JP2005121870A - Antireflective laminate - Google Patents

Antireflective laminate Download PDF

Info

Publication number
JP2005121870A
JP2005121870A JP2003356102A JP2003356102A JP2005121870A JP 2005121870 A JP2005121870 A JP 2005121870A JP 2003356102 A JP2003356102 A JP 2003356102A JP 2003356102 A JP2003356102 A JP 2003356102A JP 2005121870 A JP2005121870 A JP 2005121870A
Authority
JP
Japan
Prior art keywords
refractive index
layer
index layer
fine particles
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003356102A
Other languages
Japanese (ja)
Inventor
Masataka Takimoto
正高 瀧本
Masayuki Kurematsu
雅行 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2003356102A priority Critical patent/JP2005121870A/en
Publication of JP2005121870A publication Critical patent/JP2005121870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflective laminate which decreases scratches, blocking, failure due to foreign matters and coating failure even when an antireflection layer containing fine particles is applied. <P>SOLUTION: The antireflective laminate has at least one antireflection layer containing fine particles on one surface of a supporting body, and has at least a conductive layer and an overcoat layer on the opposite face of the supporting body to the face where the antireflection layer is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は反射防止積層体に関し、より詳しくは傷、ブロッキング、異物故障、及び塗布故障の低減された反射防止積層体に関する。   The present invention relates to an antireflection laminate, and more particularly to an antireflection laminate having reduced flaws, blocking, foreign matter failure, and coating failure.

液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような様々な画像表示装置の表示面は、その視認性を高めるために、蛍光灯等の外部光源から照射された光線の反射が少ないことが求められている。この様な光線の反射は、画像表示装置の表面に反射防止膜を設けることで軽減することが出来る。反射防止膜は、表示面の上に屈折率の小さい低屈折率層を設けた単層構成、または、金属酸化物の透明薄膜を積層させた多層膜が従来から用いられてきた。複数の透明薄膜を用いると、様々な波長の光の反射を防止することが出来るため、反射防止膜を多層構成(反射防止積層体)にすることで視認性を更に向上させることが出来る。   The display surface of various image display devices such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), and a cathode ray tube display device (CRT) is fluorescent to increase its visibility. There is a demand for less reflection of light emitted from an external light source such as a lamp. Such reflection of light rays can be reduced by providing an antireflection film on the surface of the image display device. As the antireflection film, a single layer structure in which a low refractive index layer having a low refractive index is provided on a display surface or a multilayer film in which a transparent thin film of metal oxide is laminated has been conventionally used. When a plurality of transparent thin films are used, reflection of light having various wavelengths can be prevented. Therefore, the visibility can be further improved by forming the antireflection film in a multilayer structure (antireflection laminate).

反射防止積層体に用いられる反射防止膜は、金属酸化物の透明薄膜を積層させた多層膜が一般的に用いられ、広い波長域で反射率を下げるために複数の透明薄膜を用いている。金属酸化物の透明薄膜は、物理蒸着(PVD)法、化学蒸着(CVD)により形成することが知られている。金属酸化物の透明薄膜は反射防止膜として優れた光学的性質を有しているが、蒸着による形成方法は生産性が低く大量生産に適していない。蒸着法に代えて、透明支持体上に光学的機能層を塗布により形成して反射防止膜を製造する方法も提案されている。この場合、ゾルゲル法により金属酸化物薄膜を形成することが一般的であるが、屈折率の調整のし易さ、安定性等から金属酸化物微粒子をバインダー溶液に分散し薄膜を形成する方法もとられる。   As the antireflection film used for the antireflection laminate, a multilayer film in which transparent thin films of metal oxide are laminated is generally used, and a plurality of transparent thin films are used in order to lower the reflectance in a wide wavelength range. It is known that a transparent thin film of metal oxide is formed by a physical vapor deposition (PVD) method or chemical vapor deposition (CVD). A transparent thin film of metal oxide has excellent optical properties as an antireflection film, but the formation method by vapor deposition has low productivity and is not suitable for mass production. Instead of the vapor deposition method, a method of manufacturing an antireflection film by forming an optical functional layer on a transparent support by coating has also been proposed. In this case, it is common to form a metal oxide thin film by a sol-gel method, but there is also a method of forming a thin film by dispersing metal oxide fine particles in a binder solution in view of ease of adjusting the refractive index and stability. Be taken.

一方、反射防止積層体はフィルム製造時や偏光板、表示装置への貼り合わせ工程、パネル作製時に、静電気等によるゴミの付着も起き易く故障発生が多い。その為、導電性を改善する目的で、イオン性高分子化合物や導電性微粒子を含有する導電性層(帯電防止層ともいう)を支持体の一方の面に設けることがある。導電性層を設ける位置としては、ハードコート層よりも基材に近い側に0.2μm程度の膜厚で設ける方法、ハードコート層に導電性を付与する方法、反射防止積層体の中屈折率層または高屈折率層に導電性を持たせる方法等が知られている。しかし、ハードコート層よりも基材に近い側に導電性層を設けると、導電性層とフィルム最表面との間に距離があるために表面抵抗が出にくく、ハードコート層に導電剤を添加するとヘイズ、耐傷性等が劣化し、中屈折率層または高屈折率層に導電性を持たせる場合には膜厚が薄くなるため、十分な表面抵抗を得難いという問題があった。   On the other hand, in the antireflection laminate, dust is easily attached due to static electricity or the like at the time of film production, a step of bonding to a polarizing plate or a display device, or panel production, and failure often occurs. Therefore, for the purpose of improving the conductivity, a conductive layer containing an ionic polymer compound or conductive fine particles (also referred to as an antistatic layer) may be provided on one surface of the support. The conductive layer is provided at a position closer to the substrate than the hard coat layer with a film thickness of about 0.2 μm, a method for imparting conductivity to the hard coat layer, and the medium refractive index of the antireflection laminate. A method of imparting conductivity to a layer or a high refractive index layer is known. However, if a conductive layer is provided closer to the substrate than the hard coat layer, there is a distance between the conductive layer and the outermost surface of the film, so surface resistance is difficult to occur, and a conductive agent is added to the hard coat layer. As a result, haze, scratch resistance, etc. deteriorate, and when the middle refractive index layer or the high refractive index layer is made conductive, the film thickness becomes thin, so that there is a problem that it is difficult to obtain sufficient surface resistance.

この為、反射防止層のある基材の反対面に帯電防止層を設ける技術が開示されているが(例えば特許文献1参照。)、反射防止層をゾルゲル法で設けた場合はその反射防止層の膜強度が比較的高いため、巻き取り時に反対面にある導電性層と接触しても傷などは入らず、特に傷やブロッキング等の故障の発生が少ない。   For this reason, a technique is disclosed in which an antistatic layer is provided on the opposite surface of a substrate having an antireflection layer (see, for example, Patent Document 1), but when the antireflection layer is provided by a sol-gel method, the antireflection layer is provided. Since the film strength of the film is relatively high, scratches do not occur even when contacting with the conductive layer on the opposite surface at the time of winding, and there is little occurrence of failure such as scratches or blocking.

しかし、反射防止層に微粒子を含有させた層とした場合は、その層の膜強度が前記ゾルゲル法によって得られた膜強度より比較的低いため、巻き取り時に傷が入り故障になり易いことが分かった。特に、導電性層は導電性を得るために高分子化合物や微粒子の分散物を多く含む層になり易く、また反射防止層も屈折率調整のため微粒子を多く含むことがある。この場合に微粒子同士の接触が生じ易く傷となり易い。更に、剥がれた微粒子などが異物となって反射防止層の故障になることもある。また、粒子同士が強く接触するため導電性層の成分の一部が反射防止層に転写し、反射防止層を積層する場合にこの転写成分によって塗布性が劣化して上手く塗布出来ないことがあった。また、反射防止膜の反射率を下げるためには最表層の低屈折率層の屈折率を下げることが有効である。屈折率を下げる手段としてはいくつかあるがそのうち中が空洞になった中空粒子はその空洞部分が空気の屈折率となるので比較的屈折率を大幅に下げやすい。しかしながら、この中空粒子を用いた層は一般的な微粒子を含む層よりさらに傷などの故障が起きやすい。
特開2002−343137号公報
However, when the antireflection layer is a layer containing fine particles, the film strength of the layer is relatively lower than the film strength obtained by the sol-gel method. I understood. In particular, the conductive layer tends to be a layer containing a large amount of a polymer compound or a fine particle dispersion in order to obtain conductivity, and the antireflection layer may contain a large amount of fine particles for adjusting the refractive index. In this case, the fine particles are easily contacted with each other and easily damaged. Furthermore, the fine particles that have been peeled off may become foreign matter and cause a failure of the antireflection layer. In addition, since the particles are in strong contact with each other, a part of the components of the conductive layer is transferred to the antireflection layer, and when the antireflection layer is laminated, the coating properties may deteriorate due to this transfer component, and the coating may not be performed well. It was. In order to lower the reflectance of the antireflection film, it is effective to lower the refractive index of the outermost low refractive index layer. There are several means for lowering the refractive index. Among these hollow particles, which are hollow, the hollow portion becomes the refractive index of air, and the refractive index can be relatively easily lowered. However, the layer using the hollow particles is more likely to have a failure such as a scratch than the layer containing general fine particles.
JP 2002-343137 A

上記課題に鑑み本発明の目的は、微粒子を含有する反射防止層を塗設した場合でも、傷、ブロッキング、異物故障、及び塗布故障の低減された反射防止積層体を提供することにある。   In view of the above problems, an object of the present invention is to provide an antireflection laminate in which scratches, blocking, foreign matter failures, and coating failures are reduced even when an antireflection layer containing fine particles is applied.

本発明の上記目的は以下の構成により達成される。
(請求項1)
支持体の一方の面に少なくとも一層の微粒子を含む反射防止層を設け、該反射防止層が設けられた側とは反対の面に少なくとも導電性層とオーバーコート層を設けたことを特徴とする反射防止積層体。
(請求項2)
前記反射防止層が少なくとも高屈折率層と低屈折率層からなることを特徴とする請求項1に記載の反射防止積層体。
(請求項3)
前記反射防止層が支持体側から中屈折率層、高屈折率層、低屈折率層の順に設けられていることを特徴とする請求項1または2に記載の反射防止積層体。
(請求項4)
前記低屈折率層がSiO2微粒子またはMgF2微粒子を含有することを特徴とする請求項2または3に記載の反射防止積層体。
(請求項5)
前記SiO2微粒子が中空であることを特徴とする請求項4に記載の反射防止積層体。
(請求項6)
前記中屈折率層及び高屈折率層がTi、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSからなる群から選択される少なくとも一種の元素を有する金属酸化物の微粒子を含有することを特徴とする請求項3〜5のいずれか1項に記載の反射防止積層体。
(請求項7)
前記導電性層とオーバーコート層を設けた面の表面比抵抗が1011Ω/□(25℃、55%RH)以下であることを特徴とする請求項1に記載の反射防止積層体。
(請求項8)
前記導電性層がイオン性高分子化合物を含有することを特徴とする請求項1または7に記載の反射防止積層体。
(請求項9)
前記イオン性高分子化合物が分子架橋を有する4級アンモニウムカチオンポリマーである
ことを特徴とする請求項8に記載の反射防止積層体。
(請求項10)
前記導電性層の導電性材料が、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W、及びVからなる群から選択される少なくとも1つの元素を主成分として含有し、かつその体積抵抗率が107Ω・cm(25℃、55%RH)以下であることを特徴とする請求項1、7、8のいずれか1項に記載の反射防止積層体。
(請求項11)
前記導電性層がセルロースエステル系樹脂またはアクリル系樹脂を含有することを特徴とする請求項1、7〜10のいずれか1項に記載の反射防止積層体。
(請求項12)
前記オーバーコート層が少なくともセルロースエステル系樹脂またはアクリル系樹脂を含有することを特徴とする請求項1に記載の反射防止積層体。
(請求項13)
前記オーバーコート層が親水性高分子化合物を含有することを特徴とする請求項12に記載の反射防止積層体。
(請求項14)
前記オーバーコート層が、ゼラチンまたはゼラチン誘導体の少なくとも1種及びセルロースエステル系樹脂を含有することを特徴とする請求項12または13に記載の反射防止積層体。
(請求項15)
前記導電性層の乾燥後の付き量が0.05〜1.0g/m2、かつオーバーコート層の乾燥後の付き量が0.05〜1.0g/m2であることを特徴とする請求項1、7〜14のいずれか1項に記載の反射防止積層体。
The above object of the present invention is achieved by the following configurations.
(Claim 1)
An antireflection layer containing at least one layer of fine particles is provided on one side of the support, and at least a conductive layer and an overcoat layer are provided on the side opposite to the side on which the antireflection layer is provided. Antireflection laminate.
(Claim 2)
The antireflection laminate according to claim 1, wherein the antireflection layer comprises at least a high refractive index layer and a low refractive index layer.
(Claim 3)
The antireflection laminate according to claim 1, wherein the antireflection layer is provided in the order of a medium refractive index layer, a high refractive index layer, and a low refractive index layer from the support side.
(Claim 4)
The antireflection laminate according to claim 2 or 3, wherein the low refractive index layer contains SiO 2 fine particles or MgF 2 fine particles.
(Claim 5)
The antireflection laminate according to claim 4, wherein the SiO 2 fine particles are hollow.
(Claim 6)
The medium refractive index layer and the high refractive index layer are selected from the group consisting of Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S. The antireflection laminate according to any one of claims 3 to 5, comprising fine particles of a metal oxide having at least one element selected.
(Claim 7)
2. The antireflection laminate according to claim 1, wherein a surface specific resistance of the surface provided with the conductive layer and the overcoat layer is 10 11 Ω / □ (25 ° C., 55% RH) or less.
(Claim 8)
The antireflection laminate according to claim 1, wherein the conductive layer contains an ionic polymer compound.
(Claim 9)
The antireflective laminate according to claim 8, wherein the ionic polymer compound is a quaternary ammonium cationic polymer having molecular crosslinking.
(Claim 10)
The conductive material of the conductive layer contains as a main component at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V, The volume resistivity is 10 7 Ω · cm (25 ° C., 55% RH) or less, and the antireflection laminate according to any one of claims 1, 7, and 8.
(Claim 11)
The said electroconductive layer contains a cellulose ester resin or an acrylic resin, The antireflection laminated body of any one of Claims 1 and 7-10 characterized by the above-mentioned.
(Claim 12)
The antireflection laminate according to claim 1, wherein the overcoat layer contains at least a cellulose ester resin or an acrylic resin.
(Claim 13)
The antireflection laminate according to claim 12, wherein the overcoat layer contains a hydrophilic polymer compound.
(Claim 14)
The antireflection laminate according to claim 12 or 13, wherein the overcoat layer contains at least one of gelatin or a gelatin derivative and a cellulose ester resin.
(Claim 15)
The amount of the conductive layer after drying is 0.05 to 1.0 g / m 2 , and the amount of the overcoat layer after drying is 0.05 to 1.0 g / m 2. The antireflection laminate according to any one of claims 1 and 7 to 14.

発明により、微粒子を含有する反射防止層を塗設した場合でも、傷、ブロッキング、異物故障、及び塗布故障の低減された反射防止積層体を提供することが出来る。   According to the present invention, even when an antireflection layer containing fine particles is applied, an antireflection laminate having reduced scratches, blocking, foreign matter failure, and coating failure can be provided.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明は、支持体の一方の面に少なくとも一層の微粒子を含む反射防止層を設け、該反射防止層が設けられた側とは反対の面に少なくとも導電性層とオーバーコート層を設けたことを特徴とする。   In the present invention, an antireflection layer containing at least one fine particle is provided on one surface of a support, and at least a conductive layer and an overcoat layer are provided on the surface opposite to the side on which the antireflection layer is provided. It is characterized by.

即ち、導電性層の上に樹脂を主成分とするオーバーコート層を設ければ、反射防止層に微粒子を用いた場合にも上記課題に対し特に顕著な効果が得られることを見出し、本発明を成すに至った。   That is, when an overcoat layer mainly composed of a resin is provided on the conductive layer, it has been found that even when fine particles are used in the antireflection layer, a particularly remarkable effect can be obtained with respect to the above problems. It came to make.

オーバーコート層は反射防止層が設けられる前に設けても良いが、特に膜強度の弱い反射防止層が設けられる前に設けることが好ましい。また、最上層の反射防止層を設けた後は膜強度が十分得られるように反射防止積層体の設計をするが、更に膜強度を向上するためにフィルムロールのままエージングを行うこともある。この場合、エージングの温度によってはいわゆるフィルムロールの巻き締りやブロッキングが発生し、これにより反射防止層や導電性層に傷が入ることがある。導電性層にオーバーコート層を設ければこの傷の発生を防ぐことが出来、この効果も反射防止層に微粒子を用いた場合に顕著である。   The overcoat layer may be provided before the antireflection layer is provided, but is preferably provided before the antireflection layer having a low film strength is provided. In addition, after the uppermost antireflection layer is provided, the antireflection laminate is designed so that sufficient film strength can be obtained. In order to further improve the film strength, the film roll may be aged. In this case, depending on the aging temperature, so-called film roll winding and blocking may occur, which may damage the antireflection layer or the conductive layer. If an overcoat layer is provided on the conductive layer, this scratch can be prevented, and this effect is also remarkable when fine particles are used in the antireflection layer.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

(導電性層)
本発明に係る導電性層は、後述する支持体の一方の面に少なくとも一層の微粒子を含む反射防止層を設け、該反射防止層が設けられた側とは反対の面に塗設することが特徴である。
(Conductive layer)
The conductive layer according to the present invention may be provided on the surface opposite to the side on which the antireflection layer is provided by providing an antireflection layer containing at least one layer of fine particles on one surface of the support described later. It is a feature.

導電性層は、支持体(樹脂フィルム等)の取扱の際に、この樹脂フィルムが帯電するのを防ぐ機能を付与するものであり、具体的には、イオン導電性物質や導電性微粒子を含有する層を設けることによって行う。ここでイオン導電性物質とは電気伝導性を示し、電気を運ぶ担体であるイオンを含有する物質のことであるが、例としてはイオン性高分子化合物を挙げることが出来る。   The conductive layer imparts a function of preventing the resin film from being charged when the support (resin film, etc.) is handled. Specifically, the conductive layer contains an ion conductive substance or conductive fine particles. This is done by providing a layer to be used. Here, the ion conductive substance is a substance that shows electric conductivity and contains ions that are carriers for carrying electricity, and examples include ionic polymer compounds.

本発明に係る導電性層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、109Ω/□(25℃、55%RH)以下である。 The surface specific resistance of the conductive layer according to the present invention is preferably adjusted to 10 11 Ω / □ (25 ° C., 55% RH) or less, more preferably 10 10 Ω / □ (25 ° C., 55% RH). ) Or less, particularly preferably 10 9 Ω / □ (25 ° C., 55% RH) or less.

ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。   Here, although details of the measurement of the surface specific resistance value are described in the examples, the sample was conditioned for 24 hours under the conditions of 25 ° C. and 55% RH, and a terraohm meter model VE-30 manufactured by Kawaguchi Electric Co. Use to measure.

また、本発明に係る導電性層上には、更にオーバーコート層を最表面層として設けるが、表面比抵抗値の測定は、導電性層が設けられている側の最表面層における表面比抵抗値を実質的に導電性層の表面比抵抗値として定義する。   Further, on the conductive layer according to the present invention, an overcoat layer is further provided as the outermost surface layer. The surface specific resistance value is measured by measuring the surface specific resistance of the outermost surface layer on the side where the conductive layer is provided. The value is substantially defined as the surface resistivity value of the conductive layer.

本発明に係る導電性層の表面比抵抗値を上記記載の範囲に調整するためには、下記に示すような導電性材料が好ましく用いられる。   In order to adjust the surface specific resistance value of the conductive layer according to the present invention within the above-described range, conductive materials as shown below are preferably used.

本発明に係る導電性材料としては、イオン性高分子化合物、金属酸化物等が好ましく用いられる。   As the conductive material according to the present invention, an ionic polymer compound, a metal oxide or the like is preferably used.

イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることが出来る。   Examples of the ionic polymer compound include anionic polymer compounds such as those described in JP-B-49-23828, JP-A-49-23827, and JP-A-47-28937; JP-B-55-734, JP-A-50-54672 Ionene type polymers having a dissociating group in the main chain, as seen in JP-B Nos. 59-14735, 57-18175, 57-18176, 57-56059, etc .; No. 57-15376, No. 53-45231, No. 55-145783, No. 55-65950, No. 55-67746, No. 57-11342, No. 57-19735, No. 58-56858. No., JP-A 61-27853, 62-9346, and a cationic pendant type poly having a cationic dissociation group in the side chain. Over; and the like can be mentioned.

特に好ましいイオン性高分子化合物としては、下記一般式〔1〕及び〔1a〕、〔1b〕の構造のユニットを有するポリマーが挙げられる。   Particularly preferred ionic polymer compounds include polymers having units of the following general formulas [1], [1a] and [1b].

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

式中R3、R4、R5、R6は炭素数1〜4の置換或いは未置換のアルキル基を表し、R3とR4及び/またはR5とR6が結合してピペラジンなどの含窒素複素環を形成してもよい。A、B及びDはそれぞれ炭素数2〜10の置換或いは未置換のアルキレン基、アリーレン基、アルケニレン基、アリーレンアルキレン基、−R7COR8−、−R9COOR10OCOR11−、−R12OCR13COOR14−、−R15−(OR16m−、−R17CONHR18NHCOR19−、−R20OCONHR21NHCOR22−または−R25NHCONHR24NHCONHR25−を表す。R7、R8、R9、R11、R12、R14、R15、R16、R17、R19、R20、R22、R23及びR25はアルキレン基、R10、R13、R18、R21及びR24はそれぞれ置換または未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、アルキレンアリーレン基から選ばれる連結基、mは1〜4の正の整数を表し、X-はアニオンを表す。 In the formula, R 3 , R 4 , R 5 and R 6 each represent a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, and R 3 and R 4 and / or R 5 and R 6 are bonded to each other such as piperazine. A nitrogen-containing heterocycle may be formed. A, B and D are each a substituted or unsubstituted alkylene group having 2 to 10 carbon atoms, an arylene group, an alkenylene group, an arylenealkylene group, -R 7 COR 8 -, - R 9 COOR 10 OCOR 11 -, - R 12 OCR 13 COOR 14 -, - R 15 - (oR 16) m -, - R 17 CONHR 18 NHCOR 19 -, - R 20 OCONHR 21 NHCOR 22 - or -R 25 NHCONHR 24 NHCONHR 25 - represents a. R 7 , R 8 , R 9 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 22 , R 23 and R 25 are alkylene groups, R 10 , R 13 , R 18 , R 21 and R 24 are each a linking group selected from a substituted or unsubstituted alkylene group, alkenylene group, arylene group, arylene alkylene group and alkylene arylene group, m represents a positive integer of 1 to 4, X represents an anion.

但し、Aがアルキレン基、ヒドロキシアルキレン基或いは、アリーレンアルキレン基である時には、Bがアルキレン基、ヒドロキシルアルキレン基或いはアリーレンアルキレン基ではないことが好ましい。   However, when A is an alkylene group, a hydroxyalkylene group or an arylenealkylene group, it is preferable that B is not an alkylene group, a hydroxylalkylene group or an arylenealkylene group.

Eは単なる結合手、−NHCOR26CONH−またはDから選ばれる基を表す。R26は置換或いは未置換のアルキレン基、アルケニレン基、アリーレン基、アリーレンアルキレン基、またはアルキレンアリーレン基を表す。 E represents a group selected from a simple bond, —NHCOR 26 CONH— or D. R 26 represents a substituted or unsubstituted alkylene group, alkenylene group, arylene group, arylene alkylene group, or alkylene arylene group.

1、Z2は−N=C−基は共に5員または6員環を形成するのに必要な非金属原子群(≡N+[X-]−なる4級塩の形でEに連結してもよい)を表す。 Z 1 and Z 2 are linked to E in the form of a quaternary salt of a group of nonmetallic atoms (≡N + [X ] — necessary for forming a 5-membered or 6-membered ring together with —N═C— group. May be).

nは5〜300の整数を表す。   n represents an integer of 5 to 300.

中でも、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく、ダイオキシンの発生防止等環境安全性の観点から、塩素イオンを含まず、かつ、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく用いられる。   Among them, a quaternary ammonium cationic polymer having molecular crosslinking is particularly preferable, and a quaternary ammonium cationic polymer not containing chlorine ions and having molecular crosslinking is particularly preferably used from the viewpoint of environmental safety such as prevention of dioxin generation.

以下に、本発明に係るイオン性高分子化合物の具体例を挙げるが本発明はこれらに限定されない。   Specific examples of the ionic polymer compound according to the present invention are given below, but the present invention is not limited thereto.

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

Figure 2005121870
Figure 2005121870

本発明に係るイオン性高分子化合物は、これを単独で用いてもよいし、或いは数種類のイオン性高分子化合物を組み合わせて使用してもよい。本発明に係るイオン性高分子化合物の樹脂フィルム中の含有量は、0.02g〜1.0g/m2が好ましく、特に好ましくは、0.02g〜0.5g/m2である。 The ionic polymer compound according to the present invention may be used alone or in combination of several kinds of ionic polymer compounds. The content of the ionic polymer compound according to the present invention in the resin film is preferably 0.02 g to 1.0 g / m 2 , particularly preferably 0.02 g to 0.5 g / m 2 .

また、導電性材料としては、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が107Ω・cm以下であるような導電性材料が好ましく用いられる。 The conductive material contains at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W and V as a main component, and has a volume. A conductive material having a resistivity of 10 7 Ω · cm or less is preferably used.

前記導電性材料としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。   Examples of the conductive material include metal oxides and composite oxides having the above elements.

金属酸化物の例としては、ZnO、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO2、V25等、或いはこれらの複合酸化物が好ましく、特にZnO、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。 As an example of the metal oxide, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , or a composite oxide thereof is preferable. In particular, ZnO, TiO 2 and SnO 2 are preferred. Examples of containing different atoms include, for example, addition of Al and In to ZnO, addition of Nb and Ta to TiO 2 , and addition of Sb, Nb and halogen elements to SnO 2 . Addition is effective. The amount of these different atoms added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.

また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は107Ω・cm以下、特に105Ω・cm以下である。 In addition, the volume resistivity of these metal oxide powders having conductivity is 10 7 Ω · cm or less, particularly 10 5 Ω · cm or less.

更に、本発明においては、導電性層中に微粒子を添加してもよく、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウム等を構成成分として含有する微粒子を挙げることが出来る。   Furthermore, in the present invention, fine particles may be added to the conductive layer, and examples thereof include fine particles containing silica, colloidal silica, alumina, alumina sol, kaolin, talc, mica, calcium carbonate or the like as a constituent component. I can do it.

上記記載の微粒子の平均粒径は、0.01μm〜10μmが好ましく、より好ましくは0.01μm〜5μm、また添加量は、塗布剤中の固形分に対して質量比で0.05部〜10部が好ましく、特に好ましいのは0.1部〜5部である。   The average particle diameter of the fine particles described above is preferably 0.01 μm to 10 μm, more preferably 0.01 μm to 5 μm, and the addition amount is 0.05 part to 10 parts by mass with respect to the solid content in the coating agent. Parts are preferred, with 0.1 to 5 parts being particularly preferred.

また、本発明の係る導電性層が十分な帯電防止効果を示し、かつ、オーバーコート層との易接着性を保持するためには、セルロースエステル系樹脂またはアクリル系樹脂を含有することが好ましい。   Moreover, in order for the electroconductive layer which concerns on this invention to show sufficient antistatic effect and to maintain easy-adhesiveness with an overcoat layer, it is preferable to contain a cellulose ester resin or an acrylic resin.

セルロースエステル系樹脂としては、例えばセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、またはセルロースナイトレート等のセルロース誘導体が挙げられる。   Examples of the cellulose ester resin include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate.

また、アクリル系樹脂としては、例えば、アクリペットMD、VH、MF、V(三菱レーヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが好ましく用いられる。   Examples of the acrylic resin include Acrypet MD, VH, MF, V (Mitsubishi Rayon Co., Ltd.), Hyperl M4003, M-4005, M-4006, M-4202, M-5000, M -5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR-77, BR- 79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101, BR-102, BR-105, BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc. (Mitsubishi Rayon Co., Ltd.) Various homopolymers and copolymers to produce Le and methacrylic monomer as a raw material is preferably used.

ここで使用する樹脂は、導電性層で使用している樹脂全体の60質量%以上、更に好ましくは80質量%以上であることが好ましく、必要に応じて活性線硬化性樹脂或いは熱硬化樹脂を添加することも出来る。これらの樹脂はバインダーとして下記のような溶剤に溶解した状態で塗設される。   The resin used here is preferably 60% by mass or more, more preferably 80% by mass or more of the total resin used in the conductive layer, and an actinic radiation curable resin or a thermosetting resin is used as necessary. It can also be added. These resins are coated as a binder in a state dissolved in the following solvent.

帯電防止層を塗設するための塗布組成物には、次の溶剤が好ましく用いられる。溶剤としては、炭化水素、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒(メチレンクロライド)を適宜混合して使用することが出来るが特にこれらに限定されるものではない。   The following solvents are preferably used in the coating composition for coating the antistatic layer. As the solvent, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents (methylene chloride) can be appropriately mixed and used, but are not particularly limited thereto.

上記炭化水素類としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブタノール、2−ブタノール、tert−ブタノール、ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(C1〜C4)類としては、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステル類としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、その他の溶媒としてメチレンクロライド、N−メチルピロリドンなどが挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。   Examples of the hydrocarbons include benzene, toluene, xylene, hexane, cyclohexane and the like, and examples of alcohols include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, 2-butanol, tert- Examples include butanol, pentanol, 2-methyl-2-butanol, and cyclohexanol. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of esters include methyl formate, ethyl formate, Examples thereof include methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate, and methyl lactate. Examples of glycol ethers (C1 to C4) include methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ester. As terrestrial (PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, or propylene glycol mono (C1-C4) alkyl ether esters, propylene glycol monomethyl Examples of ether acetate, propylene glycol monoethyl ether acetate, and other solvents include methylene chloride and N-methylpyrrolidone. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.

導電性層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。   As a coating method of the conductive layer coating composition, using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater, etc., the coating solution film thickness (sometimes referred to as wet film thickness) is 1 to 100 μm. In particular, 5 to 30 μm is preferable.

(オーバーコート層)
本発明に係る反射防止積層体は、前記導電性層の上にオーバーコート層を設ける。前記したようにオーバーコート層を設けることは、本発明の効果を得る上で必須である。
(Overcoat layer)
In the antireflection laminate according to the present invention, an overcoat layer is provided on the conductive layer. Providing an overcoat layer as described above is essential for obtaining the effects of the present invention.

本発明に係るオーバーコート層は樹脂を含むことが好ましく、用いられる樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマー或いはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースエステル系樹脂、マレイン酸及び/またはアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることが出来るが、これらに限定されるものではない。好ましくは、セルロースエステル系樹脂またはアクリル系樹脂であり、特に好ましくはセルロースエステル系樹脂であり、中でもセルロースジアセテート、セルロースアセテートプロピオネートが好ましい。   The overcoat layer according to the present invention preferably contains a resin. Examples of the resin used include vinyl chloride / vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, copolymer of vinyl acetate and vinyl alcohol, partial Hydrolyzed vinyl chloride / vinyl acetate copolymer, vinyl chloride / vinylidene chloride copolymer, vinyl chloride / acrylonitrile copolymer, ethylene / vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, etc. Cellulose such as homopolymer or copolymer, cellulose nitrate, cellulose acetate propionate, cellulose diacetate, cellulose triacetate, cellulose acetate phthalate, cellulose acetate butyrate resin Sester resin, copolymer of maleic acid and / or acrylic acid, acrylic acid ester copolymer, acrylonitrile / styrene copolymer, chlorinated polyethylene, acrylonitrile / chlorinated polyethylene / styrene copolymer, methyl methacrylate / butadiene / styrene copolymer, acrylic resin, polyvinyl acetal Resin, polyvinyl butyral resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene / butadiene resin, butadiene / acrylonitrile resin rubber resin, silicone resin , Fluorine resin, polymethyl methacrylate, polymethyl methacrylate and polymethyl acrylate It can be mentioned bets copolymers, but is not limited thereto. A cellulose ester resin or an acrylic resin is preferable, and a cellulose ester resin is particularly preferable. Among them, cellulose diacetate and cellulose acetate propionate are preferable.

また、本発明の効果を向上させるために、親水性高分子化合物(a)またはゼラチンまたはゼラチン誘導体の少なくとも1種を含有させることが好ましい
本発明に用いられる親水性高分子化合物(a)としては好ましくは、親水性セルロース誘導体(例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシセルロース等)、ポリビニルアルコール誘導体(例えば、ポリビニルアルコール、酢酸ビニルービニルアルコール共重合体、ポリビニルアセタール、ポリビニルホルマール、ポリビニルベンザール等)、天然高分子化合物(例えば、ゼラチン、カゼイン、アラビアゴム等)、親水性ポリエステル誘導体(例えば、部分的にスルホン化されたポリエチレンテレフタレート等)、親水性ポリビニル誘導体(例えば、ポリ−N−ビニルピロリドン、ポリアクリルアミド、ポリビニルインダゾール、ポリビニルピラゾール等)等が挙げられるが、中でも、親水性セルロース誘導体、ポリビニルアルコール誘導体、天然高分子化合物(ゼラチンまたはゼラチン誘導体)等が更に好ましく用いられる。上記の誘導体は、もちろん、単独或いは2種以上併用して用いることが出来る。
In order to improve the effect of the present invention, it is preferable to contain at least one hydrophilic polymer compound (a) or gelatin or a gelatin derivative. As the hydrophilic polymer compound (a) used in the present invention, Preferably, hydrophilic cellulose derivatives (for example, methyl cellulose, carboxymethyl cellulose, hydroxy cellulose, etc.), polyvinyl alcohol derivatives (for example, polyvinyl alcohol, vinyl acetate-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl formal, polyvinyl benzal, etc.), Natural polymer compounds (for example, gelatin, casein, gum arabic, etc.), hydrophilic polyester derivatives (for example, partially sulfonated polyethylene terephthalate), hydrophilic polyvinyl derivatives (for example, poly-N- Vinylpyrrolidone, polyacrylamide, polyvinylindazole, polyvinylpyrazole and the like), among others, hydrophilic cellulose derivatives, polyvinyl alcohol derivatives, natural polymer compounds (gelatin or gelatin derivatives) and the like are more preferably used. Of course, the above derivatives can be used alone or in combination of two or more.

本発明に係るオーバーコート層は微粒子を含んでもよい。   The overcoat layer according to the present invention may contain fine particles.

本発明に有用なオーバーコート層に含ませる微粒子としては、無機化合物の微粒子または有機化合物の微粒子を挙げることが出来る。   Examples of the fine particles contained in the overcoat layer useful in the present invention include inorganic compound fine particles and organic compound fine particles.

オーバーコート層のバインダーに対する微粒子の添加量は樹脂100質量部に対して、微粒子は0.01質量部〜1質量部が好ましく、0.05質量部〜0.5質量部が更に好ましく、0.08質量部〜0.2質量部が最も好ましい。添加量は多い方が、動摩擦係数が低くなり、また少ない方がヘイズが低く、凝集物も少なくなる。   The amount of fine particles added to the binder of the overcoat layer is preferably 0.01 parts by weight to 1 part by weight, more preferably 0.05 parts by weight to 0.5 parts by weight, with respect to 100 parts by weight of the resin. Most preferred is 08 to 0.2 parts by weight. The larger the addition amount, the lower the dynamic friction coefficient, and the smaller the addition amount, the lower the haze and the fewer the aggregates.

オーバーコート層に使用される有機溶媒は特に限定されないが、オーバーコート層にアンチカール機能を付与することも出来るので、セルロースエステルフィルム及びセルロースエステルフィルムの素材の樹脂を溶解させる有機溶媒または膨潤させる有機溶媒が有用である。これらをセルロースエステルフィルムのカール度合、樹脂の種類、混合割合、塗布量等により適宜選べばよい。   The organic solvent used in the overcoat layer is not particularly limited, but since the anti-curl function can be imparted to the overcoat layer, the organic solvent for dissolving the cellulose ester film and the resin of the cellulose ester film material or the organic solvent for swelling Solvents are useful. These may be appropriately selected depending on the curl degree of the cellulose ester film, the type of resin, the mixing ratio, the coating amount, and the like.

オーバーコート層に使用し得る有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノンなどがある。また、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノールなどがあるが、有機溶媒としては特にこれらに限定されるものではない。   Examples of the organic solvent that can be used for the overcoat layer include benzene, toluene, xylene, dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, N-methylpyrrolidone, 1,3-dimethyl- 2-Imidazolidinone. Further, there are methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol and the like, but the organic solvent is not particularly limited thereto.

オーバーコート層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。   As a coating method of the overcoat layer coating composition, using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater, etc., the coating solution film thickness (sometimes referred to as wet film thickness) is 1 to 100 μm. In particular, 5 to 30 μm is preferable.

また、前記導電性層の乾燥後の付き量が0.05〜1.0g/m2、かつオーバーコート層の乾燥後の付き量が0.05〜1.0g/m2であること好ましい。 Moreover, it is preferable that the adhesion amount after drying of the said electroconductive layer is 0.05-1.0 g / m < 2 >, and the adhesion amount after drying of an overcoat layer is 0.05-1.0 g / m < 2 >.

(反射防止層)
本発明に係る反射防止積層体においては、金属酸化物層を後述の透明基材フィルムに直接形成させてもよいが、他の被覆層を少なくとも1層設け、凹凸面を有する長尺基材フィルム上に形成させてもよい。他の被覆層としては、JIS B 0601で規定される中心線平均表面粗さ(Ra)が0.01〜1μmの後述する活性線硬化樹脂層が好ましい。これらは紫外線等の活性線により硬化する樹脂層である。この様な紫外線で硬化された樹脂層の上に金属酸化物層を塗設することによって、搬送傷やクラックの発生を低減した優れた反射防止積層体を得ることが出来る。
(Antireflection layer)
In the antireflection laminate according to the present invention, the metal oxide layer may be directly formed on the transparent base film described later, but at least one other coating layer is provided, and the long base film having an uneven surface It may be formed on the top. The other coating layer is preferably an actinic radiation curable resin layer described later having a centerline average surface roughness (Ra) defined by JIS B 0601 of 0.01 to 1 μm. These are resin layers that are cured by active rays such as ultraviolet rays. By coating the metal oxide layer on the resin layer cured with such ultraviolet rays, an excellent antireflection laminate with reduced generation of transport scratches and cracks can be obtained.

本発明の反射防止積層体の基本的な構成を説明する。例えば、反射防止積層体は、透明支持体/ハードコート層/低屈折率層、透明支持体/ハードコート層/高屈折率層/低屈折率層、透明支持体/ハードコート層/中屈折率層/高屈折率層/低屈折率層の順序の層構成を有するが、透明支持体/ハードコート層/高屈折率層/低屈折率層、透明支持体/ハードコート層/中屈折率層/高屈折率層/低屈折率層であることが好ましい。透明支持体、中屈折率層、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有する。   The basic structure of the antireflection laminate of the present invention will be described. For example, the antireflection laminate includes a transparent support / hard coat layer / low refractive index layer, a transparent support / hard coat layer / high refractive index layer / low refractive index layer, and a transparent support / hard coat layer / medium refractive index. Layer / high refractive index layer / low refractive index layer in order, transparent support / hard coat layer / high refractive index layer / low refractive index layer, transparent support / hard coat layer / medium refractive index layer / High refractive index layer / Low refractive index layer is preferable. The transparent support, the middle refractive index layer, the high refractive index layer, and the low refractive index layer have a refractive index that satisfies the following relationship.

低屈折率層の屈折率<透明支持体の屈折率<中屈折率層の屈折率<高屈折率層の屈折率。   The refractive index of the low refractive index layer <the refractive index of the transparent support <the refractive index of the medium refractive index layer <the refractive index of the high refractive index layer.

中屈折率層、高屈折率層及び低屈折率層を有する反射防止積層体では、特開昭59−50401号に記載されているように、中屈折率層が下記数式(1)を、高屈折率層が下記数式(2)を、低屈折率層が下記数式(3)をそれぞれ満足することにより、反射防止積層体としての平均反射率を更に下げる設計が可能となり好ましい。   In an antireflection laminate having a medium refractive index layer, a high refractive index layer, and a low refractive index layer, as described in JP-A-59-50401, the medium refractive index layer has the following formula (1): When the refractive index layer satisfies the following mathematical formula (2) and the low refractive index layer satisfies the following mathematical formula (3), the average reflectance of the antireflection laminate can be further reduced, which is preferable.

(hλ/4)×0.7<n33<(hλ/4)×1.3・・・数式(1)
数式(1)中でも、hは正の整数(一般に1、2または3)であり、n3は中屈折率層の屈折率であり、そして、d3は中屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Hλ / 4) × 0.7 <n 3 d 3 <(hλ / 4) × 1.3 (1)
In formula (1), h is a positive integer (generally 1, 2 or 3), n 3 is the refractive index of the medium refractive index layer, and d 3 is the film thickness (nm) of the medium refractive index layer. It is. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

(jλ/4)×0.7<n44<(jλ/4)×1.3・・・数式(2)
数式(2)中でも、jは正の整数(一般に1、2または3)であり、n4は高屈折率層の屈折率であり、そして、d4は高屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Jλ / 4) × 0.7 <n 4 d 4 <(jλ / 4) × 1.3 (2)
In formula (2), j is a positive integer (generally 1, 2 or 3), n 4 is the refractive index of the high refractive index layer, and d 4 is the film thickness (nm) of the high refractive index layer. It is. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

(kλ/4)×0.7<n55<(kλ/4)×1.3・・・数式(3)
数式(3)中でも、kは正の奇数(一般に1)であり、n5は低屈折率層の屈折率であり、そして、d5は低屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(Kλ / 4) × 0.7 <n 5 d 5 <(kλ / 4) × 1.3 (3)
In Equation (3), k is a positive odd number (generally 1), n 5 is the refractive index of the low refractive index layer, and d 5 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 350 to 800 (nm).

また、本発明においては、ハードコート層或いは高屈折率層に凹凸を付与して防眩性反射防止積層体とすることも好ましい。   Moreover, in this invention, it is also preferable to give an unevenness | corrugation to a hard-coat layer or a high refractive index layer, and to set it as an anti-glare antireflection laminated body.

この他、透明支持体、ハードコート層(防眩層)、高屈折率層、低屈折率層、高屈折率層、低屈折率層の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することも出来、表面に防眩層を設けてもよい。   In addition, a layer structure in the order of a transparent support, a hard coat layer (antiglare layer), a high refractive index layer, a low refractive index layer, a high refractive index layer, and a low refractive index layer is also a preferable configuration. An antiglare property can be imparted to the low refractive index layer on the surface, and an antiglare layer may be provided on the surface.

〈高屈折率層及び中屈折率〉
本発明においては、反射率の低減のために、透明支持体若しくはハードコート層を付与した透明支持体と低屈折率層との間に、高屈折率層を設けることが好ましい。また、透明支持体と高屈折率層との間に中屈折率層を設けることは、反射率の低減のために更に好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、透明支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。
<High refractive index layer and medium refractive index>
In the present invention, in order to reduce the reflectance, it is preferable to provide a high refractive index layer between the transparent support or the transparent support provided with the hard coat layer and the low refractive index layer. In addition, it is more preferable to provide a middle refractive index layer between the transparent support and the high refractive index layer in order to reduce the reflectance. The refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20. The refractive index of the medium refractive index layer is adjusted to be an intermediate value between the refractive index of the transparent support and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55-1.80. The thickness of the high refractive index layer and the medium refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The haze of the high refractive index layer and the medium refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. The strength of the high refractive index layer and the medium refractive index layer is preferably H or higher, more preferably 2H or higher, and most preferably 3H or higher, with a pencil hardness of 1 kg.

本発明に係る中、高屈折率層は下記一般式(1)で表される有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55〜2.5の層であることが好ましい。   In the present invention, the high refractive index layer is formed by applying and drying a coating liquid containing a monomer, oligomer or hydrolyzate of an organic titanium compound represented by the following general formula (1). A layer of 1.55 to 2.5 is preferred.

一般式(1)
Ti(OR14
式中、R1としては炭素数1〜8の脂肪族炭化水素基がよいが、好ましくは炭素数1〜4の脂肪族炭化水素基である。また、有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、アルコキシド基が加水分解を受けて−Ti−O−Ti−のように反応して架橋構造を作り、硬化した層を形成する。
General formula (1)
Ti (OR 1 ) 4
In the formula, R 1 is preferably an aliphatic hydrocarbon group having 1 to 8 carbon atoms, preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms. Moreover, the monomer, oligomer, or hydrolyzate thereof of an organic titanium compound reacts like -Ti-O-Ti- when an alkoxide group is hydrolyzed to form a crosslinked structure, thereby forming a cured layer.

本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH34、Ti(OC254、Ti(O−n−C374、Ti(O−i−C374、Ti(O−n−C494、Ti(O−n−C374の2〜10量体、Ti(O−i−C374の2〜10量体、Ti(O−n−C494の2〜10量体等が好ましい例として挙げられる。これらは単独で、または2種以上組み合わせて用いることが出来る。中でもTi(O−n−C374、Ti(O−i−C374、Ti(O−n−C494、Ti(O−n−C374の2〜10量体、Ti(O−n−C494の2〜10量体が特に好ましい。 Examples of the monomer or oligomer of the organic titanium compound used in the present invention include Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti (On-C 3 H 7 ) 4 , Ti (O-i- C 3 H 7) 4, Ti (O-n-C 4 H 9) 4, Ti (O-n-C 3 H 7) 4 2-10 mer, Ti (O-i-C 3 H 7) Preferred examples include 4 to 10 mer of 4 and 2 to 10 mer of Ti (On-C 4 H 9 ) 4 . These may be used alone or in combination of two or more. Of these Ti (O-n-C 3 H 7) 4, Ti (O-i-C 3 H 7) 4, Ti (O-n-C 4 H 9) 4, Ti (O-n-C 3 H 7 ) 4 to 10-mer and Ti (On-C 4 H 9 ) 4 to 10-mer are particularly preferable.

本発明に係る中、高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記有機チタン化合物を添加することが好ましい。水を後から添加した場合は、加水分解/重合が均一に進行せず、白濁が発生したり、膜強度が低下する。水と有機溶媒は添加された後、良く混合させるために攪拌し混合溶解されていることが好ましい。   In the present invention, it is preferable that the organic titanium compound is added to a solution in which water and an organic solvent described later are sequentially added to the coating solution for the high refractive index layer. When water is added later, hydrolysis / polymerization does not proceed uniformly, and white turbidity occurs or film strength decreases. After the water and the organic solvent are added, it is preferable that they are stirred and mixed and dissolved in order to mix well.

また、別法として有機チタン化合物と有機溶媒を混合させておき、この混合溶液を、上記水と有機溶媒の混合攪拌された溶液中に添加することも好ましい態様である。   Further, as another method, it is also a preferred embodiment that an organic titanium compound and an organic solvent are mixed and this mixed solution is added to the mixed and stirred solution of water and the organic solvent.

また、水の量は有機チタン化合物1モルに対して、0.25〜3モルの範囲であることが好ましい。0.25モル未満であると、加水分解、重合の進行が不十分で膜強度が低下する。3モルを超えると加水分解、重合が進行し過ぎて、TiO2の粗大粒子が発生し白濁するため好ましくない。従って水の量は上記範囲で調整する必要がある。 Moreover, it is preferable that the quantity of water is the range of 0.25-3 mol with respect to 1 mol of organic titanium compounds. When the amount is less than 0.25 mol, hydrolysis and polymerization are not sufficiently progressed and the film strength is lowered. If it exceeds 3 moles, hydrolysis and polymerization will proceed excessively, resulting in generation of coarse TiO 2 particles and white turbidity. Therefore, the amount of water needs to be adjusted within the above range.

また、水の含有率は塗布液総量に対して10質量%未満であることが好ましい。水の含有率を塗布液総量に対して10質量%以上にすると、塗布液の経時安定が劣り白濁を生じたりするため好ましくない。   Moreover, it is preferable that the content rate of water is less than 10 mass% with respect to the coating liquid total amount. If the water content is 10% by mass or more with respect to the total amount of the coating solution, it is not preferable because the stability of the coating solution with time deteriorates and white turbidity occurs.

本発明に係る有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。これらの有機溶媒の使用量は、前述したように、水の含有率が塗布液総量に対して10質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。   The organic solvent according to the present invention is preferably a water-miscible organic solvent. Examples of the water-miscible organic solvent include alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, etc.), many Monohydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyvalent Alcohol ethers (eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether) , Ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethylene glycol mono Phenyl ether, propylene glycol monophenyl ether, etc.), amines (eg, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine) , Triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), heterocyclic rings (For example, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (for example, dimethyl sulfoxide, etc.), sulfones (for example, , Sulfolane and the like), urea, acetonitrile, acetone and the like, and alcohols, polyhydric alcohols, and polyhydric alcohol ethers are particularly preferable. The amount of these organic solvents used may be adjusted as described above so that the water content is less than 10% by mass with respect to the total amount of the coating solution.

本発明に用いられる有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、塗布液に含まれる固形分中の50.0質量%〜98.0質量%を占めていることが望ましい。固形分比率は50質量%〜90質量%がより好ましく、55質量%〜90質量%が更に好ましい。この他、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。   The monomer, oligomer or hydrolyzate of the organic titanium compound used in the present invention preferably occupies 50.0% by mass to 98.0% by mass in the solid content contained in the coating solution. The solid content ratio is more preferably 50% by mass to 90% by mass, and further preferably 55% by mass to 90% by mass. In addition, it is also preferable to add to the coating composition a polymer of an organic titanium compound (a product obtained by crosslinking the organic titanium compound in advance by hydrolysis) or titanium oxide fine particles.

本発明に係る高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含み、更にバインダーポリマーを含む。   The high refractive index layer and the medium refractive index layer according to the present invention contain metal oxide particles as fine particles, and further contain a binder polymer.

上記塗布液調製法で加水分解/重合した有機チタン化合物と金属酸化物粒子を組み合わせると、金属酸化物粒子と加水分解/重合した有機チタン化合物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得ることが出来る。   When the organic titanium compound hydrolyzed / polymerized by the coating liquid preparation method and the metal oxide particles are combined, the metal oxide particles and the hydrolyzed / polymerized organic titanium compound are firmly bonded, and the hardness and uniform film of the particles It is possible to obtain a strong coating film having both flexibility.

高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。金属酸化物粒子の1次粒子の重量平均径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の重量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m2/gであることが好ましく、20〜200m2/gであることが更に好ましく、30〜150m2/gであることが最も好ましい。 The metal oxide particles used for the high refractive index layer and the medium refractive index layer preferably have a refractive index of 1.80 to 2.80, and more preferably 1.90 to 2.80. The weight average diameter of the primary particles of the metal oxide particles is preferably 1 to 150 nm, more preferably 1 to 100 nm, and most preferably 1 to 80 nm. The weight average diameter of the metal oxide particles in the layer is preferably 1 to 200 nm, more preferably 5 to 150 nm, still more preferably 10 to 100 nm, and more preferably 10 to 80 nm. Most preferred. The average particle diameter of the metal oxide particles is measured by a light scattering method if it is 20-30 nm or more, and by an electron micrograph if it is 20-30 nm or less. The specific surface area of metal oxide particles, as measured values by the BET method is preferably from 10 to 400 m 2 / g, more preferably from 20 to 200 m 2 / g, with 30 to 150 m 2 / g Most preferably it is.

金属酸化物粒子の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物であり、具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことが出来る。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。   Examples of the metal oxide particles include at least one selected from Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S. Specific examples of the metal oxide include titanium dioxide (eg, rutile, rutile / anatase mixed crystal, anatase, amorphous structure), tin oxide, indium oxide, zinc oxide, and zirconium oxide. Of these, titanium oxide, tin oxide, and indium oxide are particularly preferable. The metal oxide particles are mainly composed of oxides of these metals and can further contain other elements. The main component means a component having the largest content (mass%) among the components constituting the particles. Examples of other elements include Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S.

金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物または有機化合物を用いて実施することが出来る。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。   The metal oxide particles are preferably surface-treated. The surface treatment can be performed using an inorganic compound or an organic compound. Examples of inorganic compounds used for the surface treatment include alumina, silica, zirconium oxide and iron oxide. Of these, alumina and silica are preferable. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, a silane coupling agent is most preferable.

具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane. Methoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxy Propyltriethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, Examples include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。   The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and allowing the dispersion to stand at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.

これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることが出来る。   These silane coupling agents are preferably hydrolyzed with a necessary amount of water in advance. When the silane coupling agent is hydrolyzed, the surfaces of the organic titanium compound and the metal oxide particles described above are easy to react and a stronger film is formed. It is also preferable to add a hydrolyzed silane coupling agent to the coating solution in advance. The water used for this hydrolysis can also be used for the hydrolysis / polymerization of the organic titanium compound.

本発明では2種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。2種類以上の金属酸化物粒子を高屈折率層及び中屈折率層に併用してもよい。   In the present invention, the treatment may be performed by combining two or more kinds of surface treatments. The shape of the metal oxide particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape. Two or more kinds of metal oxide particles may be used in combination in the high refractive index layer and the middle refractive index layer.

高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜65体積%であることが好ましく、より好ましくは10〜60体積%であり、更に好ましくは20〜55体積%である。   The ratio of the metal oxide particles in the high refractive index layer and the medium refractive index layer is preferably 5 to 65% by volume, more preferably 10 to 60% by volume, and still more preferably 20 to 55% by volume. is there.

上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。   The metal oxide particles are supplied to a coating solution for forming a high refractive index layer and a medium refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ester (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

また金属酸化物粒子は、分散機を用いて媒体中に分散することが出来る。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。   The metal oxide particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder.

本発明に係る高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。   The high refractive index layer and the medium refractive index layer according to the present invention preferably use a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer. Examples of the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin. Among them, a crosslinked product of polyolefin, polyether and polyurethane is preferred, a crosslinked product of polyolefin and polyether is more preferred, and a crosslinked product of polyolefin is most preferred. Further, it is further preferable that the crosslinked polymer has an anionic group. The anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film. The anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.

アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。   Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred. Here, the anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated. The linking group that binds the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof. The crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. In this case, the ratio of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable. The repeating unit may have two or more anionic groups.

アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。なお、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。   The crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure). Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group. The benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.

上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。   In the crosslinked polymer containing a repeating unit having an amino group or a quaternary ammonium group as a constituent unit, the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably carbon number. 1 to 6 alkyl groups. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred. When the crosslinked polymer includes a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, it is 0.1-28 mass%.

架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることが出来る。   The cross-linked polymer is prepared by blending a monomer for generating a cross-linked polymer to prepare a coating solution for forming a high refractive index layer and a medium refractive index layer, and is generated by a polymerization reaction simultaneously with or after coating of the coating solution. Is preferred. Each layer is formed with the production of the crosslinked polymer. The monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution. The monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles. The monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution. The monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group. These monomers can be made to function effectively before application of the coating liquid by a method of forming a crosslinked polymer by a polymerization reaction simultaneously with or after application of the coating liquid.

本発明に用いられるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。   As the monomer used in the present invention, a monomer having two or more ethylenically unsaturated groups is most preferable, and examples thereof include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di ( (Meth) acrylate, 1,4-dichlorohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester Terpolyacrylate), vinylbenzene and its derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone (eg, divinylsulfone), acrylamide (E.g., methylenebisacrylamide) and methacrylamide. Commercially available monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group. As a commercially available monomer having a commercially available anionic group, KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.) , Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Chemical Industry Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku) NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Industry Co., Ltd.), and the like. It is done. Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co., Ltd.). ) And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).

ポリマーの重合反応は、光重合反応または熱重合反応を用いることが出来る。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。   For the polymerization reaction of the polymer, a photopolymerization reaction or a thermal polymerization reaction can be used. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. For example, the thermal polymerization initiator mentioned later used in order to form the binder polymer of a hard-coat layer, and a photoinitiator are mentioned.

重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。   A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application | coating, and may additionally process the thermosetting reaction of the formed polymer.

中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることが出来る。   For the medium refractive index layer and the high refractive index layer, it is preferable to use a polymer having a relatively high refractive index. Examples of the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. . Polymers having other cyclic (aromatic, heterocyclic, alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.

(低屈折率層)
低屈折率層としては、熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、または微粒子とバインダーポリマーを用い、微粒子間または微粒子内部に空隙を有する低屈折率層等が用いられるが、本発明に係る低屈折率層は、主として微粒子とバインダーポリマーを用いる低屈折率層であることが好ましい。特に粒子内部に空隙を有する(中空微粒子ともいう)低屈折率層である場合、より屈折率を低下することが出来好ましい。但し、低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.30〜1.50であることが好ましく、1.35〜1.49であることが更に好ましい。
(Low refractive index layer)
Examples of the low refractive index layer include a low refractive index layer formed by crosslinking a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorinated resin before crosslinking”), a low refractive index layer by a sol-gel method, or fine particles. And a binder polymer, and a low refractive index layer or the like having voids between or inside the fine particles is used. The low refractive index layer according to the present invention may be a low refractive index layer mainly using fine particles and a binder polymer. preferable. In particular, a low refractive index layer having voids inside the particles (also referred to as hollow fine particles) is preferable because the refractive index can be further lowered. However, if the refractive index of the low refractive index layer is low, it is preferable because the antireflection performance is improved, but it is difficult from the viewpoint of imparting strength to the low refractive index layer. From this balance, the refractive index of the low refractive index layer is preferably 1.30 to 1.50, more preferably 1.35 to 1.49.

また、上記低屈折率層の調製方法は適宜組み合わせて用いても構わない。   Moreover, you may use combining the preparation method of the said low-refractive-index layer suitably.

架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の相み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。   Preferred examples of the fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (produced by Osaka Organic Chemicals) or M-2020 (produced by Daikin)), fully or partially fluorinated vinyl ethers, etc. Is mentioned. As monomers for imparting a crosslinkable group, glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). The latter can introduce a crosslinked structure after copolymerization by adding a compound that reacts with a functional group in the polymer and one or more reactive groups. No. 147739. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group. When the fluorine-containing copolymer is cross-linked by heating by a cross-linking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, the thermosetting type In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, etc., it is an ionizing radiation curable type .

また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。   Further, in addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.

架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。   The proportion of each of the above monomers used to form the fluorinated copolymer before crosslinking is preferably 20 to 70 mol%, more preferably 40 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer. The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.

含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。   The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization.

架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(R)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。   The fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (R) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR) and the like. It is done.

架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。   The low refractive index layer containing a cross-linked fluororesin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.

架橋した含フッ素樹脂を構成成分とする低屈折率層が後述する無機粒子を含有することは、屈折率調整の点から好ましい。また無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合はシランカップリング剤による処理が特に有効である。   It is preferable from the viewpoint of refractive index adjustment that the low refractive index layer containing a crosslinked fluorine-containing resin as a constituent component contains inorganic particles described later. The inorganic fine particles are preferably used after being subjected to a surface treatment. The surface treatment method includes physical surface treatment such as plasma discharge treatment and corona discharge treatment and chemical surface treatment using a coupling agent, but the use of a coupling agent is preferred. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent, etc.) is preferably used. When the inorganic fine particles are silica, treatment with a silane coupling agent is particularly effective.

また、低屈折率層用の素材として、各種ゾルゲル素材を用いることも出来る。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることが出来る。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。   Various sol-gel materials can also be used as the material for the low refractive index layer. As such a sol-gel material, metal alcoholates (alcohols such as silane, titanium, aluminum, and zirconium), organoalkoxy metal compounds, and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.

低屈折率層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。   As the low refractive index layer, it is also preferable to use a layer formed using inorganic or organic fine particles and forming microvoids between or within the fine particles. The average particle diameter of the fine particles is preferably 0.5 to 200 nm, more preferably 1 to 100 nm, still more preferably 3 to 70 nm, and most preferably in the range of 5 to 40 nm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.

無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。好ましい無機化合物の具体例としては、SiO2、またはMgF2であり、特に好ましくはSiO2である。 The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. An inorganic compound containing two kinds of metals may be used. Specific examples of preferred inorganic compounds are SiO 2 and MgF 2 , and particularly preferred is SiO 2 .

無機微粒子内にミクロボイドを有する粒子は、例えば、粒子を形成するシリカの分子を架橋させることにより形成することが出来る。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することが出来る。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることも出来る。市販の多孔質無機微粒子(例えば、SiO2ゾル)を用いてもよい。 Particles having microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A-53-112732 and JP-B-57-9051) or a precipitation method (described in APPLIED OPTICS, 27, 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, SiO 2 sol) may be used.

これらの無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。   These inorganic fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.

有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。   The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. The proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass. It is also preferable to form microvoids in the organic fine particles by, for example, cross-linking the polymer forming the particles and reducing the volume. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers. , Perfluoro-2,2-dimethyl-1,3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid, and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylates (eg, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (eg, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (eg, methyl vinyl ether), vinyl esters ( Examples thereof include vinyl acetate and vinyl propionate), acrylamides (for example, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.

粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することが出来る。なお、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節出来る。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることが出来る。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることが出来る。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。   Microvoids between particles can be formed by stacking at least two fine particles. When spherical fine particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between fine particles having a porosity of 26% by volume are formed. When spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed. In an actual low-refractive index layer, the particle size distribution of fine particles and intra-particle microvoids exist, so the porosity varies considerably from the above theoretical value. When the porosity is increased, the refractive index of the low refractive index layer is lowered. When microvoids are formed by stacking fine particles, the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the low refractive index layer) by adjusting the particle size of the fine particles. You can adjust. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform low refractive index layer in which the size of microvoids between particles is uniform. As a result, the low refractive index layer is microscopically a microvoided porous film, but can be made optically or macroscopically uniform. The interparticle microvoids are preferably closed in the low refractive index layer by fine particles and a polymer. The closed air gap also has an advantage that light scattering on the surface of the low refractive index layer is less than that of an opening opened on the surface of the low refractive index layer.

ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることが出来る。   By forming the microvoids, the macroscopic refractive index of the low refractive index layer becomes lower than the sum of the refractive indexes of the components constituting the low refractive index layer. The refractive index of the layer is the sum of the refractive indices per volume of the layer components. The refractive index of the constituent component of the low refractive index layer such as fine particles or polymer is larger than 1, whereas the refractive index of air is 1.00. Therefore, a low refractive index layer having a very low refractive index can be obtained by forming microvoids.

また、本発明ではSiO2の中空微粒子を用いることも好ましい態様である。 In the present invention, it is also a preferred embodiment to use SiO 2 hollow fine particles.

本発明でいう中空微粒子とは、粒子壁を有しその内部が空洞であるような粒子をいい、例えば前述の微粒子内部にミクロボイドを有するSiO2粒子を更に有機珪素化合物(テトラエトキシシラン等のアルコキシシラン類)で表面を被覆しその細孔入り口を閉塞して形成された粒子である。あるいは前記粒子壁内部の空洞が溶媒または気体で満たされていてもよく、例えば空気の場合は中空微粒子の屈折率は、通常のシリカ(屈折率=1.46)と比較して著しく低くすることが出来る(屈折率=1.44〜1.34)。このような中空SiO2微粒子を添加することにより、低屈折率層の更なる低屈折率化が可能となる。 The hollow fine particles referred to in the present invention are particles having a particle wall and a hollow inside. For example, SiO 2 particles having microvoids inside the fine particles described above are further converted to organosilicon compounds (alkoxy such as tetraethoxysilane). These are particles formed by covering the surface with silanes and closing the pore entrance. Alternatively, the cavity inside the particle wall may be filled with a solvent or gas. For example, in the case of air, the refractive index of the hollow fine particles should be significantly lower than that of ordinary silica (refractive index = 1.46). (Refractive index = 1.44 to 1.34). By adding such hollow SiO 2 fine particles, the refractive index of the low refractive index layer can be further reduced.

上記無機微粒子内にミクロボイドを有する粒子を中空にする調製方法は、特開2001−167637号公報、2001−233611号公報に記載されている方法に準じればよく、また本発明では市販の中空SiO2微粒子を用いることが出来る。市販の粒子の具体例としては、触媒化成工業社製P−4等が挙げられる。 The method for preparing particles having microvoids in the inorganic fine particles may be in accordance with the methods described in JP-A Nos. 2001-167737 and 2001-233611. In the present invention, commercially available hollow SiO Two fine particles can be used. Specific examples of commercially available particles include P-4 manufactured by Catalytic Chemical Industry Co., Ltd.

低屈折率層は、5〜50質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持出来るように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。   The low refractive index layer preferably contains the polymer in an amount of 5 to 50% by mass. The polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids. The amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass of the total amount of the low refractive index layer. In order to adhere the fine particles with the polymer, (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder. The polymer to be bonded to the surface treatment agent (1) is preferably the shell polymer (2) or the binder polymer (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer and performing a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to carry out a combination of two or all of the above (1) to (3), and to carry out a combination of (1) and (3) or (1) to (3) all of the combinations. Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.

(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類出来る。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiO2からなる場合は、シランカップリング剤による表面処理が特に有効に実施出来る。具体的なシランカップリング剤の例としては、前記したシランカップリング剤が好ましく用いられる。
(1) Surface treatment It is preferable that the fine particles (particularly inorganic fine particles) are subjected to a surface treatment to improve the affinity with the polymer. The surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. Particles when made of SiO 2, surface treatment with a silane coupling agent can be particularly effectively conducted. As a specific example of the silane coupling agent, the above-described silane coupling agent is preferably used.

カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施出来る。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。   The surface treatment with the coupling agent can be carried out by adding the coupling agent to the fine particle dispersion and allowing the dispersion to stand at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.

(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
(2) Shell The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred. The refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases. In order to lower the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. The polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Mention may be made of esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.

シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。   The polymer forming the shell may be a copolymer composed of a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom. The repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic acid esters (eg, methyl acrylate, ethyl acrylate, acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyltoluene, α-methylstyrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides), methacrylamide and acrylonitrile.

後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。   When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. When the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, it is easy to maintain microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use a binder polymer (3) described later in combination, and form the low refractive index layer as a continuous layer with the binder polymer. By forming a polymer shell around the fine particles, core-shell fine particles are obtained. The core-shell fine particles preferably contain 5 to 90% by volume of a core composed of inorganic fine particles, and more preferably 15 to 80% by volume. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.

(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用出来る。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
(3) Binder The binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain. The binder polymer is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups. Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (for example, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol). Tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloyl ethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg, divinyl sulfone), acrylamide (eg, methylene bisacrylamide) and methacrylamide Can be mentioned. The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound. Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by the reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxyl groups, methylol groups, and active methylene groups. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group. As the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer, a thermal polymerization initiator or a photopolymerization initiator is used, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。   The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after the coating of the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.

また、本発明の低屈折率層或いは他の屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することが出来る。滑り剤としては、シリコンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式で表される化合物が好ましい。   Moreover, it is preferable to add a slipping agent to the low refractive index layer or other refractive index layers of the present invention, and scratch resistance can be improved by imparting slipperiness. As the slip agent, silicon oil or a wax-like substance is preferably used. For example, a compound represented by the following general formula is preferable.

一般式 R1COR2
式中、R1は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基を表す。アルキル基またはアルケニル基が好ましく、更に炭素原子数が16以上のアルキル基またはアルケニル基が好ましい。R2は−OM1基(M1はNa、K等のアルカリ金属を表す)、−OH基、−NH2基、または−OR3基(R3は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す)を表し、R2としては−OH基、−NH2基または−OR3基が好ましい。具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用出来る。特公昭53−292号公報に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号明細書に開示されているような高級脂肪酸アミド、特公昭58−33541号公報、英国特許第927,446号明細書または特開昭55−126238号公報及び同58−90633号公報に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号明細書に開示されているような高級脂肪酸金属塩、特開昭51−37217号公報に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることが出来る。
General formula R 1 COR 2
In the formula, R 1 represents a saturated or unsaturated aliphatic hydrocarbon group having 12 or more carbon atoms. An alkyl group or an alkenyl group is preferable, and an alkyl group or alkenyl group having 16 or more carbon atoms is more preferable. R 2 represents —OM 1 group (M 1 represents an alkali metal such as Na or K), —OH group, —NH 2 group, or —OR 3 group (R 3 represents a saturated or unsaturated group having 12 or more carbon atoms. R 2 represents a saturated aliphatic hydrocarbon group, preferably an alkyl group or an alkenyl group, and R 2 is preferably an —OH group, —NH 2 group, or —OR 3 group. Specifically, higher fatty acids such as behenic acid, stearamide, and pentacoic acid, or derivatives thereof, and carnauba wax, beeswax, and montan wax containing many of these components as natural products can also be preferably used. Polyorganosiloxane as disclosed in JP-B-53-292, higher fatty acid amide as disclosed in US Pat. No. 4,275,146, JP-B 58-33541, British patent No. 927,446 or JP-A-55-126238 and 58-90633, higher fatty acid esters (fatty acids having 10 to 24 carbon atoms and 10 to 24 carbon atoms). Esters of alcohols), and higher fatty acid metal salts as disclosed in U.S. Pat. No. 3,933,516, dicarboxylic acids having up to 10 carbon atoms as disclosed in JP-A-51-37217 A polyester compound comprising an acid and an aliphatic or cycloaliphatic diol, a dicarboxylic acid disclosed in JP-A-7-13292, It can be mentioned oligo polyester or the like from the Le.

例えば、低屈折率層に使用する滑り剤の添加量は0.01mg/m2〜10mg/m2が好ましい。 For example, the amount of slip agent to be used in the low refractive index layer is preferably 0.01mg / m 2 ~10mg / m 2 .

反射防止積層体の各層またはその塗布液には、前述した成分(金属酸化物粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。   In addition to the above-described components (metal oxide particles, polymer, dispersion medium, polymerization initiator, polymerization accelerator), each layer of the antireflection laminate or coating liquid thereof is a polymerization inhibitor, leveling agent, thickener, coloring. An inhibitor, an ultraviolet absorber, a silane coupling agent, an antistatic agent or an adhesion promoter may be added.

反射防止積層体の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することが出来る。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。   Each layer of the antireflection laminate is formed by coating by a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method or an extrusion coating method (US Pat. No. 2,681,294). I can do it. Two or more layers may be applied simultaneously. For the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).

本発明では、低反射積層体の製造方法において、前記調製した塗布液を支持体に塗布した後乾燥する際に、好ましくは60℃以上で乾燥することが好ましく、80℃以上で乾燥することが更に好ましい。また、露点20℃以下で乾燥することが好ましく、15℃以下で乾燥することが更に好ましい。更に支持体に塗布した後10秒以内に乾燥が開始されることが好ましく、上記条件と組み合わせることが、本発明の効果を得る上で好ましい製造方法である。   In the present invention, in the method for producing a low reflection laminate, when the prepared coating solution is applied to a support and then dried, it is preferably dried at 60 ° C. or higher, and may be dried at 80 ° C. or higher. Further preferred. Further, drying at a dew point of 20 ° C. or lower is preferable, and drying at 15 ° C. or lower is more preferable. Furthermore, drying is preferably started within 10 seconds after coating on the support, and combining with the above conditions is a preferable production method for obtaining the effects of the present invention.

(透明基材フィルム)
次に、本発明で用いることの出来る透明基材フィルムについて説明する。
(Transparent substrate film)
Next, the transparent substrate film that can be used in the present invention will be described.

本発明に用いられる透明基材フィルムとしては、製造が容易であること、活性線硬化型樹脂層との接着性が良好である、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。   The transparent substrate film used in the present invention is easy to manufacture, has good adhesion to the actinic radiation curable resin layer, is optically isotropic, and is optically transparent. Etc. are mentioned as preferable requirements.

本発明でいう透明とは、可視光の透過率60%以上であることをさし、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

上記の性質を有していれば特に限定はないが、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテート、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム,ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオネア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることが出来る。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)が好ましく、本発明においては、特にセルロースエステルフィルム(例えば、コニカタック 製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR(コニカ(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   Although it will not specifically limit if it has said property, For example, a cellulose-ester type film, a polyester-type film, a polycarbonate-type film, a polyarylate-type film, a polysulfone (a polyether sulfone is also included) type film, a polyethylene terephthalate, polyethylene Polyester film such as naphthalate, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, Polycarbonate film, cycloolefin polymer film (Arton (manufactured by JSR), Onex, Zeonea (above, ZEON Corporation), polymethylpentene film, polyetherketone film, polyetherketoneimide film, polyamide film, fluororesin film, nylon film, polymethylmethacrylate film, acrylic film, glass plate, etc. Can be mentioned. Among them, a cellulose triacetate film, a polycarbonate film, and a polysulfone (including polyethersulfone) are preferable. In the present invention, a cellulose ester film (for example, Konicattak product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR (Konica ( From the viewpoint of production, cost, transparency, isotropy, adhesiveness and the like. These films may be films produced by melt casting film formation or films produced by solution casting film formation.

基材フィルムの光学特性としては膜厚方向のリターデーションRtが0nm〜300nm、面内方向のリターデーションR0が0nm〜1000nmのものが好ましく用いられる。 The optical properties of the substrate film thickness direction retardation R t is 0Nm~300nm, retardation R 0 in the plane direction those 0nm~1000nm is preferably used.

本発明においては、基材フィルムとしてはセルロースエステルフィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。   In the present invention, it is preferable to use a cellulose ester film as the substrate film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.

特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する基材フィルム上に活性線硬化型樹脂層と反射防止層を設けた反射防止積層体が好ましく用いられる。   In particular, when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, X and Y are active ray curable resin layers on a base film having a mixed fatty acid ester of cellulose in the following range And an antireflection laminate provided with an antireflection layer is preferably used.

2.3≦X+Y≦3.0
0.1≦Y≦1.2
特に、2.5≦X+Y≦2.85
0.3≦Y≦1.2であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 1.2
In particular, 2.5 ≦ X + Y ≦ 2.85
It is preferable that 0.3 ≦ Y ≦ 1.2.

本発明に係る基材フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。   When cellulose ester is used as the base film according to the present invention, the cellulose used as a raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.

アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。 When the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl), the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804. In addition, the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution. In the cellulose ester, these acylating agents react with hydroxyl groups of cellulose molecules. Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%). For example, cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).

本発明に用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルが特に好ましく用いられる。なお、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。   The cellulose ester used in the present invention is a mixed fatty acid ester of cellulose in which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate. Is particularly preferably used. The butyryl group that forms butyrate may be linear or branched.

プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。   Cellulose acetate propionate containing a propionate group as a substituent has excellent water resistance and is useful as a film for liquid crystal image display devices.

アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。   The measuring method of the substitution degree of an acyl group can be measured according to the provisions of ASTM-D817-96.

セルロースエステルの数平均分子量は、70,000〜250,000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80,000〜150,000である。   The number average molecular weight of the cellulose ester is preferably 70,000 to 250,000 because the mechanical strength when molded is strong and an appropriate dope viscosity is preferable, and more preferably 80,000 to 150,000.

これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。   These cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).

これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。   The organic solvent used for the preparation of these dopes is preferably capable of dissolving the cellulose ester and having an appropriate boiling point, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl-2-imidazolidinone, etc. It is possible, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.

また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。   Moreover, as shown in the following film forming process, it is used from the viewpoint of preventing foaming in the web when the solvent is dried from the web (dope film) formed on the casting support in the solvent evaporation process. The boiling point of the organic solvent is preferably 30 to 80 ° C. For example, the good solvent described above has a boiling point of methylene chloride (boiling point 40.4 ° C), methyl acetate (boiling point 56.32 ° C), acetone (boiling point 56.56 ° C). 3 ° C.), ethyl acetate (boiling point 76.82 ° C.) and the like.

上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。   Among the good solvents described above, methylene chloride or methyl acetate, which is excellent in solubility, is preferably used.

上記有機溶媒の他に、0.1質量%〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。   It is preferable to contain 0.1 mass%-40 mass% of C1-C4 alcohol other than the said organic solvent. It is particularly preferable that the alcohol is contained at 5 to 30% by mass. After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting the dissolution of the cellulose ester of the non-chlorine organic solvent.

炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。   Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.

これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%〜95質量%に対してエタノール5質量%〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。   Of these solvents, ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.

本発明で用いられるセルロースエステルフィルムは少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%〜40質量%である時に幅手方向に1.01倍〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒料が3質量%〜40質量%である時に幅手方向及び長手方向に、各々1.01倍〜1.5倍に延伸されることが望ましい。この様にすることにより、平面性及び光拡散性に優れた光拡散性フィルムを得ることが出来る。   The cellulose ester film used in the present invention is preferably at least stretched in the width direction, and is 1.01 times to the width direction when the residual solvent amount is 3% by mass to 40% by mass in the solution casting process. The film is preferably stretched 1.5 times. More preferably, biaxial stretching is performed in the width direction and the longitudinal direction, and when the residual solvent is 3% by mass to 40% by mass, the width direction and the longitudinal direction are 1.01 times to 1.5 times, respectively. It is desirable to be stretched. By doing in this way, the light diffusable film excellent in planarity and light diffusibility can be obtained.

なお、残留溶媒量は下記の式により表される。   The residual solvent amount is represented by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time, and N is the mass when the web of M is dried at 110 ° C. for 3 hours.

更に、2軸延伸し、前述のナーリング加工をすることによって、長尺状光学フィルムのロール状での保管中の巻き形状の劣化を著しく改善することが出来る。   Furthermore, by carrying out biaxial stretching and performing the knurling described above, it is possible to remarkably improve the deterioration of the winding shape during storage of the long optical film in the form of a roll.

本発明においては、二軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。   In the present invention, the biaxially stretched cellulose ester film is preferably a transparent support having a light transmittance of 90% or more, more preferably 93% or more.

本発明に係るセルロースエステルフィルム支持体は、その厚さが10μm〜100μmのものが好ましく、更に好ましくは40μm〜80μmであり、透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m2・24時間以下であることが好ましく、更に好ましくは、10〜180g/m2・24時間以下であり、特に好ましくは、160g/m2・24時間以下である。特には、膜厚10μm〜80μmで透湿性が上記範囲内であることが好ましい。 The cellulose ester film support according to the present invention preferably has a thickness of 10 μm to 100 μm, more preferably 40 μm to 80 μm, and moisture permeability conforms to JIS Z 0208 (25 ° C., 90% RH). The measured value is preferably 200 g / m 2 · 24 hours or less, more preferably 10 to 180 g / m 2 · 24 hours or less, and particularly preferably 160 g / m 2 · 24 hours or less. . In particular, it is preferable that the film thickness is 10 μm to 80 μm and the moisture permeability is within the above range.

本発明においては、長尺フィルムを用いることが好ましく、具体的には、100m〜5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、基材フィルムの幅は1.3〜4mであることが好ましい。   In the present invention, it is preferable to use a long film, and specifically, a film having a length of about 100 m to 5000 m is shown, which is usually provided in a roll shape. Moreover, it is preferable that the width | variety of a base film is 1.3-4 m.

本発明の反射防止積層体にセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることが出来る。   When a cellulose ester film is used for the antireflection laminate of the present invention, it is preferable to contain the following plasticizer. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters. A plasticizer or the like can be preferably used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy For trimellitic acid plasticizers such as ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutylpyromellitate, In the case of glycolate plasticizers such as lupyromelitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc. Citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、2種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid and a glycol can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%〜20質量%が好ましく、特に好ましくは、3質量%〜13質量%である。   The amount of these plasticizers used is preferably 1% by mass to 20% by mass and particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.

本発明の反射防止積層体用の長尺フィルムには、紫外線吸収剤が好ましく用いられる。   An ultraviolet absorbent is preferably used for the long film for the antireflection laminate of the present invention.

紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples of the ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.

ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。   Specific examples of the benzotriazole-based ultraviolet absorbers include the following ultraviolet absorbers, but the present invention is not limited thereto.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- 4-Hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba)
Moreover, although the following specific example is shown as a benzophenone series ultraviolet absorber, this invention is not limited to these.

UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.

また、特開2001−187825に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。   Moreover, the ultraviolet absorber whose distribution coefficient described in Unexamined-Japanese-Patent No. 2001-187825 is 9.2 or more improves the surface quality of a long film, and is excellent also in applicability | paintability. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.

また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等が市販されている。   Further, the polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), and (7) of Japanese Patent Application No. 2000-156039 ( Alternatively, an ultraviolet absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.

また、本発明に用いられるセルロースエステルフィルムには滑り性を付与するため、後述の活性線硬化型樹脂を含む塗布層で記載するものと同様の微粒子を用いることが出来る。   Moreover, in order to provide slipperiness to the cellulose-ester film used for this invention, the microparticles | fine-particles similar to what is described with the coating layer containing the below-mentioned actinic radiation curable resin can be used.

本発明に用いられるセルロースエステルフィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。これらの微粒子は0.1〜5μmの粒径の2次粒子を形成してセルロースエステルフィルムに含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、更に好ましくは0.2〜0.6μmである。これにより、フィルム表面に高さ0.1〜1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることが出来る。   The primary average particle diameter of the fine particles added to the cellulose ester film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm. These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 μm and are contained in the cellulose ester film, and the preferable average particle diameter is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. Thereby, the unevenness | corrugation about 0.1-1.0 micrometer high can be formed in the film surface, and, thereby, appropriate slipperiness can be given to the film surface.

本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。   The primary average particle diameter of the fine particles used in the present invention is measured by observing particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, and using the average value, the primary value is measured. The average particle size was taken.

微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90〜200g/リットルであり、特に好ましくは、100〜200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。   The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.

1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上のSiO2微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることが出来る。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することが出来る。 SiO 2 fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed by the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.

上記記載の見掛比重はSiO2微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。 The apparent specific gravity described above is calculated by the following formula by measuring a weight of SiO 2 fine particles in a graduated cylinder and measuring the weight at that time.

見掛比重(g/リットル)=SiO2質量(g)/SiO2の容積(リットル)
本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。
Apparent specific gravity (g / liter) = SiO 2 mass (g) / SiO 2 volume (liter)
Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.

《調製方法A》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
<< Preparation Method A >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.

《調製方法B》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method B >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

《調製方法C》
溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method C >>
Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

調製方法AはSiO2微粒子の分散性に優れ、調製方法CはSiO2微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法BはSiO2微粒子の分散性と、SiO2微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。 Preparation method A is excellent in the dispersibility of SiO 2 fine particles, and preparation method C is excellent in that the SiO 2 fine particles are difficult to re-aggregate. Among them, the preparation method B described above is a dispersion of SiO 2 particles, a preferred preparation method SiO 2 particles have excellent reagglomeration hardly like, both.

《分散方法》
SiO2微粒子を溶剤などと混合して分散する時のSiO2の濃度は5質量%〜30質量%が好ましく、10質量%〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
《Distribution method》
The concentration of SiO 2 when the SiO 2 fine particles are mixed with a solvent and dispersed is preferably 5 to 30% by mass, more preferably 10 to 25% by mass, and most preferably 15 to 20% by mass. A higher dispersion concentration is preferable because liquid turbidity with respect to the added amount tends to be low, and haze and aggregates are improved.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

セルロースエステルに対するSiO2微粒子の添加量はセルロースエステル100質量部に対して、SiO2微粒子は0.01質量部〜5.0質量部が好ましく、0.05質量部〜1.0質量部が更に好ましく、0.1質量部〜0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。 The addition amount of SiO 2 fine particles to the cellulose ester relative to 100 parts by weight of cellulose ester, SiO 2 fine particles is preferably 5.0 parts by 0.01 parts by weight, 0.05 parts by weight to 1.0 parts by weight is more Preferably, 0.1 mass part-0.5 mass part is the most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.

分散機は通常の分散機が使用出来る。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。SiO2微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。 As the disperser, a normal disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersion of SiO 2 fine particles, a medialess disperser is preferred because of low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable. The high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. When processing with a high-pressure dispersion apparatus, for example, the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 μm. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.

上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等が挙げられる。   Examples of the high-pressure dispersing apparatus include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing apparatuses such as homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.

また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。   In addition, casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.

また、流延後に剥離して乾燥されロール状に巻き取られた後、本発明に係る光学薄膜層が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されないが、フィルムからの残留溶媒の揮発を妨げないものが好ましい。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。   Moreover, after peeling and drying after casting and winding up into a roll, the optical thin film layer according to the present invention is provided. Until processing or shipment, packaging is usually performed in order to protect the product from dirt, static electricity, and the like. The packaging material is not particularly limited as long as the above purpose can be achieved, but a material that does not hinder volatilization of the residual solvent from the film is preferable. Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. Those in which the fibers are mesh cloth are more preferably used.

本発明に用いられるセルロースエステルフィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。   The cellulose ester film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.

共流延とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。   Co-casting is a sequential multilayer casting method in which two or three layers are configured through different dies, and a simultaneous multilayer casting method in which two or three slits are combined in a die having two or three slits. Any of the multilayer casting methods combining sequential multilayer casting and simultaneous multilayer casting may be used.

また、本発明で用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが、支持体として好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。   In addition, the cellulose ester used in the present invention is preferably used as a support having a small amount of bright spot foreign matter when formed into a film. In the present invention, the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.

このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。   At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used. The occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated cellulose contained in the cellulose ester. As countermeasures, the use of cellulose ester with a small amount of unacetylated cellulose, It can be removed and reduced by filtering the dissolved dope solution. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.

輝点異物は、輝点の直径0.01mm以上のものが200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましくは、0であることである。 The bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.

また、0.005mm〜0.01mmの輝点についても200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。 The number of bright spots of 0.005 mm to 0.01 mm is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, 50 / cm 2 or less, 30 / cm 2 or less. The number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.

輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。   When removing bright spot foreign matter by filtration, it is preferable to filter the composition in which a plasticizer is added and mixed, rather than filtering a cellulose ester dissolved alone, because the bright spot foreign matter removal efficiency is high. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, and 10 μm or less, and particularly preferably 5 μm or less.

これらは、適宜組み合わせて使用することも出来る。濾材はサーフェースタイプでもデプスタイプでも用いることが出来るが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。   These can also be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.

次に、本発明の反射防止積層体に有用な塗布層について述べる。   Next, a coating layer useful for the antireflection laminate of the present invention will be described.

本発明の反射防止層またはその他の薄膜は、上記フィルム状またはシート状の基材に直接形成してもよいが、他の層を介してその上に形成してもよい。   The antireflection layer or other thin film of the present invention may be directly formed on the film-like or sheet-like substrate, but may be formed thereon via another layer.

本発明において、基材の反射防止層を形成する側の面に塗布する塗布層としては、クリアハードコート層、防眩層、接着層等を挙げることが出来、クリアハードコート層、防眩層が好ましく塗布され、特に、反射防止積層体の場合には、クリアハードコート層を反射防止積層体の表面硬度を高めるために、特に「他の層」として設けることが好ましい。また前述のように反射防止層またはその他の薄膜を形成する側と基材の反対側には、導電性層及びオーバーコート層を設けられる。   In the present invention, examples of the coating layer applied to the surface of the substrate on which the antireflection layer is formed include a clear hard coat layer, an antiglare layer, and an adhesive layer. In particular, in the case of an antireflection laminate, the clear hard coat layer is particularly preferably provided as “another layer” in order to increase the surface hardness of the antireflection laminate. Further, as described above, a conductive layer and an overcoat layer are provided on the side on which the antireflection layer or other thin film is formed and the side opposite to the substrate.

ここで、本発明に有用な「他の層」としての塗布層として、反射防止積層体に用いられるクリアハードコート層について述べる。   Here, the clear hard coat layer used for the antireflection laminate is described as a coating layer as an “other layer” useful in the present invention.

クリアハードコート層は、紫外線により硬化する紫外線硬化化合物(樹脂)を含有する層であることが好ましく、耐擦り傷性に優れた反射防止積層体を得ることが出来る。   The clear hard coat layer is preferably a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays, and an antireflection laminate excellent in scratch resistance can be obtained.

クリアハードコート層の紫外線硬化樹脂層は、エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層であることが好ましい。ここで、紫外線硬化樹脂層は、紫外線の外に電子線のような活性線照射により架橋反応などを経て硬化する樹脂を主たる成分とする層をいう。紫外線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることが出来る。   The ultraviolet curable resin layer of the clear hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer. Here, the ultraviolet curable resin layer refers to a layer mainly composed of a resin which is cured through a crosslinking reaction or the like by irradiation with an active ray such as an electron beam in addition to ultraviolet rays. Typical examples of the ultraviolet curable resin include an ultraviolet curable resin and an electron beam curable resin. However, a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. I can do it.

紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151110号等を参照)。   In general, UV-curable acrylic urethane-based resins are obtained by further reacting 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate) with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (for example, see JP-A-59-151110).

紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59−151112号を参照)。   The UV curable polyester acrylate resin can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer (see, for example, JP-A-59-151112). .

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることが出来る(例えば、特開平1−105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することが出来る。   Specific examples of the ultraviolet curable epoxy acrylate resin include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto (for example, JP-A-1- No. 105738). As this photoreaction initiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.

また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。   Specific examples of ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc. can be mentioned.

これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用出来る。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。また、エポキシアクリレート系の光反応剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1〜10質量%添加することが出来、2.5〜6質量%であることが好ましい。   These resins are usually used together with known photosensitizers. Moreover, the said photoinitiator can also be used as a photosensitizer. Specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Further, when using an epoxy acrylate photoreactant, a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.

樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。   Examples of the resin monomer include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond. In addition, monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.

例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、旭電化工業株式会社製)、或いはコーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、或いはサンラッドH−601(三洋化成工業株式会社製)、或いはSP−1509、SP−1507(昭和高分子株式会社製)、或いはRCC−15C(グレース・ジャパン株式会社製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用出来る。   For example, as an ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI HARD A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC- 5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Co., Ltd.) (Manufactured by company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available ones can be used.

紫外線硬化樹脂層は公知の方法で塗設することが出来る。   The ultraviolet curable resin layer can be applied by a known method.

紫外線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。好ましくは、プロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテル出来はプロピレングリコールモノ(炭素数1〜4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5〜80質量%以上含有する溶媒が用いられる。   As a solvent for coating the ultraviolet curable resin layer, for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used. . Preferably, propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether is prepared, and propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass. The solvent contained above is used.

紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによって異なるが、照射光量は20〜10000mJ/cm2程度あればよく、好ましくは、50〜2000mJ/cm2である。近紫外線領域〜可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用出来る。 As the light source for forming the cured film layer by photocuring reaction of the ultraviolet curable resin, any light source that generates ultraviolet rays can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may be any degree 20~10000mJ / cm 2, preferably from 50~2000mJ / cm 2. It can be used by using a sensitizer having an absorption maximum in the near ultraviolet region to the visible light region.

紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒〜5分がよく、紫外線硬化性樹脂の硬化効率、作業効率とから3秒〜2分がより好ましい。   The UV curable resin composition is applied and dried, and then irradiated with UV light from a light source. The irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.

こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機或いは有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることが出来、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等を挙げることが出来、紫外線硬化性樹脂組成物に加えることが出来る。これらの微粒子粉末の平均粒径としては、0.005μm〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。   It is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent blocking and to improve scratch resistance. Examples of inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of organic fine particles include polymethacrylic acid. Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder Polyamide-based resin powder, polyimide-based resin powder, polyfluorinated ethylene-based resin powder, and the like can be mentioned and added to the ultraviolet curable resin composition. The average particle diameter of these fine particle powders is preferably 0.005 μm to 1 μm, and particularly preferably 0.01 to 0.1 μm.

紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜10質量部となるように配合することが望ましい。   The proportion of the ultraviolet curable resin composition and the fine particle powder is desirably blended so as to be 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin composition.

この様にして形成された紫外線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのクリアハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。   The layer formed by curing the ultraviolet curable resin thus formed is a clear hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JIS B 0601. An antiglare layer of about 1 μm may be used.

クリアハードコート層や防眩層を基材に塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター等公知の方法を用いることが出来る。塗布の際の液膜厚(ウェット膜厚ともいう)で1〜100μm程度で、0.1〜30μmが好ましく、より好ましくは、0.5〜15μmである。   As a method for applying the clear hard coat layer or the antiglare layer to the substrate, a known method such as a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater or an air doctor coater can be used. The liquid film thickness (also referred to as wet film thickness) at the time of application is about 1 to 100 μm, preferably 0.1 to 30 μm, and more preferably 0.5 to 15 μm.

(偏光板)
本発明に係る反射防止積層体は偏光板保護フィルムとして極めて優れている。偏光板は一般的な方法で作製することが出来る。本発明においても同様に、本発明の反射防止積層体をアルカリ鹸化処理した偏光板用保護フィルムを、沃素溶液中に浸漬延伸して作製した偏光膜の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせる。本発明の反射防止積層体とした後に、セルロースエステルフィルムの片面を鹸化処理してもよい。
(Polarizer)
The antireflection laminate according to the present invention is extremely excellent as a polarizing plate protective film. The polarizing plate can be produced by a general method. Similarly, in the present invention, a completely saponified polyvinyl alcohol aqueous solution is used on both surfaces of a polarizing film prepared by immersing and stretching a protective film for a polarizing plate obtained by subjecting the antireflection laminate of the present invention to an alkali saponification treatment in an iodine solution. And paste them together. After making the antireflection laminate of the present invention, one side of the cellulose ester film may be saponified.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明に係わる多層構造のセルロースエステルフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせるが、本発明に係わる反射防止積層体は透湿性が低く耐久性に優れている。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. On the surface of the polarizing film, one side of the cellulose ester film having a multilayer structure according to the present invention is bonded to form a polarizing plate. The antireflection laminate according to the present invention is low in moisture permeability and excellent in durability, although it is preferably bonded with a water-based adhesive mainly composed of completely saponified polyvinyl alcohol.

本発明の偏光板を用いた画像表示装置は耐久性に優れ、長期間にわたってコントラストの高い表示が可能である。   The image display device using the polarizing plate of the present invention is excellent in durability and can display with high contrast over a long period of time.

〔画像表示装置〕
本発明の反射防止積層体或いはそれを用いた偏光板を画像表示装置に組み込むことによって、種々の画像表示装置を作製することが出来る。画像表示装置としては、液晶画像表示装置(反射型、半透過型、透過型)、有機電解発光素子、プラズマディスプレー等がある。例えば、高温高湿条件下での強制劣化処理において、画像表示装置についても本発明の反射防止積層体またはそれを用いた偏光板は、視認性に優れかつ反射防止積層体起因の問題は認められなかった。
(Image display device)
Various image display devices can be produced by incorporating the antireflection laminate of the present invention or a polarizing plate using the same into an image display device. Examples of the image display device include a liquid crystal image display device (reflective type, transflective type, transmissive type), an organic electroluminescence element, a plasma display, and the like. For example, in the forced deterioration treatment under high temperature and high humidity conditions, the antireflection laminate of the present invention or the polarizing plate using the same for the image display device is excellent in visibility and problems caused by the antireflection laminate are recognized. There wasn't.

以下、実施例により本発明を更に具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the embodiments of the present invention are not limited to these examples.

最初に、反射防止積層体作製用の各塗布液(組成物)を以下の材料、調製方法により作製した。   First, each coating liquid (composition) for producing the antireflection laminate was produced by the following materials and preparation methods.

《中屈折率層、高屈折率層、低屈折率層塗布液の作製》
(中屈折率層塗布液)
〈中屈折率層塗布液A:ゾルゲル〉
まず容器に下記割合で混合溶媒を作製した。
<< Preparation of Medium Refractive Index Layer, High Refractive Index Layer, Low Refractive Index Layer Coating Liquid >>
(Medium refractive index layer coating solution)
<Medium refractive index layer coating solution A: sol-gel>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 4900質量部
イソプロピルアルコール 4840質量部
この混合溶媒に下記を順次添加して混合し、中屈折率層組成物とした。
Propylene glycol monomethyl ether 4900 parts by mass Isopropyl alcohol 4840 parts by mass The following were sequentially added to the mixed solvent and mixed to obtain a medium refractive index layer composition.

テトラ(n)ブトキシチタン 250質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー(株)製L−9000)
0.48質量部
アミノプロピルトリメトキシシラン(信越化学工業(株)製KBE903)
22質量部
紫外線硬化性樹脂(KR−500:旭電化工業(株)製) 21質量部
〈中屈折率層塗布液B:微粒子〉
まず容器に下記割合で混合溶媒を作製した。
Tetra (n) butoxytitanium 250 parts by mass Terminal reactive dimethyl silicone oil (L-9000, manufactured by Nippon Unicar Co., Ltd.)
0.48 parts by mass Aminopropyltrimethoxysilane (KBE903 manufactured by Shin-Etsu Chemical Co., Ltd.)
22 parts by mass UV curable resin (KR-500: manufactured by Asahi Denka Kogyo Co., Ltd.) 21 parts by mass <Medium refractive index layer coating solution B: Fine particles>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 2598質量部
メチルエチルケトン 866質量部
イソプロピルアルコール 5197質量部
この混合溶媒に
ジ−i−プロポキシ・ビス(アセチルアセトナート)チタン(オルガチックスTC100 松本製薬工業社製) 30質量部
をゆっくり添加して混合した。混合攪拌後、
KBM503(シランカップリング剤・信越化学製) 19質量部
をゆっくり添加して混合した。混合攪拌後、
酸化チタン微粒子分散物(固形分15質量%)(シーアイ化成工業社製 RTSPNB15WT%−G0) 399質量部
をゆっくり添加して混合した。混合攪拌後、
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA 日本化薬社製)10%メチルエチルケトン溶液 534質量部
イルガキュア184(チバスペシャルティケミカルズ製)10%メチルエチルケトン溶液 178質量部
アクリル樹脂(ダイヤナールBR102、三菱レーヨン社製)5%プロピレングリコールモノメチルエーテル溶液 162質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ニユカー社製)10%プロピレングリコールモノメチルエーテル溶液 16質量部
を順次添加して混合し、中屈折率層組成物とした。
Propylene glycol monomethyl ether 2598 parts by weight Methyl ethyl ketone 866 parts by weight Isopropyl alcohol 5197 parts by weight To this mixed solvent, 30 parts by weight of di-i-propoxy bis (acetylacetonato) titanium (OrgaTix TC100, Matsumoto Pharmaceutical Co., Ltd.) was slowly added. And mixed. After mixing and stirring
KBM503 (Silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 19 parts by mass was slowly added and mixed. After mixing and stirring
399 parts by mass of titanium oxide fine particle dispersion (solid content: 15% by mass) (RTSPNB15WT% -G0, manufactured by CI Kasei Kogyo Co., Ltd.) was slowly added and mixed. After mixing and stirring
Dipentaerythritol hexaacrylate (KAYARAD DPHA Nippon Kayaku Co., Ltd.) 10% methyl ethyl ketone solution 534 parts by mass Irgacure 184 (Ciba Specialty Chemicals) 10% methyl ethyl ketone solution 178 parts by mass Acrylic resin (Dianar BR102, manufactured by Mitsubishi Rayon Co., Ltd.) 5% Propylene glycol monomethyl ether solution 162 parts by weight Linear dimethyl silicone-EO block copolymer (FZ-2207 Nihoncar Co., Ltd.) 10% propylene glycol monomethyl ether solution 16 parts by weight were added and mixed in order, and the medium refractive index layer composition did.

〈中屈折率層塗布液C:微粒子〉
まず容器に下記割合で混合溶媒を作製した。
<Medium refractive index layer coating solution C: Fine particles>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 2624質量部
メチルエチルケトン 874質量部
イソプロピルアルコール 5248質量部
これに下記割合の水を添加し攪拌した。
Propylene glycol monomethyl ether 2624 parts by weight Methyl ethyl ketone 874 parts by weight Isopropyl alcohol 5248 parts by weight The following proportion of water was added and stirred.

水 1質量部
この混合溶媒に
n−テトラブトキシチタン 21質量部
をゆっくり添加して混合した。混合攪拌後、
KBM503(シランカップリング剤・信越化学製) 24質量部
をゆっくり添加して混合した。混合攪拌後、
酸化チタン微粒子分散物(固形分15質量%)(シーアイ化成工業社製 RTSPNB15WT%−G0) 399質量部
をゆっくり添加して混合した。混合攪拌後、
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA 日本化薬社製)10%メチルエチルケトン溶液 534質量部
イルガキュア184(チバスペシャルティケミカルズ製)10%メチルエチルケトン溶液 178質量部
アクリル樹脂(ダイヤナールBR102、三菱レーヨン社製)5%プロピレングリコールモノメチルエーテル溶液 81質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ニユカー社製)10%プロピレングリコールモノメチルエーテル溶液 16質量部
を順次添加して混合し、中屈折率層組成物とした。
1 part by mass of water 21 parts by mass of n-tetrabutoxytitanium was slowly added to and mixed with this mixed solvent. After mixing and stirring
KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 24 parts by mass was slowly added and mixed. After mixing and stirring
399 parts by mass of titanium oxide fine particle dispersion (solid content: 15% by mass) (RTSPNB15WT% -G0, manufactured by CI Kasei Kogyo Co., Ltd.) was slowly added and mixed. After mixing and stirring
Dipentaerythritol hexaacrylate (KAYARAD DPHA Nippon Kayaku Co., Ltd.) 10% methyl ethyl ketone solution 534 parts by mass Irgacure 184 (Ciba Specialty Chemicals) 10% methyl ethyl ketone solution 178 parts by mass Acrylic resin (Dianar BR102, manufactured by Mitsubishi Rayon Co., Ltd.) 5% Propylene glycol monomethyl ether solution 81 parts by mass Linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Yuker Co., Ltd.) 10% propylene glycol monomethyl ether solution 16 parts by mass were sequentially added and mixed with the medium refractive index layer composition. did.

〈中屈折率層塗布液D:導電性微粒子〉
まず容器に下記割合で混合溶媒を作製した。
<Medium refractive index layer coating solution D: conductive fine particles>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 2652質量部
メチルエチルケトン 884質量部
イソプロピルアルコール 5304質量部
これに下記割合の水を添加し攪拌した。
Propylene glycol monomethyl ether 2652 parts by mass Methyl ethyl ketone 884 parts by mass Isopropyl alcohol 5304 parts by mass The following proportion of water was added and stirred.

水 1質量部
この混合溶媒に
n−テトラブトキシチタン 21質量部
をゆっくり添加して混合した。混合攪拌後、
ITO微粒子分散物(固形分15質量%)(シーアイ化成工業社製 IRTANB15WT%) 863質量部
をゆっくり添加して混合した。混合攪拌後、
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA 日本化薬社製)10%メチルエチルケトン溶液 194質量部
イルガキュア184(チバスペシャルティケミカルズ製)10%メチルエチルケトン溶液 65質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ニユカー社製)10%プロピレングリコールモノメチルエーテル溶液 16質量部
を順次添加して混合し、中屈折率層組成物とした。
1 part by mass of water 21 parts by mass of n-tetrabutoxytitanium was slowly added to and mixed with this mixed solvent. After mixing and stirring
863 parts by mass of ITO fine particle dispersion (solid content: 15% by mass) (IRTANB15WT%, manufactured by CI Kasei Kogyo Co., Ltd.) was slowly added and mixed. After mixing and stirring
Dipentaerythritol hexaacrylate (KAYARAD DPHA Nippon Kayaku Co., Ltd.) 10% methyl ethyl ketone solution 194 parts by mass Irgacure 184 (manufactured by Ciba Specialty Chemicals) 10% methyl ethyl ketone solution 65 parts by mass Linear dimethyl silicone-EO block copolymer (FZ-2207 Nippon Nyuka 16 parts by mass of a 10% propylene glycol monomethyl ether solution were sequentially added and mixed to obtain a medium refractive index layer composition.

(高屈折率層塗布液)
〈高屈折率層塗布液a:ゾルゲル〉
まず容器に下記割合で混合溶媒を作製した。
(High refractive index layer coating solution)
<High refractive index layer coating solution a: sol-gel>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 4900質量部
イソプロピルアルコール 8900質量部
この混合溶媒に下記を順次添加して混合し、高屈折率層組成物とした。
Propylene glycol monomethyl ether 4900 parts by mass Isopropyl alcohol 8900 parts by mass The following was sequentially added to the mixed solvent and mixed to obtain a high refractive index layer composition.

テトラ(n)ブトキシチタン 310質量部
末端反応性ジメチルシリコーンオイル(日本ユニカー(株)製L−9000)
0.4質量部
アミノプロピルトリメトキシシラン(信越化学工業(株)製KBE903)
4.8質量部
紫外線硬化性樹脂(旭電化工業(株)製:KR−500) 4.6質量部
〈高屈折率層塗布液b:微粒子〉
まず容器に下記割合で混合溶媒を作製した。
Tetra (n) butoxytitanium 310 parts by mass Terminal reactive dimethyl silicone oil (L-9000, manufactured by Nippon Unicar Co., Ltd.)
0.4 parts by mass Aminopropyltrimethoxysilane (KBE903 manufactured by Shin-Etsu Chemical Co., Ltd.)
4.8 parts by mass Ultraviolet curable resin (Asahi Denka Kogyo Co., Ltd .: KR-500) 4.6 parts by mass <High refractive index layer coating solution b: fine particles>
First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 2792質量部
イソプロピルアルコール 5581質量部
メチルエチルケトン 931質量部
これに下記割合の水を添加し攪拌した。
Propylene glycol monomethyl ether 2792 parts by mass Isopropyl alcohol 5581 parts by mass Methyl ethyl ketone 931 parts by mass The following proportion of water was added and stirred.

水 2質量部
この混合溶媒に
n−テトラブトキシチタン 55質量部
をゆっくり添加して混合した。混合攪拌後、
KBM503(シランカップリング剤・信越化学製) 29質量部
をゆっくり添加して混合した。混合攪拌後、
酸化チタン微粒子分散物(固形分15質量%)(シーアイ化成工業社製 RTSPNB15WT%−G0) 598質量部
をゆっくり添加して混合した。混合攪拌後、
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ニユカー社製)10%プロピレングリコールモノメチルエーテル溶液 13質量部
をゆっくり添加して混合し、高屈折率層組成物とした。
Water 2 parts by mass To this mixed solvent, 55 parts by mass of n-tetrabutoxytitanium was slowly added and mixed. After mixing and stirring
KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 29 parts by mass was slowly added and mixed. After mixing and stirring
598 parts by mass of titanium oxide fine particle dispersion (solid content 15% by mass) (RTSPNB15WT% -G0, manufactured by CI Kasei Kogyo Co., Ltd.) was slowly added and mixed. After mixing and stirring
13 parts by mass of a 10% propylene glycol monomethyl ether solution of a linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Yuker Co., Ltd.) was slowly added and mixed to obtain a high refractive index layer composition.

(低屈折率層塗布液)
〈低屈折率層塗布液α:ゾルゲル〉
(テトラエトキシシラン加水分解物の調製)
テトラエトキシシラン29gとエタノール55gを混合し、これに酢酸の1.6質量%水溶液16gを添加した後に、25℃にて20時間攪拌することでテトラエトキシシラン加水分解物を調製した。
(Low refractive index layer coating solution)
<Low refractive index layer coating solution α: sol-gel>
(Preparation of tetraethoxysilane hydrolyzate)
29 g of tetraethoxysilane and 55 g of ethanol were mixed, and after adding 16 g of a 1.6 mass% aqueous solution of acetic acid thereto, a tetraethoxysilane hydrolyzate was prepared by stirring at 25 ° C. for 20 hours.

まず容器に下記割合で混合溶媒を作製した。   First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 382質量部
イソプロピルアルコール 384質量部
この混合溶媒に
テトラエトキシシラン加水分解物 226質量部
をゆっくり添加して混合した。混合攪拌後
KBM503(シランカップリング剤・信越化学製) 6質量部
をゆっくり添加して混合した。混合攪拌後
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207:日本ユニカー社製)の10%プロピレングリコールモノメチルエーテル溶液 2質量部
をゆっくり添加して混合し、低屈折率層組成物とした。
Propylene glycol monomethyl ether 382 parts by mass Isopropyl alcohol 384 parts by mass To this mixed solvent, 226 parts by mass of tetraethoxysilane hydrolyzate was slowly added and mixed. After mixing and stirring, KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical) 6 parts by mass was slowly added and mixed. After mixing and stirring, 2 parts by mass of a 10% propylene glycol monomethyl ether solution of linear dimethyl silicone-EO block copolymer (FZ-2207: Nippon Unicar Co., Ltd.) was slowly added and mixed to obtain a low refractive index layer composition.

〈低屈折率層塗布液β:微粒子〉
テトラエトキシシラン加水分解物は上記と同様に作製した。
<Low refractive index layer coating solution β: fine particles>
The tetraethoxysilane hydrolyzate was prepared as described above.

まず容器に下記割合で混合溶媒を作製した。   First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 387質量部
イソプロピルアルコール 390質量部
この混合溶媒に
テトラエトキシシラン加水分解物 198質量部
をゆっくり添加して混合した。混合攪拌後
KBM503(シランカップリング剤・信越化学製) 6質量部
をゆっくり添加して混合した。混合攪拌後
フッ化マグネシウム微粒子分散物(固形分15質量%)(シーアイ化成工業社製 MFDNB) 16質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207:日本ユニカー社製)の10%プロピレングリコールモノメチルエーテル溶液 2質量部
をゆっくり添加して混合し、低屈折率層組成物とした
〈低屈折率層塗布液γ:中空微粒子〉
テトラエトキシシラン加水分解物は上記と同様に作製した。
Propylene glycol monomethyl ether 387 parts by mass Isopropyl alcohol 390 parts by mass To this mixed solvent, 198 parts by mass of tetraethoxysilane hydrolyzate was slowly added and mixed. After mixing and stirring, KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical) 6 parts by mass was slowly added and mixed. After mixing and stirring, magnesium fluoride fine particle dispersion (solid content 15% by mass) (MFDNB manufactured by CI Kasei Kogyo Co., Ltd.) 16 parts by mass 10% propylene glycol of linear dimethyl silicone-EO block copolymer (FZ-2207: manufactured by Nihon Unicar Company) 2 parts by mass of monomethyl ether solution was slowly added and mixed to obtain a low refractive index layer composition <Low refractive index layer coating solution γ: hollow fine particles>
The tetraethoxysilane hydrolyzate was prepared as described above.

まず容器に下記割合で混合溶媒を作製した。   First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 377質量部
イソプロピルアルコール 379質量部
この混合溶媒に
テトラエトキシシラン加水分解物 226質量部
をゆっくり添加して混合した。混合攪拌後
KBM503(シランカップリング剤・信越化学製) 3質量部
をゆっくり添加して混合した。混合攪拌後
SiO2微粒子分散物(固形分20質量%)(触媒化成工業社製 P−4)
12質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207:日本ユニカー社製)の10%プロピレングリコールモノメチルエーテル溶液 2質量部
をゆっくり添加して混合し、低屈折率層組成物とした。
Propylene glycol monomethyl ether 377 parts by mass Isopropyl alcohol 379 parts by mass To this mixed solvent, 226 parts by mass of tetraethoxysilane hydrolyzate was slowly added and mixed. After mixing and stirring, 3 parts by mass of KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) was slowly added and mixed. After mixing and stirring SiO 2 fine particle dispersion (solid content: 20% by mass) (P-4 manufactured by Catalytic Chemical Industry Co., Ltd.)
12 parts by mass A 10% propylene glycol monomethyl ether solution of a linear dimethyl silicone-EO block copolymer (FZ-2207: manufactured by Nihon Unicar) was slowly added and mixed to obtain a low refractive index layer composition.

《ハードコート層塗布液の作製》
下記の構成でハードコート層塗布液の作製を行った。
<< Preparation of hard coat layer coating liquid >>
A hard coat layer coating solution was prepared in the following configuration.

まず容器に下記割合で混合溶媒を作製した。   First, a mixed solvent was prepared in the container at the following ratio.

プロピレングリコールモノメチルエーテル 300質量部
酢酸エチル 300質量部
この混合溶媒に
ジペンタエリスリトールヘキサアクリレート
単量体 120質量部
2量体 40質量部
3量体以上の成分 40質量部
をゆっくり添加して混合した。混合攪拌後
イルガキュア184(チバスペシャルティケミカルズ製) 20質量部
をゆっくり添加して混合した。混合攪拌後
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207 日本ユニカー社製) 1質量部
をゆっくり添加して混合し、ハードコート層組成物とした。
Propylene glycol monomethyl ether 300 parts by weight Ethyl acetate 300 parts by weight Dipentaerythritol hexaacrylate monomer 120 parts by weight Dimer 40 parts by weight A component of 40 parts by weight or more of the trimer was slowly added and mixed. After mixing and stirring, 20 parts by mass of Irgacure 184 (manufactured by Ciba Specialty Chemicals) was slowly added and mixed. After mixing and stirring, linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Unicar Co., Ltd.) 1 part by mass was slowly added and mixed to obtain a hard coat layer composition.

《導電性層塗布液の作製》
下記の構成で導電性層塗布液の作製を行った。
<< Preparation of conductive layer coating liquid >>
A conductive layer coating solution was prepared in the following configuration.

〈導電性層塗布液あ:カチオン性ポリマー〉
導電性微粒子分散物(例示化合物IP−24の5%メタノール分散液、平均粒径0.2μm) 10質量部
セルロースジアセテート樹脂(商品名:アセテートフレークス L−AC、ダイセル化学工業(株)製) 0.2質量部
メタノール 20質量部
アセトン 40質量部
酢酸エチル 25質量部
イソプロピルアルコール 5質量部
〈導電性層塗布液い:金属酸化物粒子〉
導電性微粒子分散組成物(下記に調製方法を示す) 7質量部
ニトロセルロース 1質量部
アセトン 58質量部
メタノール 30質量部
乳酸エチル 5質量部
(導電性微粒子分散組成物)
導電性SnO2、アンチモン複合微粒子(三菱マテリアル(株)製:一次粒子径0.015nm) 200質量部
ニトロセルロース 5質量部
アセトン 150質量部
上記組成物をサンドミル分散機を用いて2時間分散し、導電性微粒子分散組成物を調製した。
<Coating layer coating solution: Cationic polymer>
Conductive fine particle dispersion (5% methanol dispersion of exemplary compound IP-24, average particle size 0.2 μm) 10 parts by mass Cellulose diacetate resin (trade name: Acetate Flakes L-AC, manufactured by Daicel Chemical Industries, Ltd.) 0.2 parts by mass Methanol 20 parts by mass Acetone 40 parts by mass Ethyl acetate 25 parts by mass Isopropyl alcohol 5 parts by mass <Electroconductive layer coating liquid: metal oxide particles>
Conductive fine particle dispersion composition (The preparation method is shown below) 7 parts by weight Nitrocellulose 1 part by weight Acetone 58 parts by weight Methanol 30 parts by weight Ethyl lactate 5 parts by weight (Conductive fine particle dispersion composition)
Conductive SnO 2 , antimony composite fine particles (manufactured by Mitsubishi Materials Corporation: primary particle diameter 0.015 nm) 200 parts by mass Nitrocellulose 5 parts by mass Acetone 150 parts by mass The above composition is dispersed for 2 hours using a sand mill disperser, A conductive fine particle dispersion composition was prepared.

《オーバーコート層塗布液の作製》
下記の構成でオーバーコート層塗布液の作製を行った。
<< Preparation of overcoat layer coating liquid >>
An overcoat layer coating solution was prepared in the following configuration.

〈オーバーコート層塗布液ア:DAC〉
セルロースジアセテート樹脂(商品名:アセテートフレークス L−AC、ダイセル化学工業(株)製) 1.0質量部
1%アセトン分散微粒子シリカ(商品名:アエロジル200V、日本アエロジル(株)製) 0.05質量部
メチルエチルケトン 40質量部
酢酸エチル 30質量部
メチルプロピレングリコール 30質量部
〈オーバーコート層塗布液イ:アクリル〉
アクリル系樹脂(ダイヤナールBR−108:三菱レイヨン(株)製)
0.5質量部
メチルプロピレングリコール 65質量部
メチルエチルケトン 20質量部
乳酸エチル 5質量部
〈オーバーコート層塗布液ウ:PVA〉
ポリビニルアルコール(PVA(日本合成化学工業(株)製、商品名:ゴーセノールNH−26)) 0.1質量部
サポニン(メルク(株)製、界面活性剤) 0.03質量部
架橋剤(グリオキザール) 0.025質量部
純水 55質量部
メタノール 40質量部
イソプロピルアルコール 5質量部
以上の各々の塗布液を用い、下記実施例及び比較例の試料を作製した。
<Overcoat layer coating solution A: DAC>
Cellulose diacetate resin (trade name: Acetate Flakes L-AC, manufactured by Daicel Chemical Industries, Ltd.) 1.0 part by mass 1% acetone-dispersed fine particle silica (trade name: Aerosil 200V, manufactured by Nippon Aerosil Co., Ltd.) 0.05 Part by mass Methyl ethyl ketone 40 parts by mass Ethyl acetate 30 parts by mass Methyl propylene glycol 30 parts by mass <Overcoat layer coating solution A: Acrylic>
Acrylic resin (Dianar BR-108: manufactured by Mitsubishi Rayon Co., Ltd.)
0.5 parts by mass Methyl propylene glycol 65 parts by mass Methyl ethyl ketone 20 parts by mass Ethyl lactate 5 parts by mass <Overcoat layer coating solution C: PVA>
Polyvinyl alcohol (PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gohsenol NH-26)) 0.1 part by mass Saponin (manufactured by Merck Co., Ltd., surfactant) 0.03 part by mass Cross-linking agent (glyoxal) 0.025 parts by mass Pure water 55 parts by mass Methanol 40 parts by mass Isopropyl alcohol 5 parts by mass Using the above coating solutions, samples of the following examples and comparative examples were prepared.

〔実施例1〕
(導電性層の作製)
未塗布ベース巻き出し〜塗布〜乾燥〜UV照射〜塗布済みベース巻き取りが連続で行えるテストプラントにて、押し出しコーターを使用して、膜厚80μmのセルローストリアセテートフィルム(コニカ(株)製コニカタックKC8UX2MW、屈折率1.49、アセチル基の置換度2.88)の片面に、塗布液に導電性層塗布液あ(カチオンポリマー)を用い、下記条件で作製した。
[Example 1]
(Preparation of conductive layer)
Uncoated base unwinding-coating-drying-UV irradiation-in a test plant where continuous coating of the coated base can be performed continuously, using an extrusion coater, a cellulose triacetate film with a film thickness of 80 μm (Konica Corporation Konicattak KC8UX2MW) A conductive layer coating solution (cationic polymer) was used as a coating solution on one side having a refractive index of 1.49 and an acetyl group substitution degree of 2.88.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の付き量が0.2g/m2になるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
The flow rate of the winding in-winding tension 8kg a 6-inch paper core coating solution amount per after drying was adjusted to 0.2 g / m 2.

導電性層を塗布したベースは100m巻き取った。   The base coated with the conductive layer was wound up 100 m.

(オーバーコート層の作製)
上記と同じテストプラントにて導電性層塗布済みベースの導電性層上に、塗布液にオーバーコート層塗布液ア(DAC)を用い、下記条件で作製した。
(Preparation of overcoat layer)
An overcoat layer coating solution (DAC) was used as a coating solution on the base conductive layer coated with the conductive layer in the same test plant as described above, and was prepared under the following conditions.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の付き量が0.2g/m2になるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
The flow rate of the winding in-winding tension 8kg a 6-inch paper core coating solution amount per after drying was adjusted to 0.2 g / m 2.

導電性層の上にオーバーコート層を塗布したベースは100m巻き取った。   The base coated with the overcoat layer on the conductive layer was wound up 100 m.

(ハードコート層の作製)
上記と同じテストプラントにてオーバーコート層塗布済みベースのオーバーコート層の反対面に、塗布液にハードコート層塗布液を用い、下記条件で作製した。
(Preparation of hard coat layer)
In the same test plant as described above, a hard coat layer coating solution was used as the coating solution on the opposite side of the base overcoat layer coated with the overcoat layer, and the coating solution was prepared under the following conditions.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の膜厚が7.0μmになるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
And drying after irradiation with UV (so as to be 120 mJ / cm 2, adjusts the output of the UV lamp)
-Winding up on a 6-inch paper core with a winding tension of 8 kg-The flow rate of the coating solution was adjusted so that the film thickness after drying was 7.0 µm.

オーバーコート層の反対面にハードコート層を塗布したベースは100m巻き取った。   The base coated with a hard coat layer on the opposite surface of the overcoat layer was wound up 100 m.

(中屈折率層の作製)
上記と同じテストプラントにてハードコート層塗布済みベースのハードコート層上に、塗布液に中屈折率層塗布液B(微粒子)を用い、下記条件で作製した。
(Preparation of medium refractive index layer)
A medium refractive index layer coating solution B (fine particles) was used as a coating solution on a base hard coat layer coated with a hard coat layer in the same test plant as described above, and was prepared under the following conditions.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の膜厚が89nmになるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
And drying after irradiation with UV (so as to be 120 mJ / cm 2, adjusts the output of the UV lamp)
-Winding up on a 6-inch paper core with a winding tension of 8 kg-The flow rate of the coating solution was adjusted so that the film thickness after drying was 89 nm.

ハードコート層の上に中屈折率層を塗布したベースは100m巻き取った。   The base coated with a medium refractive index layer on the hard coat layer was wound up by 100 m.

膜厚は上記塗布条件にて塗設したサンプルについて、分光光度計の分光反射率の測定結果から求めた。   The film thickness was obtained from the measurement result of the spectral reflectance of the spectrophotometer for the sample coated under the above coating conditions.

分光光度計はU−3310型(日立製作所製)を用いて、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm〜700nm)の反射率の測定を行った。   The spectrophotometer uses U-3310 type (manufactured by Hitachi, Ltd.) to roughen the back side of the measurement side of the sample and then apply light absorption treatment with black spray to prevent light reflection on the back side. The reflectance in the visible light region (400 nm to 700 nm) was measured under the condition of regular reflection at 5 degrees.

(高屈折率層の作製)
上記と同じテストプラントにて中屈折率層塗布済みベースの中屈折率層上に、塗布液に高屈折率層塗布液b(微粒子)を用い、下記条件で作製した。
(Preparation of high refractive index layer)
A high refractive index layer coating solution b (fine particles) was used as a coating solution on the middle refractive index layer coated base in the same test plant as described above.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の膜厚が60nmになるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
-UV irradiation after drying (adjust the UV lamp output to 120mJ / cm 2 )
-Winding on a 6 inch paper core with a winding tension of 8 kg-The flow rate of the coating solution was adjusted so that the film thickness after drying was 60 nm.

中屈折率層の上に反対面に高屈折率層を塗布したベースは100m巻き取った。   The base in which the high refractive index layer was coated on the opposite surface on the middle refractive index layer was wound up by 100 m.

膜厚は上記塗布条件と同じ条件でハードコート上に直接単層塗設したサンプルを作製し、これについても上記と同様に分光光度計の分光反射率の測定結果から求めた。   The film thickness was determined from the measurement result of the spectral reflectance of the spectrophotometer in the same manner as described above by preparing a sample in which a single layer was directly coated on the hard coat under the same conditions as the above coating conditions.

(低屈折率層の作製)
上記と同じテストプラントにて高屈折率層塗布済みベースの高屈折率層上に、塗布液に低屈折率層塗布液α(ゾルゲル)を用い、下記条件で作製した。
(Preparation of low refractive index layer)
A low refractive index layer coating liquid α (sol gel) was used as a coating liquid on a base high refractive index layer coated with a high refractive index layer in the same test plant as described above, and was prepared under the following conditions.

・ベース幅180mm、塗布幅150mm
・塗布速度10m/min
・乾燥ゾーン1:1m、乾燥温度80℃
・乾燥ゾーン2:2m、乾燥温度90℃
・乾燥ゾーン3:2m、乾燥温度100℃
・乾燥ゾーン4:2m、乾燥温度80℃
・乾燥後UVを照射(120mJ/cm2になるよう、UVランプの出力を調整)
・巻き取り張力8kgで6インチ紙コアに巻き取り
・塗布液の流量は乾燥後の膜厚が103nmになるように調整した。
・ Base width 180mm, coating width 150mm
・ Coating speed 10m / min
・ Drying zone 1: 1m, drying temperature 80 ℃
・ Drying zone 2: 2m, drying temperature 90 ℃
-Drying zone 3: 2m, drying temperature 100 ° C
・ Drying zone 4: 2m, drying temperature 80 ℃
And drying after irradiation with UV (so as to be 120 mJ / cm 2, adjusts the output of the UV lamp)
-Winding up on a 6-inch paper core with a winding tension of 8 kg-The flow rate of the coating solution was adjusted so that the film thickness after drying would be 103 nm.

高屈折率層の上に低屈折率層を塗布したベースは100m巻き取った。   The base coated with the low refractive index layer on the high refractive index layer was wound up 100 m.

膜厚は高屈折率層と同様の方法で測定した。   The film thickness was measured by the same method as that for the high refractive index layer.

〔実施例2〕
実施例1においてオーバーコート層塗布液アをオーバーコート層塗布液イに変えた以外は実施例1と同様にして作製した。
[Example 2]
This was prepared in the same manner as in Example 1 except that the overcoat layer coating solution A was changed to the overcoat layer coating solution A in Example 1.

〔実施例3〕
実施例1においてオーバーコート層塗布液アをオーバーコート層塗布液ウに変えた以外は実施例1と同様にして作製した。
Example 3
This was prepared in the same manner as in Example 1 except that the overcoat layer coating solution A was changed to the overcoat layer coating solution C in Example 1.

〔実施例4〕
実施例1において導電性層塗布液あを導電性層塗布液いに変えた以外は実施例1と同様にして作製した。
Example 4
A conductive layer coating solution was prepared in the same manner as in Example 1 except that the conductive layer coating solution was changed to a conductive layer coating solution.

〔比較例1〕
導電性層の作製は実施例1と同様にして作製したが、オーバーコート層は設けなかった。ハードコート層は実施例1と同様にして作製した。
[Comparative Example 1]
The conductive layer was produced in the same manner as in Example 1, but no overcoat layer was provided. The hard coat layer was produced in the same manner as in Example 1.

中屈折率層の作製は、実施例1において中屈折率層塗布液Bを中屈折率層塗布液Aに変えた以外は実施例1と同様にして作製した。高屈折率層の作製は、実施例1において高屈折率層塗布液bを高屈折率層塗布液aに変えた以外は実施例1と同様にして作製した。低屈折率層の作製は実施例1と同様にして作製した。   The medium refractive index layer was prepared in the same manner as in Example 1 except that the medium refractive index layer coating liquid B in Example 1 was changed to the medium refractive index layer coating liquid A. The high refractive index layer was prepared in the same manner as in Example 1 except that the high refractive index layer coating liquid b in Example 1 was changed to the high refractive index layer coating liquid a. The low refractive index layer was produced in the same manner as in Example 1.

〔比較例2〕
比較例1において実施例1と同様のオーバーコート層を設けた以外は比較例1と同様にして作製した。
[Comparative Example 2]
A comparative example 1 was prepared in the same manner as in comparative example 1 except that the same overcoat layer as in example 1 was provided.

〔比較例3〕
実施例1においてオーバーコート層を設けない以外は実施例1と同様にして作製した。
[Comparative Example 3]
It was produced in the same manner as in Example 1 except that the overcoat layer was not provided in Example 1.

〔実施例5〕
実施例1において中屈折率層塗布液Bを中屈折率層塗布液Cに変えた以外は実施例1と同様にして作製した。
Example 5
It was produced in the same manner as in Example 1 except that the medium refractive index layer coating solution B was changed to the medium refractive index layer coating solution C in Example 1.

〔実施例6〕
実施例1において中屈折率層塗布液Bを中屈折率層塗布液Dに変えた以外は実施例1と同様にして作製した。
Example 6
It was produced in the same manner as in Example 1 except that the medium refractive index layer coating solution B was changed to the medium refractive index layer coating solution D in Example 1.

〔比較例5〕
実施例5においてオーバーコート層を設けない以外は実施例5と同様にして作製した。
[Comparative Example 5]
It was produced in the same manner as in Example 5 except that no overcoat layer was provided in Example 5.

〔比較例6〕
実施例6においてオーバーコート層を設けない以外は実施例6と同様にして作製した。
[Comparative Example 6]
It was produced in the same manner as in Example 6 except that no overcoat layer was provided in Example 6.

〔実施例7〕
実施例1において低屈折率層塗布液αを低屈折率層塗布液βに変えた以外は実施例1と同様にして作製した。
Example 7
It was produced in the same manner as in Example 1 except that the low refractive index layer coating solution α was changed to the low refractive index layer coating solution β in Example 1.

〔実施例8〕
実施例1において低屈折率層塗布液αを低屈折率層塗布液γに変えた以外は実施例1と同様にして作製した。
Example 8
It was produced in the same manner as in Example 1 except that the low refractive index layer coating solution α was changed to the low refractive index layer coating solution γ in Example 1.

〔比較例7〕
実施例7においてオーバーコート層を設けない以外は実施例7と同様にして作製した。
[Comparative Example 7]
It was produced in the same manner as in Example 7 except that no overcoat layer was provided in Example 7.

〔比較例8〕
実施例8においてオーバーコート層を設けない以外は実施例8と同様にして作製した。
[Comparative Example 8]
It was produced in the same manner as in Example 8 except that no overcoat layer was provided in Example 8.

〔実施例9〕
実施例1において中屈折率層塗布液Bを中屈折率層塗布液Dに変え、更に低屈折率層塗布液αを低屈折率層塗布液γに変えた以外は実施例1と同様にして作製した。
Example 9
In Example 1, except that the medium refractive index layer coating liquid B was changed to the medium refractive index layer coating liquid D, and the low refractive index layer coating liquid α was further changed to the low refractive index layer coating liquid γ, the same as in Example 1. Produced.

〔比較例9〕
実施例9においてオーバーコート層を設けない以外は実施例9と同様にして作製した。
[Comparative Example 9]
It was produced in the same manner as in Example 9 except that no overcoat layer was provided in Example 9.

以上の試料について詳細を下記表1に纏めた。   Details of the above samples are summarized in Table 1 below.

Figure 2005121870
Figure 2005121870

得られた試料について以下の評価を行った。   The following evaluation was performed about the obtained sample.

《傷、ブロッキング、異物、塗布故障(ハジキ)評価》
高屈折率層まで塗布しコアに巻き取ったサンプルについて巻きをほぐし巻き芯から10〜20m部分をサンプリング、目視で傷の発生具合を評価した。
<Scratch, blocking, foreign matter, coating failure (repellency) evaluation>
The sample coated up to the high refractive index layer and wound around the core was unwound, a 10-20 m portion was sampled from the core, and the occurrence of scratches was evaluated visually.

また、低屈折率層まで塗布しコアに巻き取ったサンプルについて70℃1週間のエージングを行ったのち、巻きをほぐし巻き芯から10〜20m部分をサンプリングしてブロッキングの有無、傷の発生具合、異物の発生具合、塗布故障(ハジキ)の発生具合を評価した。   In addition, after aging at 70 ° C. for 1 week on the sample coated up to the low refractive index layer and wound on the core, the winding was unwound and a portion of 10 to 20 m was sampled from the winding core to check whether there was blocking, how the scratches occurred, The degree of occurrence of foreign matter and the degree of application failure (repellency) were evaluated.

〈評価の基準〉
(中/高屈折率層積層体サンプルの傷)
○ :サンプル10m当たりの傷の個数が 5個以下
○△:サンプル10m当たりの傷の個数が 6〜10個
△ :サンプル10m当たりの傷の個数が 11〜50個
△×:サンプル10m当たりの傷の個数が 51〜100個
× :サンプル10m当たりの傷の個数が 101〜200個
××:サンプル10m当たりの傷の個数が 201個以上
(中/高/低屈折率層積層体エージング後サンプルのブロッキング)
○ :ブロッキングなし
○△:軽い剥離音がする程度でサンプルに跡、変形がない
△ :変形はないがサンプルに少し跡が残る
△×:変形はないが明らかに跡が残る
× :変形がありサンプルに凹凸が残る
××:サンプルをほぐす時に強い抵抗がある
(中/高/低屈折率層積層体エージング後サンプルの傷)
○ :サンプル10m当たりの傷の個数が 10個以下
○△:サンプル10m当たりの傷の個数が 11〜50個
△ :サンプル10m当たりの傷の個数が 51〜100個
△×:サンプル10m当たりの傷の個数が 101〜200個
× :サンプル10m当たりの傷の個数が 201〜500個
××:サンプル10m当たりの傷の個数が 501個以上
(中/高/低屈折率層積層体エージング後サンプルの異物)
○ :サンプル10m当たりの傷の個数が 5個以下
○△:サンプル10m当たりの傷の個数が 6〜10個
△ :サンプル10m当たりの傷の個数が 11〜50個
△×:サンプル10m当たりの傷の個数が 51〜100個
× :サンプル10m当たりの傷の個数が 101〜200個
××:サンプル10m当たりの傷の個数が 201個以上
(中/高/低屈折率層積層体エージング後サンプルの塗布故障(ハジキ))
○ :サンプル10m当たりの傷の個数が 5個以下
○△:サンプル10m当たりの傷の個数が 6〜10個
△ :サンプル10m当たりの傷の個数が 11〜50個
△×:サンプル10m当たりの傷の個数が 51〜100個
× :サンプル10m当たりの傷の個数が 101〜200個
××:サンプル10m当たりの傷の個数が 201個以上
《表面比抵抗値》
上記試料の各々を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定した。測定に用いた電極は、2本の電極(試料と接触する部分が1cm×5cm)を間隔を1cmで平行に配置し、該電極に試料を接触させて測定し、測定値を5倍にした値を表面比抵抗値Ω/□とした。尚、本発明において、表面比抵抗とは導電性層表面の値を表し、導電性層の上にオーバーコート層がある場合には、最表面層の測定値を表面比抵抗値とする。
<Evaluation criteria>
(Scratches on medium / high refractive index layer laminate sample)
○: The number of scratches per 10 m of the sample is 5 or less ○ △: The number of scratches per 10 m of the sample is 6 to 10 Δ: The number of scratches per 10 m of the sample is 11 to 50 Δ ×: Scratches per 10 m of the sample 51 to 100 pieces ×: The number of scratches per 10 m of the sample is 101 to 200 pieces XX: The number of scratches per 10 m of the sample is 201 or more (middle / high / low refractive index layer laminate after aging blocking)
○: No blocking ○ △: There is no trace or deformation in the sample to the extent that a light peeling sound is made △: There is no deformation, but a trace remains in the sample △ ×: There is no deformation but a trace remains clearly ×: There is deformation Unevenness remains in the sample XX: Strong resistance when loosening the sample (medium / high / low refractive index layer laminate aging sample scratches)
○: The number of scratches per 10 m of the sample is 10 or less. ○ △: The number of scratches per 10 m of the sample is 11-50. Δ: The number of scratches per 10 m of the sample is 51-100. Δ ×: Scratches per 10 m of the sample. Of 101 to 200 pieces ×: The number of scratches per 10 m of the sample is 201 to 500 pieces XX: The number of scratches per 10 m of the sample is 501 or more (middle / high / low refractive index layer laminate after aging Foreign body)
○: The number of scratches per 10 m of the sample is 5 or less ○ △: The number of scratches per 10 m of the sample is 6 to 10 Δ: The number of scratches per 10 m of the sample is 11 to 50 Δ ×: Scratches per 10 m of the sample 51 to 100 pieces ×: The number of scratches per 10 m of the sample is 101 to 200 pieces XX: The number of scratches per 10 m of the sample is 201 or more (middle / high / low refractive index layer laminate after aging Application failure (repellency))
○: The number of scratches per 10 m of the sample is 5 or less ○ △: The number of scratches per 10 m of the sample is 6 to 10 Δ: The number of scratches per 10 m of the sample is 11 to 50 Δ ×: Scratches per 10 m of the sample The number of scratches is 51 to 100 ×: The number of scratches per 10 m of the sample is 101 to 200 ××: The number of scratches per 10 m of the sample is 201 or more << Surface specific resistance value >>
Each of the above samples was conditioned at 25 ° C. and 55% RH for 24 hours, and measured using a Teraohm Meter Model VE-30 manufactured by Kawaguchi Electric Co., Ltd. The electrodes used for the measurement were measured by placing two electrodes (parts in contact with the sample at 1 cm × 5 cm) in parallel with an interval of 1 cm, contacting the sample with the electrodes, and multiplying the measured value by five times. The value was defined as the surface specific resistance value Ω / □. In the present invention, the surface specific resistance represents the value of the surface of the conductive layer, and when the overcoat layer is on the conductive layer, the measured value of the outermost layer is the surface specific resistance value.

《反射率》
分光光度計(U−3310型、日立製作所製)を用い、上記試料の測定側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm〜700nm)の反射スペクトルの測定を行った。
<Reflectance>
Using a spectrophotometer (U-3310, manufactured by Hitachi, Ltd.), after roughening the back side of the measurement side of the sample, light absorption treatment is performed with a black spray to prevent reflection of light on the back side. The reflection spectrum in the visible light region (400 nm to 700 nm) was measured under conditions of regular reflection at 5 degrees.

この反射スペクトルの測定結果からJIS−Z−8701、CIE1931に基づいて、C光源、2度視野におけるY値を反射率とした。   From the measurement result of this reflection spectrum, based on JIS-Z-8701 and CIE1931, the Y value in a C light source and a 2 degree visual field was made into the reflectance.

以上の各試料の評価結果を下記表2に示す。   The evaluation results of the above samples are shown in Table 2 below.

Figure 2005121870
Figure 2005121870

上表から、微粒子を含む反射防止層を有し、基材の反対面側に導電性層を設けるがオーバーコート層は設けない比較例の試料に対して、本発明のオーバーコート層を設けた試料は、傷が入りにくく、ブロッキングや塗布故障が著しく少ないことが明白である。   From the above table, the overcoat layer of the present invention was provided for a sample of a comparative example having an antireflection layer containing fine particles and providing a conductive layer on the opposite side of the substrate but not an overcoat layer. It is clear that the sample is not easily scratched and has significantly less blocking and coating failure.

また、本発明の試料は表面比抵抗値が低く十分な耐電防止性能を有しており、更に低屈折率層に中空微粒子を用いた試料は反射率が低く、良好な反射防止性能を有することが分かった。   In addition, the sample of the present invention has a low surface specific resistance value and sufficient anti-static performance, and the sample using hollow fine particles in the low refractive index layer has low reflectivity and good anti-reflection performance. I understood.

Claims (15)

支持体の一方の面に少なくとも一層の微粒子を含む反射防止層を設け、該反射防止層が設けられた側とは反対の面に少なくとも導電性層とオーバーコート層を設けたことを特徴とする反射防止積層体。 An antireflection layer containing at least one layer of fine particles is provided on one side of the support, and at least a conductive layer and an overcoat layer are provided on the side opposite to the side on which the antireflection layer is provided. Antireflection laminate. 前記反射防止層が少なくとも高屈折率層と低屈折率層からなることを特徴とする請求項1に記載の反射防止積層体。 The antireflection laminate according to claim 1, wherein the antireflection layer comprises at least a high refractive index layer and a low refractive index layer. 前記反射防止層が支持体側から中屈折率層、高屈折率層、低屈折率層の順に設けられていることを特徴とする請求項1または2に記載の反射防止積層体。 The antireflection laminate according to claim 1, wherein the antireflection layer is provided in the order of a medium refractive index layer, a high refractive index layer, and a low refractive index layer from the support side. 前記低屈折率層がSiO2微粒子またはMgF2微粒子を含有することを特徴とする請求項2または3に記載の反射防止積層体。 The antireflection laminate according to claim 2 or 3, wherein the low refractive index layer contains SiO 2 fine particles or MgF 2 fine particles. 前記SiO2微粒子が中空であることを特徴とする請求項4に記載の反射防止積層体。 The antireflection laminate according to claim 4, wherein the SiO 2 fine particles are hollow. 前記中屈折率層及び高屈折率層がTi、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSからなる群から選択される少なくとも一種の元素を有する金属酸化物の微粒子を含有することを特徴とする請求項3〜5のいずれか1項に記載の反射防止積層体。 The medium refractive index layer and the high refractive index layer are selected from the group consisting of Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S. The antireflection laminate according to any one of claims 3 to 5, comprising fine particles of a metal oxide having at least one element selected. 前記導電性層とオーバーコート層を設けた面の表面比抵抗が1011Ω/□(25℃、55%RH)以下であることを特徴とする請求項1に記載の反射防止積層体。 2. The antireflection laminate according to claim 1, wherein a surface specific resistance of the surface provided with the conductive layer and the overcoat layer is 10 11 Ω / □ (25 ° C., 55% RH) or less. 前記導電性層がイオン性高分子化合物を含有することを特徴とする請求項1または7に記載の反射防止積層体。 The antireflection laminate according to claim 1, wherein the conductive layer contains an ionic polymer compound. 前記イオン性高分子化合物が分子架橋を有する4級アンモニウムカチオンポリマーである
ことを特徴とする請求項8に記載の反射防止積層体。
The antireflective laminate according to claim 8, wherein the ionic polymer compound is a quaternary ammonium cationic polymer having molecular crosslinking.
前記導電性層の導電性材料が、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W、及びVからなる群から選択される少なくとも1つの元素を主成分として含有し、かつその体積抵抗率が107Ω・cm(25℃、55%RH)以下であることを特徴とする請求項1、7、8のいずれか1項に記載の反射防止積層体。 The conductive material of the conductive layer contains as a main component at least one element selected from the group consisting of Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W, and V, The volume resistivity is 10 7 Ω · cm (25 ° C., 55% RH) or less, and the antireflection laminate according to any one of claims 1, 7, and 8. 前記導電性層がセルロースエステル系樹脂またはアクリル系樹脂を含有することを特徴とする請求項1、7〜10のいずれか1項に記載の反射防止積層体。 The said electroconductive layer contains a cellulose ester resin or an acrylic resin, The antireflection laminated body of any one of Claims 1 and 7-10 characterized by the above-mentioned. 前記オーバーコート層が少なくともセルロースエステル系樹脂またはアクリル系樹脂を含有することを特徴とする請求項1に記載の反射防止積層体。 The antireflection laminate according to claim 1, wherein the overcoat layer contains at least a cellulose ester resin or an acrylic resin. 前記オーバーコート層が親水性高分子化合物を含有することを特徴とする請求項12に記載の反射防止積層体。 The antireflection laminate according to claim 12, wherein the overcoat layer contains a hydrophilic polymer compound. 前記オーバーコート層が、ゼラチンまたはゼラチン誘導体の少なくとも1種及びセルロースエステル系樹脂を含有することを特徴とする請求項12または13に記載の反射防止積層体。 The antireflection laminate according to claim 12 or 13, wherein the overcoat layer contains at least one of gelatin or a gelatin derivative and a cellulose ester resin. 前記導電性層の乾燥後の付き量が0.05〜1.0g/m2、かつオーバーコート層の乾燥後の付き量が0.05〜1.0g/m2であることを特徴とする請求項1、7〜14のいずれか1項に記載の反射防止積層体。 The amount of the conductive layer after drying is 0.05 to 1.0 g / m 2 , and the amount of the overcoat layer after drying is 0.05 to 1.0 g / m 2. The antireflection laminate according to any one of claims 1 and 7 to 14.
JP2003356102A 2003-10-16 2003-10-16 Antireflective laminate Pending JP2005121870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356102A JP2005121870A (en) 2003-10-16 2003-10-16 Antireflective laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356102A JP2005121870A (en) 2003-10-16 2003-10-16 Antireflective laminate

Publications (1)

Publication Number Publication Date
JP2005121870A true JP2005121870A (en) 2005-05-12

Family

ID=34613456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356102A Pending JP2005121870A (en) 2003-10-16 2003-10-16 Antireflective laminate

Country Status (1)

Country Link
JP (1) JP2005121870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036927A (en) * 2006-08-04 2008-02-21 Sumitomo Chemical Co Ltd Scratch-resistant resin plate and display window protection plate for information terminals using it
WO2015076063A1 (en) * 2013-11-22 2015-05-28 富士フイルム株式会社 Film, method for producing same, transparent conductive film and touch panel
JP2019217735A (en) * 2018-06-22 2019-12-26 三井化学株式会社 Multilayer structure having hydrophilic layer and antireflection layer provided on substrate
WO2022004785A1 (en) * 2020-06-30 2022-01-06 大日本印刷株式会社 Transparent laminate, image display device, double-sided antireflection laminate, and facial transparent protector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036927A (en) * 2006-08-04 2008-02-21 Sumitomo Chemical Co Ltd Scratch-resistant resin plate and display window protection plate for information terminals using it
WO2015076063A1 (en) * 2013-11-22 2015-05-28 富士フイルム株式会社 Film, method for producing same, transparent conductive film and touch panel
KR101796882B1 (en) 2013-11-22 2017-11-10 후지필름 가부시키가이샤 Film, method for producing same, transparent conductive film and touch panel
JP2019217735A (en) * 2018-06-22 2019-12-26 三井化学株式会社 Multilayer structure having hydrophilic layer and antireflection layer provided on substrate
WO2022004785A1 (en) * 2020-06-30 2022-01-06 大日本印刷株式会社 Transparent laminate, image display device, double-sided antireflection laminate, and facial transparent protector

Similar Documents

Publication Publication Date Title
JP4655663B2 (en) Method for producing roll-shaped film having coating layer, roll-shaped optical film, polarizing plate, liquid crystal display device
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP4400211B2 (en) Low reflection laminate and method for producing low reflection laminate
JP4622472B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device
KR20060044595A (en) Antireflection film, polarizing plate and image display apparatus
JP2005148444A (en) Clear hard coating member, antireflection layered body using the same, and manufacturing method thereof
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP4479260B2 (en) Manufacturing method of optical film
JP2005266232A (en) Optical film, polarizing plate, and image display device
JP2005309120A (en) Antireflection film, polarizing plate, and image display device
JP2006145736A (en) Antiglare antireflection film, polarizing plate and image display
JP2004258469A (en) Anti-reflection film, manufacturing method therefor, polarizer, and display device
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2009288412A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP2005077795A (en) Optical film and its manufacturing method
WO2012108209A1 (en) Method for producing optical film
JP2006010923A (en) Clear hard coat film, its manufacturing method, and antireflection film using the same
JP2009223129A (en) Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device
JP2005096095A (en) Hard coat film and its manufacturing method
JP2004037618A (en) Antireflection film, manufacture method for antireflection film and polarizing plate and display device
JP2004029660A (en) Manufacturing method for optical film, optical film, and polarizing plate and display device provided with optical film
JP2003337202A (en) Antireflection film and method of manufacturing display device and optical film having the same
JP2007062073A (en) Anti-glaring antireflection film, its manufacturing method and image display device
JP2005266231A (en) Optical film, polarizing plate, and image display device