抑制する。本実施形態では、半導体基板11には窪みが形成されていないので、半導体基板11の結晶性がより一層劣化しがたい。半導体基板11の主面11aに複数の窪みが形成される場合でも、複数の窪みが半導体基板11の主面11aに直接形成されている構成に比して、半導体基板11の結晶性が劣化しがたい。本実施形態では、半導体基板11には窪みが形成されていないので、半導体基板11の結晶性がより一層劣化しがたい。 In the semiconductor photodetector 1, a plurality of recesses 21 are formed in the polysilicon layer 19. Therefore, the semiconductor substrate 11 is unlikely to suffer crystal damage due to the formation of the plurality of recesses 21. That is, the crystallinity of the semiconductor substrate 11 is unlikely to deteriorate. As a result, the semiconductor photodetector 1 suppresses the generation of dark current. In the present embodiment, since the semiconductor substrate 11 does not have a recess, the crystallinity of the semiconductor substrate 11 is less likely to deteriorate. Even when a plurality of recesses are formed on the main surface 11a of the semiconductor substrate 11, the crystallinity of the semiconductor substrate 11 is deteriorated as compared with the configuration in which the plurality of recesses are directly formed on the main surface 11a of the semiconductor substrate 11. It's hard. In the present embodiment, since the semiconductor substrate 11 does not have a recess, the crystallinity of the semiconductor substrate 11 is less likely to deteriorate.
 半導体光検出素子1では、上述したように、複数の窪み21がポリシリコン層19に形成されている。したがって、半導体光検出素子1は、複数の窪み21の形成が及ぼす、pn接合への影響を抑える。この結果、半導体光検出素子1は、暗電流の発生を抑制するだけでなく、耐圧特性の劣化を抑制する。 In the semiconductor photodetector 1, as described above, a plurality of recesses 21 are formed in the polysilicon layer 19. Therefore, the semiconductor photodetector 1 suppresses the influence of the formation of the plurality of recesses 21 on the pn junction. As a result, the semiconductor photodetector 1 not only suppresses the generation of dark current, but also suppresses the deterioration of withstand voltage characteristics.
 不規則な凹凸がポリシリコン層19に形成されている場合、製品毎に、凹凸の形状又はサイズが異なるおそれがある。凹凸の形状又はサイズが異なっている場合、分光感度特性が製品間でばらつくおそれがある。
 半導体光検出素子1では、複数の窪み21は、規則的に配置されるようにポリシリコン層19に形成されている。したがって、半導体光検出素子1は、分光感度特性のばらつきを生じさせがたい。
When irregular irregularities are formed on the polysilicon layer 19, the shape or size of the irregularities may differ from product to product. If the shape or size of the unevenness is different, the spectral sensitivity characteristics may vary between products.
In the semiconductor photodetector 1, the plurality of recesses 21 are formed in the polysilicon layer 19 so as to be regularly arranged. Therefore, the semiconductor photodetector 1 is unlikely to cause variations in spectral sensitivity characteristics.
 ポリシリコン層19に不規則な凹凸が形成されている構成は、凹凸の形状を制御しがたい。これに対し、複数の窪み21が規則的に配置されるように形成されている構成は、各窪み21の形状を制御しやすい。したがって、半導体光検出素子1は、各窪み21の形状を制御することにより、特定の波長に対する光学特性を簡易に制御することが可能である。窪み21の形状は、窪み21の深さ、窪み21の幅、又は、窪み21の間隔を含む。 The configuration in which irregular irregularities are formed on the polysilicon layer 19 makes it difficult to control the shape of the irregularities. On the other hand, the configuration in which the plurality of recesses 21 are regularly arranged makes it easy to control the shape of each recess 21. Therefore, the semiconductor photodetector 1 can easily control the optical characteristics for a specific wavelength by controlling the shape of each recess 21. The shape of the recess 21 includes the depth of the recess 21, the width of the recess 21, or the spacing of the recess 21.
 第二導電型のポリシリコン層19と、半導体領域13とが、互いに接している構成では、ポリシリコン層19が電極として機能し得る。したがって、半導体領域13から電荷を取り出すための電極を新たに設ける必要性が低下する。ポリシリコン層19で発生した電荷の一部が、出力信号に含まれ得る。したがって、半導体光検出素子1は、近赤外の波長帯域での分光感度特性を向上する。半導体領域13から電荷を取り出すための電極が新たに設けられることなく、電荷がポリシリコン層19のみから取り出されてもよい。 In a configuration in which the second conductive type polysilicon layer 19 and the semiconductor region 13 are in contact with each other, the polysilicon layer 19 can function as an electrode. Therefore, the need to newly provide an electrode for extracting the electric charge from the semiconductor region 13 is reduced. A part of the electric charge generated in the polysilicon layer 19 may be included in the output signal. Therefore, the semiconductor photodetector 1 improves the spectral sensitivity characteristic in the near infrared wavelength band. The charge may be extracted only from the polysilicon layer 19 without newly providing an electrode for extracting the charge from the semiconductor region 13.
 半導体基板11が、半導体領域12bと、半導体領域12bに積層されているエピタキシャル半導体領域12aとを有している場合でも、半導体領域12bに吸収されてしまう電荷は、近赤外の波長帯域での分光感度に寄与しがたい。
 複数の窪み21が形成されているポリシリコン層19が主面11a上に設けられている構成は、半導体基板11の主面11b寄りで発生する電荷を減少させる。半導体領域12bに吸収されてしまう電荷が減少するので、近赤外の波長帯域での分光感度が向上する。
Even when the semiconductor substrate 11 has a semiconductor region 12b and an epitaxial semiconductor region 12a laminated on the semiconductor region 12b, the charge absorbed by the semiconductor region 12b is in the near-infrared wavelength band. It is difficult to contribute to spectral sensitivity.
The configuration in which the polysilicon layer 19 in which the plurality of recesses 21 are formed is provided on the main surface 11a reduces the electric charge generated near the main surface 11b of the semiconductor substrate 11. Since the charge absorbed by the semiconductor region 12b is reduced, the spectral sensitivity in the near-infrared wavelength band is improved.
 続いて、半導体光検出素子1の製造方法について説明する。
 まず、エピタキシャル半導体領域12aと第一導電型の半導体領域12bとを有している半導体基板11が準備される。
Subsequently, a method of manufacturing the semiconductor photodetector 1 will be described.
First, a semiconductor substrate 11 having an epitaxial semiconductor region 12a and a first conductive type semiconductor region 12b is prepared.
 次に、半導体領域13、半導体領域15、及び半導体領域17が、エピタキシャル半導体領域12aに形成される。
 半導体領域17は、中央部が開口したマスクなどを用い、エピタキシャル半導体領域12a内に主面11aから不純物を高濃度にイオン注入することにより形成される。半導体領域15は、周辺部が開口した別のマスクなどを用い、エピタキシャル半導体領域12a内に主面11aから不純物を高濃度に拡散させることにより形成される。半導体領域13は、中央部が開口した別のマスクなどを用い、エピタキシャル半導体領域12a内に主面11aから不純物を高濃度にイオン注入することにより形成される。
Next, the semiconductor region 13, the semiconductor region 15, and the semiconductor region 17 are formed in the epitaxial semiconductor region 12a.
The semiconductor region 17 is formed by implanting impurities into the epitaxial semiconductor region 12a from the main surface 11a at a high concentration by using a mask having an open central portion or the like. The semiconductor region 15 is formed by diffusing impurities from the main surface 11a into the epitaxial semiconductor region 12a at a high concentration by using another mask or the like having an open peripheral portion. The semiconductor region 13 is formed by implanting impurities into the epitaxial semiconductor region 12a from the main surface 11a at a high concentration by using another mask having an open central portion or the like.
 次に、半導体基板11の主面11aに、絶縁層23が形成される。その後、絶縁層23における、ポリシリコン層19の形成予定領域に対応する部分が、除去される。ポリシリコン層19の形成予定領域は、領域R1に含まれている主面11aの上記一部を含む。絶縁層23は、たとえば、エッチングにより除去される。 Next, the insulating layer 23 is formed on the main surface 11a of the semiconductor substrate 11. After that, the portion of the insulating layer 23 corresponding to the region to be formed of the polysilicon layer 19 is removed. The region to be formed of the polysilicon layer 19 includes the above-mentioned part of the main surface 11a included in the region R1. The insulating layer 23 is removed by etching, for example.
 次に、ポリシリコン層19が、半導体領域13上に形成される。この過程では、n型不純物が、ポリシリコン層19に添加されてもよい。その後、ポリシリコン層19に、複数の窪み21が形成される。複数の窪み21は、上述したように、等方性エッチングにより形成される。
 これらの過程により、半導体光検出素子1が得られる。
Next, the polysilicon layer 19 is formed on the semiconductor region 13. In this process, n-type impurities may be added to the polysilicon layer 19. After that, a plurality of recesses 21 are formed in the polysilicon layer 19. The plurality of recesses 21 are formed by isotropic etching as described above.
Through these processes, the semiconductor photodetector 1 is obtained.
 次に、図5を参照して、第一実施形態の第一変形例の構成を説明する。図5は、第一実施形態の第一変形例に係る半導体光検出素子の断面構成を示す図である。第一変形例は、概ね、第一実施形態と類似又は同じであるが、本変形例は、絶縁層23に関して、第一実施形態と相違する。以下、第一実施形態と第一変形例との相違点を主として説明する。 Next, the configuration of the first modification of the first embodiment will be described with reference to FIG. FIG. 5 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the first modification of the first embodiment. The first modification is generally similar to or the same as the first embodiment, but the present modification is different from the first embodiment with respect to the insulating layer 23. Hereinafter, the differences between the first embodiment and the first modification will be mainly described.
 本変形例では、絶縁層23は、領域R1に含まれている主面11aの一部上にも配置されている。たとえば、絶縁層23は、主面11aの全体に形成されている。ポリシリコン層19は、絶縁層23上に配置されている。ポリシリコン層19は、絶縁層23が半導体基板11とポリシリコン層19との間に位置するように、半導体基板11上に間接的に配置されている。半導体基板11と絶縁層23とが接しており、絶縁層23とポリシリコン層19とが接している。 In this modification, the insulating layer 23 is also arranged on a part of the main surface 11a included in the region R1. For example, the insulating layer 23 is formed on the entire main surface 11a. The polysilicon layer 19 is arranged on the insulating layer 23. The polysilicon layer 19 is indirectly arranged on the semiconductor substrate 11 so that the insulating layer 23 is located between the semiconductor substrate 11 and the polysilicon layer 19. The semiconductor substrate 11 and the insulating layer 23 are in contact with each other, and the insulating layer 23 and the polysilicon layer 19 are in contact with each other.
