JP2011165923A - Color solid-state imaging element, and method of manufacturing the same - Google Patents

Color solid-state imaging element, and method of manufacturing the same Download PDF

Info

Publication number
JP2011165923A
JP2011165923A JP2010027454A JP2010027454A JP2011165923A JP 2011165923 A JP2011165923 A JP 2011165923A JP 2010027454 A JP2010027454 A JP 2010027454A JP 2010027454 A JP2010027454 A JP 2010027454A JP 2011165923 A JP2011165923 A JP 2011165923A
Authority
JP
Japan
Prior art keywords
color
layer
pixel
state imaging
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010027454A
Other languages
Japanese (ja)
Inventor
Tomohito Kitamura
智史 北村
Takatsugu Tomita
卓嗣 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010027454A priority Critical patent/JP2011165923A/en
Publication of JP2011165923A publication Critical patent/JP2011165923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color solid-state imaging element that has a pixel portion where a plurality of photoelectric conversion elements are arranged on a plane in a recess region on a semiconductor substrate, the color solid-state imaging element being characterized in securing a wide normal film formation region free of a quality defect such as frame color unevenness, peeling, etc., of a color filter colored layer, having excellent color characteristics, and being made fine. <P>SOLUTION: The solid-state imaging element with an on-chip color filter is constituted by stacking a first flattening layer, the color filter colored layer including green pixels, blue pixels and red pixels such that the colored pixels are arranged on a plane corresponding to the respective photoelectric conversion elements, a second flattening layer, and microlenses in this order on a solid-state imaging element substrate having the pixel portion where the plurality of photoelectric conversion elements are arranged on the plane, the first flattening layer being a yellow layer selectively formed in a region including regions where the green pixels and red pixels are formed in the color filter colored layer and excluding a region where the blue pixels are formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、CCDやCMOS等の光電変換素子を有するカラー固体撮像素子とその製造方法に関する。   The present invention relates to a color solid-state imaging device having a photoelectric conversion device such as a CCD or CMOS, and a manufacturing method thereof.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of image pickup devices have been proposed. An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。   The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image.

また、光電変換素子に入射する光の経路に特定の波長の光を透過する各種のカラーフィルタを設けることで、対象物の色情報を得ることを可能とした単板式のカラーセンサーとしてのカラー固体撮像素子も普及している。カラーフィルタの色としては、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的であり、特に3原色系が多く使われている。   In addition, a color solid as a single-plate color sensor that can obtain color information of an object by providing various color filters that transmit light of a specific wavelength in the path of light incident on the photoelectric conversion element. Imaging devices are also widespread. As the color of the color filter, three primary colors consisting of three colors of red (R), blue (B), and green (G), or cyan (C), magenta (M), and yellow (Y) are used. Complementary color systems are generally used, and in particular, the three primary color systems are often used.

カラーフィルタは、フォトリソグラフィ法を用いて形成することが主流となっている。すなわち、基板上に所定の色の感光性着色樹脂を塗布した後、所定のパターンを有する露光用フォトマスクを介して感光性着色樹脂にパターン露光、現像を行い、所定の部位に着色樹脂からなるカラーフィルタを形成する。また、基板上への感光性着色樹脂の塗布としては、回転塗布法を用いることが多い。すなわち、基板上に感光性着色樹脂を滴下した後、基板を回転することで滴下した感光性着色樹脂を基板上に塗り広げる方法である。   The color filter is mainly formed using a photolithography method. That is, after applying a photosensitive colored resin of a predetermined color on a substrate, pattern exposure and development are performed on the photosensitive colored resin through an exposure photomask having a predetermined pattern, and the predetermined portion is made of a colored resin. A color filter is formed. In addition, spin coating is often used as the application of the photosensitive colored resin on the substrate. In other words, after the photosensitive colored resin is dropped on the substrate, the dropped photosensitive colored resin is spread on the substrate by rotating the substrate.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。小型化した固体撮像素子で撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を微細化した場合、各光電変換素子の面積が小さくなり、受光部として利用できる面積割合も減るので、光を取り込む面積が小さくなるため、光電変換素子の受光部に取り込める光の量が少なくなり、実効的な感度は低下する。   One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of an image photographed with a miniaturized solid-state imaging device, it is necessary to miniaturize and highly integrate a photoelectric conversion device serving as a light receiving unit. However, when the photoelectric conversion element is miniaturized, the area of each photoelectric conversion element is reduced, and the area ratio that can be used as the light receiving unit is also reduced. And the effective sensitivity decreases.

このような、微細化した固体撮像素子の感度の低下を防止するための手段として、光電変換素子の受光部に効率良く光を取り込むために、対象物から入射される光を集光して光電変換素子の受光部に導くマイクロレンズを光電変換素子上に形成する技術が提案されている。マイクロレンズで光を集光して光電変換素子の受光部に導くことで、受光部の見かけ上の開口率(面積)を大きくすることが可能になり、固体撮像素子の感度の向上が可能になる。また、マイクロレンズと光電変換素子の受光部との距離を短くして、光の取り込み角度を大きくすることで更なる高感度化を図る技術も提案されている(特許文献1参照)。   As a means for preventing such a decrease in sensitivity of the miniaturized solid-state imaging device, in order to efficiently capture light into the light receiving portion of the photoelectric conversion device, the light incident from the object is condensed and photoelectrically A technique has been proposed in which a microlens that leads to a light receiving portion of a conversion element is formed on the photoelectric conversion element. By condensing the light with a microlens and guiding it to the light receiving part of the photoelectric conversion element, it becomes possible to increase the apparent aperture ratio (area) of the light receiving part and improve the sensitivity of the solid-state image sensor Become. In addition, a technique for further increasing sensitivity by shortening the distance between the microlens and the light receiving portion of the photoelectric conversion element and increasing the light capturing angle has been proposed (see Patent Document 1).

特開2008−270500号公報JP 2008-270500 A

上述のように、マイクロレンズと光電変換素子の受光部との距離を短くして、光の取り込み角度を大きくすることで高感度化を図ることは可能である。図2は、第1色目のカラーフィルタ11まで形成した従来のカラー固体撮像素子の主要部について説明するための部分断面模式図である。多層配線が設けられていない画素部Aの上部を掘り込んでおり、基板2の画素部Aにおける厚さをその周囲の多層配線部Bより薄くしている。これにより、光電変換素子3とその上方に第1色目のカラーフィルタ11や他色のカラーフィルタを介して画素部Aの上方に形成することになるマイクロレンズとの距離を短くできる。ここで、多層配線部Bには、複数の配線層4が各配線層間の層間絶縁膜5を介して積層配置されている。また、カラーフィルタは、画素部Aを越えて基板の外周周辺にも形成される。   As described above, it is possible to increase the sensitivity by shortening the distance between the microlens and the light receiving portion of the photoelectric conversion element and increasing the light capturing angle. FIG. 2 is a partial cross-sectional schematic diagram for explaining the main part of a conventional color solid-state imaging device formed up to the first color filter 11. The upper part of the pixel part A where the multilayer wiring is not provided is dug out, and the thickness of the pixel part A of the substrate 2 is made thinner than the surrounding multilayer wiring part B. Thereby, the distance between the photoelectric conversion element 3 and the microlens to be formed above the pixel portion A via the first color filter 11 and other color filters can be shortened. Here, in the multilayer wiring portion B, a plurality of wiring layers 4 are laminated and disposed via an interlayer insulating film 5 between the wiring layers. The color filter is also formed around the outer periphery of the substrate beyond the pixel portion A.

然るに、表面位置の低い画素部表面と表面位置の高い多層配線部上面との境界付近には段差が生じるため、マイクロレンズの形成に先立ってカラーフィルタを画素部に形成する際に、図5に示すように、段差近傍のカラーフィルタ層の厚さが部分的に画素部の中央付近より厚くなる傾向があり、かかる傾向は、回転塗布法を用いた場合に顕著となる。これは、カラーフィルタを構成する着色樹脂の塗布工程で段差部に液溜まりができるためである。図2において、段差近傍のカラーフィルタ層の厚さが部分的に厚くなる領域である段差部Cは、画素部Aと重なる領域を生じ、カラーフィルタが均一厚さに形成される部分は、段差部Cより内側の画素部Aの中でも基板の外周から離れた基板の中央寄りの部分に限定される。   However, since there is a step near the boundary between the surface of the pixel portion having a low surface position and the upper surface of the multilayer wiring portion having a high surface position, when forming a color filter in the pixel portion prior to the formation of the microlens, FIG. As shown, the thickness of the color filter layer near the step tends to be partially thicker than the center of the pixel portion, and this tendency becomes remarkable when the spin coating method is used. This is because a liquid pool is formed in the stepped portion in the coating process of the colored resin constituting the color filter. In FIG. 2, a stepped portion C, which is a region where the thickness of the color filter layer in the vicinity of the step is partially thick, generates a region overlapping with the pixel portion A, and a portion where the color filter is formed with a uniform thickness is a stepped portion. The pixel portion A inside the portion C is limited to a portion near the center of the substrate far from the outer periphery of the substrate.

固体撮像素子1の画素部Aの周辺部である段差部Cの近傍に形成されたカラーフィルタ着色層の厚さが、均一厚さの画素部Aの中央部と較べて部分的に厚くなることにより、段差部近傍のカラーフィルタと、中央部のカラーフィルタとの光の透過率の変化がムラとなって現れ、固体撮像素子1の品質不良となる「枠色ムラ」を引き起こす。また、光硬化タイプの着色樹脂を用いて、フォトリソグラフィー法でカラーフィルタのパターンを形成する一般的な製法では、着色層の局部的に厚い部分は他の部分に較べて主要な露光スペクトルであるi線(波長365nm)の透過光量が減少して硬化度が不足する上、膜内部のストレスも大きくなるので、段差直下部分を含めた段差部Cでカラーフィルタパターンの剥がれを生じ易い。また、着色層の局部的に厚い部分をベタ膜として形成することにより、段差部Cでの剥がれを防ぐことはできるが、画素部Aの中でカラーフィルタ着色層が均一厚さとなる有効画素領域が狭まる問題は依然として残る。   The thickness of the color filter coloring layer formed in the vicinity of the stepped portion C that is the peripheral portion of the pixel portion A of the solid-state imaging device 1 is partially thicker than the central portion of the pixel portion A having a uniform thickness. As a result, the change in light transmittance between the color filter in the vicinity of the stepped portion and the color filter in the central portion appears as unevenness, which causes “frame color unevenness” that results in poor quality of the solid-state imaging device 1. Further, in a general manufacturing method in which a color filter pattern is formed by a photolithographic method using a photo-curing type colored resin, a locally thick portion of the colored layer is a main exposure spectrum compared to other portions. Since the amount of transmitted light of i-line (wavelength 365 nm) decreases and the degree of curing becomes insufficient, and the stress inside the film also increases, the color filter pattern easily peels off at the stepped portion C including the portion immediately below the stepped portion. Further, by forming a locally thick portion of the colored layer as a solid film, peeling at the stepped portion C can be prevented, but the effective pixel region in which the color filter colored layer has a uniform thickness in the pixel portion A The problem of narrowing remains.

また、カラーフィルタ着色層の厚さは、構成材料に固有の色度や明度に応じて、必要とする色特性を満足させるように膜厚を設定すればよい。しかし、微細化した固体撮像素子の場合は、着色画素の色特性を満足させるために充分な膜厚とした場合、パターン形成される着色画素の膜厚/画素サイズの比が大きくなり、製造上の困難を伴うので、やむを得ず膜厚を制限して不充分な色特性で妥協する場合もある。   Further, the thickness of the color filter coloring layer may be set so as to satisfy the required color characteristics according to the chromaticity and lightness specific to the constituent material. However, in the case of a miniaturized solid-state imaging device, if the film thickness is sufficient to satisfy the color characteristics of the colored pixels, the ratio of the thickness / pixel size of the colored pixels to be patterned increases, In some cases, it is unavoidable that the film thickness is inevitably limited and compromised with insufficient color characteristics.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、半導体基板上の凹部領域に複数の光電変換素子を平面配置した画素部を有するカラー固体撮像素子において、カラーフィルタ着色層の枠色ムラや剥がれ等の品質不良の生じない正常な膜形成領域を広く確保するとともに、良好な色特性を有する微細化したカラー固体撮像素子を提供することである。   The present invention is proposed in view of the above problems, and the problem to be solved by the present invention is to provide a color solid-state imaging having a pixel portion in which a plurality of photoelectric conversion elements are arranged in a plane in a recessed area on a semiconductor substrate. An element is to provide a fine color solid-state imaging device having a good color characteristic while ensuring a wide normal film forming region in which quality defects such as frame color unevenness and peeling of a color filter coloring layer do not occur. .

上記の課題を解決するための手段として、請求項1に記載の発明は、半導体基板上の凹部領域に複数の光電変換素子を平面配置した画素部を有する固体撮像素子基板上に、第1の平坦化層、各光電変換素子に対応して着色画素が平面配置された緑色画素、青色画素、および赤色画素を含むカラーフィルタ着色層、第2の平坦化層、マイクロレンズ、がこの順に積層されたオンチップカラーフィルタ付き固体撮像素子において、第1の平坦化層が、カラーフィルタ着色層の中の緑色画素および赤色画素が形成される領域を含み、青色画素が形成される領域を除く領域に選択的に形成される黄色層であることを特徴とするカラー固体撮像素子である。   As a means for solving the above-mentioned problem, the invention according to claim 1 is characterized in that a first image pickup element substrate having a pixel portion in which a plurality of photoelectric conversion elements are arranged in a recessed area on a semiconductor substrate A flattened layer, a color filter colored layer including a green pixel, a blue pixel, and a red pixel in which colored pixels are arranged in a plane corresponding to each photoelectric conversion element, a second flattened layer, and a microlens are stacked in this order. In the solid-state imaging device with an on-chip color filter, the first planarization layer includes a region in which the green pixel and the red pixel are formed in the color filter coloring layer, and a region excluding the region in which the blue pixel is formed. A color solid-state imaging device, which is a yellow layer selectively formed.

また、請求項2に記載の発明は、前記第1の平坦化層である黄色層が、カラーインデックスPY139の顔料を主成分とする着色組成物からなることを特徴とする請求項1に記載のカラー固体撮像素子である。   The invention according to claim 2 is characterized in that the yellow layer which is the first flattening layer is made of a coloring composition mainly composed of a pigment having a color index PY139. This is a color solid-state imaging device.

また、請求項3に記載の発明は、前記第1の平坦化層を形成する工程、カラーフィルタ着色層を形成する工程、第2の平坦化層を形成する工程、マイクロレンズを形成する工程、をこの順に行うカラー固体撮像素子の製造方法において、第1の平坦化層を形成する際に外部接続端子上に第1の平坦化層を形成し、マイクロレンズを形成後に外部接続端子上の第1の平坦化層をドライエッチングで除去することを特徴とする請求項1または2に記載のカラー固体撮像素子の製造方法である。   The invention according to claim 3 is a step of forming the first planarization layer, a step of forming a color filter coloring layer, a step of forming a second planarization layer, a step of forming a microlens, In the manufacturing method of the color solid-state imaging device in which the first flattening layer is formed, the first flattening layer is formed on the external connection terminal when the first flattening layer is formed, and the microlens is formed and then the first flattening layer on the external connection terminal is formed. 3. The method for manufacturing a color solid-state imaging device according to claim 1, wherein the planarizing layer is removed by dry etching.

本発明によるカラー固体撮像素子は、複数の光電変換素子を平面配置した画素部を有する半導体基板上の凹部領域にカラーフィルタ着色層を形成するに先立って、第1の平坦化層を青色画素形成領域を除く領域に黄色層で選択的に設けることにより、カラーフィルタ着色層の枠色ムラや剥がれ等の品質不良の生じない正常な膜形成領域を広く確保するとともに、良好な色特性を有する微細化したカラー固体撮像素子を提供できる。   In the color solid-state imaging device according to the present invention, the first planarization layer is formed as a blue pixel prior to forming the color filter coloring layer in the recessed region on the semiconductor substrate having the pixel portion in which a plurality of photoelectric conversion elements are arranged in a plane. By selectively providing a yellow layer in a region other than the region, a fine film formation region with good color characteristics is secured while ensuring a wide normal film formation region in which quality defects such as frame color unevenness and peeling of the color filter coloring layer do not occur. A color solid-state imaging device can be provided.

本発明のカラー固体撮像素子の構成の一例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an example of a structure of the color solid-state image sensor of this invention. 従来のカラー固体撮像素子の構成を工程途中の主要部について説明するための部分断面模式図である。It is a partial cross-sectional schematic diagram for demonstrating the structure of the conventional color solid-state image sensor about the principal part in the middle of a process. 本発明のカラー固体撮像素子の製造方法を主要工程について説明するための断面模式図であって、(a)は、第1の平坦化層を形成するまで、(b)は、マイクロレンズを形成するまで、の一例を示す。It is a cross-sectional schematic diagram for demonstrating the manufacturing process of the color solid-state image sensor of this invention about a main process, Comprising: (a) forms a 1st planarization layer, (b) forms a micro lens. Until then, an example is shown. 本発明のカラー固体撮像素子におけるカラーフィルタ各色の平面配列の一例を説明するための部分平面模式図である。It is a partial plane schematic diagram for demonstrating an example of the plane arrangement | sequence of each color filter color in the color solid-state image sensor of this invention. 従来の塗布工程における着色樹脂の塗布状態を示す簡略化した部分断面模式図である。It is the simplified partial cross-section schematic diagram which shows the application | coating state of colored resin in the conventional application | coating process.

以下、図面に従って、本発明を実施するための形態を説明する。
図1は、本発明のカラー固体撮像素子の構成の一例をウェハ状態で説明するための断面模式図である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view for explaining an example of the configuration of the color solid-state imaging device of the present invention in a wafer state.

半導体基板2上に、約1〜2μmの深さに掘り込んで形成された凹部領域に複数の光電変換素子を平面配置した画素部Aが形成されている。また、画素部の外周周辺にあって画素部と電気的に接続する複数の配線層を積層配置した多層配線部Bと、外部接続端子15
を配置した接続端子部Dと、からなる1チップ内領域Zが一つの固体撮像素子1に相当し、前記1チップ内領域Zを、隣接して形成されたチップから断裁するためのスクライブラインを形成するスクライブ部Eが形成されており、スクライブ部Eにて断裁を行うことで個々のチップが得られる。すなわち、一枚のウェハに複数のチップを面付けすることで、ウェハとしての一括処理にて複数のチップを一度に形成することが可能になる。
On the semiconductor substrate 2, a pixel portion A is formed in which a plurality of photoelectric conversion elements are arranged in a plane in a recessed region formed by digging to a depth of about 1 to 2 μm. In addition, a multilayer wiring portion B around the outer periphery of the pixel portion, in which a plurality of wiring layers electrically connected to the pixel portion are stacked, and an external connection terminal 15
A one-chip area Z consisting of a connection terminal portion D in which one of the two is disposed corresponds to one solid-state image sensor 1, and a scribe line for cutting the one-chip area Z from adjacent chips is provided. The scribe part E to be formed is formed, and by cutting at the scribe part E, individual chips are obtained. That is, by imposing a plurality of chips on a single wafer, it is possible to form a plurality of chips at once by batch processing as a wafer.

本発明のカラー固体撮像素子1は、前記画素部Aを有する基板2上に、第1の平坦化層6と、各光電変換素子に対応して着色画素が平面配置された緑色画素16、青色画素17、および赤色画素18を含むカラーフィルタ着色層と、第2の平坦化層7と、マイクロレンズ8と、がこの順に積層されたオンチップカラーフィルタ付き固体撮像素子である。第1の平坦化層6が、カラーフィルタ着色層の中の緑色画素16および赤色画素18が形成される領域を含み、青色画素17が形成される領域を除く領域に選択的に形成される黄色層を有する。   The color solid-state imaging device 1 according to the present invention includes a first flattening layer 6 and a green pixel 16 in which colored pixels are arranged in a plane corresponding to each photoelectric conversion element on a substrate 2 having the pixel portion A, blue This is a solid-state imaging device with an on-chip color filter in which a color filter coloring layer including the pixel 17 and the red pixel 18, the second planarization layer 7, and the microlens 8 are stacked in this order. The first planarizing layer 6 includes a region in which the green pixel 16 and the red pixel 18 are formed in the color filter coloring layer, and is selectively formed in a region excluding the region in which the blue pixel 17 is formed. Has a layer.

前述のように、画素部Aの領域での基板2の厚さをその周囲の多層配線部Bの領域より薄くすることにより、光電変換素子とその上方に第1の平坦化層とカラーフィルタ着色層と第2の平坦化層とを介して形成することになるマイクロレンズとの距離を短くできるので、高感度のカラー固体撮像素子とすることができる。   As described above, the thickness of the substrate 2 in the region of the pixel portion A is made thinner than that of the surrounding multilayer wiring portion B, thereby coloring the photoelectric conversion element and the first planarizing layer and the color filter above it. Since the distance between the layer and the microlens to be formed via the second planarization layer can be shortened, a highly sensitive color solid-state imaging device can be obtained.

固体撮像素子1は、前記複数の光電変換素子3を平面配置した画素部Aを予め形成して有する半導体基板2上に、前記複数の配線層4を各配線層間の層間絶縁膜5を介して積層配置した多層配線部Bを形成する。上記多層配線部形成工程は、画素部と多層配線部との境界付近に段差を形成する段差形成工程とともに、従来と同様に、フォトリソグラフィー法または印刷法に適宜エッチング法等の加工手段を加えるなど、一般的な方法を用いて可能であり、詳細な説明は省略する。   In the solid-state imaging device 1, the plurality of wiring layers 4 are disposed on a semiconductor substrate 2 having a pixel portion A in which the plurality of photoelectric conversion elements 3 are arranged in advance via an interlayer insulating film 5 between the wiring layers. A multilayer wiring portion B is formed in a stacked arrangement. In the multilayer wiring part forming step, a processing step such as an etching method is appropriately added to the photolithography method or the printing method as well as the conventional step forming step for forming a step near the boundary between the pixel portion and the multilayer wiring portion. It is possible to use a general method, and detailed description is omitted.

画素部Aの受光面側表面に複数色のカラーフィルタを色別の着色画素で順次平面配置してカラーフィルタ着色層を設ける。すなわち、本例では、緑色画素16、青色画素17、赤色画素18、をフォトリソグラフィー法により設けるが、本発明では、それに先立って、第1の平坦化層6をフォトリソグラフィー法により形成する。第1の平坦化層6は、0.2μm程度の適当な膜厚に塗布形成することによって、従来の図2に示した段差部Cでのカラーフィルタ着色層が局部的に厚くなる部分を回避することができる。また、多層配線から外部に電気的接続をするための接続端子部Dや、複数の固体撮像素子を一括形成したウェハデバイスから個別のチップを分離するためのスクライブラインを有するスクライブ部Eなどで、選択的に除去したい箇所が後工程で発生するものの、一旦、第1の平坦化層6を、ウェハデバイス上に広く形成することにより、工程途中の平坦化および表面保護の機能を積極的に活かすこともできる。   A color filter coloring layer is provided by sequentially arranging a plurality of color filters on a surface of the light receiving surface of the pixel portion A in order by colored pixels for each color. That is, in this example, the green pixel 16, the blue pixel 17, and the red pixel 18 are provided by a photolithography method. In the present invention, prior to this, the first planarization layer 6 is formed by a photolithography method. The first planarizing layer 6 is coated and formed to have an appropriate film thickness of about 0.2 μm, thereby avoiding a portion where the color filter coloring layer at the stepped portion C shown in FIG. can do. In addition, in the connection terminal portion D for electrical connection from the multilayer wiring to the outside, the scribe portion E having a scribe line for separating individual chips from a wafer device in which a plurality of solid-state imaging elements are collectively formed, etc. Although a portion to be selectively removed occurs in a later process, once the first planarization layer 6 is formed widely on the wafer device, the functions of planarization and surface protection during the process are actively utilized. You can also.

本発明は、第1の平坦化層6に黄色の着色樹脂を用いた黄色層を用いることにより、緑色画素16や赤色画素18に共通の色成分として本来含まれる予定の黄色成分を分離して構成することができる。すなわち、黄色層は、略400〜450nmの波長領域の光の透過率を低減させる色特性を有しているので、黄色層の所定の部位に各々緑色層や赤色層を重ねることで積層部の色特性を所望する色特性に向上させるとともに、従来の緑色層や赤色層に含まれる黄色成分を減らして用いることができる。但し、青色画素17には黄色成分を元来含まないので、青色画素17が形成される領域には、黄色層を用いた第1の平坦化層6を形成しない。なお、前記黄色成分を与える材料としては、一般に染料より耐性の優れた顔料を用いることが望ましく、カラーフィルタ着色層としての緑色、青色、赤色の材料についても同様である。   In the present invention, a yellow layer using a yellow colored resin is used for the first planarizing layer 6 to separate a yellow component that is originally included as a common color component in the green pixel 16 and the red pixel 18. Can be configured. That is, since the yellow layer has color characteristics that reduce the transmittance of light in the wavelength region of approximately 400 to 450 nm, the green layer and the red layer are superimposed on the predetermined portion of the yellow layer, respectively, so that While improving a color characteristic to the desired color characteristic, it can reduce and use the yellow component contained in the conventional green layer and red layer. However, since the blue pixel 17 originally does not contain a yellow component, the first planarization layer 6 using the yellow layer is not formed in the region where the blue pixel 17 is formed. In general, it is desirable to use a pigment having a higher resistance than a dye as a material for giving the yellow component, and the same applies to green, blue, and red materials as a color filter coloring layer.

黄色層を用いた第1の平坦化層6は、前記カラーフィルタ着色層に用いる緑色画素16
、青色画素17、赤色画素18、と同系統の樹脂に黄色顔料を分散して塗布材料とすることができるので、相互の密着性を良く保ち、高い信頼性を維持することができる。また、緑色画素16と赤色画素18を形成するための塗布材料からは、共通の黄色成分を減らして用いることができるので、一定の色特性を得るための緑色画素16と赤色画素18の必要とする膜厚は、第1の平坦化層6に黄色層を用いない場合に較べて薄くすることができ、解像性や密着性の向上にもつながる。さらに、共通の黄色成分を大きく減らした緑色画素や赤色画素を形成する際の材料管理やフォトリソプロセス条件は、従来より許容幅が拡大するので、より容易に製造でき、好ましい。
The first planarization layer 6 using the yellow layer is a green pixel 16 used for the color filter coloring layer.
In addition, since the yellow pigment can be dispersed in a resin of the same system as that of the blue pixel 17 and the red pixel 18 to form a coating material, the mutual adhesion can be maintained well and high reliability can be maintained. Further, since the common yellow component can be reduced and used from the coating material for forming the green pixel 16 and the red pixel 18, the necessity of the green pixel 16 and the red pixel 18 for obtaining a certain color characteristic is required. The film thickness to be reduced can be made thinner than in the case where no yellow layer is used for the first planarizing layer 6, which leads to improvement in resolution and adhesion. Furthermore, the material management and photolithography process conditions for forming green pixels and red pixels in which the common yellow component is greatly reduced are preferable because they can be manufactured more easily because the allowable range is expanded.

第1の平坦化層6に用いた黄色層に含まれる黄色顔料は、平坦化層としての適正な膜厚を保持した黄色層において、上層を形成する緑色画素16中の緑色顔料や赤色画素18中の赤色顔料と合わせた色特性を最適化すればよい。従って、緑色画素や赤色画素の各層の顔料の色特性と膜厚と顔料比率を考慮して、黄色層の黄色顔料の種類をその膜厚と顔料比率も考慮して選択することができる。   The yellow pigment contained in the yellow layer used for the first planarization layer 6 is a green pigment or red pixel 18 in the green pixel 16 that forms the upper layer in the yellow layer that maintains an appropriate film thickness as the planarization layer. What is necessary is just to optimize the color characteristic combined with the red pigment in the inside. Accordingly, in consideration of the color characteristics, the film thickness, and the pigment ratio of the pigment in each layer of the green pixel and the red pixel, the type of yellow pigment in the yellow layer can be selected in consideration of the film thickness and the pigment ratio.

具体的には、第1の平坦化層である黄色層が、カラーインデックスPY150の顔料を主成分とする着色組成物からなる場合が可能である。   Specifically, it is possible that the yellow layer which is the first planarizing layer is made of a coloring composition mainly composed of the pigment having the color index PY150.

また、第1の平坦化層である黄色層が、カラーインデックスPY139の顔料を主成分とする着色組成物からなる場合が可能である。   In addition, it is possible that the yellow layer, which is the first planarizing layer, is made of a coloring composition whose main component is the pigment having the color index PY139.

また、第1の平坦化層である黄色層が、カラーインデックスPY185の顔料を主成分とする着色組成物からなる場合が可能である。   In addition, it is possible that the yellow layer, which is the first planarizing layer, is made of a coloring composition whose main component is the pigment having the color index PY185.

また、第1の平坦化層である黄色層が、カラーインデックスPY150、PY139、PY185のいずれか二つ以上を混合した顔料を含む着色組成物からなる場合が可能である。   In addition, it is possible that the yellow layer as the first planarizing layer is made of a coloring composition containing a pigment obtained by mixing any two or more of the color indexes PY150, PY139, and PY185.

図3は、本発明のカラー固体撮像素子の製造方法を主要工程について説明するための断面模式図であって、(a)は、第1の平坦化層を形成した状態、また、(b)は、マイクロレンズを形成した状態、の一例を各々示す。   FIG. 3 is a schematic cross-sectional view for explaining the main steps of the method for manufacturing a color solid-state imaging device of the present invention, where (a) is a state in which a first planarization layer is formed, and (b) These show an example of a state in which a microlens is formed.

本発明では、まず、カラーフィルタの形成に先立って、第1の平坦化層6を受光面側に形成する。前記第1の平坦化層の形成方法として、ウェハ上に一括して形成され、複数の固体撮像素子が配置されたウェハデバイスの受光面側表面に感光性の黄色の着色樹脂液を塗布する工程、フォトマスクを用いて露光する工程、アルカリ溶液により現像する工程、熱処理による樹脂硬化工程を順次行う。   In the present invention, first, the first planarizing layer 6 is formed on the light receiving surface side prior to the formation of the color filter. As a method of forming the first planarization layer, a step of applying a photosensitive yellow colored resin liquid to the light receiving surface side surface of a wafer device formed in a lump on a wafer and provided with a plurality of solid-state imaging elements. Then, an exposure process using a photomask, a development process using an alkaline solution, and a resin curing process using heat treatment are sequentially performed.

前記感光性の黄色の着色樹脂液は、黄色顔料を分散した顔料分散型のネガ型カラーレジストであって、ウェハ全体に塗布後、プレベイクにより乾燥させ、樹脂の形成不要部を選択的に遮蔽するフォトマスクを用いて位置合わせ、露光する。具体的には、少なくとも後に緑色画素や赤色画素のカラーフィルタ着色層が形成される領域やウェハ段差直下の部分には、前記感光性の黄色の着色樹脂を残す。   The photosensitive yellow colored resin liquid is a pigment-dispersed negative color resist in which a yellow pigment is dispersed, and is applied to the entire wafer and then dried by pre-baking to selectively shield resin-unnecessary portions. Align and expose using a photomask. Specifically, the photosensitive yellow colored resin is left at least in a region where a color filter coloring layer for green pixels and red pixels will be formed later and in a portion immediately below the wafer step.

樹脂の形成不要部としては、少なくとも後に青色画素のカラーフィルタ着色層が形成される領域を含み、最終的にウェハのスクライブラインとなるスクライブ部Eを形成不要部に含むことも適当であり、これらの青色画素が形成される領域やスクライブ部には、黄色の着色樹脂液は形成されないことになる。一方、外部接続端子15を有する接続端子部Dには、黄色着色樹脂からなる第1平坦化層6として一旦は残す方が、以後の工程で外部接続端子15を保護する上で有用である。   As the resin formation unnecessary portion, it is also appropriate to include at least a region where a color filter coloring layer of a blue pixel will be formed later, and to include a scribe portion E which finally becomes a scribe line of the wafer in the formation unnecessary portion. The yellow colored resin liquid is not formed in the region where the blue pixel is formed or in the scribe portion. On the other hand, in the connection terminal portion D having the external connection terminals 15, it is more useful to protect the external connection terminals 15 in the subsequent steps by leaving them as the first planarization layer 6 made of a yellow colored resin.

第1の平坦化層6を構成する黄色着色層は、0.2μm程度の厚さに形成することが、平坦化処理の効果があり、かつ、高感度化の妨害としない意味で、適正である。また、後の緑色画素や赤色画素を重ねる際に、妥当な色特性を得る上でも適正である。   The yellow colored layer constituting the first planarization layer 6 is appropriate in that it has the effect of the planarization treatment and does not interfere with the increase in sensitivity. is there. Further, it is also appropriate for obtaining appropriate color characteristics when overlapping the subsequent green pixels and red pixels.

次に、カラーフィルタ着色層を形成する工程をフォトリソグラフィー法により行う。例えば、緑色の顔料分散樹脂である感光性ネガ型レジストを塗布する。ここで、第1の平坦化層6による下地の平坦化効果と、平坦化層である黄色層の色特性による緑色層の膜厚低減効果とにより、図2に示した段差部Cが充分に狭い領域に限定されて画素部A上の画素膜厚が均一になる。レジスト塗布後、プレベイク、選択的露光、現像、熱処理の各工程を経て、カラーフィルタ第1色11としての緑色画素16が、例えば0.7μmの厚さにパターン形成され、下地の黄色着色層の0.2μmと合わせて、総膜厚は0.9μmとなる。選択的露光においては、下に設けた光電変換素子3との位置合わせが重要となり、微細化した固体撮像素子の品質を支配する。   Next, a step of forming a color filter coloring layer is performed by a photolithography method. For example, a photosensitive negative resist that is a green pigment dispersion resin is applied. Here, the step C shown in FIG. 2 is sufficiently obtained due to the flattening effect of the base by the first flattening layer 6 and the film thickness reducing effect of the green layer due to the color characteristics of the yellow layer which is the flattening layer. The pixel film thickness on the pixel portion A becomes uniform by being limited to a narrow region. After applying the resist, through the pre-baking, selective exposure, development, and heat treatment steps, the green pixel 16 as the color filter first color 11 is patterned to a thickness of, for example, 0.7 μm. Together with 0.2 μm, the total film thickness is 0.9 μm. In the selective exposure, alignment with the photoelectric conversion element 3 provided below is important, and governs the quality of the miniaturized solid-state imaging element.

次に、カラーフィルタの第2色およびそれ以降を含めた残りの色層を形成する。青色画素および赤色画素を順次形成する場合、選択した色の顔料分散樹脂である感光性ネガ型レジストを塗布し、プレベイク、選択的露光、現像、熱処理などの各工程を経て形成することは、上記と同様である。但し、上述のように、青色画素を形成する下地には、第1の平坦化層である黄色層は無く、赤色画素を形成する下地には黄色層がある。また、カラーフィルタ着色層として上記の緑色、青色、赤色の3色以外を使用する場合も同様の工程を行うが、第1の平坦化層である黄色層を下地として残すかどうかは、必要とする色特性に応じて随時判断すればよい。さらに、後述のように、第2色以降は、第1色の場合より画素膜厚を薄くした方が好ましいので、必要とする色特性を考慮して顔料の材質および含有比率、ならびに分散樹脂としての処方を適宜選択する。   Next, the remaining color layers including the second color of the color filter and subsequent color filters are formed. When forming a blue pixel and a red pixel sequentially, a photosensitive negative resist that is a pigment-dispersed resin of a selected color is applied and formed through each step of pre-baking, selective exposure, development, heat treatment, etc. It is the same. However, as described above, the base for forming the blue pixel does not have the yellow layer as the first planarization layer, and the base for forming the red pixel has the yellow layer. In addition, the same process is performed when the color filter coloring layer other than the above three colors of green, blue, and red is used, but it is necessary to leave the yellow layer, which is the first flattening layer, as a base. What is necessary is just to judge at any time according to the color characteristic to be performed. Furthermore, as will be described later, since it is preferable to make the pixel film thickness thinner than in the case of the first color after the second color, considering the required color characteristics, the pigment material and content ratio, and the dispersion resin The prescription is appropriately selected.

以上で、画素部の受光面側表面に複数色のカラーフィルタを色別に順次平面配置するカラーフィルタ形成工程を終え、次に、カラーフィルタ各色上に設ける第2の平坦化層7を介して、マイクロレンズ8を平面配置するマイクロレンズ形成工程を行う。   With the above, the color filter forming step of sequentially arranging the color filters of a plurality of colors on the light receiving surface side surface of the pixel portion by color is finished, and then, through the second planarizing layer 7 provided on each color filter color, A microlens forming step for arranging the microlenses 8 in a plane is performed.

第2の平坦化層7は、画素部Aにおけるカラーフィルタ各色の厚さの不均一さや微小な凹凸を覆い、マイクロレンズ形成のための平坦で均一な下地を提供するものであり、例えば、無色透明なアクリル樹脂溶液を0.2μmの厚さで塗布形成し、必要に応じて露光、現像工程を経て、熱処理により硬化する。   The second planarization layer 7 covers the uneven thickness of each color of the color filter and minute irregularities in the pixel portion A, and provides a flat and uniform base for forming a microlens. A transparent acrylic resin solution is applied and formed to a thickness of 0.2 μm, and is cured by heat treatment through exposure and development steps as necessary.

第2の平坦化層7を形成後、レンズ材料となる透明樹脂である感光性ポジ型レジストを平坦化層上に塗布形成し、プレベイク、選択的露光後、有機アルカリ現像水溶液にて現像し、熱処理工程を加えて熱リフロー挙動を利用することにより、同一単位の繰り返し平面配置されるマイクロレンズ8を、画素部Aの上方領域に画素ピッチと一致させて高さ0.5μmの凸レンズ形状の微小レンズを複数整列させて形成する。   After forming the second planarizing layer 7, a photosensitive positive resist, which is a transparent resin as a lens material, is applied and formed on the planarizing layer, pre-baked, selectively exposed, and developed with an organic alkali developing aqueous solution, By using the heat reflow behavior by adding a heat treatment step, the microlenses 8 that are repeatedly arranged in the same unit are arranged in the upper region of the pixel portion A so as to coincide with the pixel pitch and have a convex lens shape of 0.5 μm in height. A plurality of lenses are aligned.

最後に、接続端子部形成工程およびウェハデバイス上の多数の固体撮像素子を分離して各チップを実装するための工程を経て固体撮像素子が完成する。接続端子部形成工程は、図3(b)において、外部接続端子15上に形成された第1の平坦化層6を選択的に除去する工程であって、ポジ型レジストを用いたフォトリソグラフィー法で必要な窓開けパターンを形成後、ドライエッチングで除去することができる。第1の平坦化層6を構成する黄色層の顔料成分は金属を含まないので、ドライエッチングで残渣を生じることなく、外部接続端子15の良好な窓開けが可能である。   Finally, the solid-state imaging device is completed through a connection terminal portion forming step and a step for mounting each chip by separating a large number of solid-state imaging devices on the wafer device. The connection terminal portion formation step is a step of selectively removing the first planarization layer 6 formed on the external connection terminal 15 in FIG. 3B, and is a photolithography method using a positive resist. After the necessary window opening pattern is formed, it can be removed by dry etching. Since the pigment component of the yellow layer constituting the first planarizing layer 6 does not contain a metal, it is possible to open the external connection terminal 15 well without causing a residue by dry etching.

ここで、前述のカラーフィルタ各色の位置および膜厚の関係に影響を与える平面配列に
関して、図4により、一例を部分平面模式図で説明する。総画素数を多くしないで周囲の画素出力を利用した補間演算により実効的な解像度を高く保つ方式で、固体撮像素子1枚による単板式カラー撮影を行うのに適したカラーフィルタ画素のベイヤ(Bayer)配列の例である。人間の視感度に合わせて、緑色画素31の着色画素数を青色画素32や赤色画素33の着色画素数の2倍と多く配置する。
Here, an example of a plane arrangement that affects the relationship between the position and film thickness of each color filter described above will be described with reference to FIG. A color filter pixel Bayer suitable for performing single-plate color imaging with a single solid-state image sensor in a method that maintains an effective resolution by interpolation calculation using surrounding pixel outputs without increasing the total number of pixels. ) An example of an array. In accordance with human visibility, the number of colored pixels of the green pixel 31 is set to be twice as large as the number of colored pixels of the blue pixel 32 and the red pixel 33.

上記のベイヤ配列の例では、緑色画素31をカラーフィルタ第1色11とし、第2色以降に青色画素32や赤色画素33を形成することが望ましい。緑色画素31の占める面積が相対的に大きく、対角に位置する同色の着色画素と連なることによって、さらに密着性が高まるからである。   In the example of the Bayer arrangement, it is desirable that the green pixel 31 is the color filter first color 11 and the blue pixel 32 and the red pixel 33 are formed after the second color. This is because the green pixel 31 occupies a relatively large area and is connected to the colored pixels of the same color located diagonally, thereby further improving the adhesion.

また、一般に、画素部の有効領域におけるカラーフィルタの第2色以降の画素膜厚を、第1色の画素膜厚より薄くすることが望ましい。そうすることによって、カラーフィルタ第2色、第3色が、段差部Cでも第1色より薄い画素膜厚となり、既に第1色をパターン形成された抜け部分に沈没する形での薄い画素膜厚の形成となり、段差部の悪影響が軽減される。従って、カラーフィルタ第2色、第3色における枠色ムラや剥がれは問題にならない。さらに画素部Aの領域においても、ベイヤ配列で第1色を緑色とする場合、カラーフィルタ第2色、第3色の各画素は4辺を第1色の高い壁に囲まれて形成されるので、剥がれ等の欠陥が生じ難い。   In general, it is desirable to make the pixel film thickness of the second and subsequent colors of the color filter in the effective area of the pixel portion thinner than the pixel film thickness of the first color. By doing so, the color filter second color and the third color have a pixel film thickness that is thinner than the first color even in the stepped portion C, and the thin pixel film in the form in which the first color sinks into the already-patterned missing part. Thickness is formed, and the adverse effect of the step portion is reduced. Accordingly, the frame color unevenness and peeling in the second and third color filter colors do not matter. Further, in the area of the pixel portion A, when the first color is green in the Bayer array, each pixel of the color filter second color and third color is formed with four sides surrounded by a high wall of the first color. Therefore, it is difficult for defects such as peeling to occur.

本発明の固体撮像素子の実施例について、以下に説明する。
〈実施例1〉
〔工程〕
光電変換素子からなる受光素子が多数配置されたエリアがチップ上面に対して1μm程度掘り込まれた半導体デバイス上に、黄色の顔料分散樹脂である感光性のネガ型カラーレジストをスピンコート法により塗布し、70℃、1分のプレベイク処理をし、選択的に露光後、現像、熱処理を行って、黄色着色層からなる第1の平坦化層を形成した。この時、黄色の顔料はPY139のカラーインデックスで表される色を有し、形成された黄色着色層は、0.2μmの膜厚で、430nm波長光の透過率は15%であった。なお、青色画素が後に形成される領域を除き、接続端子部の外部接続端子上も黄色着色層を保護膜として残すようにした。
次いで、カラーフィルタ第1色となる緑色着色層を緑色ネガ型カラーレジスト(顔料分散型)をスピン塗布、プレベイク(70℃、1分)し、選択的に露光、現像、熱処理して緑色画素のパターンを上記黄色着色層上の緑色画素のパターンとすべき部位に0.7μmの厚さに積層形成した。黄色層と併せたトータル膜厚は0.9μmとなり、この2層による分光透過率が430nm波長光で5%以下となり、所定の緑色画素の色特性を満足することを確認した。
次いで、青色、赤色の着色層についても、緑色着色層と同様に、各所定の配置にフォトリソグラフィー法により形成した。青色は黄色層の無い基板上に直接パターン形成し、チップ周囲の多層配線部上にも遮光用として青色ベタ領域を設けた。青色画素の膜厚は0.7μmであり、緑色画素単独の厚さと同じであったが、黄色層を加えた緑色画素のトータル膜厚より薄く形成した。また、赤色は緑色と同様に黄色層上にパターン形成した。赤色画素の膜厚は0.6μmであり、黄色層を加えた赤色画素のトータル膜厚も0.8μmと、緑色画素との比較でより薄く形成した。赤色画素のトータル膜厚による分光透過率が400〜430nm波長光で5%以下となり、所定の赤色画素の色特性を満足することを確認した。
次いで、カラーフィルタパターンの表面にアクリル樹脂溶液を0.2μmの厚さでスピンコート法により塗布形成し、熱処理して第2の平坦化層を形成した。
次いで、レンズとなるポジ型レジストを塗布形成し、プレベイク後、選択的に露光した。
その後、有機アルカリ現像水溶液(TMAH系:0.5%)にて現像し、熱フロー法により0.5μm高さのマイクロレンズを形成した。
次いで、ポジ型レジストとして透明樹脂を5μmの厚さで塗布形成し、100℃、120秒のプレベイクをかけた後、接続端子部やスクライブラインなど透明樹脂を除去したい箇所を選択的に露光する。その後、有機アルカリ現像水溶液(TMAH系:0.5%)にて現像した。
次いで、上記ポジ型レジストパターンをエッチングマスクとして、ドライエッチングにて開口部下層の樹脂をエッチング除去した。ドライエッチングは、アルバック社製NA1300にて出力500W、ガス圧50Pa、O流量600cm/min.(1hPa、0℃)、N流量10cm/min.(1hPa、0℃)、エッチングレート0.5μm/min.で3分間処理し、1.5μmエッチング除去した。
次いで、ドライエッチングされずに残ったポジ型レジスト約5.5μm厚を剥離液にて剥離除去した。
最後に、水分を除去するために100℃、2分の熱処理をかけた。
〔評価〕
得られた固体撮像素子は、枠色ムラや塗布ムラが殆ど認められず、ウェハ段差近傍においてカラーフィルタ着色層の画素剥がれのない、高品質のカラー固体撮像素子であった。
また、緑色、青色、赤色の各色の画素感度もチップ内での均一性は良好で高感度であり、高品質のカラー固体撮像素子であった。
Examples of the solid-state imaging device of the present invention will be described below.
<Example 1>
[Process]
A photosensitive negative color resist, which is a yellow pigment-dispersed resin, is applied by spin coating onto a semiconductor device in which an area where a large number of light receiving elements made of photoelectric conversion elements are arranged is dug about 1 μm from the top surface of the chip. Then, a prebaking treatment was performed at 70 ° C. for 1 minute, and after selective exposure, development and heat treatment were performed to form a first planarization layer made of a yellow colored layer. At this time, the yellow pigment had a color represented by a color index of PY139, and the formed yellow colored layer had a thickness of 0.2 μm and a transmittance of 430 nm wavelength light was 15%. It should be noted that the yellow colored layer was left as a protective film on the external connection terminal of the connection terminal portion except for a region where the blue pixel was formed later.
Next, a green negative color resist (pigment dispersion type) is spin-coated and pre-baked (70 ° C., 1 minute) on the green colored layer, which is the first color of the color filter, and selectively exposed, developed, and heat-treated to form a green pixel. The pattern was laminated and formed in a thickness of 0.7 μm on a portion to be a green pixel pattern on the yellow colored layer. The total film thickness combined with the yellow layer was 0.9 μm, and the spectral transmittance of the two layers was 5% or less with 430 nm wavelength light, and it was confirmed that the color characteristics of a predetermined green pixel were satisfied.
Subsequently, the blue and red colored layers were also formed in a predetermined arrangement by a photolithography method in the same manner as the green colored layer. Blue was patterned directly on a substrate without a yellow layer, and a blue solid region was also provided on the multilayer wiring portion around the chip for light shielding. The thickness of the blue pixel was 0.7 μm, which was the same as the thickness of the green pixel alone, but was thinner than the total thickness of the green pixel with the yellow layer added. Further, red was patterned on the yellow layer in the same manner as green. The film thickness of the red pixel is 0.6 μm, and the total film thickness of the red pixel with the yellow layer added is also 0.8 μm, which is thinner than the green pixel. It was confirmed that the spectral transmittance according to the total film thickness of the red pixel was 5% or less with light having a wavelength of 400 to 430 nm, and the color characteristics of the predetermined red pixel were satisfied.
Next, an acrylic resin solution was applied and formed on the surface of the color filter pattern with a thickness of 0.2 μm by spin coating, and heat treatment was performed to form a second planarization layer.
Next, a positive resist to be a lens was applied and formed, and after prebaking, selectively exposed.
Then, it developed with the organic alkali developing aqueous solution (TMAH type: 0.5%), and formed the micro lens of 0.5 micrometer height with the heat flow method.
Next, a transparent resin is applied and formed in a thickness of 5 μm as a positive resist, pre-baked at 100 ° C. for 120 seconds, and then selectively exposed to a portion where the transparent resin is to be removed, such as a connection terminal portion and a scribe line. Then, it developed with organic alkali developing aqueous solution (TMAH type | system | group: 0.5%).
Next, using the positive resist pattern as an etching mask, the resin under the opening was etched away by dry etching. The dry etching is performed using an ULVAC NA1300 output of 500 W, a gas pressure of 50 Pa, and an O 2 flow rate of 600 cm 3 / min. (1 hPa, 0 ° C.), N 2 flow rate 10 cm 3 / min. (1 hPa, 0 ° C.), etching rate 0.5 μm / min. For 3 minutes and removed by 1.5 μm etching.
Next, about 5.5 μm thickness of the positive resist remaining without being dry-etched was stripped and removed with a stripping solution.
Finally, heat treatment was performed at 100 ° C. for 2 minutes in order to remove moisture.
[Evaluation]
The obtained solid-state imaging device was a high-quality color solid-state imaging device in which almost no frame color unevenness or coating unevenness was observed, and the color filter coloring layer was not peeled off in the vicinity of the wafer level difference.
Further, the pixel sensitivity of each color of green, blue, and red is good and uniform in the chip, and is a high-quality color solid-state imaging device.

本発明の固体撮像素子の比較例について、以下に説明する。
〈比較例1〉
〔工程〕
光電変換素子からなる受光素子が多数配置されたエリアがチップ上面に対して1μm程度掘り込まれた半導体デバイス上の受光素子の形成エリアに、アクリル樹脂溶液を0.1μmの厚さで塗布し、熱処理をする。
次いで、カラーフィルタ第1色となる緑色着色層を緑色ネガ型カラーレジスト(顔料分散型)をスピン塗布、プレベイク(70℃、1分)し、選択的に露光、現像、熱処理して緑色画素のパターンを0.9μmの厚さに形成した。
次いで、青色、赤色の着色層についても、緑色着色層と同様に、各所定の配置にフォトリソグラフィー法により形成した。この時、青色、赤色の画素膜厚は緑色の画素膜厚より厚くした。
以下、実施例1と同様に形成して、比較例1とした。
〔評価〕
得られた固体撮像素子は、ウェハ段差部において枠色ムラが発生した。高低差1μmの段差に対して、枠色ムラの平面範囲は段差から約30μmまで及んだ。また、段差近傍の緑色画素は画素剥がれや形状の歪みが生じた。
さらに、青色、赤色の画素膜厚も緑色同様に段差に対して厚さの影響を受け、青色については、画素剥がれが発生した。
また、緑色、青色、赤色の各色の画素感度もチップ内での均一性は劣る結果であった。
A comparative example of the solid-state imaging device of the present invention will be described below.
<Comparative example 1>
[Process]
An acrylic resin solution is applied in a thickness of 0.1 μm to a light-receiving element formation area on a semiconductor device in which an area where a large number of light-receiving elements made of photoelectric conversion elements are arranged is dug by about 1 μm with respect to the upper surface of the chip, Heat treatment.
Next, a green negative color resist (pigment dispersion type) is spin-coated and pre-baked (70 ° C., 1 minute) on the green colored layer, which is the first color of the color filter, and selectively exposed, developed, and heat-treated to form a green pixel. The pattern was formed to a thickness of 0.9 μm.
Subsequently, the blue and red colored layers were also formed in a predetermined arrangement by a photolithography method in the same manner as the green colored layer. At this time, the blue and red pixel thicknesses were made larger than the green pixel thickness.
Hereinafter, it was formed in the same manner as in Example 1 and was designated as Comparative Example 1.
[Evaluation]
In the obtained solid-state imaging device, frame color unevenness occurred in the stepped portion of the wafer. For a step difference of 1 μm in height difference, the flat range of the frame color unevenness extends from the step to about 30 μm. In addition, the green pixels near the step were peeled off and the shape was distorted.
Further, the blue and red pixel thicknesses were also affected by the thickness of the step as in the case of the green color, and pixel peeling occurred for blue.
Further, the pixel sensitivity of each color of green, blue, and red was also inferior in uniformity within the chip.

1・・・固体撮像素子
2・・・基板
3・・・光電変換素子
4・・・配線層
5・・・層間絶縁膜
6・・・第1の平坦化層
7・・・第2の平坦化層
8・・・マイクロレンズ
11・・・カラーフィルタ第1色
15・・・外部接続端子
16、31・・・緑色画素
17、32・・・青色画素
18、33・・・赤色画素
20・・・着色樹脂
A・・・・画素部
B・・・・多層配線部
C・・・・段差部
C’・・・・段差
D・・・・接続端子部
E・・・・スクライブ部
Z・・・・1チップ内領域
DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor 2 ... Board | substrate 3 ... Photoelectric conversion element 4 ... Wiring layer 5 ... Interlayer insulating film 6 ... 1st planarization layer 7 ... 2nd flatness Layer 8 ... micro lens 11 ... color filter first color 15 ... external connection terminal 16, 31 ... green pixel 17, 32 ... blue pixel 18, 33 ... red pixel 20 .... Colored resin A ... Pixel part B ... Multilayer wiring part C ... Step part C '... Step D ... Connection terminal part E ... Scribing part Z ... 1 chip area

Claims (3)

半導体基板上の凹部領域に複数の光電変換素子を平面配置した画素部を有する固体撮像素子基板上に、第1の平坦化層、各光電変換素子に対応して着色画素が平面配置された緑色画素、青色画素、および赤色画素を含むカラーフィルタ着色層、第2の平坦化層、マイクロレンズ、がこの順に積層されたオンチップカラーフィルタ付き固体撮像素子において、第1の平坦化層が、カラーフィルタ着色層の中の緑色画素および赤色画素が形成される領域を含み、青色画素が形成される領域を除く領域に選択的に形成される黄色層であることを特徴とするカラー固体撮像素子。   Green in which colored pixels are arranged in a plane corresponding to each of the first planarization layer and each photoelectric conversion element on a solid-state imaging element substrate having a pixel portion in which a plurality of photoelectric conversion elements are arranged in a plane in a recessed area on a semiconductor substrate In the solid-state imaging device with an on-chip color filter in which a color filter coloring layer including a pixel, a blue pixel, and a red pixel, a second planarization layer, and a microlens are stacked in this order, the first planarization layer has a color A color solid-state image pickup device comprising a yellow layer selectively formed in a region excluding a region where a blue pixel is formed, including a region where a green pixel and a red pixel are formed in a filter coloring layer. 前記第1の平坦化層である黄色層が、カラーインデックスPY139の顔料を主成分とする着色組成物からなることを特徴とする請求項1に記載のカラー固体撮像素子。   2. The color solid-state imaging device according to claim 1, wherein the yellow layer which is the first planarizing layer is formed of a coloring composition mainly containing a pigment having a color index PY139. 前記第1の平坦化層を形成する工程、カラーフィルタ着色層を形成する工程、第2の平坦化層を形成する工程、マイクロレンズを形成する工程、をこの順に行うカラー固体撮像素子の製造方法において、第1の平坦化層を形成する際に外部接続端子上に第1の平坦化層を形成し、マイクロレンズを形成後に外部接続端子上の第1の平坦化層をドライエッチングで除去することを特徴とする請求項1または2に記載のカラー固体撮像素子の製造方法。   A method for manufacturing a color solid-state imaging device, wherein the step of forming the first planarization layer, the step of forming a color filter coloring layer, the step of forming the second planarization layer, and the step of forming a microlens are performed in this order. The first planarization layer is formed on the external connection terminal when the first planarization layer is formed, and after the microlens is formed, the first planarization layer on the external connection terminal is removed by dry etching. The method for producing a color solid-state imaging device according to claim 1 or 2.
JP2010027454A 2010-02-10 2010-02-10 Color solid-state imaging element, and method of manufacturing the same Pending JP2011165923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027454A JP2011165923A (en) 2010-02-10 2010-02-10 Color solid-state imaging element, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027454A JP2011165923A (en) 2010-02-10 2010-02-10 Color solid-state imaging element, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011165923A true JP2011165923A (en) 2011-08-25

Family

ID=44596244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027454A Pending JP2011165923A (en) 2010-02-10 2010-02-10 Color solid-state imaging element, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011165923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197696A (en) * 2015-04-06 2016-11-24 キヤノン株式会社 Method of manufacturing solid-state image pickup device, solid-state image pickup device and camera
CN113706637A (en) * 2021-08-03 2021-11-26 哈尔滨工程大学 Color aliasing separation method in linear region of color image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197696A (en) * 2015-04-06 2016-11-24 キヤノン株式会社 Method of manufacturing solid-state image pickup device, solid-state image pickup device and camera
US9893110B2 (en) 2015-04-06 2018-02-13 Canon Kabushiki Kaisha Method of manufacturing solid-state image sensor, solid-state image sensor, and camera
CN113706637A (en) * 2021-08-03 2021-11-26 哈尔滨工程大学 Color aliasing separation method in linear region of color image sensor
CN113706637B (en) * 2021-08-03 2023-10-13 哈尔滨工程大学 Color aliasing separation method in linear region of color image sensor

Similar Documents

Publication Publication Date Title
KR100869219B1 (en) Image Sensor and Method for Manufacturing thereof
US7683302B2 (en) Solid-state imaging device having on-chip color filter layers and solid-state imaging device manufacturing method of the solid-state imaging device
US7498190B2 (en) Method for fabricating a CMOS image sensor
WO2013121742A1 (en) Image pickup element
JP4341700B2 (en) SOLID-STATE IMAGING DEVICE, COLOR FILTER, CAMERA, AND COLOR FILTER MANUFACTURING METHOD
US7579209B2 (en) Image sensor and fabricating method thereof
US10986293B2 (en) Solid-state imaging device including microlenses on a substrate and method of manufacturing the same
JP2011171328A (en) Solid-state image pickup element and method of manufacturing the same
JP2013012518A (en) Solid state imaging device
JP2006351775A (en) Method of manufacturing color filter, method of manufacturing solid-state imaging device and the solid-state imaging device employing the filter
JP2010062417A (en) Solid-state imaging device and method of manufacturing the same
JP4905760B2 (en) Color filter manufacturing method, color filter, solid-state image sensor manufacturing method, and solid-state image sensor using the same
WO2014156657A1 (en) Solid-state imaging device, production method therefor, and electronic device
US20050045805A1 (en) Solid-state image sensor and a manufacturing method thereof
JP4998310B2 (en) Solid-state imaging device and imaging apparatus using the same
JP2008034521A (en) Solid-state imaging apparatus, and manufacturing method thereof
JP2006186203A (en) Solid-state image pick-up device, manufacturing method therefor, and camera
JP5564751B2 (en) Manufacturing method of image sensor
JP2011165923A (en) Color solid-state imaging element, and method of manufacturing the same
JP2011165791A (en) Solid-state imaging element, and method of manufacturing the same
JP2015138918A (en) Solid state image pickup device, method for manufacturing the same, and camera
JP2007079154A (en) Forming method for color filter and manufacturing method for solid-state imaging element using forming method
JP6413700B2 (en) Solid-state imaging device
JP5874209B2 (en) On-chip color filter for color solid-state image sensor
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof