JP2005123225A - Color solid-state imaging device and its manufacturing method - Google Patents

Color solid-state imaging device and its manufacturing method Download PDF

Info

Publication number
JP2005123225A
JP2005123225A JP2003353298A JP2003353298A JP2005123225A JP 2005123225 A JP2005123225 A JP 2005123225A JP 2003353298 A JP2003353298 A JP 2003353298A JP 2003353298 A JP2003353298 A JP 2003353298A JP 2005123225 A JP2005123225 A JP 2005123225A
Authority
JP
Japan
Prior art keywords
light receiving
color
color filter
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003353298A
Other languages
Japanese (ja)
Other versions
JP4367078B2 (en
Inventor
Tomohito Kitamura
智史 北村
Kenzo Fukuyoshi
健蔵 福吉
Keisuke Ogata
啓介 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003353298A priority Critical patent/JP4367078B2/en
Publication of JP2005123225A publication Critical patent/JP2005123225A/en
Application granted granted Critical
Publication of JP4367078B2 publication Critical patent/JP4367078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color solid-state imaging device which is equipped with color filters that have a few agglomerate growing black marks and are excellent in shape even when pixels are each 5 μm or below in size, affords to allow a sufficient exposure margin, is equipped with color pixels which are hardly separated off, and high in productivity; and to provide a method of manufacturing the same. <P>SOLUTION: The color solid-state imaging device has a flattening layer 3 flattening the rugged surfaces of a plurality of light receiving elements 2 on the surface of a semiconductor substrate 1 equipped with the light receiving elements 2, a color filter layer composed of color pixels 5 to 7 which are of two or more different colors and each paired up with the light receiving element, and micro-lenses 9 which condense light on the light receiving elements and are each paired up with the light receiving element formed on the flattening layer 3. The flattening layer 3 has recesses which are each paired up with the light receiving element so as to correspond with each other, and the color filter layer is provided so as to fill up the recesses. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カラー固体撮像素子とその製造方法に関する。   The present invention relates to a color solid-state imaging device and a method for manufacturing the same.

デジタルスチルカメラや携帯カメラなどに搭載されるCCDやCMOSデバイス等の固体撮像素子は、高画素化,高精細化が進み、特にデジタルスチルカメラ用途にあっては銀塩カメラと同等の解像度を得る為に画素数は300万画素以上であり、画素のサイズは5μm以下、特に微細なものは3μm程度である。   Solid-state imaging devices such as CCDs and CMOS devices mounted on digital still cameras and portable cameras have been increasing in pixel count and definition, and in particular for digital still cameras, obtain the same resolution as silver salt cameras. Therefore, the number of pixels is 3 million pixels or more, and the size of the pixels is 5 μm or less, and particularly fine one is about 3 μm.

また、カメラ付き携帯電話用途についても、小型化が進む一方で画素数は増える方向であり、デジタルカメラ同様に画素サイズは5μm以下である。   Also for camera-equipped mobile phones, the number of pixels is increasing while miniaturization is progressing, and the pixel size is 5 μm or less as in the case of digital cameras.

一方、固体撮像素子はその受光素子と一対にカラ−フィルタ−層(色素画素ともいう)を備えカラ−化を図っている。   On the other hand, the solid-state imaging device is provided with a color filter layer (also referred to as a dye pixel) as a pair with the light receiving device for colorization.

カラ−フィルタ−を形成するには顔料分散法、染色法、染料分散法などがあるが、主には原色(赤、青、緑)あるいは補色(シアン、マゼンタ、イエロ−)の顔料または染料の色素を透明樹脂中に分散したカラ−レジストを塗布した上でリソグラフィによりパタ−ン形成する方式である。   There are a pigment dispersion method, a dyeing method, a dye dispersion method, etc. to form a color filter, but mainly a primary color (red, blue, green) or complementary color (cyan, magenta, yellow) pigment or dye. In this method, a color resist in which a pigment is dispersed in a transparent resin is applied and then a pattern is formed by lithography.

さらに、各画素に入射する光を可能な限り取り込むためのマイクロレンズを各画素毎に形成し、感度向上を図っている。
特開平3−230101号公報
Furthermore, a microlens for taking in light incident on each pixel as much as possible is formed for each pixel in order to improve sensitivity.
JP-A-3-230101

ところで、画素サイズが5μm以下になってくると感度が著しく低下する。特に、色素画素の開口率や膜厚が感度に与える影響は大きく、例えば、色素画素のエッジ形状にビリツキ(エッジがギザギザ状になること)とノイズの原因になりやすく、膜厚が厚いと斜め光で入射する光に対して遮光となるため、その分感度が落ちるかまたは、混色となる可能性がある。   By the way, when the pixel size is 5 μm or less, the sensitivity is remarkably lowered. In particular, the aperture ratio and the film thickness of the dye pixel have a great influence on the sensitivity. For example, the edge shape of the dye pixel is likely to cause wrinkles (the edge becomes jagged) and noise, and the thicker the film thickness, the more oblique Since the light is blocked with respect to the incident light, the sensitivity may decrease or the colors may be mixed.

また、カラーフィルターは前記した様にリソグラフィにて形成されることが一般的であり、露光は位置精度に優れるステッパーを用いることが多いが、カラーフィルターの膜厚が厚いと色素画素剥がれが生じたり、フォーカスマージンが狭まり表面のマクロ的なうねりに対してデフォーカスとなる場合がある。従って、撮像特性と製造特性の両面からカラーフィルターの膜厚は可能な限り薄くした方が良い。   In addition, the color filter is generally formed by lithography as described above, and exposure often uses a stepper with excellent positional accuracy. However, if the color filter is thick, pigment pixels may be peeled off. In some cases, the focus margin is narrowed and the surface is defocused against macroscopic undulations. Therefore, the film thickness of the color filter should be as thin as possible in terms of both imaging characteristics and manufacturing characteristics.

また、カラーフィルターは前記した様に顔料タイプと染料タイプに分けられる。染料タイプは色素である染料が非常に細かいために、ノイズとなる黒キズ(凝集物等による黒欠陥)は少ないが、着色力が低いために膜厚が厚くなる欠点がある。また、耐熱性,耐光性に劣る。   The color filter is divided into a pigment type and a dye type as described above. The dye type is very fine dye, so that there are few black scratches (black defects due to aggregates etc.) that cause noise, but there is a disadvantage that the film thickness becomes thick due to low coloring power. Moreover, it is inferior to heat resistance and light resistance.

一方、顔料タイプは、色特性や耐熱性,耐光性などの信頼性に優れ、また顔料濃度を調整することで薄膜化を図りやすい特徴がある。反面、顔料粒子が凝集しやすく、黒キズと呼ばれる欠陥を生じやすい欠点がある。   On the other hand, the pigment type is excellent in reliability such as color characteristics, heat resistance, and light resistance, and has a feature that it is easy to reduce the thickness by adjusting the pigment concentration. On the other hand, there is a defect that the pigment particles tend to aggregate and easily cause defects called black scratches.

このため、顔料カラーレジストにおいては、凝集した顔料粒子が混入しない様にサブミクロンオーダーでろ過を行うが、カラーフィルターの膜厚が薄い場合には顔料濃度が高くなるために生産性のあるろ過ができない不具合があった。   For this reason, in pigment color resists, filtration is performed on the order of submicrons so that aggregated pigment particles do not mix. However, when the color filter film thickness is thin, the pigment concentration becomes high, so that productive filtration is performed. There was a bug that could not be done.

本発明はかかる課題に鑑みてなされたもので、5μm以下の画素サイズであっても、黒キズとなる凝集物が少なく、形状の良好なカラーフィルターを有するカラー固体撮像素子と、露光マージンに優れ、色素画素剥がれのない生産性の高いカラー固体撮像素子及びその製造方法を提供するものである。   The present invention has been made in view of such a problem, and even with a pixel size of 5 μm or less, there are few aggregates that become black scratches, a color solid-state imaging device having a color filter with a good shape, and an excellent exposure margin. The present invention provides a color solid-state imaging device with high productivity that does not peel off pigment pixels and a method for manufacturing the same.

本発明は、この様な問題を解決するために詳細に検討したものであり、請求項1のカラー固体撮像素子は、複数の受光素子を有する半導体基板の表面に、受光素子の凹凸を埋める平坦化層と、平坦化層上に受光素子と一対に複数色の色素画素からなるカラーフィルター層及び受光素子に集光するマイクロレンズを形成したカラー固体撮像素子において、
前記平坦化層が受光素子と一対に対応する凹状を有し、その凹状を埋めこむ様にカラーフィルター層を配設したことを特徴とするカラー固体撮像素子としたものである。
The present invention has been studied in detail in order to solve such problems, and the color solid-state imaging device according to claim 1 is a flat surface in which irregularities of a light receiving element are buried in the surface of a semiconductor substrate having a plurality of light receiving elements. In a color solid-state imaging device in which a light-receiving element and a color filter layer composed of a plurality of color pigment pixels and a microlens for focusing on the light-receiving element are formed on the planarization layer
The flattening layer has a concave shape corresponding to a pair with the light receiving element, and a color solid-state imaging device is provided in which a color filter layer is disposed so as to fill the concave shape.

また、請求項2は請求項1に記載のカラー固体撮像素子において、前記色素画素の断面形状が逆凸状であり、色素画素の中央部の膜厚がエッジ部より厚くしたものである。   According to a second aspect of the present invention, in the color solid-state image pickup device according to the first aspect, the cross-sectional shape of the dye pixel is reverse convex, and the film thickness of the central part of the dye pixel is thicker than the edge part.

従って、請求項1、2のカラー固体撮像素子によれば、前記平坦化層の複数色のカラーフィルターが形成された画素中央部を凹状とし、その凹部に本来のカラーフィルター分光特性が得られる膜厚を設定し、エッジ部分を本来のカラーフィルター分光特性よりも薄い膜厚を設定することで、シャープな形状を有する断面形状が逆凸状のカラーフィルターを形成できるため、カラーフィルターのエッジ起因のノイズが大幅に抑制でき、延いては露光フォーカスマージンを確保できる。   Therefore, according to the color solid-state imaging device of claims 1 and 2, the central portion of the pixel where the color filters of the plurality of colors of the planarizing layer are formed in a concave shape, and the original color filter spectral characteristics can be obtained in the concave portion. By setting the thickness and setting the edge part thinner than the original color filter spectral characteristics, a cross-sectional shape with a sharp shape can be formed as a reverse convex color filter. Noise can be significantly suppressed, and an exposure focus margin can be secured.

また、カラーフィルターの膜厚を精密ろ過ができる顔料濃度で設定できるので、黒キズの少ない良好なカラーフィルターを備えたカラー固体撮像素子を提供できる。   In addition, since the film thickness of the color filter can be set with a pigment concentration capable of precision filtration, a color solid-state imaging device having a good color filter with few black scratches can be provided.

請求項3は請求項1〜2のカラー固体撮像素子の製造方法であって、前記平坦化層の表面を平滑にした後、カラーフィルター層の形成前にその平坦化層の前記複数の受光素子に対応する部分を凹状になるようにエッチングする工程を有することを特徴とする。   A third aspect of the present invention provides a method for manufacturing a color solid-state imaging device according to the first or second aspect, wherein after the surface of the planarizing layer is smoothed, the plurality of light receiving elements of the planarizing layer are formed before the color filter layer is formed. It has the process of etching so that the part corresponding to may become concave.

従って、請求項3のカラー固体撮像素子の製造方法によれば、カラーフィルター形成前にその平坦化層の前記複数の受光素子に対応する部分を凹状になるようにエッチングするので、請求項1〜2のカラー固体撮像素子を得ることができる。   Therefore, according to the method for manufacturing a color solid-state imaging device of claim 3, the portions corresponding to the plurality of light receiving elements of the flattening layer are etched so as to be concave before forming the color filter. Two color solid-state imaging devices can be obtained.

本発明のカラ−固体撮像素子では、複数の受光素子を有する半導体基板の表面に、受光素子の凹凸を埋める平坦化層と、平坦化層上に受光素子と一対に複数色の色素画素からなるカラーフィルター層及び受光素子に集光するマイクロレンズを形成したカラー固体撮像素子において、前記平坦化層が受光素子と一対に対応する凹状を有し、その凹状を埋めこむ様にカラーフィルター層を配設した。   In the color solid-state imaging device of the present invention, the surface of a semiconductor substrate having a plurality of light receiving elements is composed of a planarizing layer that fills the unevenness of the light receiving elements, and a plurality of dye pixels paired with the light receiving elements on the planarizing layer. In a color solid-state imaging device having a color filter layer and a microlens that collects light on the light receiving element, the flattening layer has a concave shape corresponding to a pair with the light receiving element, and the color filter layer is arranged so as to fill the concave shape. Set up.

したがって、カラーフィルターをある一定の膜厚に設定でき、つまりカラーレジストの色素濃度を薄くできるため、量産性のある精密ろ過が可能になる。これにより、凝集異物の少ないカラーフィルターが得られ、ノイズやザラツキの少ない撮像特性を提供することが可能になる。   Therefore, the color filter can be set to a certain film thickness, that is, the dye concentration of the color resist can be reduced, so that mass filtration with high productivity is possible. Thereby, a color filter with less aggregated foreign matter can be obtained, and imaging characteristics with less noise and roughness can be provided.

また、平坦化層の画素中央を凹状にしカラーフィルターを凹状になった平坦化層に埋めこんでいるので、従来の平坦化層上にカラーフィルターを形成したものよりもレンズ下距離が短く設定できる。これにより感度、スミア特性、シェ−ディング等の撮像特性の向上が図れる。   In addition, since the center of the pixel of the flattening layer is concave and the color filter is embedded in the concave flattening layer, the distance under the lens can be set shorter than the conventional color filter formed on the flattening layer. . Thereby, it is possible to improve imaging characteristics such as sensitivity, smear characteristics, and shading.

また、本発明のカラ−固体撮像素子では、色素画素の膜厚を画素中央部をエッジ部より厚くすることにより色素画素剥がれを防止でき、さらにカラーフィルターの解像性が向上し、例えば2μmサイズの画素であっても、ビリツキのないシャープな形状のカラーフィルターを得ることができる。延いては解像させるカラーフィルターのエッジ膜厚が薄いので、露光フォーカスマージンが広くなり、収率向上につながり、生産効率の高いカラー固体撮像素子の製造方法を提供できる。   Further, in the color solid-state imaging device of the present invention, the pigment pixel can be prevented from peeling by increasing the thickness of the pigment pixel from the edge portion, and the resolution of the color filter is improved. Even with this pixel, it is possible to obtain a sharp color filter without flickering. Further, since the edge film thickness of the color filter to be resolved is thin, the exposure focus margin is widened, the yield is improved, and a method for manufacturing a color solid-state imaging device with high production efficiency can be provided.

以下、本発明によるカラー固体撮像素子の実施の形態について説明する。   Embodiments of a color solid-state imaging device according to the present invention will be described below.

図1は、本実施の形態によるカラーフィルタを設ける固体撮像素子の断面を示す説明図である。図2は、図1に示すカラーフィルターの拡大図である。図3は、図1に示すカラーフィルターの平面図である。   FIG. 1 is an explanatory view showing a cross section of a solid-state imaging device provided with a color filter according to the present embodiment. FIG. 2 is an enlarged view of the color filter shown in FIG. FIG. 3 is a plan view of the color filter shown in FIG.

まず、本形態によるカラー固体撮像素子は、図1の断面図において、半導体基板1内には、フォトダイオード等より構成された複数の受光素子2を2次元配列してなる受光素子アレイと、図1上では省略しているがCCDによる転送レジスタ部や転送電極部等が形成されている。   First, a color solid-state imaging device according to the present embodiment includes a light-receiving element array in which a plurality of light-receiving elements 2 formed of photodiodes or the like are two-dimensionally arranged in a semiconductor substrate 1 in the cross-sectional view of FIG. Although omitted in FIG. 1, a transfer register portion, a transfer electrode portion, and the like are formed by a CCD.