 本変形例では、絶縁層23が、半導体基板11とポリシリコン層19との間に配置されている。したがって、ポリシリコン層19への複数の窪み21の形成が、半導体基板11に及ぼす影響をより一層抑制しつつ、容易に行える。 In this modification, the insulating layer 23 is arranged between the semiconductor substrate 11 and the polysilicon layer 19. Therefore, the formation of the plurality of recesses 21 in the polysilicon layer 19 can be easily performed while further suppressing the influence on the semiconductor substrate 11.
 次に、図6を参照して、第一実施形態の第二変形例の構成を説明する。図6は、第一実施形態の第二変形例に係る半導体光検出素子の断面構成を示す図である。第二変形例は、概ね、第一変形例と類似又は同じであるが、本変形例は、各窪み21の形状に関して、第一変形例と相違する。以下、第一変形例と第二変形例との相違点を主として説明する。 Next, the configuration of the second modification of the first embodiment will be described with reference to FIG. FIG. 6 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a second modification of the first embodiment. The second modification is generally similar to or the same as the first modification, but this modification is different from the first modification in terms of the shape of each recess 21. Hereinafter, the differences between the first modification and the second modification will be mainly described.
 本変形例では、図6に示されるように、複数の窪み21は、主面19aにも開口している。各窪み21は、ポリシリコン層19を貫通するように形成されている。したがって、絶縁層23の一部は、複数の窪み21において露出される。
 各窪み21は、ポリシリコン層19を貫通するように形成されている場合、各窪み21の深さがポリシリコン層19の厚みで規定される。したがって、各窪み21の深さが精度よく制御される。図6に示されている窪み21の形状は、酸化シリコンからなる絶縁層23がエッチングストップ層として機能することにより容易に実現される。
In this modification, as shown in FIG. 6, the plurality of recesses 21 are also open to the main surface 19a. Each recess 21 is formed so as to penetrate the polysilicon layer 19. Therefore, a part of the insulating layer 23 is exposed in the plurality of recesses 21.
When each recess 21 is formed so as to penetrate the polysilicon layer 19, the depth of each recess 21 is defined by the thickness of the polysilicon layer 19. Therefore, the depth of each recess 21 is accurately controlled. The shape of the recess 21 shown in FIG. 6 is easily realized by the insulating layer 23 made of silicon oxide functioning as an etching stop layer.
 本変形例では、ポリシリコン層19は、第一導電型であってもよく、第二導電型であってもよい。第一導電型のポリシリコン層19は、たとえば、ホウ素(B)がポリシリコン層19に添加されることにより実現される。 In this modification, the polysilicon layer 19 may be a first conductive type or a second conductive type. The first conductive type polysilicon layer 19 is realized, for example, by adding boron (B) to the polysilicon layer 19.
 次に、図7を参照して、第一実施形態の第三変形例の構成を説明する。図7は、第一実施形態の第三変形例に係る半導体光検出素子の断面構成を示す図である。第三変形例は、概ね、第一実施形態と類似又は同じであるが、本変形例は、支持基板31に関して、第一実施形態と相違する。以下、第一実施形態と第三変形例との相違点を主として説明する。 Next, the configuration of the third modification of the first embodiment will be described with reference to FIG. 7. FIG. 7 is a diagram showing a cross-sectional configuration of a semiconductor photodetector according to a third modification of the first embodiment. The third modification is generally similar to or the same as the first embodiment, but this modification is different from the first embodiment with respect to the support substrate 31. Hereinafter, the differences between the first embodiment and the third modification will be mainly described.
 本変形例では、図7に示されるように、半導体光検出素子1は、支持基板31を備えている。支持基板31は、互いに対向している主面31a及び主面31bを有している。支持基板31は、主面11bと対向するように、半導体基板11に配置されている。主面31aと主面11bとは、互いに対向している。支持基板31は、たとえば、シリコン基板又はガラス基板である。本変形例では、半導体領域12bが主面11b側から薄化されている。半導体基板11と支持基板31との間には、樹脂層RLが配置されている。樹脂層RLは、たとえば、主成分が、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ポリエチレンテレフタレート(PET)、及びエポキシ系樹脂のいずれかである樹脂からなる。支持基板31は、樹脂層RLにより、半導体基板11に接着されている。樹脂層RLは、光学的に透明である。なお、樹脂層RLに代えて、誘電体層が、半導体基板11と支持基板31との間に配置されていてもよい。誘電体層は、たとえば、酸化シリコン(SiO)からなる。 In this modification, as shown in FIG. 7, the semiconductor photodetector 1 includes a support substrate 31. The support substrate 31 has a main surface 31a and a main surface 31b facing each other. The support substrate 31 is arranged on the semiconductor substrate 11 so as to face the main surface 11b. The main surface 31a and the main surface 11b face each other. The support substrate 31 is, for example, a silicon substrate or a glass substrate. In this modification, the semiconductor region 12b is thinned from the main surface 11b side. A resin layer RL is arranged between the semiconductor substrate 11 and the support substrate 31. The resin layer RL is composed of, for example, a resin whose main component is any one of propylene glycol monomethyl ether acetate (PGMEA), polyethylene terephthalate (PET), and an epoxy resin. The support substrate 31 is adhered to the semiconductor substrate 11 by the resin layer RL. The resin layer RL is optically transparent. Instead of the resin layer RL, a dielectric layer may be arranged between the semiconductor substrate 11 and the support substrate 31. The dielectric layer is made of, for example, silicon oxide (SiO 2 ).
 支持基板31の主面31aには、反射膜RFが配置されている。反射膜RFは、樹脂層RLと接する。反射膜RFは、たとえば、金属からなる。反射膜RFは、たとえば、主成分が、Cアルミニウム(Al)、銀(Ag)、及び金(Au)のいずれかである金属からなる。本変形例では、支持基板31は、樹脂層RL及び反射膜RFが支持基板31と半導体基板11との間に位置している状態で、半導体基板11上に間接的に配置されている。反射膜RFは、樹脂層RLが反射膜RFと半導体基板11との間に位置している状態で、半導体基板11上に間接的に配置されている。主面31aと主面11bとは、樹脂層RL及び反射膜RFが主面31aと主面11bとが挟まれている状態で、間接的に対向している。 A reflective film RF is arranged on the main surface 31a of the support substrate 31. The reflective film RF is in contact with the resin layer RL. The reflective film RF is made of, for example, metal. The reflective film RF is composed of, for example, a metal whose main component is either C aluminum (Al), silver (Ag), or gold (Au). In this modification, the support substrate 31 is indirectly arranged on the semiconductor substrate 11 in a state where the resin layer RL and the reflective film RF are located between the support substrate 31 and the semiconductor substrate 11. The reflective film RF is indirectly arranged on the semiconductor substrate 11 in a state where the resin layer RL is located between the reflective film RF and the semiconductor substrate 11. The main surface 31a and the main surface 11b indirectly face each other with the resin layer RL and the reflective film RF sandwiched between the main surface 31a and the main surface 11b.
 半導体領域12bは、たとえば、以下の過程により薄化されてもよい。
 各半導体領域13,15,17、ポリシリコン層19、及び絶縁層23が形成されている半導体基板11の主面11a側に、仮支持基板が仮接合される。仮支持基板は、接着樹脂により、半導体基板11に接合される。その後、半導体領域12bが、主面11b側から薄化される。半導体領域12bの薄化は、たとえば、砥石による機械研磨(グラインド)、化学的機械研磨(CMP)、又はエッチングにより行われる。
 半導体領域12bが薄化された後、n型不純物が、半導体領域12b内において主面11bから高濃度に拡散されてもよい。
The semiconductor region 12b may be thinned by, for example, the following process.
The temporary support substrate is temporarily bonded to the main surface 11a side of the semiconductor substrate 11 on which the semiconductor regions 13, 15, 17, the polysilicon layer 19, and the insulating layer 23 are formed. The temporary support substrate is bonded to the semiconductor substrate 11 with an adhesive resin. After that, the semiconductor region 12b is thinned from the main surface 11b side. The thinning of the semiconductor region 12b is performed, for example, by mechanical polishing (grinding) with a grindstone, chemical mechanical polishing (CMP), or etching.
After the semiconductor region 12b is thinned, n-type impurities may be diffused to a high concentration from the main surface 11b in the semiconductor region 12b.
 次に、支持基板31が、半導体基板11に接合される。支持基板31は、反射膜RFが主面11bと対向している状態で、樹脂層RLにより半導体基板11に接合される。その後、仮支持基板が、半導体基板11から剥離される。
 これらの過程により、図7に示されている半導体光検出素子1が得られる。
Next, the support substrate 31 is joined to the semiconductor substrate 11. The support substrate 31 is joined to the semiconductor substrate 11 by the resin layer RL in a state where the reflective film RF faces the main surface 11b. After that, the temporary support substrate is peeled off from the semiconductor substrate 11.
Through these processes, the semiconductor photodetector 1 shown in FIG. 7 is obtained.
 本変形例では、半導体光検出素子1は、支持基板31を備えている。支持基板31は、半導体光検出素子1の機械的強度を向上する。
 半導体光検出素子1は、主面11b上に配置されている反射膜RFを備えている。半導体基板11内を進み、主面11bに達する光は、反射膜RFに入射し、反射膜RFで反射される。反射膜RFで反射された光は、半導体基板11内を更に進む。したがって、半導体基板11内での光の走行距離がより一層増加し、より多くの光が電荷に変換される。この結果、半導体光検出素子1は、近赤外の波長帯域での分光感度特性をより一層向上する。
In this modification, the semiconductor photodetector 1 includes a support substrate 31. The support substrate 31 improves the mechanical strength of the semiconductor photodetector 1.
The semiconductor photodetector 1 includes a reflective film RF arranged on the main surface 11b. Light traveling through the semiconductor substrate 11 and reaching the main surface 11b is incident on the reflective film RF and reflected by the reflective film RF. The light reflected by the reflective film RF further travels in the semiconductor substrate 11. Therefore, the mileage of light in the semiconductor substrate 11 is further increased, and more light is converted into electric charges. As a result, the semiconductor photodetector 1 further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
 図8に示されるように、反射膜RFの表面に、複数の窪みRFaが形成されていてもよい。複数の窪みRFaは、たとえば、複数の開口が形成されているマスクを用いて、反射膜RFをエッチングすることにより形成される。複数の窪みRFaは、規則的に配置されるように形成されていてもよく、不規則に配置されるように形成されていてもよい。 As shown in FIG. 8, a plurality of recessed RFa may be formed on the surface of the reflective film RF. The plurality of recesses RFa are formed, for example, by etching the reflective film RF using a mask in which a plurality of openings are formed. The plurality of recesses RFa may be formed so as to be arranged regularly, or may be formed so as to be arranged irregularly.
 図8に示された半導体光検出素子1では、反射膜RFに入射する光は、複数の窪みRFaが形成されている反射膜RFにて乱反射される。乱反射された光は、半導体基板11内を様々な方向に進む。したがって、半導体基板11内での光の走行距離がより一層増加する。この結果、半導体光検出素子1は、近赤外の波長帯域での分光感度特性をより一層向上する。 In the semiconductor photodetector 1 shown in FIG. 8, the light incident on the reflective film RF is diffusely reflected by the reflective film RF in which a plurality of recesses RFa are formed. The diffusely reflected light travels in the semiconductor substrate 11 in various directions. Therefore, the mileage of light in the semiconductor substrate 11 is further increased. As a result, the semiconductor photodetector 1 further improves the spectral sensitivity characteristics in the near-infrared wavelength band.
 (第二実施形態)
 図9及び図10を参照して、第二実施形態に係る半導体光検出素子2の構成を説明する。図9は、第二実施形態に係る半導体光検出素子の断面構成を示す図である。図10は、第二実施形態に係る半導体光検出素子を示す平面図である。第二実施形態では、半導体光検出素子2は、たとえば、表面入射型のアバランシェフォトダイオードアレイである。図9では、断面を表すハッチングが省略されている。図10では、後述する絶縁層63の一部が除去されている。
(Second Embodiment)
The configuration of the semiconductor photodetector 2 according to the second embodiment will be described with reference to FIGS. 9 and 10. FIG. 9 is a diagram showing a cross-sectional configuration of the semiconductor photodetector according to the second embodiment. FIG. 10 is a plan view showing a semiconductor photodetector according to the second embodiment. In the second embodiment, the semiconductor photodetector 2 is, for example, a surface incident type avalanche photodiode array. In FIG. 9, hatching representing a cross section is omitted. In FIG. 10, a part of the insulating layer 63, which will be described later, has been removed.
 半導体光検出素子2は、半導体基板41を備えている。半導体基板41は、シリコン(Si)からなる基板である。半導体基板41は、互いに対向している主面41a及び主面41bを有している。主面41aは、半導体基板41への光入射面である。主面41aが表面であり、主面41bが裏面である。本実施形態では、主面41aと主面41bとは、平坦面である。半導体基板41の厚みは、たとえば、100~625μmである。たとえば、主面41aが第一主面を構成する場合、主面41bは第二主面を構成する。 The semiconductor light detection element 2 includes a semiconductor substrate 41. The semiconductor substrate 41 is a substrate made of silicon (Si). The semiconductor substrate 41 has a main surface 41a and a main surface 41b facing each other. The main surface 41a is a light incident surface on the semiconductor substrate 41. The main surface 41a is the front surface, and the main surface 41b is the back surface. In the present embodiment, the main surface 41a and the main surface 41b are flat surfaces. The thickness of the semiconductor substrate 41 is, for example, 100 to 625 μm. For example, when the main surface 41a constitutes the first main surface, the main surface 41b constitutes the second main surface.
 半導体基板41は、第一導電型のエピタキシャル半導体領域42aと、第二導電型の半導体領域42cとを有している。半導体領域42cは、半導体基板41の基体を構成する。エピタキシャル半導体領域42aは、エピタキシャル成長法により半導体領域42c上に形成されている。エピタキシャル半導体領域42aは、主面41aを含んでいる領域である。半導体領域42cは、主面41bを含んでいる領域である。半導体領域42cは、エピタキシャル半導体領域42aと主面41bとの間に位置している。本実施形態では、半導体基板41は、エピタキシャル半導体領域42aと、半導体領域42cとで構成されている。第二実施形態においても、第一導電型は、たとえば、p型であり、第二導電型は、たとえば、n型である。エピタキシャル半導体領域42aの不純物濃度は、たとえば、1×1014cm-3である。半導体領域42cは、高不純物濃度である。半導体領域42cの不純物濃度は、たとえば、1×1018cm-3である。 The semiconductor substrate 41 has a first conductive type epitaxial semiconductor region 42a and a second conductive type semiconductor region 42c. The semiconductor region 42c constitutes the substrate of the semiconductor substrate 41. The epitaxial semiconductor region 42a is formed on the semiconductor region 42c by the epitaxial growth method. The epitaxial semiconductor region 42a is a region including the main surface 41a. The semiconductor region 42c is a region including the main surface 41b. The semiconductor region 42c is located between the epitaxial semiconductor region 42a and the main surface 41b. In the present embodiment, the semiconductor substrate 41 is composed of an epitaxial semiconductor region 42a and a semiconductor region 42c. Also in the second embodiment, the first conductive type is, for example, p type, and the second conductive type is, for example, n type. The impurity concentration in the epitaxial semiconductor region 42a is, for example, 1 × 10 14 cm -3 . The semiconductor region 42c has a high impurity concentration. The impurity concentration in the semiconductor region 42c is, for example, 1 × 10 18 cm -3 .
 半導体基板41は、複数のセルUを有している。複数のセルUは、たとえば、行列状に二次元配列されている。複数のセルUは、一次元配列されていてもよい。半導体基板41では、各セルUに入射された入射光に応じた信号が、各セルUから出力される。各セルUは、一つ又は複数のアバランシェフォトダイオードを含んでいる。本実施形態では、各セルUは、1つのアバランシェフォトダイオードAPDを含んでいる。アバランシェフォトダイオードAPDは、たとえば、第一実施形態に示された半導体光検出素子2と同様の構成を有していてもよい。 The semiconductor substrate 41 has a plurality of cells U. The plurality of cells U are arranged two-dimensionally in a matrix, for example. The plurality of cells U may be arranged one-dimensionally. In the semiconductor substrate 41, a signal corresponding to the incident light incident on each cell U is output from each cell U. Each cell U contains one or more avalanche photodiodes. In this embodiment, each cell U includes one avalanche photodiode APD. The avalanche photodiode APD may have, for example, the same configuration as the semiconductor photodetector 2 shown in the first embodiment.
 各セルUに含まれるアバランシェフォトダイオードAPDは、半導体領域43と半導体領域45とを含んでいる。各半導体領域43,45は、エピタキシャル半導体領域42aに形成されている。半導体領域43は、半導体基板41の主面41a側に配置されている。半導体領域43は、主面41aを含んでいる領域である。半導体領域45は、半導体領域43よりも主面41b寄りに位置している。半導体領域43と半導体領域45とは、互いに離間するように形成されている。半導体領域43と半導体領域45とは、互いに接するように形成されていてもよい。 The avalanche photodiode APD included in each cell U includes a semiconductor region 43 and a semiconductor region 45. The semiconductor regions 43 and 45 are formed in the epitaxial semiconductor region 42a. The semiconductor region 43 is arranged on the main surface 41a side of the semiconductor substrate 41. The semiconductor region 43 is a region including the main surface 41a. The semiconductor region 45 is located closer to the main surface 41b than the semiconductor region 43. The semiconductor region 43 and the semiconductor region 45 are formed so as to be separated from each other. The semiconductor region 43 and the semiconductor region 45 may be formed so as to be in contact with each other.
 半導体領域43は、第二導電型である。半導体領域45は、第一導電型である。半導体領域43と半導体領域45とが、pn接合を構成する。pn接合は、半導体領域43と半導体領域45との境界に形成されている。半導体領域43と半導体領域45とは、光感応領域を構成する。光感応領域は、入射光に応じて電荷が発生する領域である。光感応領域は、エピタキシャル半導体領域42aにおいて、バイアス電圧が印加される際に空乏化する領域も含んでいる。 The semiconductor region 43 is a second conductive type. The semiconductor region 45 is a first conductive type. The semiconductor region 43 and the semiconductor region 45 form a pn junction. The pn junction is formed at the boundary between the semiconductor region 43 and the semiconductor region 45. The semiconductor region 43 and the semiconductor region 45 form a light-sensitive region. The light-sensitive region is a region in which an electric charge is generated according to the incident light. The light-sensitive region also includes a region in the epitaxial semiconductor region 42a that becomes depleted when a bias voltage is applied.
 各半導体領域43,45は、高不純物濃度である。各半導体領域43,45は、エピタキシャル半導体領域42aよりも不純物濃度が高い。半導体領域43の不純物濃度は、たとえば、1×1019cm-3である。半導体領域45の不純物濃度は、たとえば、1×1017cm-3である。半導体領域43の厚みは、たとえば、0.5μmである。半導体領域45の厚みは、たとえば、1.5μmである。 Each of the semiconductor regions 43 and 45 has a high impurity concentration. Each of the semiconductor regions 43 and 45 has a higher impurity concentration than the epitaxial semiconductor region 42a. The impurity concentration of the semiconductor region 43 is, for example, 1 × 10 19 cm -3 . The impurity concentration in the semiconductor region 45 is, for example, 1 × 10 17 cm -3 . The thickness of the semiconductor region 43 is, for example, 0.5 μm. The thickness of the semiconductor region 45 is, for example, 1.5 μm.
 半導体基板41には、トレンチTRが形成されている。トレンチTRは、主面41aに開口している。トレンチTRの深さ方向は、半導体基板41の厚み方向である。トレンチTRは、複数のセルUのうちの互いに隣り合うセルU同士を物理的に分離している。トレンチTRは、主面41aに直交する方向から見て、各セルUを囲んでいる。互いに隣り合うセルUは、トレンチTRにより、互いに電気的に分離されている。本実施形態では、トレンチTRは、主面41aに直交する方向から見て、半導体基板41に格子状に形成されている。 A trench TR is formed on the semiconductor substrate 41. The trench TR is open to the main surface 41a. The depth direction of the trench TR is the thickness direction of the semiconductor substrate 41. The trench TR physically separates cells U adjacent to each other among the plurality of cells U. The trench TR surrounds each cell U when viewed from a direction orthogonal to the main surface 41a. The cells U adjacent to each other are electrically separated from each other by the trench TR. In the present embodiment, the trench TR is formed in a grid pattern on the semiconductor substrate 41 when viewed from a direction orthogonal to the main surface 41a.
 トレンチTRには、遮光部材53が配置されている。遮光部材53は、光を反射する材料からなる。遮光部材53は、光を吸収する材料からなっていてもよい。遮光部材53は、たとえば、タングステン(W)からなる。遮光部材53は、光を反射又は吸収する材料がトレンチTR内に充填されることにより形成される。遮光部材53は、トレンチTRの開口において、主面41aに露出する表面を有している。遮光部材53の表面は、絶縁層55により覆われている。遮光部材53は、たとえば、低圧化学気相成長(LP-CVD)により、トレンチTR内に形成される。 A light-shielding member 53 is arranged in the trench TR. The light-shielding member 53 is made of a material that reflects light. The light-shielding member 53 may be made of a material that absorbs light. The light-shielding member 53 is made of, for example, tungsten (W). The light-shielding member 53 is formed by filling the trench TR with a material that reflects or absorbs light. The light-shielding member 53 has a surface exposed to the main surface 41a at the opening of the trench TR. The surface of the light-shielding member 53 is covered with an insulating layer 55. The light-shielding member 53 is formed in the trench TR by, for example, low-pressure chemical vapor deposition (LP-CVD).
 トレンチTRの側面及び底面は、半導体領域47により構成されている。半導体領域47は、第一導電型である。半導体領域47は、エピタキシャル半導体領域42aよりも不純物濃度が高い。半導体領域47の不純物濃度は、たとえば、1×1017cm-3である。半導体領域47は、たとえば、トレンチTRに露出しているエピタキシャル半導体領域42aの表面から第一導電型の不純物を高濃度にイオン注入することにより、形成される。トレンチTRの深さは、エピタキシャル半導体領域42aの厚み以上であってもよい。 The side surface and the bottom surface of the trench TR are composed of the semiconductor region 47. The semiconductor region 47 is a first conductive type. The semiconductor region 47 has a higher impurity concentration than the epitaxial semiconductor region 42a. The impurity concentration of the semiconductor region 47 is, for example, 1 × 10 17 cm -3 . The semiconductor region 47 is formed, for example, by ion-implanting a first conductive type impurity at a high concentration from the surface of the epitaxial semiconductor region 42a exposed in the trench TR. The depth of the trench TR may be equal to or greater than the thickness of the epitaxial semiconductor region 42a.
 半導体基板41は、半導体領域49を有している。半導体領域49は、エピタキシャル半導体領域42aに形成されている。半導体領域49は、主面41aを含んでいる領域である。半導体領域49は、半導体基板41の縁に沿って、複数のセルUが位置している領域を囲むように配置されている。半導体領域49は、主面41aに直交する方向から見て、複数のセルUが位置している領域の全体を囲むように、連続的に形成されている。半導体領域49は、エピタキシャル半導体領域42aよりも不純物濃度が高い。半導体領域49の不純物濃度は、たとえば、1×1017cm-3である。 The semiconductor substrate 41 has a semiconductor region 49. The semiconductor region 49 is formed in the epitaxial semiconductor region 42a. The semiconductor region 49 is a region including the main surface 41a. The semiconductor region 49 is arranged along the edge of the semiconductor substrate 41 so as to surround a region in which a plurality of cells U are located. The semiconductor region 49 is continuously formed so as to surround the entire region in which the plurality of cells U are located when viewed from a direction orthogonal to the main surface 41a. The semiconductor region 49 has a higher impurity concentration than the epitaxial semiconductor region 42a. The impurity concentration of the semiconductor region 49 is, for example, 1 × 10 17 cm -3 .
 半導体領域43と半導体領域47とは、互いに離間している。主面41aに直交する方向から見て、半導体領域47は、半導体領域43を囲むように、半導体領域43の外側に位置している。半導体領域47は、半導体領域43の外側で、連続的に形成されている。半導体領域47は、半導体基板41の主面41a側の、半導体領域43が形成されていない領域に形成されている。 The semiconductor region 43 and the semiconductor region 47 are separated from each other. The semiconductor region 47 is located outside the semiconductor region 43 so as to surround the semiconductor region 43 when viewed from a direction orthogonal to the main surface 41a. The semiconductor region 47 is continuously formed outside the semiconductor region 43. The semiconductor region 47 is formed in a region on the main surface 41a side of the semiconductor substrate 41 where the semiconductor region 43 is not formed.
 半導体基板41は、半導体領域43,45が形成されている領域R1と、半導体領域47が形成されている領域R2と、を含んでいる。領域R1は、主面41aの一部を含んでいる。領域R2は、領域R1が含んでいる主面41aの一部とは異なる、主面41aの別の一部を含んでいる。エピタキシャル半導体領域42aは、領域R1と、領域R2とを含んでいる。たとえば、領域R1が第一領域を構成する場合、領域R2は第二領域を構成する。たとえば、半導体領域43が第一半導体領域を構成する場合、半導体領域47は第二半導体領域を構成し、半導体領域45は第三半導体領域を構成し、半導体領域42cは第四半導体領域を構成する。各セルUは、領域R1と領域R2とを含んでいる。 The semiconductor substrate 41 includes a region R1 in which the semiconductor regions 43 and 45 are formed and a region R2 in which the semiconductor region 47 is formed. Region R1 includes a part of the main surface 41a. The region R2 includes another part of the main surface 41a that is different from the part of the main surface 41a included in the region R1. The epitaxial semiconductor region 42a includes a region R1 and a region R2. For example, when the region R1 constitutes the first region, the region R2 constitutes the second region. For example, when the semiconductor region 43 constitutes the first semiconductor region, the semiconductor region 47 constitutes the second semiconductor region, the semiconductor region 45 constitutes the third semiconductor region, and the semiconductor region 42c constitutes the fourth semiconductor region. .. Each cell U includes a region R1 and a region R2.
 半導体光検出素子2は、配線層61を備えている。配線層61は、半導体基板41の主面41a上に配置されている。配線層61は、絶縁層63と、ポリシリコン層19と、複数の接続導線65と、複数のクエンチング抵抗67と、共通導線69と、を備えている。絶縁層63は、電気絶縁性を有していると共に、被検出光を透過する材料からなる。絶縁層63は、たとえば、酸化シリコン(SiO)からなる。 The semiconductor light detection element 2 includes a wiring layer 61. The wiring layer 61 is arranged on the main surface 41a of the semiconductor substrate 41. The wiring layer 61 includes an insulating layer 63, a polysilicon layer 19, a plurality of connecting conductors 65, a plurality of quenching resistors 67, and a common conductor 69. The insulating layer 63 is made of a material that has electrical insulation and transmits light to be detected. The insulating layer 63 is made of, for example, silicon oxide (SiO 2 ).
 各接続導線65は、絶縁層63内に配置されており、一端と他端とを有している。接続導線65の一端は、複数のセルUのうち対応するセルUに含まれている半導体領域43に接続されている。接続導線65の他端は、複数のクエンチング抵抗67のうち対応するクエンチング抵抗67に接続されている。各接続導線65は、互いに対応する半導体領域43とクエンチング抵抗67とを電気的に接続している。 Each connecting conductor 65 is arranged in the insulating layer 63 and has one end and the other end. One end of the connecting conductor 65 is connected to the semiconductor region 43 included in the corresponding cell U among the plurality of cells U. The other end of the connecting conductor 65 is connected to the corresponding quenching resistor 67 among the plurality of quenching resistors 67. Each connecting conductor 65 electrically connects the semiconductor region 43 and the quenching resistor 67 corresponding to each other.
 クエンチング抵抗67は、絶縁層63内に形成されている。クエンチング抵抗67は、主面41aに直交する方向から見て、半導体領域43の周縁に沿うように配置されている。各クエンチング抵抗67は、対応する接続導線65に接続される一端と、共通導線69に電気的に接続される他端とを有している。共通導線69は、複数のクエンチング抵抗67の各他端と電気的に接続されている。共通導線69は、絶縁層63から露出するように配置されている電極パッド71に電気的に接続されている。電極パッド71は、共通導線69、各クエンチング抵抗67、及び各接続導線65を通して、各セルUに含まれる半導体領域43と電気的に接続されている。複数のセルUは、共通導線69を通して、電気的に並列接続されている。電極パッド71には、たとえば、信号を取り出すように構成されたボンディングワイヤが接続される。半導体領域43は、アバランシェフォトダイオードAPDでのカソードを構成する。 The quenching resistor 67 is formed in the insulating layer 63. The quenching resistor 67 is arranged along the peripheral edge of the semiconductor region 43 when viewed from a direction orthogonal to the main surface 41a. Each quenching resistor 67 has one end connected to the corresponding connecting conductor 65 and the other end electrically connected to the common conductor 69. The common conductor 69 is electrically connected to each other end of the plurality of quenching resistors 67. The common conductor 69 is electrically connected to an electrode pad 71 arranged so as to be exposed from the insulating layer 63. The electrode pad 71 is electrically connected to the semiconductor region 43 included in each cell U through a common conductor 69, each quenching resistor 67, and each connection conductor 65. The plurality of cells U are electrically connected in parallel through the common conductor 69. A bonding wire configured to take out a signal is connected to the electrode pad 71, for example. The semiconductor region 43 constitutes a cathode in an avalanche photodiode APD.
 配線層61は、半導体領域49と電気的に接続されている導線73を備えている。導線73は、絶縁層63から露出するように配置されている電極パッド75に電気的に接続されている。導線73は、半導体領域49と電気的に接続される一端と、電極パッド75に電気的に接続される他端と、を有している。電極パッド75には、たとえば、バイアス電圧を印加するように構成されたボンディングワイヤが接続される。電極パッド75は、導線73及び半導体領域49を通して、エピタキシャル半導体領域42aと電気的に接続されている。半導体領域49は、アバランシェフォトダイオードAPDでのアノードを構成する。 The wiring layer 61 includes a conducting wire 73 that is electrically connected to the semiconductor region 49. The conductor 73 is electrically connected to an electrode pad 75 that is arranged so as to be exposed from the insulating layer 63. The conductor 73 has one end that is electrically connected to the semiconductor region 49 and the other end that is electrically connected to the electrode pad 75. A bonding wire configured to apply a bias voltage is connected to the electrode pad 75, for example. The electrode pad 75 is electrically connected to the epitaxial semiconductor region 42a through the conducting wire 73 and the semiconductor region 49. The semiconductor region 49 constitutes an anode in an avalanche photodiode APD.
 各導線65,69,73及び各電極パッド71,75は、たとえば、金属材料からなる。各導線65,69,73及び各電極パッド71,75は、たとえば、アルミニウム(Al)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、金(Au)、又は白金(Pt)からなる。クエンチング抵抗67は、各導線65,69,73及び各電極パッド71,75を構成する金属材料よりも電気抵抗が高い材料からなる。クエンチング抵抗67は、たとえば、シリコンクロム(SiCr)、ポリシリコン、ニッケルクロム(NiCr)、又はフェロクロム(FeCr)からなる。 Each of the conducting wires 65, 69, 73 and each of the electrode pads 71, 75 is made of, for example, a metal material. The conductors 65, 69, 73 and the electrode pads 71, 75 are made of, for example, aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), gold (Au), or platinum (Pt). .. The quenching resistor 67 is made of a material having a higher electrical resistance than the metal material constituting each of the conducting wires 65, 69, 73 and each of the electrode pads 71, 75. The quenching resistor 67 is made of, for example, silicon chromium (SiCr), polysilicon, nickel chromium (NiCr), or ferrochrome (FeCr).
 半導体光検出素子2では、ポリシリコン層19は、絶縁層63内に配置されている。ポリシリコン層19は、絶縁層63と接している。ポリシリコン層19は、主面19aが主面41aと対向するように、半導体基板41上に配置されている。ポリシリコン層19は、絶縁層63の一部が半導体基板41とポリシリコン層19との間に位置するように、半導体基板41上に間接的に配置されている。ポリシリコン層19と半導体基板41との間には、絶縁層63の上記一部が存在しており、ポリシリコン層19は、半導体基板41と接していない。ポリシリコン層19は、半導体基板41と接していてもよい。ポリシリコン層19は、領域R1が含んでいる主面41aの一部上に配置されている。ポリシリコン層19は、半導体領域43上に配置されている。 In the semiconductor photodetector 2, the polysilicon layer 19 is arranged in the insulating layer 63. The polysilicon layer 19 is in contact with the insulating layer 63. The polysilicon layer 19 is arranged on the semiconductor substrate 41 so that the main surface 19a faces the main surface 41a. The polysilicon layer 19 is indirectly arranged on the semiconductor substrate 41 so that a part of the insulating layer 63 is located between the semiconductor substrate 41 and the polysilicon layer 19. The above-mentioned part of the insulating layer 63 exists between the polysilicon layer 19 and the semiconductor substrate 41, and the polysilicon layer 19 is not in contact with the semiconductor substrate 41. The polysilicon layer 19 may be in contact with the semiconductor substrate 41. The polysilicon layer 19 is arranged on a part of the main surface 41a included in the region R1. The polysilicon layer 19 is arranged on the semiconductor region 43.
 図10に示されるように、ポリシリコン層19は、主面41aに直交する方向から見て、クエンチング抵抗67の内側に位置している。ポリシリコン層19は、クエンチング抵抗67から離れている。ポリシリコン層19は、領域R2が含んでいる主面41aの別の一部上には配置されていない。ポリシリコン層19は、トレンチTR上には位置していない。半導体領域43は、接続導線65が接続される領域を有している。ポリシリコン層19は、主面41aに直交する方向から見て、接続導線65が接続される領域を除いて、半導体領域43と重なるように位置している。ポリシリコン層19は、半導体領域43から離れている。半導体光検出素子2では、ポリシリコン層19は、半導体領域43及びポリシリコン層19と電気的に絶縁されている。 As shown in FIG. 10, the polysilicon layer 19 is located inside the quenching resistor 67 when viewed from the direction orthogonal to the main surface 41a. The polysilicon layer 19 is separated from the quenching resistor 67. The polysilicon layer 19 is not arranged on another part of the main surface 41a included in the region R2. The polysilicon layer 19 is not located on the trench TR. The semiconductor region 43 has a region to which the connecting conductor 65 is connected. The polysilicon layer 19 is located so as to overlap the semiconductor region 43 when viewed from the direction orthogonal to the main surface 41a, except for the region to which the connecting conductor 65 is connected. The polysilicon layer 19 is separated from the semiconductor region 43. In the semiconductor photodetector 2, the polysilicon layer 19 is electrically insulated from the semiconductor region 43 and the polysilicon layer 19.
 クエンチング抵抗67がポリシリコンからなる場合、クエンチング抵抗67の抵抗値を調整するために、クエンチング抵抗67を構成するポリシリコンには、不純物が添加されていてもよい。クエンチング抵抗67とポリシリコン層19とが同時に形成される場合には、ポリシリコン層19にも、クエンチング抵抗67に添加される不純物と同じ不純物が添加されていてもよい。ポリシリコン層19には、不純物が添加されていなくてもよい。不純物は、たとえば、リン(P)又はホウ素(B)である。クエンチング抵抗67とポリシリコン層19とは、個別に形成されていてもよい。 When the quenching resistor 67 is made of polysilicon, impurities may be added to the polysilicon constituting the quenching resistor 67 in order to adjust the resistance value of the quenching resistor 67. When the quenching resistor 67 and the polysilicon layer 19 are formed at the same time, the same impurities as those added to the polysilicon layer 19 may be added to the polysilicon layer 19. Impurities may not be added to the polysilicon layer 19. The impurities are, for example, phosphorus (P) or boron (B). The quenching resistor 67 and the polysilicon layer 19 may be formed individually.
 ポリシリコン層19は、半導体基板41(半導体領域43)と接するように形成されていてもよい。この場合、ポリシリコン層19には、不純物が添加されていなくてもよい。 The polysilicon layer 19 may be formed so as to be in contact with the semiconductor substrate 41 (semiconductor region 43). In this case, impurities may not be added to the polysilicon layer 19.
 ポリシリコン層19には、半導体光検出素子1が備える各ポリシリコン層19と同じく、複数の窪み21が形成されている。ポリシリコン層19と半導体基板41との間には、絶縁層63の上記一部が存在しているので、各窪み21は、ポリシリコン層19を貫通していてもよい。 A plurality of recesses 21 are formed in the polysilicon layer 19 as in each polysilicon layer 19 included in the semiconductor photodetector 1. Since the above-mentioned part of the insulating layer 63 exists between the polysilicon layer 19 and the semiconductor substrate 41, each recess 21 may penetrate the polysilicon layer 19.
 以上のように、第二実施形態では、ポリシリコン層19は、領域R1に含まれる主面41aの一部上に配置されている。ポリシリコン層19には、主面19bに開口する複数の窪み21が形成されている。
 光がポリシリコン層19の主面19bに入射する場合、光は、複数の窪み21が形成されているポリシリコン層19の主面19bにて散乱される。散乱された光は、ポリシリコン層19内を進み、主面41aから半導体基板41に入る。半導体基板41に入った光は、半導体基板41内を様々な方向に進む。したがって、半導体光検出素子2では、ポリシリコン層19が配置されていない構成に比して、半導体基板41内での光の走行距離が増加する。半導体基板41に入射した光は、半導体基板41内を長い距離進む。したがって、より多くの光が、電荷に変換される。この結果、半導体光検出素子2は、近赤外の波長帯域での分光感度特性を向上する。半導体光検出素子2は、可視光の波長帯域での分光感度特性も向上する。
As described above, in the second embodiment, the polysilicon layer 19 is arranged on a part of the main surface 41a included in the region R1. The polysilicon layer 19 is formed with a plurality of recesses 21 that open to the main surface 19b.
When the light is incident on the main surface 19b of the polysilicon layer 19, the light is scattered on the main surface 19b of the polysilicon layer 19 in which the plurality of recesses 21 are formed. The scattered light travels in the polysilicon layer 19 and enters the semiconductor substrate 41 from the main surface 41a. The light that has entered the semiconductor substrate 41 travels in the semiconductor substrate 41 in various directions. Therefore, in the semiconductor photodetector 2, the mileage of light in the semiconductor substrate 41 is increased as compared with the configuration in which the polysilicon layer 19 is not arranged. The light incident on the semiconductor substrate 41 travels a long distance in the semiconductor substrate 41. Therefore, more light is converted into electric charge. As a result, the semiconductor photodetector 2 improves the spectral sensitivity characteristics in the near-infrared wavelength band. The semiconductor photodetector 2 also improves the spectral sensitivity characteristic in the wavelength band of visible light.
 半導体光検出素子2でも、半導体光検出素子1と同じく、複数の窪み21がポリシリコン層19に形成されている。したがって、上述したように、半導体光検出素子2は、暗電流の発生を抑制すると共に、耐圧特性の劣化を抑制する。本実施形態でも、半導体基板41には窪みが形成されていないので、半導体基板41の結晶性がより一層劣化しがたい。 In the semiconductor light detection element 2, as in the semiconductor light detection element 1, a plurality of recesses 21 are formed in the polysilicon layer 19. Therefore, as described above, the semiconductor photodetector 2 suppresses the generation of dark current and suppresses the deterioration of withstand voltage characteristics. Even in this embodiment, since the semiconductor substrate 41 does not have a recess, the crystallinity of the semiconductor substrate 41 is less likely to deteriorate.
 複数の窪み21が、規則的に配置されるようにポリシリコン層19に形成されている場合、上述したように、半導体光検出素子2は、分光感度特性のばらつきを生じさせがたい。半導体光検出素子2も、各窪み21の形状を制御することにより、特定の波長に対する光学特性を簡易に制御することが可能である。 When a plurality of recesses 21 are formed in the polysilicon layer 19 so as to be regularly arranged, as described above, the semiconductor photodetector 2 is unlikely to cause variations in spectral sensitivity characteristics. The semiconductor photodetector 2 can also easily control the optical characteristics for a specific wavelength by controlling the shape of each recess 21.
 半導体基板41の主面41bに複数の窪みが形成されている構成では、半導体基板41内を進む光が、複数の窪みが形成されている領域に達すると、光は、複数の窪みが形成されている領域にて乱反射される。この場合、乱反射された光は、トレンチTRで遮られることなく、隣接するセルUに入射し、光学的なクロストークが隣接するセルU間で生じるおそれがある。
 半導体光検出素子2では、複数の窪み21が形成されているポリシリコン層19が主面41a上に配置されており、ポリシリコン層19は、pn接合と比較的近い。したがって、光がポリシリコン層19で散乱される場合でも、光の拡がりは比較的小さい。この結果、半導体光検出素子2は、上述したような光学的なクロストークを生じさせがたい。半導体光検出素子2では、トレンチTRが主面41aから半導体基板41に形成されている。したがって、半導体光検出素子2は、主面41a側での光学的なクロストークをより一層生じさせがたい。
In the configuration in which a plurality of depressions are formed on the main surface 41b of the semiconductor substrate 41, when the light traveling in the semiconductor substrate 41 reaches the region where the plurality of depressions are formed, the light is formed with the plurality of depressions. It is diffusely reflected in the area where it is. In this case, the diffusely reflected light may enter the adjacent cells U without being blocked by the trench TR, and optical crosstalk may occur between the adjacent cells U.
In the semiconductor photodetector 2, the polysilicon layer 19 in which a plurality of recesses 21 are formed is arranged on the main surface 41a, and the polysilicon layer 19 is relatively close to the pn junction. Therefore, even when the light is scattered by the polysilicon layer 19, the spread of the light is relatively small. As a result, the semiconductor photodetector 2 is unlikely to cause the above-mentioned optical crosstalk. In the semiconductor photodetector 2, the trench TR is formed on the semiconductor substrate 41 from the main surface 41a. Therefore, the semiconductor photodetector 2 is less likely to cause optical crosstalk on the main surface 41a side.
 本明細書では、ある要素が他の要素上に配置されていると記述されている場合、ある要素は、他の要素上に直接配置されていてもよく、他の要素上に間接的に配置されていてもよい。ある要素が他の要素上に間接的に配置されている場合、介在要素が、ある要素と他の要素との間に存在している。ある要素が他の要素上に直接配置されている場合、介在要素は、ある要素と他の要素との間に存在しない。
 本明細書では、ある要素が他の要素上に位置していると記述されている場合、ある要素は、他の要素上に直接位置していてもよく、他の要素上に間接的に位置していてもよい。ある要素が他の要素上に間接的に位置している場合、介在要素が、ある要素と他の要素との間に存在している。ある要素が他の要素上に直接位置している場合、介在要素は、ある要素と他の要素との間に存在しない。
When it is stated in the specification that an element is placed on another element, the element may be placed directly on the other element or indirectly placed on the other element. It may have been done. When an element is indirectly placed on another element, an intervening element exists between one element and another. If one element is placed directly on top of another, the intervening element does not exist between one element and another.
When it is described herein that an element is located on another element, the element may be located directly on the other element or indirectly on the other element. You may be doing it. When an element is indirectly located on another element, an intervening element exists between one element and another. If one element is located directly on another, the intervening element does not exist between one element and another.
 以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the gist thereof.
 複数の窪み21は、ポリシリコン層19に、不規則に配置されるように形成されていてもよい。複数の窪み21が不規則に配置されるように形成されるとは、互いに隣り合う窪み21の最深位置の間隔が不規則に変化していること、及び、窪み21深さが不規則に変化していることの少なくとも一方を含む。複数の窪み21は、不規則に配置されるように形成されている構成は、たとえば、窪み21が、以下のように形成されることにより、実現され得る。ポリシリコン層19が、開口の位置及び大きさが不規則に異なるマスクを用いてエッチングされる。 The plurality of recesses 21 may be formed so as to be irregularly arranged in the polysilicon layer 19. The fact that a plurality of dents 21 are formed so as to be irregularly means that the distance between the deepest positions of the dents 21 adjacent to each other is irregularly changed, and that the depth of the dents 21 is irregularly changed. Includes at least one of what you are doing. A configuration in which the plurality of recesses 21 are formed so as to be irregularly arranged can be realized, for example, by forming the recesses 21 as follows. The polysilicon layer 19 is etched using masks in which the positions and sizes of the openings are irregularly different.
 複数の窪み21は、深さが異なる窪みを含んでいてもよい。
 たとえば、複数の窪み21は、第一深さを有する複数の第一窪みと、第一深さより大きい第二深さを有する複数の第二窪みと、を含んでいてもよい。この場合、第一窪みの幅と、第二窪みの幅とは、異なっていてもよい。複数の窪み21は、複数の第一窪み及び複数の第二窪みを含んでいる場合、複数の第一窪みと、複数の第二窪みとは、規則的に配置されるように形成される。たとえば、複数の第一窪みと、複数の第二窪みとは、交互に位置していてもよい。たとえば、第一の数の第一窪みが連続的に位置している領域と、第二の数の第二窪みが連続的に位置している領域と、が交互に位置していてもよい。第一の数は、「2」以上の値であり、第二の数は、第一の数より大きい値である。
 たとえば、複数の窪み21は、それぞれ深さが異なる三つ以上の窪みを複数ずつ含んでいてもよい。
The plurality of recesses 21 may include recesses having different depths.
For example, the plurality of depressions 21 may include a plurality of first depressions having a first depth and a plurality of second depressions having a second depth larger than the first depth. In this case, the width of the first recess and the width of the second recess may be different. When the plurality of recesses 21 include the plurality of first recesses and the plurality of second recesses, the plurality of first recesses and the plurality of second recesses are formed so as to be regularly arranged. For example, the plurality of first depressions and the plurality of second depressions may be alternately located. For example, the region where the first depression of the first number is continuously located and the region where the second depression of the second number is continuously located may be alternately located. The first number is a value greater than or equal to "2", and the second number is greater than the first number.
For example, the plurality of depressions 21 may include a plurality of depressions having different depths.
 半導体光検出素子1及び2では、p型及びn型の各導電型が、上述した導電型とは逆になるように入れ替わっていてもよい。 In the semiconductor photodetector elements 1 and 2, the p-type and n-type conductive types may be interchanged so as to be opposite to the above-mentioned conductive type.
 本明細書は、以下の付記を開示する。
(付記1)
 第一導電型の半導体領域と第二導電型の半導体領域とで構成されたpn接合を有するシリコン基板と、
 前記シリコン基板に対向するように配置されている支持基板と、を備え、
 前記支持基板における、前記シリコン基板に対向している面には、複数の窪みが規則的に配置されるように形成されていることを特徴とする半導体光検出素子。
The present specification discloses the following additional notes.
(Appendix 1)
A silicon substrate having a pn junction composed of a first conductive type semiconductor region and a second conductive type semiconductor region,
A support substrate arranged so as to face the silicon substrate is provided.
A semiconductor photodetector element characterized in that a plurality of recesses are regularly arranged on a surface of the support substrate facing the silicon substrate.
 上記付記1は、以下の複数の態様を含んでいる。以下の各態様において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。各態様は、概ね、特許文献1に記載されている半導体光検出素子と類似又は同じである。 Appendix 1 above includes the following plurality of aspects. In each of the following embodiments, the same reference numerals are used for the same elements or elements having the same function, and duplicate description will be omitted. Each aspect is generally similar to or the same as the semiconductor photodetector described in Patent Document 1.
 図11に示されている半導体光検出素子は、シリコン基板101と、支持基板111とを備えている。この半導体光検出素子は、たとえば、表面入射型又は裏面入射型のフォトダイオードである。 The semiconductor photodetector shown in FIG. 11 includes a silicon substrate 101 and a support substrate 111. This semiconductor photodetector is, for example, a front-mounted or back-mounted photodiode.
 シリコン基板101は、互いに対向している主面101a及び主面101bを有している。主面101aと主面101bとは、平坦面である。シリコン基板101は、第一導電型の半導体領域103と第二導電型の半導体領域105とを有している。半導体領域103と半導体領域105とは、pn接合を構成している。したがって、シリコン基板101は、pn接合を有している。シリコン基板101は、第一導電型の半導体領域107を有している。主面101aに直交する方向から見て、半導体領域107は、半導体領域105を囲むように、半導体領域105の外側に位置している。半導体光検出素子は、シリコン基板101の主面101aに配置されている絶縁膜109を備えている。半導体光検出素子は、半導体領域105に電気的に接続されている電極E1と、半導体領域107と電気的に接続されている電極E2と、を備えている。 The silicon substrate 101 has a main surface 101a and a main surface 101b that face each other. The main surface 101a and the main surface 101b are flat surfaces. The silicon substrate 101 has a first conductive type semiconductor region 103 and a second conductive type semiconductor region 105. The semiconductor region 103 and the semiconductor region 105 form a pn junction. Therefore, the silicon substrate 101 has a pn junction. The silicon substrate 101 has a first conductive type semiconductor region 107. The semiconductor region 107 is located outside the semiconductor region 105 so as to surround the semiconductor region 105 when viewed from a direction orthogonal to the main surface 101a. The semiconductor photodetector includes an insulating film 109 arranged on the main surface 101a of the silicon substrate 101. The semiconductor photodetector includes an electrode E1 that is electrically connected to the semiconductor region 105 and an electrode E2 that is electrically connected to the semiconductor region 107.
 シリコン基板101は、アキュムレーション層108を有している。アキュムレーション層108は、シリコン基板101の主面101b側に配置されている。アキュムレーション層108の表面は、主面101bを構成している。アキュムレーション層108は、半導体領域103と同じ導電型である。アキュムレーション層108の不純物濃度は、半導体領域103の不純物濃度よりも大きい。 The silicon substrate 101 has an accumulation layer 108. The accumulation layer 108 is arranged on the main surface 101b side of the silicon substrate 101. The surface of the accumulation layer 108 constitutes the main surface 101b. The accumulation layer 108 is the same conductive type as the semiconductor region 103. The impurity concentration of the accumulation layer 108 is higher than the impurity concentration of the semiconductor region 103.
 支持基板111は、互いに対向している主面111a及び主面111bを有している。支持基板111は、主面101bと対向するように、シリコン基板101に配置されている。主面111aは、シリコン基板101(主面101b)と対向している。シリコン基板101と支持基板111との間には、樹脂層113が配置されている。支持基板111は、樹脂層113により、シリコン基板101に接着されている。樹脂層113は、光学的に透明である。 The support substrate 111 has a main surface 111a and a main surface 111b facing each other. The support substrate 111 is arranged on the silicon substrate 101 so as to face the main surface 101b. The main surface 111a faces the silicon substrate 101 (main surface 101b). A resin layer 113 is arranged between the silicon substrate 101 and the support substrate 111. The support substrate 111 is adhered to the silicon substrate 101 by the resin layer 113. The resin layer 113 is optically transparent.
 主面111aには、複数の窪み121が形成されている。複数の窪み121は、規則的に配置されるように、111aに形成されている。各窪み121の表面は、たとえば、複数の傾斜面を含んでいてもよい。各窪み121の表面は、たとえば、湾曲していてもよい。複数の窪み121は、たとえば、エッチンクで形成されていてもよい。複数の窪み121は、たとえば、等方性エッチンクで形成されていてもよい。複数の窪み121は、たとえば、異方性エッチンクで形成されていてもよい。複数の窪み121が形成されている領域に入射する光は、当該領域で乱反射又は散乱する。したがって、シリコン基板101内での光の走行距離が増加する。図11に示されている半導体光検出素子は、近赤外の波長帯域での分光感度特性を向上する。複数の窪み121は、不規則に配置されるように形成されていてもよい。 A plurality of recesses 121 are formed on the main surface 111a. The plurality of recesses 121 are formed in 111a so as to be regularly arranged. The surface of each recess 121 may include, for example, a plurality of inclined surfaces. The surface of each recess 121 may be curved, for example. The plurality of recesses 121 may be formed by, for example, an etch. The plurality of recesses 121 may be formed, for example, by an isotropic etch. The plurality of recesses 121 may be formed, for example, by anisotropic etching. Light incident on a region where a plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 101 increases. The semiconductor photodetector shown in FIG. 11 improves the spectral sensitivity characteristics in the near infrared wavelength band. The plurality of recesses 121 may be formed so as to be arranged irregularly.
 図12に示されている半導体光検出素子は、シリコン基板131と、支持基板111とを備えている。この半導体光検出素子は、たとえば、表面入射型又は裏面入射型のアバランシェフォトダイオードである。 The semiconductor photodetector shown in FIG. 12 includes a silicon substrate 131 and a support substrate 111. This semiconductor photodetector is, for example, a front-mounted or back-mounted avalanche photodiode.
 シリコン基板131は、互いに対向している主面131a及び主面131bを有している。主面131aと主面131bとは、平坦面である。シリコン基板131は、第一導電型の半導体領域133と、第二導電型の半導体領域135と、第一導電型の半導体領域137と、第一導電型の半導体領域139と、を有している。半導体領域135と半導体領域137とは、pn接合を構成している。したがって、シリコン基板131は、pn接合を有している。主面101aに直交する方向から見て、半導体領域139は、半導体領域135を囲むように、半導体領域135の外側に位置している。半導体光検出素子は、シリコン基板131の主面131aに配置されている絶縁膜140を備えている。半導体光検出素子は、半導体領域135に電気的に接続されている電極E11と、半導体領域139と電気的に接続されている電極E21と、を備えている。 The silicon substrate 131 has a main surface 131a and a main surface 131b facing each other. The main surface 131a and the main surface 131b are flat surfaces. The silicon substrate 131 has a first conductive type semiconductor region 133, a second conductive type semiconductor region 135, a first conductive type semiconductor region 137, and a first conductive type semiconductor region 139. .. The semiconductor region 135 and the semiconductor region 137 form a pn junction. Therefore, the silicon substrate 131 has a pn junction. When viewed from the direction orthogonal to the main surface 101a, the semiconductor region 139 is located outside the semiconductor region 135 so as to surround the semiconductor region 135. The semiconductor photodetector includes an insulating film 140 arranged on the main surface 131a of the silicon substrate 131. The semiconductor photodetector includes an electrode E11 electrically connected to the semiconductor region 135 and an electrode E21 electrically connected to the semiconductor region 139.
 シリコン基板131は、アキュムレーション層138を有している。アキュムレーション層138は、シリコン基板131の主面131b側に配置されている。アキュムレーション層138の表面は、主面131bを構成している。アキュムレーション層138は、半導体領域133と同じ導電型である。アキュムレーション層138の不純物濃度は、半導体領域133の不純物濃度よりも大きい。 The silicon substrate 131 has an accumulation layer 138. The accumulation layer 138 is arranged on the main surface 131b side of the silicon substrate 131. The surface of the accumulation layer 138 constitutes the main surface 131b. The accumulation layer 138 is the same conductive type as the semiconductor region 133. The impurity concentration of the accumulation layer 138 is higher than the impurity concentration of the semiconductor region 133.
 支持基板111は、主面131bと対向するように、シリコン基板131に配置されている。主面111aは、シリコン基板131(主面131b)と対向している。シリコン基板131と支持基板111との間には、樹脂層113が配置されている。支持基板111は、樹脂層113により、シリコン基板131に接着されている。
 支持基板111の主面111aには、複数の窪み121が形成されている。上述したように、複数の窪み121が形成されている領域に入射する光は、当該領域で乱反射又は散乱する。したがって、シリコン基板131内での光の走行距離が増加する。図12に示されている半導体光検出素子は、近赤外の波長帯域での分光感度特性を向上する。
The support substrate 111 is arranged on the silicon substrate 131 so as to face the main surface 131b. The main surface 111a faces the silicon substrate 131 (main surface 131b). A resin layer 113 is arranged between the silicon substrate 131 and the support substrate 111. The support substrate 111 is adhered to the silicon substrate 131 by the resin layer 113.
A plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 131 increases. The semiconductor photodetector shown in FIG. 12 improves the spectral sensitivity characteristics in the near infrared wavelength band.
 図13に示されている半導体光検出素子は、シリコン基板141と、支持基板111とを備えている。この半導体光検出素子は、たとえば、表面入射型又は裏面入射型のアバランシェフォトダイオードアレイである。 The semiconductor photodetector shown in FIG. 13 includes a silicon substrate 141 and a support substrate 111. This semiconductor photodetector is, for example, a front-mounted or back-mounted avalanche photodiode array.
 シリコン基板141は、互いに対向している主面141a及び主面141bを有している。シリコン基板141は、第一導電型の半導体層143と、第二導電型の複数の半導体層145と、第二導電型の複数の半導体領域147と、を有している。半導体層143と半導体層145とは、pn接合を構成している。したがって、シリコン基板141は、pn接合を有している。シリコン基板141は、半導体層145を分離する第一導電型の分離部149を有している。半導体光検出素子は、シリコン基板141の主面141aに配置されている絶縁膜151を備えている。半導体光検出素子は、絶縁膜151上に配置されている複数の接続導線153及び複数の抵抗155を備えている。互いに対応する半導体層145と抵抗155とは、接続導線153を介して接続されている。各抵抗155は、共通導線(不図示)に接続されている。各半導体層145は、対応する接続導線153、対応する抵抗155、及び共通導線を通して、電気的に並列接続されている。 The silicon substrate 141 has a main surface 141a and a main surface 141b facing each other. The silicon substrate 141 has a first conductive type semiconductor layer 143, a second conductive type semiconductor layer 145, and a second conductive type plurality of semiconductor regions 147. The semiconductor layer 143 and the semiconductor layer 145 form a pn junction. Therefore, the silicon substrate 141 has a pn junction. The silicon substrate 141 has a first conductive type separating portion 149 that separates the semiconductor layer 145. The semiconductor photodetector includes an insulating film 151 arranged on the main surface 141a of the silicon substrate 141. The semiconductor photodetector includes a plurality of connecting conductors 153 and a plurality of resistors 155 arranged on the insulating film 151. The semiconductor layer 145 and the resistor 155 corresponding to each other are connected to each other via the connecting conductor 153. Each resistor 155 is connected to a common conductor (not shown). Each semiconductor layer 145 is electrically connected in parallel through a corresponding connecting wire 153, a corresponding resistor 155, and a common wire.
 支持基板111は、主面141bと対向するように、シリコン基板141に配置されている。主面111aは、シリコン基板141(主面141b)と対向している。シリコン基板141と支持基板111との間には、樹脂層113が配置されている。支持基板111は、樹脂層113により、シリコン基板131に接着されている。
 支持基板111の主面111aには、複数の窪み121が形成されている。上述したように、複数の窪み121が形成されている領域に入射する光は、当該領域で乱反射又は散乱する。したがって、シリコン基板141内での光の走行距離が増加する。図13に示されている半導体光検出素子は、近赤外の波長帯域での分光感度特性を向上する。
The support substrate 111 is arranged on the silicon substrate 141 so as to face the main surface 141b. The main surface 111a faces the silicon substrate 141 (main surface 141b). A resin layer 113 is arranged between the silicon substrate 141 and the support substrate 111. The support substrate 111 is adhered to the silicon substrate 131 by the resin layer 113.
A plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 141 increases. The semiconductor photodetector shown in FIG. 13 improves the spectral sensitivity characteristics in the near infrared wavelength band.
 図14に示されている半導体光検出素子は、シリコン基板161と、支持基板111とを備えている。この半導体光検出素子は、たとえば、表面入射型又は裏面入射型の固体撮像素子である。 The semiconductor photodetector shown in FIG. 14 includes a silicon substrate 161 and a support substrate 111. This semiconductor photodetector is, for example, a front-side incident type or back-side incident type solid-state image sensor.
 シリコン基板161は、互いに対向している主面161a及び主面161bを有している。シリコン基板161は、第一導電型の半導体領域163と第二導電型の半導体領域165とを有している。半導体領域163と半導体領域165とは、pn接合を構成している。したがって、シリコン基板161は、pn接合を有している。半導体光検出素子は、シリコン基板161の主面161aに配置されている絶縁膜167と、絶縁膜167上に配置されている複数の電荷転送電極169と、を備えている。 The silicon substrate 161 has a main surface 161a and a main surface 161b that face each other. The silicon substrate 161 has a first conductive type semiconductor region 163 and a second conductive type semiconductor region 165. The semiconductor region 163 and the semiconductor region 165 form a pn junction. Therefore, the silicon substrate 161 has a pn junction. The semiconductor photodetector includes an insulating film 167 arranged on the main surface 161a of the silicon substrate 161 and a plurality of charge transfer electrodes 169 arranged on the insulating film 167.
 シリコン基板161は、アキュムレーション層168を有している。アキュムレーション層168は、シリコン基板161の主面161b側に配置されている。アキュムレーション層168の表面は、主面161bを構成している。アキュムレーション層168は、半導体領域163と同じ導電型である。アキュムレーション層168の不純物濃度は、半導体領域163の不純物濃度よりも大きい。 The silicon substrate 161 has an accumulation layer 168. The accumulation layer 168 is arranged on the main surface 161b side of the silicon substrate 161. The surface of the accumulation layer 168 constitutes the main surface 161b. The accumulation layer 168 is the same conductive type as the semiconductor region 163. The impurity concentration of the accumulation layer 168 is higher than the impurity concentration of the semiconductor region 163.
 支持基板111は、主面161bと対向するように、シリコン基板161に配置されている。主面111aは、シリコン基板161(主面161b)と対向している。シリコン基板161と支持基板111との間には、樹脂層113が配置されている。支持基板111は、樹脂層113により、シリコン基板161に接着されている。
 支持基板111の主面111aには、複数の窪み121が形成されている。上述したように、複数の窪み121が形成されている領域に入射する光は、当該領域で乱反射又は散乱する。したがって、シリコン基板161内での光の走行距離が増加する。図14に示されている半導体光検出素子は、近赤外の波長帯域での分光感度特性を向上する。
The support substrate 111 is arranged on the silicon substrate 161 so as to face the main surface 161b. The main surface 111a faces the silicon substrate 161 (main surface 161b). A resin layer 113 is arranged between the silicon substrate 161 and the support substrate 111. The support substrate 111 is adhered to the silicon substrate 161 by the resin layer 113.
A plurality of recesses 121 are formed on the main surface 111a of the support substrate 111. As described above, the light incident on the region where the plurality of depressions 121 are formed is diffusely reflected or scattered in the region. Therefore, the mileage of light in the silicon substrate 161 increases. The semiconductor photodetector shown in FIG. 14 improves the spectral sensitivity characteristics in the near infrared wavelength band.
 本発明は、シリコン基板を備える半導体光検出素子に利用することができる。 The present invention can be used for a semiconductor photodetector element provided with a silicon substrate.
 1,2…半導体光検出素子、11,41…半導体基板、11a,11b,41a,41b…主面、12a,42a…エピタキシャル半導体領域、12b,13,15,17,42c,43,45,47…半導体領域、19…ポリシリコン層、19a,19b…主面、21…窪み、23…絶縁層、31…支持基板、R1,R2…半導体基板に含まれる領域、RF…反射膜、TR…トレンチ、U…セル。 1,2 ... Semiconductor photodetector, 11,41 ... Semiconductor substrate, 11a, 11b, 41a, 41b ... Main surface, 12a, 42a ... Epitaxial semiconductor region, 12b, 13, 15, 17, 42c, 43, 45, 47 ... Semiconductor region, 19 ... Polysilicon layer, 19a, 19b ... Main surface, 21 ... Depression, 23 ... Insulation layer, 31 ... Support substrate, R1, R2 ... Region included in semiconductor substrate, RF ... Reflective film, TR ... Trench , U ... cell.

Claims (13)

  1.  半導体光検出素子であって、
     互いに対向している第一主面と第二主面とを有している第一導電型のシリコン基板と、
     互いに対向している第三主面と第四主面とを有していると共に、前記第三主面が前記第一主面と対向するように前記シリコン基板上に配置されているポリシリコン層と、を備え、
     前記シリコン基板は、
      前記第一主面の一部を含むと共に、第二導電型の第一半導体領域が形成されている第一領域と、
      前記第一主面の別の一部を含むと共に、第一導電型の第二半導体領域が形成されている第二領域と、を含み、
     前記ポリシリコン層は、前記第一領域に含まれる前記第一主面の前記一部上に配置されており、
     前記ポリシリコン層には、前記第四主面に開口する複数の窪みが形成されている。
    It is a semiconductor photodetector
    A first conductive silicon substrate having a first main surface and a second main surface facing each other,
    A polysilicon layer having a third main surface and a fourth main surface facing each other and arranged on the silicon substrate so that the third main surface faces the first main surface. And with
    The silicon substrate is
    A first region including a part of the first main surface and forming a second conductive type first semiconductor region,
    Including another part of the first main surface and a second region in which a first conductive type second semiconductor region is formed.
    The polysilicon layer is arranged on the part of the first main surface included in the first region.
    The polysilicon layer is formed with a plurality of recesses that open to the fourth main surface.
  2.  請求項1に記載の半導体光検出素子であって、
     前記第一領域には、前記第一領域に含まれている前記シリコン基板より不純物濃度が高い第一導電型の第三半導体領域が、前記第一半導体領域よりも前記第二主面寄りに形成されている。
    The semiconductor photodetector according to claim 1.
    In the first region, a first conductive type third semiconductor region having a higher impurity concentration than the silicon substrate contained in the first region is formed closer to the second main surface than the first semiconductor region. Has been done.
  3.  請求項2に記載の半導体光検出素子であって、
     前記シリコン基板は、
      前記第一領域と前記第二領域とを含んでいる第一導電型のエピタキシャル半導体領域と、
      前記第二主面と前記エピタキシャル半導体領域との間に位置していると共に、前記エピタキシャル半導体領域より不純物濃度が高い第一導電型の第四半導体領域と、を有している。
    The semiconductor photodetector according to claim 2.
    The silicon substrate is
    A first conductive type epitaxial semiconductor region including the first region and the second region,
    It is located between the second main surface and the epitaxial semiconductor region, and has a first conductive type fourth semiconductor region having a higher impurity concentration than the epitaxial semiconductor region.
  4.  請求項1~3のいずれか一項に記載の半導体光検出素子であって、
     前記複数の窪みは、規則的に配置されるように前記ポリシリコン層に形成されている。
    The semiconductor photodetector according to any one of claims 1 to 3.
    The plurality of recesses are formed in the polysilicon layer so as to be regularly arranged.
  5.  請求項1~4のいずれか一項に記載の半導体光検出素子であって、
     前記ポリシリコン層は、第二導電型であり、
     前記第一半導体領域と前記ポリシリコン層とは、互いに接している。
    The semiconductor photodetector according to any one of claims 1 to 4.
    The polysilicon layer is a second conductive type and has a second conductive type.
    The first semiconductor region and the polysilicon layer are in contact with each other.
  6.  請求項1~5のいずれか一項に記載の半導体光検出素子であって、
     前記シリコン基板と前記ポリシリコン層との間に配置されている絶縁層を更に備えている。
    The semiconductor photodetector according to any one of claims 1 to 5.
    An insulating layer arranged between the silicon substrate and the polysilicon layer is further provided.
  7.  請求項6に記載の半導体光検出素子であって、
     前記複数の窪みは、前記第三主面にも開口しており、
     前記絶縁層の一部は、前記複数の窪みにおいて露出される。
    The semiconductor photodetector according to claim 6.
    The plurality of depressions are also open to the third main surface.
    A part of the insulating layer is exposed in the plurality of recesses.
  8.  請求項1~7のいずれか一項に記載の半導体光検出素子であって、
     前記複数の窪みの各表面は、湾曲している。
    The semiconductor photodetector according to any one of claims 1 to 7.
    Each surface of the plurality of depressions is curved.
  9.  請求項1~8のいずれか一項に記載の半導体光検出素子であって、
     前記複数の窪みは、等方性エッチングにより形成されている。
    The semiconductor photodetector according to any one of claims 1 to 8.
    The plurality of recesses are formed by isotropic etching.
  10.  請求項1~9のいずれか一項に記載の半導体光検出素子であって、
     前記第二主面上に配置されている反射膜を更に備えている。
    The semiconductor photodetector according to any one of claims 1 to 9.
    It further includes a reflective film arranged on the second main surface.
  11.  請求項1~10のいずれか一項に記載の半導体光検出素子であって、
     前記第二主面と対向するように配置されている支持基板を更に備えている。
    The semiconductor photodetector according to any one of claims 1 to 10.
    Further, a support substrate arranged so as to face the second main surface is provided.
  12.  請求項1~11のいずれか一項に記載の半導体光検出素子であって、
     前記シリコン基板は、前記第一領域と前記第二領域とをそれぞれ含む複数のセルを有しており、
     前記複数のセルは、電気的に並列接続されている。
    The semiconductor photodetector according to any one of claims 1 to 11.
    The silicon substrate has a plurality of cells including the first region and the second region, respectively.
    The plurality of cells are electrically connected in parallel.
  13.  請求項12に記載の半導体光検出素子であって、
     前記シリコン基板には、前記複数のセルのうち互いに隣り合うセル同士を物理的に分離するトレンチが、前記第一主面に直交する方向から見て格子状に形成されており、
     前記ポリシリコン層は、前記トレンチ上には位置していない。
    The semiconductor photodetector according to claim 12.
    On the silicon substrate, trenches for physically separating cells adjacent to each other among the plurality of cells are formed in a grid pattern when viewed from a direction orthogonal to the first main surface.
    The polysilicon layer is not located on the trench.
PCT/JP2020/046133 2019-12-26 2020-12-10 Semiconductor photodetection element WO2021131760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236233A JP2021106196A (en) 2019-12-26 2019-12-26 Semiconductor photo detector
JP2019-236233 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021131760A1 true WO2021131760A1 (en) 2021-07-01

Family

ID=76575530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046133 WO2021131760A1 (en) 2019-12-26 2020-12-10 Semiconductor photodetection element

Country Status (2)

Country Link
JP (1) JP2021106196A (en)
WO (1) WO2021131760A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167725A (en) * 1994-12-13 1996-06-25 Casio Comput Co Ltd Micromirror array, manufacture thereof and photoelectric converter
JP2004247686A (en) * 2003-02-17 2004-09-02 Toshiba Matsushita Display Technology Co Ltd Optical sensor
JP2005129833A (en) * 2003-10-27 2005-05-19 Nec Kansai Ltd Method of manufacturing semiconductor laser
JP2010226071A (en) * 2009-02-24 2010-10-07 Hamamatsu Photonics Kk Semiconductor light-detecting element
JP2010283223A (en) * 2009-06-05 2010-12-16 Hamamatsu Photonics Kk Semiconductor optical detecting element and method of manufacturing semiconductor optical detecting element
WO2013145271A1 (en) * 2012-03-30 2013-10-03 富士通株式会社 Optical element, light transmitting element, light receiving element, hybrid laser, and light transmitting apparatus
JP2017224755A (en) * 2016-06-16 2017-12-21 株式会社東芝 Photo detector, photo detection device and rider device
US20190371835A1 (en) * 2017-05-31 2019-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with a high absorption layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780206B2 (en) * 2016-04-28 2020-11-04 国立大学法人静岡大学 Insulated gate type semiconductor element and solid-state image sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167725A (en) * 1994-12-13 1996-06-25 Casio Comput Co Ltd Micromirror array, manufacture thereof and photoelectric converter
JP2004247686A (en) * 2003-02-17 2004-09-02 Toshiba Matsushita Display Technology Co Ltd Optical sensor
JP2005129833A (en) * 2003-10-27 2005-05-19 Nec Kansai Ltd Method of manufacturing semiconductor laser
JP2010226071A (en) * 2009-02-24 2010-10-07 Hamamatsu Photonics Kk Semiconductor light-detecting element
JP2010283223A (en) * 2009-06-05 2010-12-16 Hamamatsu Photonics Kk Semiconductor optical detecting element and method of manufacturing semiconductor optical detecting element
WO2013145271A1 (en) * 2012-03-30 2013-10-03 富士通株式会社 Optical element, light transmitting element, light receiving element, hybrid laser, and light transmitting apparatus
JP2017224755A (en) * 2016-06-16 2017-12-21 株式会社東芝 Photo detector, photo detection device and rider device
US20190371835A1 (en) * 2017-05-31 2019-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with a high absorption layer

Also Published As

Publication number Publication date
JP2021106196A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US10192923B2 (en) Photodiode array
JP5185205B2 (en) Semiconductor photo detector
KR101708069B1 (en) Photodiode and photodiode array
EP3518292B1 (en) Method for manufacturing a photodiode detector
JP5829224B2 (en) MOS image sensor
US9978802B2 (en) Multiband optoelectronic device for colorimetric applications and related manufacturing process
EP3540788B1 (en) Light receiving device and method of manufacturing light receiving device
TW200822354A (en) Photodiode array
WO2021131758A1 (en) Semiconductor photodetector
JP6975110B2 (en) Photodetectors, photodetection systems, rider devices and cars
WO2021131760A1 (en) Semiconductor photodetection element
WO2021131759A1 (en) Semiconductor light detection element
KR102640615B1 (en) The Photodiode And The Fabrication Method Of The Same
US11233163B2 (en) Photo detection element, photo detector, photo detection system, lidar device and vehicle comprising a plurality of structure bodies separately provided between first and second regions
US11398572B2 (en) Semiconductor wafer manufacturing method, method of manufacturing semiconductor energy beam detecting element, and semiconductor wafer
EP2347444B1 (en) Wavelength selective electromagnetic radiation detector using pores as photonic crystal
CN117936596A (en) Active pixel sensor and method for manufacturing an active pixel sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908412

Country of ref document: EP

Kind code of ref document: A1