JP2005129557A - 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法 - Google Patents

収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2005129557A
JP2005129557A JP2003360407A JP2003360407A JP2005129557A JP 2005129557 A JP2005129557 A JP 2005129557A JP 2003360407 A JP2003360407 A JP 2003360407A JP 2003360407 A JP2003360407 A JP 2003360407A JP 2005129557 A JP2005129557 A JP 2005129557A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
aberration
detector
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360407A
Other languages
English (en)
Inventor
Akira Takahashi
顕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003360407A priority Critical patent/JP2005129557A/ja
Publication of JP2005129557A publication Critical patent/JP2005129557A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】投影光学系の収差を精度良く測定する。
【解決手段】ステップ117〜ステップ123の処理によって、投影光学系の投影視野内の計測点での波面収差を計測し、ステップ127〜ステップ131において、レチクルアライメント検出系の撮像によりそのときの波面センサの位置ずれ量を検出する。これらの処理を複数の計測点で実施し、ステップ137において、各計測点における波面の全体的な傾斜成分であるディストーション成分から、波面センサの位置ずれ量に対応する成分をキャンセルする。
【選択図】図6

Description

本発明は、収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法に係り、特に、第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定装置、該収差測定装置を備える露光装置、第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定方法及び該収差測定方法を用いた露光方法、並びにデバイス製造方法に関する。
従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「マスク」と総称する)に形成されたパターン(以下、「レチクルパターン」とも呼ぶ)を、投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、適宜「基板」と総称する)上に転写する露光装置が用いられている。こうした露光装置としては、いわゆるステッパ等の静止露光型の露光装置や、いわゆるスキャニング・ステッパ等の走査露光型の露光装置が主として用いられている。
かかる露光装置においては、レチクルに形成されたパターンの像を基板上に、高い解像力で、忠実に投影する必要がある。このため、投影光学系は、諸収差が十分に抑制されるように設計されている。
しかし、完全に設計どおりに投影光学系を製造することは困難であり、実際に製造された投影光学系には様々な要因に起因する諸収差が残存してしまう。このため、実際に製造された投影光学系の光学特性は、設計上の光学特性とは異なるものとなってしまう。
そこで、実際に製造された投影光学系の収差を測定するための様々な技術が必要となるが、かかる様々な提案技術の中に、シャック−ハルトマン(Shack-Hartmann)方式の波面収差測定技術がある。この波面収差測定技術では、レチクルに形成されたピンホールから発生した球面波を投影光学系に入射させ、その投影光学系を通過した光を、波面収差計測器の受光光学系に入射させる。そして、その受光光学系により平行光に変換された光を、微小なレンズがその平行光の波面に略平行に多数配列されたマイクロレンズアレイ(上記受光光学系の一部)などの波面分割素子を用いて波面分割し、その分割波面ごとに波面収差計測器のCCDの撮像面上に結像されるピンホールの像(スポット像)の形成位置の基準点からのずれを検出する。
各スポット像の形成位置の基準点からのずれは、各マイクロレンズアレイに入射した光の波面の局所的な傾きを表している。したがって、その波面の局所的な傾きを積分する等の演算を行えば、投影光学系の波面形状を再構成してその波面収差を求めることができる(例えば、特許文献1参照)。
このようにして求められた投影光学系の波面収差は、幾つかの収差成分に分解される。このような収差成分の1つに、ディストーション成分がある。
上記波面収差測定器により、このディストーション成分を精度良く測定するには、その波面収差計測器の位置を、入射光の光軸に対して正確に位置決めし、上記各スポット像の形成位置の基準点からのずれに、波面収差計測器の位置ずれによる成分が含まれないようにする必要がある。しかしながら、このような波面収差計測器は、波面収差測定の際にウエハステージに取り付けられる場合もある。そのため、計測器を取り付ける度に、その取り付け位置が変わり、投影光学系の波面収差とは本来無関係な計測器の取り付け位置による誤差の成分が、ディストーション成分の測定結果に含まれてしまう可能性があった。
また、上記波面収差計測器は、投影光学系の投影視野内における複数の計測点について、計測点毎に波面収差を計測していくため、すべての計測点の波面収差の計測を完了するには、それなりの時間を必要とする。この場合、上記波面収差計測器自体から発生する熱やその剛性限界などにより、その波面収差計測器の位置が経時的に変化してしまうと、ディストーション成分の測定結果に対する計測器の位置ずれの影響が徐々に大きくなって、各計測点におけるディストーション成分を一定の条件の下で計測することが困難になる可能性があった。
国際公開WO99/603761号パンフレット
本発明は、かかる事情の下になされたもので、その第1の目的は、投影光学系の収差を、高精度に測定することができる収差測定装置を提供することにある。
また、本発明の第2の目的は、高精度な露光を実現することができる露光装置を提供することにある。
また、本発明の第3の目的は、投影光学系の収差を、高精度に測定することができる収差測定方法を提供することにある。
また、本発明の第4の目的は、高精度な露光を実現することができる露光方法を提供することにある。
また、本発明の第5の目的は、高集積度のデバイスの生産性を向上することができるデバイス製造方法を提供することにある。
請求項1に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系(PL)の収差を測定する収差測定装置であって、前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の少なくとも1つの計測点において受光し、その計測点における前記投影光学系の収差に関する第1情報を検出する検出器(90)と;前記第2面内における前記検出器の基準点の位置に関する第2情報を検出する位置検出系(22)と;前記第1情報と、前記第2情報とに基づいて、前記投影光学系のディストーション成分を算出する算出装置(20)と;を備える収差測定装置である。
これによれば、検出器により、投影光学系を通過した光を、投影光学系の投影視野内の1つの計測点で受光して、受光した光から投影光学系の収差に関する情報(第1情報)を検出し、位置検出系により、検出器の基準点の位置に関する情報(第2情報)を検出する。そして、算出装置により、第1情報と第2情報とに基づいて、投影光学系のディストーション成分を算出する。このようにすれば、例えば、第1情報に含まれる検出器の位置ずれに大きく影響を受けるディストーション成分から、第2情報に含まれる検出器の位置ずれによる成分をキャンセルすることができるので、そのディストーション成分を、高精度に測定することができる。
この場合、請求項2に記載の収差測定装置のごとく、前記検出器の基準点には、所定マークが形成されており、前記位置検出系は、前記所定マークの位置の経時変化を、前記第2情報として検出することとすることができる。
この場合、請求項3に記載の収差測定装置のごとく、前記検出器は、前記投影光学系の投影視野内の複数の異なる計測点における前記第1情報をそれぞれ検出し、前記位置検出系は、前記複数の異なる計測点のうち、前記検出器による任意の計測点における前記第1情報の検出の合間に、前記第2情報の検出を行い、前記算出装置は、前記検出器による前記任意の計測点における前記第1情報の検出の前後に検出された前記第2情報の平均値を、前記任意の計測点における前記第1情報の検出時の前記検出器の基準点の位置に関する情報とすることとすることができる。
上記請求項1に記載の収差測定装置において、請求項4に記載の収差測定装置のごとく、前記検出器は、前記投影光学系の投影視野内の複数の異なる計測点における前記第1情報をそれぞれ検出し、前記位置検出系は、前記基準点の位置に関する第2情報として、前記複数の計測点のうちの1つの計測点の位置に関する情報を検出することとすることができる。
上記請求項3又は4に記載の収差測定装置において、請求項5に記載の収差測定装置のごとく、前記第2面内における前記検出器の位置を制御する制御装置を更に備え、前記制御装置は、前記検出器による前記第1情報の検出及び前記位置検出系による前記第2情報の検出の際に、前記検出器を前記複数の異なる計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めすることとすることができる。
上記請求項1〜5のいずれか一項に記載の収差測定装置において、請求項6に記載の収差測定装置のごとく、前記ディストーション成分は、ツェルニケ多項式の第2項及び第3項で表される成分であることとすることができる。
請求項7に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系(PL)の収差を測定する収差測定装置であって、前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の複数の計測点において受光し、前記複数の計測点における前記投影光学系の収差に関する情報を検出するために、前記第2面内を移動可能な検出器(90)と;前記検出器を前記複数の計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めする制御装置と;前記検出器の検出結果に基づいて、前記投影光学系の収差を算出する算出装置(20)と;を備える収差測定装置である。
これによれば、投影光学系の投影視野内の複数の計測点における投影光学系の収差に関する情報を検出すべく、その検出を行う検出器を、制御装置により位置決めする際には、所定方向に検出器を移動させることにより、その位置決めを行う。このようにすれば、検出器を駆動する駆動系の反転駆動時のバックラッシュ等により発生する検出器の位置決め結果のばらつきを低減することができるため、検出器の位置決め精度に影響を受ける投影光学系の収差を、高精度に測定することができる。
請求項8に記載の発明は、エネルギビームをマスクに照射し、前記マスク(R)に形成されたパターンを、投影光学系(PL)を介して感光物体(W)上に転写する露光装置(100)であって、請求項1〜7のいずれか一項に記載の収差測定装置と;前記収差測定装置の測定結果に基づいて、前記投影光学系の光学特性を調整する調整装置(251)と;前記収差測定装置の検出器が取り付けられ、前記感光物体を保持した状態で、前記投影光学系の光軸に略直交する2次元平面内を移動可能な移動体(WST)と;を備える露光装置である。かかる場合には、請求項1〜7のいずれか一項に記載の収差測定装置を用いて、投影光学系の収差を精度良く測定することができるので、その測定結果に基づいて光学特性が調整された投影光学系を介して、感光物体にパターンを転写すれば、高精度な露光を実現することができる。
請求項9に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定方法であって、前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の所定の計測点において受光し、その計測点における前記投影光学系の収差に関する第1情報を、検出器を用いて検出する第1工程と;前記第2面内における前記検出器の基準点の位置に関する第2情報を検出する第2工程と;前記第1情報と、前記第2情報とに基づいて、前記投影光学系のディストーション成分を算出する第3工程と;を含む収差測定方法である。
これによれば、第1工程において、投影光学系を通過した光を、投影光学系の投影視野内の1つの計測点で受光して、受光した光から投影光学系の収差に関する情報(第1情報)を検出し、第2工程において、検出器の基準点の位置に関する情報(第2情報)を検出する。そして、第3工程において、第1情報と第2情報とに基づいて、投影光学系のディストーション成分を算出する。このようにすれば、例えば、第1情報に含まれる検出器の位置ずれに大きく影響を受けるディストーション成分から、第2情報に含まれる検出器の位置ずれによる成分をキャンセルすることができるので、そのディストーション成分を、高精度に測定することができる。
この場合、請求項10に記載の収差測定方法のごとく、前記第2工程では、前記検出器の基準点に形成された所定マークの位置の経時変化を、前記第2情報として検出することとすることができる。
この場合、請求項11に記載の収差測定方法のごとく、前記投影光学系の投影視野内の複数の異なる計測点を計測可能な位置に、前記検出器を順次位置決めしながら、前記第1工程を計測点毎に実行し、前記第2工程では、前記複数の異なる計測点のうち、前記検出器による前記任意の計測点における前記第1情報の検出の前後に検出された前記第2情報の平均値を、前記任意の計測点における前記第1情報の検出時の前記検出器の基準点の位置に関する情報とすることとすることができる。
上記請求項9に記載の収差測定方法において、請求項12に記載の収差測定方法のごとく、前記投影光学系の投影視野内の複数の異なる計測点を計測可能な位置に、前記検出器を順次位置決めしながら、前記第1工程を、計測点毎に実行し、前記第2工程では、前記第1工程を行う毎に、前記基準点の位置に関する情報として、前記複数の計測点のうちの1つの計測点の位置に関する情報を検出することとすることができる。
上記請求項11又は12に記載の収差測定方法において、請求項13に記載の収差測定方法のごとく、前記第1工程及び前記第2工程では、前記検出器を前記複数の計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めすることとすることができる。
請求項14に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定方法であって、前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の複数の計測点において受光し、前記複数の計測点における前記投影光学系の収差に関する情報を検出するために、前記第2面内を移動可能な検出器を、その計測点に対し所定方向から前記検出器を近づけつつ、各計測点での計測可能な位置に順次位置決めし、各計測点の情報をそれぞれ検出する第1工程と;前記検出結果に基づいて、前記投影光学系の収差を算出する第2工程と;を含む収差測定方法である。
これによれば、第1工程において、検出器により投影光学系の投影視野内の各計測点における収差を順次測定する際には、検出器が必ず所定方向から位置決めされた状態で測定を行う。このようにすれば、検出器を駆動する駆動系の反転駆動時のバックラッシュ等により発生する検出器の位置決め結果のばらつきを低減することができるため、検出器の位置決め精度に影響を受ける投影光学系の収差を、高精度に測定することができる。
請求項15に記載の発明は、エネルギビームをマスクに照射し、前記マスクに形成されたパターンを、投影光学系を介して感光物体上に転写する露光方法であって、請求項9〜14のいずれか一項に記載の収差測定方法を用いて前記投影光学系のディストーション成分を測定する工程と;前記測定結果に基づいて、前記投影光学系を調整する工程と;前記調整された投影光学系を介して前記感光物体上に前記パターンを転写する工程と;を含む露光方法である。かかる場合には、請求項9〜14のいずれか一項に記載の収差測定方法を用いて投影光学系のディストーション成分が測定され、その測定結果に基づいて投影光学系が調整された状態で、転写が行われるので、高精度な露光を実現することができる。
請求項16に記載の発明は、リソグラフィ工程を含むデバイス製造方法において、前記リソグラフィ工程では、請求項15に記載の露光方法を用いて露光を行うことを特徴とするデバイス製造方法である。かかる場合には、請求項15に記載の露光方法を用いて露光を行うので、高集積度のデバイスの生産性を向上することができる。
以下、本発明の一実施形態を、図1〜図9に基づいて説明する。
図1には、本発明に係る収差測定方法の実施に好適な一実施形態にかかる露光装置100が示されている。この露光装置100は、ステップ・アンド・スキャン方式の投影露光装置である。この露光装置100は、露光装置本体60と、波面センサ90とを備えている。
前記露光装置本体60は、照明系10、マスクとしてのレチクルRを保持するレチクルステージRST、投影光学系PL、感光物体としてのウエハWを保持する移動体としてのウエハステージWST、アライメント検出系AS、一対のレチクルアライメント検出系22、及び装置全体を統括制御する主制御装置20等を備えている。
前記照明系10は、例えば特開平6−349701号公報等に開示されるように、光源、オプティカル・インテグレータを含む照度均一化光学系、リレーレンズ、可変NDフィルタ、可変視野絞り(レチクルブラインド又はマスキング・ブレードとも呼ばれる)、及びダイクロイックミラー等(いずれも不図示)を含んで構成されている。オプティカル・インテグレータとしては、フライアイレンズ、ロッドインテグレータ(内面反射型インテグレータ)、あるいは回折光学素子などが用いられる。
この照明系10では、回路パターン等が描かれたレチクルR上で、レチクルブラインドで規定されたスリット状の照明領域(Y軸方向に細長い矩形状の照明領域)部分を照明光ILによりほぼ均一な照度で照明する。ここで、照明光ILとしては、KrFエキシマレーザ光(波長248nm)、ArFエキシマレーザ光(波長193nm)などの遠紫外光や、F2レーザ光(波長157nm)などの真空紫外光などが用いられる。照明光ILとして、超高圧水銀ランプからの紫外域の輝線(g線、i線等)を用いることも可能である。
前記レチクルステージRST上には、レチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、リニアモータ、ボイスコイルモータ等を駆動源とする不図示のレチクルステージ駆動部によって、照明系10の光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面内で微少駆動可能であるとともに、所定方向(ここでは図1における紙面直交方向であるX軸方向とする)に、設定された走査速度で駆動可能となっている。
レチクルステージRSTには、レーザ光を反射するX軸方向及びY軸方向に面した移動鏡等から成る反射面が設けられており、レチクルステージRSTのステージ移動面内の位置は、その反射面にレーザ光を照射するレチクルレーザ干渉計(以下、「レチクル干渉計」という)16によって、例えば0.5〜1nm程度の分解能で常時計測されている。ここで、実際には、レチクルX干渉計とレチクルY干渉計とが設けられているが、図1ではこれらが代表的にレチクル干渉計16として示されている。そして、レチクルY干渉計とレチクルX干渉計の少なくとも一方、例えばレチクルY干渉計は、測長軸を2軸有する2軸干渉計であり、このレチクルY干渉計の計測値に基づきレチクルステージRSTのY位置に加え、θz方向(Z軸回りの回転方向)の回転量(ヨーイング量)も計測できるようになっている。レチクル干渉計16からのレチクルステージRSTの位置情報(ヨーイング量などの回転情報を含む)は、ステージ制御装置19及びこれを介して主制御装置20に供給される。主制御装置20は、レチクルステージRSTの位置情報に基づいて、ステージ制御装置19及び不図示のレチクルステージ駆動部を介してレチクルステージRSTを駆動制御し、レチクルステージRST上に保持されたレチクルRの位置を制御する。
レチクルRの上方には、Y軸方向に所定距離隔てて一対のレチクルアライメント検出系22(位置検出系)が配置されている。各レチクルアライメント検出系22は、CCDカメラなどの撮像素子で撮像したアライメントマークの画像データを画像処理してマーク位置を計測するVRA(Visual Reticle Alignment)方式の検出系であり、それぞれ、照明光ILと同じ波長の照明光をアライメントマークに照射するための落射照明系(不図示)と、そのアライメントマークの像を撮像するための検出系22Vとを含んで構成されている。検出系22Vは結像光学系と撮像素子とを含んでおり、この検出系22Vによる撮像結果(すなわちレチクルアライメント検出系22によるマークの検出結果)は、主制御装置20に供給されている。また、ミラー22Mは、照明光ILの光路上に挿脱自在に配置されている。ミラー22Mは、照明光ILの光路上に挿入されると、落射照明系(不図示)から射出された照明光をレチクルR上に導き、且つその照明によりレチクルR→ 投影光学系PL→ウエハステージWST上の物体(図1ではウエハW)→投影光学系PL→レチクルRという経路を経た検出光をレチクルアライメント検出系22の検出系22Vに導く。なお、ミラー22Mは、露光シーケンスが開始されると、レチクルR上のパターンをウエハW上に転写するための照明光ILの照射の前に、主制御装置20からの指令に基づいて不図示の駆動装置により、照明光ILの光路外に退避される。
前記投影光学系PLは、レチクルステージRSTの図1における下方に配置され、その光軸AXの方向がZ軸方向とされている。投影光学系PLとしては、両側テレセントリックで、所定の縮小倍率β(βは、例えば1/5、又は1/4)を有する縮小屈折光学系であり、共通のZ軸方向の光軸AXを有する不図示の複数のレンズエレメントから構成されている。このため、照明系10からの照明光ILによってレチクルRの照明領域が照明されると、レチクルRの回路パターンの照明領域部分の縮小像(部分倒立像)が投影光学系PLを介してウエハW上の前記照明領域に共役な投影光学系PLの投影視野内の領域に投影され、ウエハW表面のレジスト層に転写される。
なお、本実施形態では、上記の複数のレンズエレメントのうち、特定のレンズエレメント(例えば、所定の5つのレンズエレメント)がそれぞれ独立に移動可能となっている。かかるレンズエレメントの移動は、特定レンズエレメントを支持するレンズ支持部材を支持し、鏡筒部と連結する、特定レンズごとに設けられた3個のピエゾ素子等の駆動素子によって行われるようになっている。すなわち、特定のレンズエレメントを、それぞれ独立に、各駆動素子の変位量に応じて光軸AXに沿って平行移動させることもできるし、光軸AXと垂直な平面に対して所望の傾斜を与えることもできるようになっている。そして、これらの駆動素子を駆動するための駆動指示信号は、主制御装置20からの指令に基づいて結像特性補正コントローラ251によって出力され、これによって各駆動素子の変位量が制御されるようになっている。
こうして構成された投影光学系PLでは、主制御装置20による結像特性補正コントローラ251を介したレンズエレメントの移動制御により、ディストーション、像面湾曲、非点収差、コマ収差、又は球面収差等の光学特性が調整可能となっている。
前記ウエハステージWSTは、投影光学系PLの図1における下方で、不図示のベース上に配置されている。このウエハステージWST上にウエハホルダ25が載置されている。このウエハホルダ25上にウエハWが例えば真空吸着等によって固定されている。
ウエハステージWSTは、図1のウエハステージ駆動部24により、X、Y、Z、θz(Z軸回りの回転方向)、θx(X軸回りの回転方向)、及びθy(Y軸回りの回転方向)の6自由度方向に駆動可能な単一のステージである。
ウエハステージWSTには、レーザ光を反射するX軸方向及びY軸方向に面した移動鏡等から成る反射面が設けられており、ウエハステージWSTの位置は、その反射面にレーザ光を照射する、外部に配置されたウエハレーザ干渉計(以下、「ウエハ干渉計」という)18により、例えば、0.5〜1nm程度の分解能で常時計測されている。なお、実際には、X軸方向に測長軸を有する干渉計及びY軸方向に測長軸を有する干渉計が設けられているが、図1ではこれらが代表的にウエハ干渉計18として示されている。それらの干渉計は、測長軸を複数有する多軸干渉計で構成され、ウエハステージWSTのX、Y位置の他、回転(ヨーイング(Z軸回りの回転であるθz回転)、ピッチング(Y軸回りの回転であるθy回転)、ローリング(X軸回りの回転であるθx回転))も計測可能となっている。主制御装置20は、このウエハステージWSTの位置情報に基づいてステージ制御装置19及びウエハステージ駆動部24を介してウエハステージWSTを駆動制御し、ウエハステージWST上に保持されたウエハWの位置を制御する。
また、ウエハステージWST上のウエハWの近傍には、基準マーク板FMが固定されている。この基準マーク板FMの表面は、ウエハWの表面とほぼ同じ高さに設定され、この表面には少なくとも一対のレチクルアライメント用基準マーク、及びアライメント検出系ASのベースライン計測用の基準マーク等が形成されている。
また、ウエハステージWSTの+Y側には、後述する波面センサ90を着脱可能とするためのセンサ取付部が形成されている。
前記アライメント検出系ASは、投影光学系PLの側面に配置された、オフアクシス方式のアライメントセンサである。このアライメント検出系ASとしては、例えばウエハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照射し、その対象マークからの反射光により受光面に結像された対象マークの像と不図示の指標(アライメント検出系AS内に設けられた指標板上の指標パターン)の像とを撮像素子(CCD)等を用いて撮像し、それらの撮像信号を出力する画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。なお、アライメント検出系ASのセンサとしては、FIA系に限らず、コヒーレントな検出光を対象マークに照射し、その対象マークから発生する散乱光又は回折光を検出する、あるいはその対象マークから発生する2つの回折光(例えば同次数の回折光、あるいは同方向に回折する回折光)を干渉させて検出するアライメントセンサを単独であるいは適宜組み合わせて用いることは勿論可能である。このアライメント検出系ASの撮像結果は、主制御装置20へ出力されている。
さらに、図1の装置には、ウエハW表面の露光領域内部及びその近傍の領域のZ軸方向(光軸AXの方向)の位置を検出するための斜入射方式のフォーカス検出系(焦点検出系)の一つである、多点フォーカス位置検出系(21A,21B)が設けられている。この多点フォーカス位置検出系(21A,21B)は、光ファイバ束、集光レンズ、パターン形成板、レンズ、ミラー、及び照射対物レンズ(いずれも不図示)から成る照射光学系21Aと、集光対物レンズ、回転方向振動板、結像レンズ、受光用スリット板、及び多数のフォトセンサを有する受光器(いずれも不図示)から成る受光光学系21Bとから構成されている。この多点フォーカス位置検出系(21A、21B)の詳細な構成等については、例えば、特開平6−283403号公報に開示されている。多点フォーカス位置検出系(21A、21B)による検出結果は、ステージ制御装置19に供給される。
前記波面センサ90は、シャック−ハルトマン方式により波面収差を測定する波面収差測定装置のセンサ(検出器)である。この波面センサ90は、図2に示されるように、収納部材97、該収納部材97の内部に所定の位置関係に収納されたコリメータレンズ92、レンズ93a及びレンズ93bから成るリレーレンズ系93、ハーフミラー960、マイクロレンズアレイ94、撮像素子(CCD)951,952、収納部材97に埋め込まれたミラー96a、96b、収納部材97の上部開口を閉塞する標示板91を備えている。標示板91には、その中央に不図示の開口が形成されている。この場合、開口を介して収納部材97の内部に入射する光の光軸AX1上にコリメータレンズ92、ミラー96a、リレーレンズ系93、ハーフミラー960が順次配置され、そのハーフミラー960で分岐された一方の光路(透過光路)上にCCD952が配置されている。また、ハーフミラー960で分岐された他方の光路(反射光路)上にミラー96b、マイクロレンズアレイ94及びCCD951が順次配置されている。
前記標示板91は、例えばガラス基板を基材とし、ウエハホルダ25に固定されたウエハWの表面と同じ高さ位置(Z軸方向位置)に、光軸AX1と直交するように配置されている(図1参照)。この標示板91の表面には、図3に示されるように、その中央部に開口91aが形成されている。また、標示板91の表面における開口91aの周辺には、その開口91aとの位置関係が既知である、少なくとも1段(図3では、4組)の2次元位置検出用マーク91bが形成されている。この2次元位置検出用マーク91bとしては、本実施形態では、ボックスマークと、そのボックスマークを囲むように配置された、X軸方向及びY軸方向をそれぞれ配列方向とする複数のラインマークとの組合せが採用されている。なお、2次元位置検出用マーク91bは、上述のレチクルアライメント検出系22によって検出可能となっている。また、開口91a及び2次元位置検出用マーク91bを除く標示板91の表面は、反射面加工がなされている。かかる反射面加工は、例えば、ガラス基板にクロム(Cr)を蒸着することによって行われている。
図2に戻り、前記コリメータレンズ92は、開口91aを通って入射した光を平行光に変換する。
図4(A)には、マイクロレンズアレイ94の平面図が示されており、図4(B)には、マイクロレンズアレイ94の、図4(A)における線分A−A’線断面図(端面図)が示されている。
図4(A)及び図4(B)によって総合的に示されるように、マイクロレンズアレイ94は、一辺の長さがD1である正方形状の多数のマイクロレンズ98がマトリクス状に稠密に配列されたものである。なお、マイクロレンズ98は、正の屈折力を有するレンズである。
ここで、各マイクロレンズ98の光軸は互いにほぼ平行になっている。なお、図4(A)及び図4(B)においては、マイクロレンズ98が、7×7マトリクス状に配列されたものが、一例として示されている。
こうしたマイクロレンズアレイ94は、平行平面ガラス板にエッチング処理を施すことにより作成される。マイクロレンズアレイ94は、リレーレンズ系93を介した後にハーフミラー960で反射された光を、入射したマイクロレンズ98ごとに、ピンホールパターンの像をそれぞれ異なる位置に結像する。
図2に戻り、前記CCD951は、マイクロレンズアレイ94の各マイクロレンズ98によって開口91aに形成された後述するピンホールパターンの像が結像される結像面、開口91aの形成面の光学的な共役面に受光面を有している。すなわち、CCD951は、その受光面に結像された多数のピンホールパターン像を撮像する。この撮像結果は、撮像データIMD1として主制御装置20に送信される。
前記CCD952は、ハーフミラー960を透過した光を受光する受光面を有しており、その受光面に結像された像を撮像する。この受光面は、投影光学系PLの瞳面と共役な面となっている。この撮像結果は、撮像データIMD2として主制御装置20に供給される。
前記収納部材97は、その内部に、コリメータレンズ92、リレーレンズ系93、ハーフミラー960、マイクロレンズアレイ94、及びCCD951、952をそれぞれ支持する不図示の支持部材を有している。なお、ミラー96a,96bは、収納部材97の内面に取り付けられている。また、前記収納部材97の外形は、上述したウエハステージWSTのセンサ取付部と嵌合する形状となっており、ウエハステージWSTに対して着脱自在となっている。
制御系は、図1中、主制御装置20及びこの配下にあるステージ制御装置19などによって主に構成される。主制御装置20は、CPU(中央演算処理装置)、メインメモリ等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含んで構成され、装置全体を統括して制御する。
主制御装置20には、例えばハードディスクから成る記憶装置、キーボード,マウス等のポインティングデバイス等を含んで構成される入力装置、及びCRTディスプレイ(又は液晶ディスプレイ)等の表示装置(いずれも図示省略)、並びにCD(Compact Disc),DVD(Digital Versatile Disc),MO(Magneto-Optical Disc)あるいはFD(Flexible Disc)等の情報記録媒体のドライブ装置(不図示)が、外付けで接続されている。ドライブ装置にセットされた情報記録媒体(以下では、CDであるものとする)には、後述するフローチャートで示される計測動作及び露光動作時の処理アルゴリズムに対応するプログラム(以下、便宜上、「特定プログラム」と呼ぶ)、その他のプログラム、並びにこれらのプログラムに付属するデータベースなどが記録されている。
以下、本実施形態の露光装置100による露光動作を、図5に示されるフローチャートに沿って、適宜他の図面を参照しながら説明する。なお、ここでは、ウエハW上への1層目の露光がすでに終了しており、2層目以降の露光を行うものとして説明する。また、以下の動作の前提として、波面センサ90は、ウエハステージWSTに装着され、主制御装置20と接続されており(図1の端点c、d参照)、波面収差計測に関する波面センサ90及び主制御装置20に対する初期化処理はすでに行われているものとする。
図5に示されるように、サブルーチン101において、投影光学系PLの波面収差が測定される。このサブルーチン101では、図6に示されるように、まず、ステップ112において、不図示のレチクルローダにより、図7に示される波面収差測定用のレチクルRTがレチクルステージRSTにロードされる。測定用レチクルRTには、図7に示されるように、33個のピンホールパターンPHj(j=1〜33)が、X軸方向及びY軸方向に沿ってマトリクス状(3×11)に形成されている。ピンホールパターンPH1〜PH33は、図7において点線で示されるスリット状の照明領域内にすべて収まるように配置されており、ピンホールパターンPH1は、測定用レチクルRT上の一対のレチクルアライメントマーク(図7で示される十字マーク)が、レチクルアライメント検出系22の検出系22Vの撮像素子の撮像視野の中心に位置したときに、投影光学系PLの光軸AXが通る照明領域の中央に配置されるように形成されている。
したがって、次のステップ113では、レチクルアライメント検出系22により、ウエハステージWST上に配置された基準マーク板FMを使用した測定用レチクルRTの位置計測等が行われ、中央のピンホールパターンPH1が投影光学系PLの光軸AX上に位置するように、レチクルステージRSTを移動させる。かかる移動は、主制御装置20が、レチクル干渉計16が検出したレチクルステージRSTの位置情報(又は速度情報)に基づいて、ステージ制御装置19を介してレチクルステージ駆動部を駆動制御することにより行われる。
図6に戻り、次のステップ114において、波面センサ90の標示板91の開口91aが、ピンホールパターンPH1の投影光学系PLに関する共役位置(ピンホールパターンPH1の場合には、光軸AX上)にウエハステージWSTを移動させる。かかる移動は、主制御装置20が、ウエハ干渉計18が検出したウエハステージWSTの位置情報(又は速度情報)に基づいて、ステージ制御装置19を介してウエハステージ駆動部24を駆動制御することにより行われる。なお、ウエハステージWSTの移動は、主制御装置20の制御の下、ステージ制御装置19を介してウエハステージ駆動部24を駆動することにより行われるが、以下では、単に、「ウエハステージを移動させる。」と表現するものとする。
そして、レチクルアライメント検出系22により、計測用レチクルRTのレチクルアライメントマークとともに、波面センサ90の標示板91のマーク91b(ここでは、Y軸方向に開口91aを挟む2つのマーク91b)を検出する。図8には、レチクルアライメント検出系22の検出系22Vによって検出された十字のレチクルアライメントマーク及びマーク91bを撮像したときの撮像データの一例が示されている。上記ウエハステージWSTの移動により、十字のレチクルアライメントマークの中心と、マーク91bの中心とは一致するはずであるが、図8に示されるように、波面センサ90の取り付けられ方などにより、レチクルアライメントマークの中心と、マーク91bの中心とがずれる場合がある(図8では、X軸方向及びY軸方向の各軸のずれがdx及びdyで示されている)。そこで、図8に示されるようなレチクルアライメント検出系22の検出結果(撮像データ)に基づいて、各レチクルアライメントマークの中心と、各マーク91bの中心との位置ずれを算出し、それらの位置ずれに基づいて、波面センサ90の開口91aと、ピンホールパターンPH1とのXY平面の位置ずれ(dx、dy)を算出し、その位置ずれがキャンセルされるようにウエハステージWSTをXY平面内で移動させる。これにより、波面センサ90の開口91aと、ピンホールパターンPH1とが、ほぼ完全に一致するようになる。
また、主制御装置20は、多点フォーカス位置検出系(21A、21B)の検出結果に基づいて、ピンホールパターンPH1の像が結像される像面に波面センサ90の標示板91の上面を一致させるべく、ウエハステージ駆動部24を介してウエハステージWSTをZ軸方向又はθx、θy方向に微小駆動して、波面センサ90の標示板91の傾斜の調整を行う。なお、傾斜の調整後、波面センサ90の最適Z位置の調整、波面センサ90のCCD951,952で受光される受光量の調整、CCD951,952の暗電流の調整なども実施される。
次いで、ステップ117において、CCD951、952により、それら撮像面(受光面)に形成された像の撮像が行われる。図9には、最初のピンホールパターンPH1から発せられる球面波に関する投影光学系PLの波面収差測定のための光学的配置を、波面センサ90の光軸AX1及び投影光学系の光軸AXに沿って展開した図が示されている。
こうした光学的配置において、照明系10から照明光ILが射出されると、測定用レチクルRTのピンホールパターンPH1に到達した光が、球面波となってピンホールパターンPH1から射出される。そして、その光は、投影光学系PLを介した後、波面センサ90の標示板91の開口91aに集光される。なおピンホールパターンPH1以外のピンホールパターンPH2〜PH33を通過した光は、開口91aには到達しないようになっている。こうして開口91aに集光された光の波面は、投影光学系PLの波面収差を含んだ略球面となる。
開口91aを通過した光は、コリメータレンズ92により平行光に変換され、さらにリレーレンズ系93を介した後、ハーフミラー960に入射する。ハーフミラー960で反射された入射光の一部は、ミラー96bでさらに反射された後、マイクロレンズアレイ94に入射する。ここで、マイクロレンズアレイ94に入射する光の波面は、投影光学系PLの波面収差を反映したものとなっている。すなわち、投影光学系PLに波面収差が無い場合には、図9において点線で示されるように、その波面WFは光軸AX1と直交する平面となるが、投影光学系PLに波面収差が有る場合には、図9において2点鎖線で示されるように、その波面WF’は光軸AX1と直交する平面とはならず、その平面上の位置に応じた角度の傾きを有する面となる。
マイクロレンズアレイ94は、マイクロレンズ98(図4参照)ごとに、開口91aの像を、標示板91の光学的な共役面すなわちCCD951の撮像面(受光面)に結像させる。マイクロレンズ98に入射した光の波面が光軸と直交する場合には、そのマイクロレンズ98の光軸とCCD951の撮像面の交点を中心とするスポット像が、CCD951の撮像面に結像される。しかし、マイクロレンズ98に入射した光の波面が傾いている場合には、その傾き量に応じた距離だけ、そのマイクロレンズ98の光軸と撮像面の交点からずれた点を中心とするスポット像がCCD951の撮像面に結像される。一方、ハーフミラー960を透過した光は、CCD952の撮像面に入射する。
CCD951、952の撮像により得られた撮像データIMD1、IMD2は、主制御装置20に送信される。主制御装置20は、撮像データIMD1、IMD2を受信すると、不図示の記憶装置に撮像データIMD1、IMD2を格納する。
次のステップ119において、撮像データIMD1に基づいて、各スポット像の位置情報が検出される。かかる位置情報の検出にあたり、主制御装置20は、記憶装置から撮像データIMD1を読み出し、マイクロレンズアレイ94によりCCD951の撮像面に形成された各スポット像の中心位置を算出する。こうしたスポット像位置の検出は、例えば各スポット像の光強度分布の重心を算出したり、その光強度分布と、所定の光強度分布との相関性を算出したりすることにより行われる。主制御装置20は、こうして求められた各スポット像の中心位置を、マイクロレンズアレイ94によりCCD951の撮像面に形成された各スポット像の位置情報として、記憶装置(不図示)に格納する。
こうして検出された各マイクロレンズ98のスポット像の中心位置と、波面収差が無いときに期待される各マイクロレンズ98のスポット像の中心位置(基準位置)とのずれは、各マイクロレンズ98に入射した光の波面の局所的な傾きによるものであり、スポット像の基準位置からのずれの大きさが、その波面の局所的な傾きの大きさを表している。したがって、後述する処理では、そのずれの大きさ、すなわち波面の局所的な傾きの大きさに基づく積分演算により、マイクロレンズアレイ94に入射する光の波面形状を再構成し、投影光学系PLの波面収差を求めることになる。
さらに、後述する処理では、通常、マイクロレンズアレイに入射する光の波面形状をツェルニケ展開された形式で求める。かかるツェルニケ展開された形式では、マイクロレンズアレイへの入射光波面の中心軸に直交する面をrθ面(rが半径を示し、θを角度とする極座標平面)とし、当該中心軸とrθ面との交点を原点とすると、波面W(r、θ)は、ツェルニケ多項式をΦmn(r)(m=0、1、・・・、かつ、n=0〜m(ただし、(m−n)は、0又は偶数))として、次の(1)式のように表される。
Figure 2005129557

ここで、Amn及びBmnは、波面W(r,θ)の形状に応じて決まる係数である。
ところで、上述のような波面W(r,θ)の測定結果によって、投影光学系PLの諸収差を精度良く求めるためには、投影光学系PLからの光の波面の中心軸と撮像面との交点位置(以下、「波面の中心位置」という)が、ツェルニケ展開における原点となっていることと、その光の有効径がわかっていることが前提となる。そこで、本実施形態では、その光の中心位置と、その有効径を求めるべく、波面センサ90のCCD952で、投影光学系PLを介した光を、マイクロレンズアレイを通すことなく受光しており、CCD952から送られる撮像データIMD2は、その光の直接の受光結果である。
したがって、次のステップ121では、記憶装置から、投影光学系PLからの光を直接受光することにより得られる撮像結果として撮像データIMD2を読み出し、その撮像データIMD2から得られるCCD952の受光面上の輝度分布などに基づいて、例えば統計的手法を用いて投影光学系PLからの光の波面の中心位置及び有効径を求める。
そして、次のステップ123において、上記ステップ119で求めた各スポット像の中心位置と、上記ステップ121で求めた波面の中心位置によって補正された各スポット像の基準位置とのずれから上述したような積分演算により、上記式(1)で示されるツェルニケ展開された波面W(r,θ)を求める。
上記式(1)においては、例えば、A20・Φ20(r)(Φ20(r)=2r2−1)は、回転対称なデフォーカス成分を表しており、また、A40・Φ40(r)(Φ40(r)=6r4−6r2+1)は、球面収差成分を表している。また、A31・Φ31(r)(Φ31(r)=3r3−2r2)及びA33Φ33(r)(Φ33(r)=r3)は、コマ収差成分を表している。また、ツェルニケ多項式のいわゆる第2項及び第3項の和である(A11・cosθ+B11・sinθ)Φ11(r)(Φ11(r)=r)は、波面の全体的な傾斜を示すディストーション成分を表している。
次のステップ125では、波面収差計測が1回目であるか否かが判断される。その判断が否定されれば、ステップ127に進み、肯定されれば、ステップ133に進む。ここでは、波面収差計測が1回目であるので判断が肯定され、ステップ133に進む。
ステップ133では、全てのピンホールパターンに関して投影光学系PLの波面収差を算出したか否かが判定される。この段階では、最初のピンホールパターンPH1についてのみ投影光学系PLの波面収差を測定しただけなので、否定的な判断がなされ、ステップ135に進む。
ステップ135では、波面センサ90の標示板91の開口91aが、次のピンホールパターンPH2の投影光学系PLに関する共役位置に、ウエハステージWSTを移動させる。なお、このときも、主制御装置20は、多点フォーカス位置検出系(21A、21B)の検出結果に基づいて、次の測定位置、すなわちピンホールパターンPH2を介した像が結像される像面に波面センサ90の標示板91の上面を一致させるべく、必要に応じて、ウエハステージWSTをZ軸方向に微小駆動する。
その後、上述のステップ117〜ステップ123の処理が行われ、ピンホールパターンPH2に対する波面収差計測が実行される。そして、ステップ125における判断が否定され、ステップ127に進む。
ステップ127では、上記ステップ113で位置決めした位置、波面センサ90の標示板91のマーク91bを、レチクルアライメント検出系22により検出することが可能な位置に、ウエハステージWSTを位置決めする。そして、ステップ129において、レチクルアライメント検出系22による撮像を行う。もし、上記ステップ113が行われてから、ステップ129が行われるまで、波面センサ90の位置にずれが生じていなければ、レチクルアライメントマークの中心と、マーク91bの中心とが一致しているはずである。しかし、波面センサ90の位置にずれが生じていれば、例えば図8に示されるような位置ずれdx,dyが再び生じているはずである。そこで、ステップ131において、その撮像結果に基づいて、この波面センサ90の位置ずれ量を算出する。算出された位置ずれ量は、記憶装置に格納される。
ステップ133では、全てのピンホールパターンに関して投影光学系PLの波面収差を算出したか否かが判定される。この段階では、ピンホールパターンPH1、PH2について投影光学系PLの波面収差を測定しただけなので、否定的な判断がなされ、ステップ135に進む。
以後、上記と同様にして、ステップ135→ステップ117→ステップ119→ステップ121→ステップ123が実行されて、ピンホールパターンPH3、PH4、…、PH33に関する投影光学系PLの波面収差が順次測定され、その測定結果が、記憶装置に格納され、ステップ127→ステップ129→ステップ131が実行されて、各ピンホールパターンに対する波面収差の測定が行われている間の位置ずれ量(dx、dy)が順次測定され、記憶装置に格納される。
こうして全てのピンホールパターンに関する投影光学系PLの波面収差が測定されると、ステップ133において肯定的な判断がなされ、ステップ137に進む。
ステップ137では、上記ステップ123において算出された各収差成分のうち、ディストーション成分の補正を行う。前述したように、ツェルニケ多項式の第2項、第3項としてのディストーション成分は、波面の全体的な傾斜を示している。しかしながら、ステップ123で検出される波面の全体的な傾斜は、波面センサ90の熱変形などによる位置ドリフトなどによっても、引き起こされる。したがって、上記ステップ123で算出されたディストーション成分は、投影光学系PLのディストーション成分以外に、この位置ドリフトによる成分も含んでいる場合がある。そこで、このステップ137において、ステップ123で算出されたディストーション成分から、上記ステップ131で算出された位置ずれ量(dx、dy)に対応する波面の傾斜成分がキャンセルされるように、そのディストーション成分を補正する。なお、この位置ずれ量(dx,dy)と、それに対応する波面の傾斜成分との関係は、図2に示される波面センサ90の物理的及び光学系構造の設計値により予め求められている。
なお、ステップ117における波面センサ90による撮像のタイミングと、ステップ129におけるレチクルアライメント検出系22による撮像のタイミングとは、異なるため、ディストーション成分から、位置ドリフト量による成分を精度良くキャンセルするためには、ステップ117における波面センサ90による撮像の時点での、波面センサ90の位置ずれ量を用いるのが望ましい。
そこで、本実施形態では、以下に示すように、ステップ117における波面センサ90による撮像の時点での、波面センサ90の位置ずれ量を算出する。具体的には、ステップ117において、ピンホールパターンPH3〜ピンホールパターンPH33に対する波面センサ90による撮像を順次行う場合には、その前後(その撮像の合間)にステップ129において、位置ずれ量(dx,dy)の検出が行われているので、例えばその前後に検出された位置ずれ量(dx,dy)の平均値を、その撮像の時点での位置ずれ量とみなすことができる。また、最初のピンホールパターンPH1、PH2については、その波面収差の計測の前に位置ずれ量(dx,dy)の検出が行われてはいないが、ピンホールパターンPH2に対する波面センサ90による撮像の直後に検出された位置ずれ量(dx,dy)の例えば1/3、2/3程度の値を、その撮像時点の位置ずれ量とすれば良い。
もっとも、上記具体的算出方法は、ステップ113におけるレチクルアライメント検出系22の撮像結果による波面センサ90の最初の微調整と、ステップ117における波面センサ90による撮像と、ステップ129におけるレチクルアライメント検出系22の撮像とが、ほぼ所定間隔で行われることを前提としてはじめて適用可能な方法である。もし、これらの処理が行われるタイミングが異なる場合には、それらのタイミングの間隔の比に応じて、位置ずれ量を算出するようにすれば良い。また、この場合、主制御装置20の内部にタイマを備え、それらの時点の間隔の比を実際に計測しても良い。
ステップ137終了後、サブルーチン101の処理を終了し、この後、図5のステップ102に移行する。
ステップ102では、記憶装置に記憶された波面収差の結果に基づいて、投影光学系PLの波面収差の測定が許容値以下であるか否かを判定する。この判定が肯定的である場合には、ステップ104に移行する。一方、判定が否定的である場合には、処理はステップ103に移行する。この段階では、判定が否定的であり、処理がステップ103に移行したとして、以下の説明を行う。
ステップ103では、投影光学系PLの波面収差の測定結果に基づき、その波面収差が低減されるように投影光学系PLの調整を行う。かかる波面収差の調整は、主制御装置20が、結像特性補正コントローラ251を介してレンズエレメントの移動制御を行うことや、場合によっては、人手により投影光学系PLのレンズエレメントのXY平面内での移動やレンズエレメントの交換を行うことによりなされる。
引き続き、サブルーチン101において、調整された投影光学系PLに関する波面収差が上記と同様にして測定される。以後、ステップ102において否定的な判断がなされるまで、投影光学系PLの調整(ステップ103)と、波面収差の測定(サブルーチン101)が繰り返し実行される。そして、ステップ102において肯定的な判断がなされると、ステップ104に移行する。
次のステップ104においては、露光装置100の動作を監視するオペレータに対し、一連の波面収差の計測及び調整動作が終了したことを、例えば、不図示の表示装置にその旨を表示したり、アラーム音を鳴らすことによって、通知する。
そして、次のステップ105では、波面センサ90がウエハステージWSTから取り外されることが確認されるまで待つ。オペレータは、ウエハステージWSTから、波面センサ90を取り外す。波面センサ90がウエハステージWSTから取り外されたことを確認すると、ステップ106に進む。なお、この取り外されたことの確認は、取り外されたことを検出可能な不図示のセンサからの信号を監視することによって行われても良いし、オペレータにより、不図示の入力装置から入力される、波面センサ90が取り外されたことを示す旨の信号を監視することによって行われるようにしても良い。
ステップ106では、不図示のレチクルローダにより、測定用レチクルRTをアンロードした後、転写したいパターンが形成されたレチクルRをレチクルステージRSTにロードする。すなわち、測定用レチクルRTは、すでにレチクルステージRSTからアンロードされているものとする。
次のステップ107では、ウエハステージWST上に配置された基準マーク板FM上のマークをレチクルアライメント検出系22によって検出することにより行うレチクルアライメントや、更にアライメント検出系ASを使用したベースラインの測定等の準備作業を行う。
そして、ステップ108において、ウエハ交換が行われる。不図示のウエハローダにより、露光対象であるウエハWが、ウエハステージWSTにロードされる。
そして、次のステップ109において、ウエハWに対する露光が2層目以降の露光であるので、既に形成されている回路パターンと重ね合わせ精度良く回路パターンを形成するために、ウエハアライメントを行う。ここでは、アライメント検出系ASを使用した上述のEGA計測により、ウエハW上におけるショット領域の配列座標が高精度で検出される。
次いで、ステップ110において、露光が行われる。この露光動作にあたって、まず、ウエハWのXY位置が、ウエハW上の最初のショット領域(ファースト・ショット)の露光のための走査開始位置(加速開始位置)となるように、ウエハステージWSTが移動される。同時に、レチクルRのXY位置が、走査開始位置(加速開始位置)となるように、レチクルステージRSTが移動される。
そして、レチクルステージRSTとウエハステージWSTとを走査方向(互いに逆方向)に同期移動させつつ、レチクルRのパターンをウエハW上に転写する。なお、この同期移動中には、レチクル干渉計16によって検出されるレチクルステージRSTのXY位置の情報、多点フォーカス位置検出系(21A,21B)及びウエハ干渉計18によって検出されるウエハステージWSTのZ位置の情報、XY位置の情報に基づいて、レチクルステージRSTとウエハステージWSTとの相対位置関係が適切に保たれるよう、レチクルステージRST及びウエハステージWSTの位置制御が行われる。
こうして、最初のショット領域の露光が終了すると、次のショット領域の露光のための走査開始位置(加速開始位置)となるように、ウエハステージWSTが移動されるとともに、レチクルRのXY位置が、走査開始位置(加速開始位置)となるように、レチクルステージRSTが移動される。そして、当該ショット領域に関する走査露光が、上述の最初のショット領域と同様にして行われる。以後、同様にして各ショット領域について走査露光が行われ、露光が完了する。
そして、ステップ111では、予定枚数、例えば1ロット(25枚)のウエハの露光が終了したか否かが判断される。その判断が否定されれば、ステップ108に戻る。肯定されれば、処理を終了する。ここでは、まだ1枚目のウエハの露光が完了しただけなので、判断は否定されステップ108に戻る。以降、ステップ108→ステップ109→ステップ110→ステップ111の処理が繰り返され、ステップ111の判断が肯定されると、露光動作を終了する。
以上詳細に述べたように、本実施形態の露光装置100では、波面センサ90により、投影光学系PLを通過した光を、投影光学系PLの投影視野(露光フィールド)内の1つの計測点(すなわちピンホールパターン像PHjが結像する位置)で受光して、受光した光から投影光学系PLの波面収差を検出し、レチクルアライメント検出系22により、波面センサ90の基準点(マーク91bが形成された位置)の位置ずれ量(dx,dy)を検出する。そして、主制御装置20により、検出した波面を展開して得られるツェルニケ多項式の第2項及び第3項の投影光学系PLのディストーション成分(Xチルト及びYチルト)から、波面センサ90の位置ずれ量(dx,dy)により生じた波面傾斜成分をキャンセルする。このようにすれば、測定位置の位置誤差に大きく影響を受けるディストーション成分から、その位置誤差の成分をキャンセルすることができるので、投影光学系PLの収差を、高精度に測定することができる。
なお、上記実施形態では、投影光学系PLの投影視野内の1つの計測点で波面収差を測定する毎に、波面センサ90の位置ずれ量を検出したが、これに限られるものではなく、2つ又はそれ以上の計測点で波面収差を測定する毎に、すなわち1つ置き又はそれ以上の間隔をおいて、波面センサ90の位置ずれ量を検出するようにしても良い。また、波面センサ90の位置ずれ量がそれほど顕著でないことが明らかとなった場合には、波面センサ90を測定する間隔を長くし、波面センサ90の位置ずれ量が顕著である場合には、その測定間隔を短くして、臨機応変に測定間隔を変更するようにしても良い。すなわち、本発明では、複数の異なる計測点のうち、任意の計測点における波面収差を測定する合間に、波面センサ90の位置ずれ量を検出するようにすることができる。
また、上記実施形態では、ステップ129において、レチクルアライメント検出系22によって、波面センサ90の指標板91上に形成されたマーク91bを撮像することにより、波面センサ90の位置ずれ量(dx,dy)を測定したが、本発明はこれには限定されない。例えば、上記ステップ127の代わりに、各ピンホールパターンPHjに対する波面センサ90による撮像の合間に、波面センサ90の位置を、例えば、ピンホールパターンPH1に対応する位置(この位置を基準点とする)に再び位置決めし、上記ステップ129の代わりに、ピンホールパターンPH1に対する波面センサ90による波面収差の測定を行うようにしても良い。
このとき、もし波面センサ90の位置に全く変化がなければ、各回のピンホールパターンPH1に対するディストーション成分の算出結果は、ほぼ同じとなるはずであり、逆に言えば、各回のディストーション成分の変化が、波面センサ90の位置ずれ量(dx,dy)を示しているといえる。そこで、各ピンホールパターンに対する波面センサ90による撮像の合間に、例えばピンホールパターンPH1に対する波面センサ90による撮像を行って、その時その時のディストーション成分を算出し、そのディストーション成分の経時変化を求めていけば、その時点での経時変化がそのまま波面センサ90の位置ずれ量(dx,dy)に応じた波面傾斜成分に対応するようになる。したがって、その波面傾斜成分を各ピンホールパターンPHjに関して算出されたディストーション成分からキャンセルすれば、上記実施形態と同様の効果を得ることができる。
また、上記実施形態では、ステップ113、ステップ127、ステップ135におけるウエハステージWSTの位置決めを必ず所定の方向にウエハステージWSTを移動させることにより、行うようにしても良い。このようにすれば、その位置決めの際に、ウエハステージWSTを駆動するウエハステージ駆動部24のバックラッシュなどに起因するウエハステージWSTの位置のばらつきを低減することができる。
また、上記実施形態では、ウエハステージを1つだけ備えているシングルステージ型の露光装置に本発明を適用する場合について説明したが、本発明はこれには限定されず、ウエハステージを複数備える露光装置にも適用することができる。また、その際には、複数のウエハステージのうち、少なくとも1つのウエハステージに、波面センサ90が取り付け可能となっていれば良い。
また、上記実施形態では、波面センサ90の標示板91のマーク91bの検出に、レチクルアライメント検出系22を用いたが、アライメント検出系ASによって検出するようにしても良い。しかし、この場合には、アライメント検出系ASが、投影光学系PLを介さないでマークの検出を行うオフアクシスの検出系であるので、基準点、すなわち波面センサ90の標示板91のマーク91bの検出位置から、波面収差の各計測点に、波面センサ90を移動させるためにウエハステージWSTを移動させる距離が、そのベースラインだけ長くなってしまう。したがって、スループットの観点から見れば、レチクルアライメント検出系22を、マーク91bの検出に用いるのが望ましい。なお、露光装置が、複数のウエハステージを備えるタイプのものである場合には、そのベースラインが特に長くなっており、ウエハステージが基準点から各計測点に移動する途中で、そのステージの位置を計測する干渉計が切り替わってしまうので、位置ずれ量の検出が不可能となる。したがって、複数のウエハステージを備える露光装置については、オフアクシスの検出系ではなく、投影光学系を介してマークの検出を行うレチクルアライメント検出系などを用いて基準点計測を行うのが望ましい。
また、上記実施形態では、基準点を計測する際に、波面センサ90の標示板91の一対のマーク91bの位置関係を、レチクルアライメント検出系2眼で同時に検出することとしたが、レチクルアライメント検出系1眼のみで、1つのマーク91bを計測するようにしても良い。このようにしても、波面センサ90の位置ずれ量を計測可能である。
また、上記実施形態では、波面センサ90をウエハステージWSTに脱着可能なものとしたが、このようなセンサはウエハステージに常備されているものであっても良い。この場合にも、波面収差計測中のセンサのドリフトが低減はされるものの完全に0になるわけではないので、本発明を有効に適用することができる。
また、上記実施形態では、測定用レチクルRTにおける開口パターンの数を33としたが、所望の波面収差の測定精度に応じて、数を増減することが可能である。また、マイクロレンズアレイ94におけるマイクロレンズ98の配列数や配列態様も、所望の波面収差の測定精度に応じて変更することが可能である。
また、上記実施形態では、位置検出の対象像をスポット像としたが、他の形状のパターンの像であってもよい。
また、上記実施形態では、投影光学系PLの波面収差測定及び波面収差調整を、露光装置が組み立てられた後の定期メンテナンス時等に行い、その後のウエハの露光に備える場合について説明したが、露光装置の製造における投影光学系PLの調整時に、上記の実施形態と同様にして、波面収差の調整を行ってもよい。なお、露光装置の製造時における投影光学系PLの調整にあたっては、上記の実施形態において行われる投影光学系PLを構成する一部のレンズエレメントの位置調整に加えて、他のレンズエレメントの位置調整、レンズエレメントの再加工、レンズエレメントの交換等を行うことが可能である。
また、上記実施形態では、露光装置における投影光学系PLの波面収差の計測であったが、露光装置に限らず、他の種類の装置における結像光学系の諸収差の計測にも本発明を適用することができる。
また、上記実施形態の露光装置の光源としては、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、投影光学系の倍率は縮小系のみならず等倍および拡大系のいずれでも良い。
また、上記実施形態では、走査型露光装置の場合を説明したが、本発明は、投影光学系を備える露光装置であれば、ステップ・アンド・リピート機、ステップ・アンド・スキャン機、ステップ・アンド・スティッチング機を問わず適用することができる。
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置や、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。
《デバイス製造方法》
次に、上述した露光装置100をリソグラフィ工程で使用したデバイスの製造方法の実施形態について説明する。
図10には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等)の製造例のフローチャートが示されている。図10に示されるように、まず、ステップ801(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ802(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ803(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。
次に、ステップ804(ウエハ処理ステップ)において、ステップ801〜ステップ803で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術等によってウエハ上に実際の回路等を形成する。次いで、ステップ805(デバイス組立てステップ)において、ステップ804で処理されたウエハを用いてデバイス組立てを行う。このステップ805には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。
最後に、ステップ806(検査ステップ)において、ステップ805で作成されたデバイスの動作確認テスト、耐久テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。
図11には、半導体デバイスにおける、上記ステップ804の詳細なフロー例が示されている。図11において、ステップ811(酸化ステップ)においてはウエハの表面を酸化させる。ステップ812(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ813(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ814(イオン打ち込みステップ)においてはウエハにイオンを打ち込む。以上のステップ811〜ステップ814それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。
ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ815(レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ステップ816(露光ステップ)において、上記実施形態の露光装置100及びその露光方法を用いてマスクの回路パターンをウエハに転写する。次に、ステップ817(現像ステップ)においては露光されたウエハを現像し、ステップ818(エッチングステップ)において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ819(レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法を用いれば、露光工程(ステップ816)において上記実施形態の露光装置100が用いられるので、高精度な露光を実現することができる。この結果、より高集積度のデバイスの生産することが可能になる。
以上説明したように、本発明に係る収差測定装置は、露光装置に用いられる投影光学系の収差を計測するのに適しており、本発明の露光装置は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適しており、本発明に係る収差測定方法は、露光方法に用いられる投影光学系の収差を計測するのに適しており、本発明の露光方法は、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程に適しており、本発明のデバイス製造方法は、マイクロデバイスの生産に適している。
本発明の一実施形態に係る露光装置の構成を概略的に示す図である。 図1の波面センサの構成を概略的に示す図である。 図2の標示板の表面状態を説明するための図である。 図4(A)及び図4(B)は、図2のマイクロレンズアレイの構造を示す図である。 図1の露光装置における露光動作の処理を説明するためのフローチャートである。 図5の収差測定ルーチンにおける処理を説明するためのフローチャートである。 測定用レチクルに形成された測定用パターンの例を示す図である。 レチクルアライメント検出系の撮像結果の一例を示す図である。 本発明の一実施形態におけるスポット像の撮像時における光学配置を説明するための図である。 本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートである。 図10のステップ804の詳細を示すフローチャートである。
符号の説明
20…主制御装置(算出装置、制御装置)、22…レチクルアライメント検出系(位置検出系)、90…波面センサ(検出器)、951,952…CCD、100…露光装置、251…結像特性補正コントローラ、AS…アライメント検出系、IMD1,IMD2…撮像データ、PL…投影光学系、PH1〜PH33…ピンホールパターン、W…ウエハ(感光物体)、WST…ウエハステージ(移動体)。

Claims (16)

  1. 第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定装置であって、
    前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の少なくとも1つの計測点において受光し、その計測点における前記投影光学系の収差に関する第1情報を検出する検出器と;
    前記第2面内における前記検出器の基準点の位置に関する第2情報を検出する位置検出系と;
    前記第1情報と、前記第2情報とに基づいて、前記投影光学系のディストーション成分を算出する算出装置と;を備える収差測定装置。
  2. 前記検出器の基準点には、所定マークが形成されており、
    前記位置検出系は、前記所定マークの位置の経時変化を、前記第2情報として検出することを特徴とする請求項1に記載の収差測定装置。
  3. 前記検出器は、前記投影光学系の投影視野内の複数の異なる計測点における前記第1情報をそれぞれ検出し、
    前記位置検出系は、
    前記複数の異なる計測点のうち、前記検出器による任意の計測点における前記第1情報の検出の合間に、前記第2情報の検出を行い、
    前記算出装置は、
    前記検出器による前記任意の計測点における前記第1情報の検出の前後に検出された前記第2情報の平均値を、前記任意の計測点における前記第1情報の検出時の前記検出器の基準点の位置に関する情報とすることを特徴とする請求項2に記載の収差測定装置。
  4. 前記検出器は、前記投影光学系の投影視野内の複数の異なる計測点における前記第1情報をそれぞれ検出し、
    前記位置検出系は、前記基準点の位置に関する第2情報として、前記複数の計測点のうちの1つの計測点の位置に関する情報を検出することを特徴とする請求項1に記載の収差測定装置。
  5. 前記第2面内における前記検出器の位置を制御する制御装置を更に備え、
    前記制御装置は、
    前記検出器による前記第1情報の検出及び前記位置検出系による前記第2情報の検出の際に、前記検出器を前記複数の異なる計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めすることを特徴とする請求項3又は4に記載の収差測定装置。
  6. 前記ディストーション成分は、ツェルニケ多項式の第2項及び第3項で表される成分であることを特徴とする請求項1〜5のいずれか一項に記載の収差測定装置。
  7. 第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定装置であって、
    前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の複数の計測点において受光し、前記複数の計測点における前記投影光学系の収差に関する情報を検出するために、前記第2面内を移動可能な検出器と;
    前記検出器を前記複数の計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めする制御装置と;
    前記検出器の検出結果に基づいて、前記投影光学系の収差を算出する算出装置と;を備える収差測定装置。
  8. エネルギビームをマスクに照射し、前記マスクに形成されたパターンを、投影光学系を介して感光物体上に転写する露光装置であって、
    請求項1〜7のいずれか一項に記載の収差測定装置と;
    前記収差測定装置の測定結果に基づいて、前記投影光学系の光学特性を調整する調整装置と;
    前記収差測定装置の検出器が取り付けられ、前記感光物体を保持した状態で、前記投影光学系の光軸に略直交する2次元平面内を移動可能な移動体と;を備える露光装置。
  9. 第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定方法であって、
    前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の所定の計測点において受光し、その計測点における前記投影光学系の収差に関する第1情報を、検出器を用いて検出する第1工程と;
    前記第2面内における前記検出器の基準点の位置に関する第2情報を検出する第2工程と;
    前記第1情報と、前記第2情報とに基づいて、前記投影光学系のディストーション成分を算出する第3工程と;を含む収差測定方法。
  10. 前記第2工程では、
    前記検出器の基準点に形成された所定マークの位置の経時変化を、前記第2情報として検出することを特徴とする請求項9に記載の収差測定方法。
  11. 前記投影光学系の投影視野内の複数の異なる計測点を計測可能な位置に、前記検出器を順次位置決めしながら、前記第1工程を計測点毎に実行し、
    前記第2工程では、
    前記複数の異なる計測点のうち、前記検出器による前記任意の計測点における前記第1情報の検出の前後に検出された前記第2情報の平均値を、前記任意の計測点における前記第1情報の検出時の前記検出器の基準点の位置に関する情報とすることを特徴とする請求項10に記載の収差測定方法。
  12. 前記投影光学系の投影視野内の複数の異なる計測点を計測可能な位置に、前記検出器を順次位置決めしながら、前記第1工程を、計測点毎に実行し、
    前記第2工程では、
    前記第1工程を行う毎に、前記基準点の位置に関する情報として、前記複数の計測点のうちの1つの計測点の位置に関する情報を検出することを特徴とする請求項9に記載の収差測定方法。
  13. 前記第1工程及び前記第2工程では、前記検出器を前記複数の計測点にそれぞれ位置決めする場合には、その計測点に対し所定方向から前記検出器を近づけつつ、前記検出器を位置決めすることを特徴とする請求項11又は12に記載の収差測定方法。
  14. 第1面上のパターンを第2面上に投影する投影光学系の収差を測定する収差測定方法であって、
    前記投影光学系を介した光を、前記第2面上における前記投影光学系の投影視野内の複数の計測点において受光し、前記複数の計測点における前記投影光学系の収差に関する情報を検出するために、前記第2面内を移動可能な検出器を、その計測点に対し所定方向から前記検出器を近づけつつ、各計測点での計測可能な位置に順次位置決めし、各計測点の情報をそれぞれ検出する第1工程と;
    前記検出結果に基づいて、前記投影光学系の収差を算出する第2工程と;を含む収差測定方法。
  15. エネルギビームをマスクに照射し、前記マスクに形成されたパターンを、投影光学系を介して感光物体上に転写する露光方法であって、
    請求項9〜14のいずれか一項に記載の収差測定方法を用いて前記投影光学系のディストーション成分を測定する工程と;
    前記測定結果に基づいて、前記投影光学系を調整する工程と;
    前記調整された投影光学系を介して前記感光物体上に前記パターンを転写する工程と;を含む露光方法。
  16. リソグラフィ工程を含むデバイス製造方法において、
    前記リソグラフィ工程では、請求項15に記載の露光方法を用いて露光を行うことを特徴とするデバイス製造方法。
JP2003360407A 2003-10-21 2003-10-21 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法 Pending JP2005129557A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360407A JP2005129557A (ja) 2003-10-21 2003-10-21 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360407A JP2005129557A (ja) 2003-10-21 2003-10-21 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2005129557A true JP2005129557A (ja) 2005-05-19

Family

ID=34640722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360407A Pending JP2005129557A (ja) 2003-10-21 2003-10-21 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2005129557A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053374A (ja) * 2005-08-16 2007-03-01 Asml Netherlands Bv 位置合わせ測定機構及び位置合わせ測定方法
JP2007518257A (ja) * 2004-01-16 2007-07-05 カール ツァイス エスエムテー アクチェンゲゼルシャフト 光学系の光学測定のための装置及び方法、測定構造支持材、及びマイクロリソグラフィ投影露光装置
US9239526B2 (en) 2013-07-16 2016-01-19 Kabushiki Kaisha Toshiba Exposure apparatus and transfer characteristics measuring method
WO2020036488A1 (en) * 2018-08-14 2020-02-20 Technische Universiteit Delft Optical device and method for measuring spatially-varying aberrations of an imaging system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518257A (ja) * 2004-01-16 2007-07-05 カール ツァイス エスエムテー アクチェンゲゼルシャフト 光学系の光学測定のための装置及び方法、測定構造支持材、及びマイクロリソグラフィ投影露光装置
JP4782019B2 (ja) * 2004-01-16 2011-09-28 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学系の光学測定のための装置及び方法、測定構造支持材、及びマイクロリソグラフィ投影露光装置
JP2007053374A (ja) * 2005-08-16 2007-03-01 Asml Netherlands Bv 位置合わせ測定機構及び位置合わせ測定方法
US9239526B2 (en) 2013-07-16 2016-01-19 Kabushiki Kaisha Toshiba Exposure apparatus and transfer characteristics measuring method
WO2020036488A1 (en) * 2018-08-14 2020-02-20 Technische Universiteit Delft Optical device and method for measuring spatially-varying aberrations of an imaging system
NL2021468B1 (en) * 2018-08-14 2020-02-24 Univ Delft Tech Optical device and method for measuring spatially-varying aberrations of an imaging system

Similar Documents

Publication Publication Date Title
JP4352458B2 (ja) 投影光学系の調整方法、予測方法、評価方法、調整方法、露光方法及び露光装置、露光装置の製造方法、プログラム並びにデバイス製造方法
JP5179754B2 (ja) 光学特性計測装置及び光学特性計測方法、露光装置及び露光方法、並びにデバイス製造方法
JP4345098B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP4352614B2 (ja) 位置検出装置の調整方法
JP2011101056A (ja) 露光装置、露光方法及びデバイス製造方法
JP6380412B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
KR101070202B1 (ko) 계측방법, 전사특성 계측방법, 노광장치의 조정방법 및디바이스 제조방법
JPWO2005038885A1 (ja) 光学特性計測装置及び光学特性計測方法、露光装置及び露光方法、並びにデバイス製造方法
JP2002170754A (ja) 露光装置、光学特性検出方法及び露光方法
TW201101369A (en) Exposure method and device manufacturing method, and overlay error measuring method
JP2011155040A (ja) 露光方法及び露光装置、並びにデバイス製造方法
JP2001250760A (ja) 収差計測方法、該方法を使用するマーク検出方法、及び露光方法
JP4147574B2 (ja) 波面収差計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
JP2005129557A (ja) 収差測定装置、露光装置、収差測定方法及び露光方法、並びにデバイス製造方法
US20010046041A1 (en) Exposure apparatus and device manufacturing apparatus and method
JP2006332480A (ja) 位置計測方法、露光方法、デバイスの製造方法及び位置計測装置並びに露光装置
JP2006030021A (ja) 位置検出装置及び位置検出方法
JP3904110B2 (ja) 光学特性測定方法及び光学特性測定装置、光学系の調整方法、並びに露光装置
JP2006066836A (ja) 光学部材の支持構造、及び露光装置
JP2005175383A (ja) 露光装置、アライメント方法、及び、デバイスの製造方法
JPH11233424A (ja) 投影光学装置、収差測定方法、及び投影方法、並びにデバイス製造方法
JP6226525B2 (ja) 露光装置、露光方法、それらを用いたデバイスの製造方法
JP2001358059A (ja) 露光装置の評価方法、及び露光装置
JP2003045795A (ja) 光学特性計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
JP2006032807A (ja) 露光装置及びデバイス製造方法