また、半導体基板上面には絶縁膜とパッシベーション層が形成されている。この半導体基板の表面において受光素子の部分は図1の通り、すり鉢状に落ち込んでおり、その段差は約1〜2μmである。そして、このパッシベーション層上に受光素子部分を凹状にくりぬいた形状でアクリル樹脂などの透明樹脂からなる第1の平坦化層3が形成され、その凹状に埋めこむ様に一定の厚みを持たせた、グリーン5、レッド6、ブルー7の色素画素からなるカラーフィルター層が設けられている。   An insulating film and a passivation layer are formed on the upper surface of the semiconductor substrate. As shown in FIG. 1, the portion of the light receiving element on the surface of the semiconductor substrate falls into a mortar shape, and the step is about 1 to 2 μm. Then, a first planarizing layer 3 made of a transparent resin such as an acrylic resin is formed on the passivation layer by hollowing out the light receiving element portion, and has a certain thickness so as to be embedded in the concave shape. , Green 5, red 6 and blue 7 color filter layers are provided.

この時、カラーフィルター層の膜厚は、画素サイズやカラーフィルターの分光特性に依存するが、2〜5μmの画素サイズとした場合、図2に示す画素エッジ部分の膜厚B1は0.1〜0.7μmの範囲がカラーフィルターを形成する上では望ましい。   At this time, the film thickness of the color filter layer depends on the pixel size and the spectral characteristics of the color filter, but when the pixel size is 2 to 5 μm, the film thickness B1 of the pixel edge portion shown in FIG. A range of 0.7 μm is desirable for forming a color filter.

画素中央部分の膜厚A1はおおよそ凹状にくりぬいた厚み分と画素エッジ部分の和となり、一定の厚みを持たせたカラーフィルター層とすることができる。   The film thickness A1 in the central portion of the pixel is approximately the sum of the thickness hollowed out in a concave shape and the pixel edge portion, and a color filter layer having a certain thickness can be obtained.

そして、カラーフィルター層上部には透明樹脂層からなる第2の平坦化層とマイクロレンズ9が形成される。   A second planarizing layer made of a transparent resin layer and a microlens 9 are formed on the color filter layer.

従来技術においてはカラーフィルターに一定の厚みを持たせた場合、図7、8に示す様にレンズから受光素子までの距離X(以下、レンズ下距離)が長くなり、感度低下や混色(色シェーディング)などの不具合が生じる可能性があるが、カラーフィルターの下地にあたる第1の平坦化層の画素中央をドライエッチング等でエッチングし、その断面形状を凹状にしカラーフィルターを凹状になった第1の平坦化層に埋めこむ様にすることで従来技術の平坦化層上にカラーフィルターを形成したものよりもレンズ下距離を図2のCの厚み分だけ薄く形成できる。   In the prior art, when the color filter has a certain thickness, as shown in FIGS. 7 and 8, the distance X from the lens to the light receiving element (hereinafter referred to as the lens lower distance) becomes longer, and the sensitivity decreases and color mixing (color shading) occurs. ), Etc. may occur, but the center of the pixel of the first flattening layer, which is the base of the color filter, is etched by dry etching or the like, and the cross-sectional shape is made concave to make the color filter concave. By embedding in the flattening layer, the distance below the lens can be made thinner by the thickness of C in FIG. 2 than when the color filter is formed on the flattening layer of the prior art.

さらに、図3に示す様に色素画素のエッジ部と平坦化層を凹状にエッチングし形成された格子状の側壁パターンの側壁上部とを合わせることで色素画素のエッジ部の膜厚B2は色素画素の中央部の膜厚A2よりも薄くなるので5μm画素以下の微細なサイズのカラーフィルターを形成する際に問題であったステッパーのデフォーカスによる色素画素の形状悪化や色特性によりステッパー露光波長の透過率がほとんどないために生じる色素画素剥がれが解決でき、製造マージンが大幅に改善できるので生産効率をあげることができる。また、カラーフィルターに一定の厚みを持たせることができるため、カラーレジストの色素濃度を上げる必要がなくなり、生産性のある精密ろ過ができるのでカラーレジストに含まれる凝集物や異物を除去することができる。   Further, as shown in FIG. 3, the thickness B2 of the edge portion of the dye pixel is determined by combining the edge portion of the dye pixel and the side wall upper portion of the lattice-like side wall pattern formed by etching the flattening layer in a concave shape. Stepper exposure wavelength transmission due to the deterioration of the shape of the color pixel due to the defocusing of the stepper and the color characteristics, which was a problem when forming a color filter with a fine size of 5 μm pixels or less. The pigment pixel peeling caused by almost no rate can be solved, and the manufacturing margin can be greatly improved, so that the production efficiency can be increased. In addition, since the color filter can have a certain thickness, it is not necessary to increase the dye concentration of the color resist, and it is possible to perform productive microfiltration, so it is possible to remove aggregates and foreign substances contained in the color resist. it can.

従って、カラーフィルターに色素起因の例えば凝集物などによる欠陥がなくなるため、ノイズが大幅に低減できる。   Accordingly, since the color filter is free from defects caused by pigments such as aggregates, noise can be greatly reduced.

生産性のある精密ろ過が可能なカラーフィルターの膜厚は、図4に示す標準分光特性の場合、硬化後の膜厚で0.8μm以上必要である。   In the case of the standard spectral characteristics shown in FIG. 4, the film thickness of the color filter capable of microfiltration with productivity needs to be 0.8 μm or more as the film thickness after curing.

また、露光時のフォーカスマージンは画素サイズやカラーフィルターの膜厚、カラーレジストの解像性にもよるがカラーレジストの膜厚が1μmの時に3μm画素サイズで約±0.5μm、2μm画素サイズで約±0.3μmでありカラーレジストの膜厚が0.6μmの時に3μm画素サイズで約±1μm、2μm画素サイズで約±0.5μmである。前記したファーカスマージンとは、画素形状が丸くなったり、画素サイズが異常に大きくなったりするフォーカスになるまでの範囲を指し、この値(マージン)は数値の大きい方が良い。   The focus margin during exposure depends on the pixel size, color filter film thickness, and color resist resolution, but when the color resist film thickness is 1 μm, the 3 μm pixel size is approximately ± 0.5 μm and the 2 μm pixel size. When the film thickness of the color resist is about 0.6 μm, it is about ± 1 μm for the 3 μm pixel size and about ± 0.5 μm for the 2 μm pixel size. The above-mentioned furcus margin refers to a range until the focus becomes such that the pixel shape becomes round or the pixel size becomes abnormally large, and the larger this value (margin) is better.

ステッパーのフォーカスはデバイスのマクロ的なうねりをひろう為、フォーカスマージンとして±0.5μmは必要である。   Since the focus of the stepper is to swell the macro swell of the device, ± 0.5 μm is necessary as the focus margin.

従って、カラーフィルターの膜厚は、画素エッジ部で0.6μm以下、画素中央部は0.9μm以上であることが望ましい。   Accordingly, the film thickness of the color filter is preferably 0.6 μm or less at the pixel edge portion and 0.9 μm or more at the pixel center portion.

本発明にあるカラーフィルターの断面形状を通常の□状から逆凸状にすることで最も問題になるのは色再現性であるが本来のカラーフィルター分光特性でないカラーフィルター膜厚が薄くなった画素エッジ部分を工夫すれば問題は生じない。つまり、前記画素エッジ部をマイクロレンズの集光経路を外した寸法に設定すれば良い。   The most problematical problem when the cross-sectional shape of the color filter according to the present invention is changed from the normal □ shape to the reverse convex shape is the color reproducibility, but the color filter film thickness that is not the original color filter spectral characteristic is reduced. If the edge part is devised, no problem occurs. That is, the pixel edge portion may be set to a dimension that removes the light collecting path of the microlens.

以下、本発明のカラー固体撮像素子の製造方法について詳細に説明する。図5、6は本発明のカラー撮像素子の製造方法を示す各工程における断面図である。   Hereafter, the manufacturing method of the color solid-state image sensor of this invention is demonstrated in detail. 5 and 6 are cross-sectional views in each step showing the method for manufacturing a color image sensor of the present invention.

図5(a)は最表面にパッシベーション層が形成された複数の受光素子2を有する半導体基板1である。本実施例に用いた半導体基板において水平、垂直方向の画素ピッチは3.1μm、有効画素領域における最大段差は約1μm、受光素子開口幅は約0.8μmである。   FIG. 5A shows a semiconductor substrate 1 having a plurality of light receiving elements 2 having a passivation layer formed on the outermost surface. In the semiconductor substrate used in this embodiment, the pixel pitch in the horizontal and vertical directions is 3.1 μm, the maximum step in the effective pixel region is about 1 μm, and the opening width of the light receiving element is about 0.8 μm.

図5(b)はその半導体基板の表層に透明樹脂からなる第1の平坦化層3を形成する工程を示す。第1の平坦化層の形成方法としては、熱硬化剤あるいは光硬化剤を添加したアクリル樹脂などの透明樹脂液をスピンコート法により700〜3000rpmの回転数で塗膜形成した後、ホットプレートやクリーンオーブンで160〜240℃の範囲で熱硬化させる。透明樹脂が光硬化する場合には、熱処理の前にあるいはかわりに光硬化させても良い。   FIG. 5B shows a step of forming the first planarization layer 3 made of a transparent resin on the surface layer of the semiconductor substrate. As a method for forming the first planarizing layer, a transparent resin liquid such as an acrylic resin to which a thermosetting agent or a photocuring agent is added is formed by a spin coating method at a rotational speed of 700 to 3000 rpm, and then a hot plate or Heat cure in the range of 160-240 ° C. in a clean oven. When the transparent resin is photocured, it may be photocured before or instead of the heat treatment.

この第1の平坦化層により、半導体基板上の受光素子が並ぶ有効画素エリアにおける段差を平坦化させる。すなわち、第1の平坦化層の膜厚は画素底部より約1.5μmであり、上部より0.5μmである。   With this first planarization layer, the step in the effective pixel area where the light receiving elements on the semiconductor substrate are arranged is planarized. That is, the film thickness of the first planarization layer is about 1.5 μm from the bottom of the pixel and 0.5 μm from the top.

図5(c)はその第1の平坦化層上に各受光素子に対しその周囲を囲む様にフォトリソ法等でパターンを形成する工程を示す。第1の平坦化層上に額縁状のパターンを形成する方法としては、市販されているポジ型のレジスト(例えば東京応化製のAZ1350)をスピンコート法により2300rpmの回転数で塗膜形成し、ホットプレート上で70℃、1分の条件で仮乾燥させた後、ステッパーにより100mjの露光量により露光し、有機現像液にて約30secのパドル現像をした後、純水で約1分リンスしパターン形成させる。次いで、ホットプレートにより160〜240℃の範囲で熱硬化させる。   FIG. 5C shows a process of forming a pattern on the first flattening layer by photolithography so as to surround each light receiving element. As a method for forming a frame-like pattern on the first planarization layer, a commercially available positive resist (for example, AZ1350 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is formed at a rotational speed of 2300 rpm by spin coating, After temporary drying on a hot plate at 70 ° C. for 1 minute, exposure is performed with a stepper at an exposure amount of 100 mj, paddle development with an organic developer for about 30 seconds, and then rinse with pure water for about 1 minute. Form a pattern. Subsequently, it heat-sets in the range of 160-240 degreeC with a hotplate.

レジストパターン4の形状は、厚みが0.5μmであり、画素ピッチ3.1μmに対し、0.6μmの線幅とする。従って、額縁状パターンの開口幅は2.5μmである。   The resist pattern 4 has a thickness of 0.5 μm and a line width of 0.6 μm with respect to a pixel pitch of 3.1 μm. Therefore, the opening width of the frame pattern is 2.5 μm.

図5(d)はそのパターンをマスクとしてドライエッチング等(図中、矢印)でエッチングする工程を示す。図5(c)で形成した額縁状のパターンをマスクとし、ドライエッチングによりエッチングさせる。   FIG. 5D shows a process of etching by dry etching or the like (arrow in the figure) using the pattern as a mask. Etching is performed by dry etching using the frame-like pattern formed in FIG. 5C as a mask.

ドライエッチング装置は、平行平板型のものを用い、条件としては、CFとCの混合ガスを用いて、基板温度は常温、圧力1Pa、RF出力500W、バイアス50Wである。この条件で下地平坦層のエッチングレートは、約0.3μm/分となる。従って、約2分のドライエッチを実施することで、図5(b)で形成した第1の平坦化層の厚みを約0.6μmドライエッチさせて、平坦化層を凹状にエッチングし形成された格子状の側壁パターンを得る。得られた凹状の断面形状は画素中央部が約0.6μmであり、図5(c)で形成した額縁状パターンを転写した形状である。 The dry etching apparatus is a parallel plate type, and as conditions, a mixed gas of CF 4 and C 3 F 3 is used, the substrate temperature is normal temperature, the pressure is 1 Pa, the RF output is 500 W, and the bias is 50 W. Under this condition, the etching rate of the underlying flat layer is about 0.3 μm / min. Therefore, by performing dry etching for about 2 minutes, the thickness of the first planarization layer formed in FIG. 5B is dry-etched by about 0.6 μm, and the planarization layer is etched into a concave shape. A grid-like sidewall pattern is obtained. The obtained concave cross-sectional shape is about 0.6 μm at the center of the pixel, and is a shape obtained by transferring the frame-like pattern formed in FIG.

図6(e)はそのエッチング加工して形成した断面形状が凹状となしている半導体基板の表層に第1のカラーフィルターである。グリーンの色素画素5をフォトリソ法等でパターニングしグリーン画素を形成する工程を示す。グリーンレジストは、あらかじめ0.5μmのろ過精度のフィルターにてろ過したものを用いる。   FIG. 6E shows the first color filter on the surface layer of the semiconductor substrate having a concave cross-sectional shape formed by etching. A process of forming a green pixel by patterning the green dye pixel 5 by a photolithography method or the like is shown. As the green resist, one filtered in advance with a filter having a filtration accuracy of 0.5 μm is used.

グリーン画素を形成する方法としては、グリーンレジストをスピンコート法により1500rpmの回転数で塗膜形成し、ホットプレート上で70℃、1分の条件で仮乾燥させた後、ステッパーにより200mjの露光量により露光し、有機現像液にて約30secのスプレ−現像をした後、純水で約1分リンスさせることでパターン形成させる。   As a method for forming a green pixel, a green resist film is formed at a rotational speed of 1500 rpm by a spin coating method, temporarily dried on a hot plate at 70 ° C. for 1 minute, and then exposed to 200 mj by a stepper. Then, after performing spray development with an organic developer for about 30 seconds, a pattern is formed by rinsing with pure water for about 1 minute.

次いで、ホットプレートにより160〜240℃の範囲で熱硬化させる。グリーン画素の膜厚は画素中央部で約1μmであり、エッジ部で約0.4μmである。この時のフォーカスは0μmとしたが、±1.0μmのフォーカスマージンが得られた。   Subsequently, it heat-sets in the range of 160-240 degreeC with a hotplate. The film thickness of the green pixel is about 1 μm at the center of the pixel and about 0.4 μm at the edge. The focus at this time was 0 μm, but a focus margin of ± 1.0 μm was obtained.

図6(f)はグリーン同様にレッドの色素画素6をフォトリソ法等でパターニングし、レッド画素を形成する工程を示す。レッドレジストは、あらかじめ0.5μmのろ過精度のフィルターにてろ過したものを用いる。   FIG. 6F shows a process of forming red pixels by patterning the red dye pixels 6 by the photolithography method or the like as in the case of green. As the red resist, one filtered in advance with a filter having a filtration accuracy of 0.5 μm is used.

レッド画素の中央膜厚はグリーンと同じ1μmである。露光時のフォーカスマージンは±0.9μmであった。   The central film thickness of the red pixel is 1 μm, which is the same as that of green. The focus margin at the time of exposure was ± 0.9 μm.

図6(g)はグリーン、レッド同様にブルーをフォトリソ法等でパターニングし、ブルーの色素画素7を形成する工程を示す。   FIG. 6G shows a process of forming blue dye pixels 7 by patterning blue by the photolithographic method or the like like green and red.

ブルーレジストは、あらかじめ0.5μmのろ過精度のフィルターにてろ過したものを用いる。ブルー画素の中央膜厚はグリーンと同じ1μmである。   A blue resist that has been filtered in advance with a filter having a filtration accuracy of 0.5 μm is used. The central film thickness of the blue pixel is 1 μm, the same as that of green.

図6(h)はカラーフィルターの表層に第2の平坦化層8を形成する工程を示す。   FIG. 6H shows a process of forming the second planarization layer 8 on the surface layer of the color filter.

第2の平坦化層の形成方法は、図5(b)の第1の平坦化層の形成方法と同様に塗布、硬化処理を含む工程である。また、平坦化層の厚みは0.3μmである。   The method for forming the second planarizing layer is a process including coating and curing processes, similar to the method for forming the first planarizing layer in FIG. The planarization layer has a thickness of 0.3 μm.

図6(i)はその平坦化層上にマイクロレンズを各受光素子に対して形成する工程を示す。マイクロレンズの形成方法としては、図6(h)の平坦化層上にポジ型レジスト(例えば東京応化製のTMR−P3)を例えば1500rpmの条件で塗布し、ホットプレート上で70℃、1分の条件で仮乾燥させた後、ステッパーにより300mjの露光量により露光し、有機現像液にて約40secのパドル現像をした後、純水で約1分リンスさせることでパターン形成させる。   FIG. 6I shows a process of forming a microlens for each light receiving element on the planarizing layer. As a method for forming the microlens, a positive resist (for example, TMR-P3 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied on the planarizing layer of FIG. After temporary drying under the above conditions, exposure is performed with an exposure amount of 300 mj by a stepper, paddle development is performed with an organic developer for about 40 seconds, and then pattern formation is performed by rinsing with pure water for about 1 minute.

次いで、ホットプレートにより100〜240℃の範囲で熱硬化させるが、その際に表面張力を利用しレンズ形状を得る。   Next, heat curing is performed in a range of 100 to 240 ° C. with a hot plate, and a lens shape is obtained by utilizing surface tension at that time.

以上の様に本発明のカラー固体撮像素子及びその製造方法によれば、露光時のフォーカスマージンを広く設定でき、また、高解像でビリツキがなく、画素剥がれが無いカラーフィルターを得ることができる。さらに、カラーフィルターの膜厚を、例えば0.9μm以上に設定できるので、カラ−レジストの精密ろ過におけるろ過性が大幅に向上し、生産性に優れる。更に、レンズ下距離縮小による撮像素子特性向上につながる。   As described above, according to the color solid-state imaging device and the manufacturing method thereof of the present invention, it is possible to set a wide focus margin at the time of exposure, and to obtain a color filter that has high resolution, no flickering, and no pixel peeling. . Furthermore, since the film thickness of the color filter can be set to, for example, 0.9 μm or more, the filterability in color filter microfiltration is greatly improved and the productivity is excellent. Furthermore, it leads to an improvement in the characteristics of the image pickup device by reducing the distance below the lens.

本発明に係わる固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor concerning this invention. 本発明に係わる固体撮像素子の部分断面図である。It is a fragmentary sectional view of the solid-state image sensing device concerning the present invention. 本発明に係わる固体撮像素子の平面図である。It is a top view of the solid-state image sensing device concerning the present invention. 標準分光特性を示すグラフ図である。It is a graph which shows a standard spectral characteristic. 本発明に係わる固体撮像素子の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the solid-state image sensor concerning this invention. 本発明に係わる固体撮像素子の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the solid-state image sensor concerning this invention. 従来の固体撮像素子の断面図である。It is sectional drawing of the conventional solid-state image sensor. 従来の固体撮像素子の部分断面図である。It is a fragmentary sectional view of the conventional solid-state image sensor.

符号の説明Explanation of symbols

1 半導体基板
2 受光素子
3 第一の平坦化層
4 レジストパターン
5 グリーンの色素画素
6 レッドの色素画素
7 ブルーの色素画素
8 第二の平坦化層
9 マイクロレンズ
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Light receiving element 3 First planarization layer 4 Resist pattern 5 Green pigment pixel 6 Red pigment pixel 7 Blue pigment pixel 8 Second planarization layer 9 Microlens

Claims (3)

複数の受光素子を有する半導体基板の表面に、受光素子の凹凸を埋める平坦化層と、平坦化層上に受光素子と一対に複数色の色素画素からなるカラーフィルター層及び受光素子に集光するマイクロレンズを形成したカラー固体撮像素子において、
前記平坦化層が受光素子と一対に対応する凹状を有し、その凹状を埋めこむ様にカラーフィルター層を配設したことを特徴とするカラー固体撮像素子。
A flattening layer that fills the unevenness of the light receiving element on the surface of the semiconductor substrate having a plurality of light receiving elements, and a color filter layer composed of a plurality of dye pixels paired with the light receiving element on the flattening layer and the light receiving element are condensed. In a color solid-state imaging device formed with a microlens,
A color solid-state imaging device, wherein the planarizing layer has a concave shape corresponding to a pair with the light receiving device, and a color filter layer is disposed so as to fill the concave shape.
前記色素画素の断面形状が逆凸状であり、色素画素の中央部の膜厚がエッジ部より厚いことを特徴とする請求項1に記載のカラー固体撮像素子。   2. The color solid-state imaging device according to claim 1, wherein a cross-sectional shape of the dye pixel is reverse convex, and a film thickness of a central portion of the dye pixel is thicker than an edge portion. 複数の受光素子を有する半導体基板の表面に、受光素子の凹凸を埋める平坦化層と、平坦化層上に受光素子と一対に複数色の色素画素からなるカラーフィルター層及び受光素子に集光するマイクロレンズを形成したカラー固体撮像素子の製造方法において、
前記平坦化層を前記複数の受光素子に対応する部分を凹状になるようにエッチングする工程を有することを特徴とするカラー固体撮像素子の製造方法。
A flattening layer that fills the unevenness of the light receiving element on the surface of the semiconductor substrate having a plurality of light receiving elements, and a color filter layer composed of a plurality of dye pixels paired with the light receiving element on the flattening layer and the light receiving element are condensed. In the manufacturing method of the color solid-state imaging device in which the microlens is formed,
A method of manufacturing a color solid-state imaging device, comprising: etching the flattening layer so that portions corresponding to the plurality of light receiving elements become concave.
JP2003353298A 2003-10-14 2003-10-14 Color solid-state imaging device and manufacturing method thereof Expired - Fee Related JP4367078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353298A JP4367078B2 (en) 2003-10-14 2003-10-14 Color solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353298A JP4367078B2 (en) 2003-10-14 2003-10-14 Color solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005123225A true JP2005123225A (en) 2005-05-12
JP4367078B2 JP4367078B2 (en) 2009-11-18

Family

ID=34611620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353298A Expired - Fee Related JP4367078B2 (en) 2003-10-14 2003-10-14 Color solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4367078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777794B2 (en) 2005-11-10 2010-08-17 Panasonic Corporation Solid-state imaging device and method of manufacturing the same
US7800716B2 (en) 2007-07-03 2010-09-21 Sharp Kabushiki Kaisha Solid-state image capturing device, manufacturing method for the solid-state image capturing device, color filter and forming method for the color filter, liquid crystal display apparatus, and electronic information device
KR20190132811A (en) * 2018-05-21 2019-11-29 (주)유니젯 Manufacturing method of multilayered board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777794B2 (en) 2005-11-10 2010-08-17 Panasonic Corporation Solid-state imaging device and method of manufacturing the same
US7800716B2 (en) 2007-07-03 2010-09-21 Sharp Kabushiki Kaisha Solid-state image capturing device, manufacturing method for the solid-state image capturing device, color filter and forming method for the color filter, liquid crystal display apparatus, and electronic information device
KR20190132811A (en) * 2018-05-21 2019-11-29 (주)유니젯 Manufacturing method of multilayered board
KR102167540B1 (en) * 2018-05-21 2020-10-20 (주)유니젯 Manufacturing method of multilayered board

Also Published As

Publication number Publication date
JP4367078B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4822683B2 (en) Solid-state imaging device and manufacturing method thereof
JP4598680B2 (en) Solid-state imaging device and camera
JP4857569B2 (en) Solid-state imaging device and manufacturing method thereof
WO2013121742A1 (en) Image pickup element
US20060292731A1 (en) CMOS image sensor and manufacturing method thereof
JP4447988B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
KR100720509B1 (en) Image Sensor and Method for Manufacturing the Same
JP4984400B2 (en) Solid-state imaging device and manufacturing method thereof
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
EP3565000B1 (en) Solid-state imaging element and method for manufacturing same
US20050045805A1 (en) Solid-state image sensor and a manufacturing method thereof
JP4181487B2 (en) Solid-state imaging device and manufacturing method thereof
JP5564751B2 (en) Manufacturing method of image sensor
JP2009198547A (en) Manufacturing method for microlens for solid imaging element, and microlens for solid imaging element
JP4367078B2 (en) Color solid-state imaging device and manufacturing method thereof
JP4595405B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009152315A (en) Image sensor and its manufacturing method
JP2016219703A (en) Solid-state imaging element and method for manufacturing solid-state imaging element
JP4765376B2 (en) Method for manufacturing color filter, method for manufacturing solid-state imaging device
JP2011165791A (en) Solid-state imaging element, and method of manufacturing the same
JP2011165923A (en) Color solid-state imaging element, and method of manufacturing the same
JP2007199386A (en) Color filter, manufacturing method therefor, solid-state imaging element using the same and manufacturing method therefor
JP6536005B2 (en) Method of manufacturing color filter and color filter
KR20060078059A (en) Micro lens of image sensor and method for forming the same
JP4272392B2 (en) Solid-state imaging device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4367078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees