WO2012108209A1 - Method for producing optical film - Google Patents

Method for producing optical film Download PDF

Info

Publication number
WO2012108209A1
WO2012108209A1 PCT/JP2012/000893 JP2012000893W WO2012108209A1 WO 2012108209 A1 WO2012108209 A1 WO 2012108209A1 JP 2012000893 W JP2012000893 W JP 2012000893W WO 2012108209 A1 WO2012108209 A1 WO 2012108209A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
refractive index
embossing
optical film
Prior art date
Application number
PCT/JP2012/000893
Other languages
French (fr)
Japanese (ja)
Inventor
寛行 大西
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012556802A priority Critical patent/JPWO2012108209A1/en
Publication of WO2012108209A1 publication Critical patent/WO2012108209A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B3/00Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
    • B30B3/005Roll constructions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing

Definitions

  • the present invention relates to a method for producing an optical film.
  • an optical film for a display device As such an optical film for a display device, a wide film having a size of 1000 mm or more, and further 2000 mm or more has recently been required due to a large screen. In addition, a thin base film having a thickness of about 40 ⁇ m has been used for mobile phones and notebook computers. Therefore, a resin film such as cellulose ester is used as the base film, and a hard coat layer, an antireflection layer, an antifouling layer or an antiglare layer is formed thereon as an optical functional layer.
  • a resin film such as cellulose ester is used as the base film, and a hard coat layer, an antireflection layer, an antifouling layer or an antiglare layer is formed thereon as an optical functional layer.
  • the base film becomes wider for widening as described above, or when the thickness of the base film is reduced for thinning, the optical film after forming the optical functional layer In the stage of winding up, non-uniform portions of the roll tightening are likely to occur.
  • This non-uniform winding of the roll also facilitates adhesion between the film surfaces (hereinafter referred to as blocking).
  • a film fed out from a roll in which blocking occurs causes wrinkles, scratches, etc., and cannot be applied to a display device, resulting in a decrease in yield.
  • Patent Document 1 an embossing roll having a tooth tip shape of 90 ° to 130 ° is used to press against the surface of the film end, and the film thickness at the film end is deformed to make the embossing process bulky. A way to do it has been proposed.
  • the occurrence of the fibrous foreign matter deteriorates the embossed surface and reduces the shape of the convex portion (hereinafter referred to as a rib) formed on the embossed surface.
  • the present invention has been made in view of the prior art, and the problem to be solved is that, in the step of embossing the base film, the end of the film does not stretch when the embossed stamp is pressed.
  • Another object of the present invention is to provide a method for producing an optical film that does not generate a black band in a roll shape.
  • the present inventors in a high-speed optical film manufacturing method having a film-forming speed of 80 m / min or more, include an embossing ring imprinting ring provided in an embossing device used for the manufacturing. Attention was paid to the study. As a result, it was found that by polishing the surface of the engraved ring so as to be in a specific range, the end portion of the optical film does not occur, and no black band occurs when it is formed into a roll. It came to complete.
  • the method for producing an optical film according to the present invention uses an embossing device having an embossing roll having an engraved ring and an embossing back roll, and presses the embossing roll against a long film serving as a substrate.
  • Optical film manufacturing method In the manufacturing method of the optical film according to the present embodiment, after the embossing roll is pressed against the long film serving as the base material using an embossing device provided with a marking ring and an embossing roll, An optical film produced by winding the film, characterized in that the film-forming speed is 80 m / min or more, and the surface roughness Ra of the side surface of the marking ring is 10 to 20 ⁇ m.
  • the surface roughness Ra of the side surface of the marking ring is set to 10 to 20 ⁇ m, so that the edge elongation occurs when the embossing ring pushes the base film. Hard to do. In addition, it is possible to prevent the occurrence of so-called blocking caused by sticking of beards or the like, and the occurrence of black bands.
  • the step of embossing in the present invention is to form an uneven portion on the surface of the base film by pressing an embossing roll having uneven portions on the surface of the long film as the base material, It is the process of making it bulkier than the film surface.
  • the surface layer of the embossing roll at the time of production is at least carbide, nitride, carbon nitride, diamond-like carbon (hereinafter referred to as DLC), titanium carbonitride (hereinafter referred to as “carbonic nitride”). , Referred to as TiCN).
  • coats an optical functional layer It is preferable to apply before and after the step. By doing in this way, an optical function layer can be apply
  • FIG. 1 (a) schematically shows a plan view of the optical film 1 of the present invention having an embossed portion.
  • the embossed portion 12 is a portion of a plurality of irregularities (convex portions 13 and concave portions 14) that are bulkier than the surface of the optical film side end portion, and is formed in the longitudinal direction of the optical film 1.
  • An optical functional layer may be applied to the surface of the optical film 1, and in this case, the embossed portion 12 is formed higher than the surface of the uppermost layer of the optical functional layer. Further, when the optical functional layer is not applied, an embossed portion higher than the surface of the optical film 1 is formed.
  • the shape of the unevenness is not particularly limited, and various patterns may be used, or a convex thick film portion may be formed.
  • FIG. 1 (b) shows a cross-sectional view in which a pair of irregularities (13, 14) among a plurality of irregularities of the formed embossed portion 12 is cut in the thickness direction of the optical film 1.
  • FIG. 2 is a cross-sectional view of the convex portion 13 of FIG. 1 cut along a plane (AA in FIG. 1) parallel to the surface of the optical film 1 and at half the height H of the convex portion 13. .
  • the width W of the convex shape at the cross section is preferably 3 to 100 ⁇ m, and more preferably 10 to 30 ⁇ m. If the average width is smaller than 3 ⁇ m, the strength is insufficient, and if it is larger than 100 ⁇ m, a flare failure due to end elongation occurs.
  • the average width W is determined by measuring the widths W1, W2, W3, and W4 of the central portion of each knitting of the cross-sectional shape of the convex portion 13 in FIG. If the cross-sectional shape is not a quadrangle as shown in FIG. 2, four points are measured at almost equal intervals, and the average value is calculated.
  • the cross-sectional area S in the range of 2500 to 10000 ⁇ m 2 , even if the winding speed is increased or the winding length is increased, the generation of a black band in a rolled state is suppressed. And an optical film with few wrinkles and scratches can be obtained.
  • the average height H ( ⁇ m) from the surface of the convex film is preferably 1.0 to 20 ⁇ m, and more preferably 3 to 10 ⁇ m. If the average height H is less than 1.0 ⁇ m, the film interlayer height is insufficient, and if it is greater than 20 ⁇ m, winding tightening tends to occur.
  • the ratio S / H between the cross-sectional area S ( ⁇ m 2 ) and the average height H ( ⁇ m) from the surface of the convex film is preferably 100 to 3000.
  • S / H The average height H from the film surface was determined by measuring the height of the convex portion from the film surface at 10 places at approximately equal intervals and 3 rows in width, and taking the average value of 30 points in total.
  • the ratio S / Y between the above-mentioned cross-sectional area S ⁇ m 2 and the widest width Y ⁇ m of the recess is preferably 10 to 300.
  • S / Y is a portion of the widest distance in the width of the recess for the cross-sectional view of FIG.
  • 10 to 300 pieces / cm 2 of a pair of irregularities are formed on the side end portion of the embossed film.
  • the pair of irregularities it is possible to further suppress the generation of black bands in a rolled state, and to obtain an optical film with fewer wrinkles and scratches.
  • a plurality of engraved rings are pressed against the surface of the side end portion of the film to form a plurality of concave and convex pairs.
  • the height of the convex portion formed by the film member pushed away by the marking ring is preferably set to a predetermined height depending on the pressure and processing temperature for pressing the marking ring.
  • the process of embossing is before and after the process of apply
  • an embossing roll 61 having a plurality of engraved rings 20 on a cylindrical flat surface 21 (also referred to as a flat portion), and the embossing roll 61 and the optical film 1 are disposed to face each other. It is the figure which showed typically the embossing process of embossing to the both ends of the optical film 1 with the embossing back roll 62.
  • FIG. 3A shows typically the embossing process of embossing to the both ends of the optical film 1 with the embossing back roll 62.
  • FIG. 3B is an enlarged view of a forming portion for forming irregularities on the optical film by the marking ring 20.
  • the marking ring 20 has a quadrangular pyramid shape in which the tip portion 20a has a flat surface.
  • the engraved ring 20 is pressed against the surface of the film 1 with a gap to form the convex portion 13.
  • a quadrangular pyramid having a flat surface on the upper surface (pressing surface) of the marking 61 is used as an example.
  • a triangular pyramid, a conical shape, or a cylindrical shape may be used. May be.
  • FIG. 4 is a schematic view showing the embossing process of FIG. 3B from the side.
  • a convex portion 13 having a width B and a height h is formed at the end in the width direction of the optical film 1.
  • the height h of the emboss refers to the height from the film surface to the convex portion formed by the emboss roll.
  • the heating method of the embossing roll 61 is not specifically limited, A heating fluid can be flowed inside a roll, a halogen heater can be used, or it can heat by dielectric heat_generation
  • the emboss height h needs to be a predetermined height to prevent blocking and black bands. Therefore, in order to obtain a predetermined emboss height h, the surface temperature of the embossing roll 61 and the pressing pressure of the embossing roll are adjusted. However, due to the friction between the embossing roll and the marking ring, a short whisker-like fibrous foreign matter may be generated on the unevenness of the embossed portion.
  • the size of the whisker-like fibrous foreign matter is about 1 to 100 ⁇ m in diameter and about 10 to 1000 ⁇ m in length, and when the width B is 2 cm, the number of generated is about 1 to 50 per embossed unevenness. appear.
  • the whiskers cause whisker-like fibrous foreign matter due to local expansion of the thermoplastic optical film 1.
  • the film forming speed is high, particularly when the film forming speed is 80 m / min or more, the whisker-like fibrous foreign matter makes the embossed height non-uniform, and a black band is generated when it is made into a roll shape or is detached from the embossed part. As a result, it is possible that the foreign matter adheres to the film.
  • the surface roughness Ra of the side surface of the marking ring is 10 to 20 ⁇ m, and preferably 13 to 17 ⁇ m. If Ra is less than 10 ⁇ m, end portion elongation tends to occur, and if it is larger than 20 ⁇ m, whiskers are likely to occur.
  • the surface roughness Ra of the upper surface of the marking ring is 10 to 20 ⁇ m, preferably 13 to 17 ⁇ m. If Ra is less than 10 ⁇ m, it is difficult to polish the ring surface, and the surface roughness below this does not affect the whisker, and if it is more than 20 ⁇ m, whiskers tend to occur.
  • the polishing method of the side and top surfaces of the marking ring is preferably polished using two or more selected from a wire brush, a blast treatment, and a vertical polishing machine.
  • a blast processing apparatus it is possible to perform polishing processing of minute uneven portions.
  • blasting can be applied to workpieces made of inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials.
  • inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials.
  • spraying at a certain angle and speed optimum polishing is possible even when the processed surface has a deformed portion.
  • Tg is the glass transition temperature.
  • the heat of the engraved ring in the emboss roll causes heat transfer to the embossed back roll through the optical film, and end elongation such that the back surface of the optical film extends.
  • the surface temperature of the embossed back roll within the range of 10 to 50 ° C., the end elongation can be prevented, and it is more preferably 20 ° C. or higher and 40 ° C. or lower. If the surface temperature of the embossed back roll is lowered below 10 ° C., the embossing processability is deteriorated. Further, when the surface temperature of the embossing roll is raised above 50 ° C., end elongation occurs.
  • the width B of the embossed portion according to the present invention is not particularly limited, but is 5 to 30 mm, preferably 10 to 25 mm, particularly preferably 15 to 20 mm.
  • the location of the embossed portion either the inside or outside of the width for applying the optical functional layer may be used.
  • the position of the embossed portion is not particularly limited, but it is preferable that embossing is applied to a portion of 0 to 30 mm from the end in the width direction of the optical film.
  • it is preferable to provide the said embossing part not only in the optical film edge part but in the inner side. That is, it is also preferable to provide a plurality of embossed portions on the optical film.
  • embossed portion according to the present invention may be formed on at least one surface of the film, or may be formed on both surfaces.
  • the height of the embossed portion on the core side is higher than the height of the embossed portion on the outside of the winding, and the difference in height is preferably in the range of 10 to 20 ⁇ m, more preferably in the range of 3 to 8 ⁇ m.
  • the pressing pressure or temperature of the embossing roll so as to be a combination of the core-side embossing height (15 ⁇ m) / winding center embossing height (10 ⁇ m) / winding outer embossing height (5 ⁇ m), etc.
  • the pressing pressure or temperature of the embossing roll so as to be a combination of the core-side embossing height (15 ⁇ m) / winding center embossing height (10 ⁇ m) / winding outer embossing height (5 ⁇ m), etc.
  • the winding pressure in the direction of the core when the optical film is rolled up is 2.0 to 5.0 MPa when the winding length is 3,900 m to 9,000 m.
  • the average height H of the convex portions from the film surface is preferably 0.1 to 3 ⁇ m, and more preferably 0.5 to 2.0 ⁇ m. If it is smaller than 0.1 ⁇ m, the film interlayer height is low, and sticking failure is likely to occur. If it is larger than 3 ⁇ m, winding tightening will occur.
  • the standard deviation of the average height H when the above winding pressure is applied to the optical film is preferably 0.1 to 2.0 ⁇ m.
  • embossing accuracy is practically difficult and workability is difficult, and when it is larger than 2.0 ⁇ m, the difference in right and left diameters of the original winding becomes large, causing the loosening of the winding. It becomes.
  • the elongation of the embossed part is preferably in the range of 0.1 to 0.5%.
  • the embossing range is narrowed and rib formation becomes insufficient.
  • the elongation is larger than 0.5%, workability in subsequent processes such as coating is deteriorated.
  • any core can be used.
  • the plastic material is preferably a hollow plastic core, and the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature.
  • phenol resin, xylene examples thereof include resins such as resins, melamine resins, polyester resins, and epoxy resins.
  • a thermosetting resin reinforced with a filler such as glass fiber is preferable.
  • the method for producing an optical film of the present invention is formed after a step of forming a resin, which is a raw material for a long optical film serving as a substrate, by a solution casting film forming method or a melt extrusion film forming method. It is preferable to perform an embossing process on the resulting film and then perform a winding process. Furthermore, the application of the optical functional layer is preferably performed during the period from the film forming process of the optical film serving as the substrate to the winding process. By doing in this way, the process to wind up can be performed at once and the roll-shaped optical film which suppressed generation
  • FIG. 5 shows an embodiment of an optical film manufacturing apparatus using the optical film manufacturing method according to the present invention, but the present invention is not limited to this.
  • a preliminarily prepared thermoplastic resin solution is cast on a casting belt 8 from a die 7 to form a web (a film containing a residual solvent after casting a dope on a metal support is called a web).
  • the web is stretched by the tenter 9 and dried by the film drying apparatus 10.
  • the stretched web forms an embossed portion on the web by an embossing roll 61 having irregularities formed on the surface and an embossing back roll 62 facing the embossing roll 61. Thereafter, the film on which the embossed portion is formed is wound up by the winding roll 11.
  • the embossing roll 61 and the embossing back roll 62 are installed behind the film drying apparatus 10, but any of the winding rolls 11 after the web is peeled off from the casting belt 8 can be used. You may install in the place. That is, the embossed film may be dried by the drying device 10. Moreover, when apply
  • coating an optical function layer after applying the optical function layer after the film drying apparatus 10, after drying the optical function layer, it should just wind with the winding roll 11.
  • the optical functional layer When the optical functional layer is applied in multiple layers, after the optical functional layer is dried, the next optical functional layer is applied and dried, and this process is repeated many times to form a multilayer optical functional layer. Then, the winding roll 11 may be wound. Further, after the optical functional layer is formed, the embossed portion may be formed in front of the take-up roll 11.
  • Base film The film used as the base material that can be used in the present invention (when the optical functional layer is not applied, the base film becomes an optical film) will be described.
  • the base film used in the present invention it is preferable that it is easy to manufacture, has good adhesion to the optical functional layer, is optically isotropic, is optically transparent, and the like. Listed as a requirement. Transparent means that the transmittance of visible light is 60% or more, preferably 80% or more, particularly preferably 90% or more.
  • the base film used in the present invention is at least one resin selected from cellulose ester resin, polyester resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyacrylate resin, norbornene resin, and acrylic styrene resin. preferable.
  • cellulose ester film for example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, cycloolefin polymer film (Arton (manufactured by JSR)) ZEONEX, ZEONEA Ltd.)), polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, acrylic film or a glass plate or the like.
  • polysulfone including polyethersulf
  • a cellulose triacetate film, a polycarbonate film, and a polysulfone (including polyethersulfone) film are preferable, and in the present invention, in particular, a cellulose ester film (for example, Konicattak product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR ( Konica Minolta Opto Co., Ltd.)) is preferably used from the viewpoints of production, cost, transparency, isotropy, adhesion and the like.
  • These films may be films produced by melt casting film formation or films produced by solution casting film formation.
  • those having a retardation Rt in the film thickness direction of 0 nm to 300 nm and a retardation Ro in the in-plane direction of 0 nm to 1000 nm are preferably used.
  • a cellulose ester film As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.
  • X and Y are active ray curable resin layers on a base film having a mixed fatty acid ester of cellulose in the following range And an optical film provided with an antireflection layer is preferably used.
  • a film containing an acrylic resin and a cellulose ester as the base film.
  • a synthetic film containing these a supple film is obtained.
  • the mass ratio of the acrylic resin and the cellulose ester is preferably 95: 5 to 30:70.
  • the mass ratio of the cellulose ester is less than 5% by mass, it becomes brittle, and when it is greater than 70% by mass, the properties of the acrylic resin cannot be sufficiently expressed.
  • the molecular weight of the acrylic resin is preferably 80000 or more, and the molecular weight of the cellulose ester is preferably 75000 or more. When the molecular weight of the acrylic resin is less than 80000, it becomes brittle, and when the molecular weight of the cellulose ester is less than 75000, it becomes brittle.
  • the total substitution degree (T) of the acyl group of the cellulose ester is preferably 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. It is preferable. Beyond these ranges, the compatibility deteriorates.
  • the cellulose used as the raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from coniferous trees, derived from hardwoods), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.
  • the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution.
  • these acylating agents react with hydroxyl groups of cellulose molecules.
  • Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%).
  • cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).
  • a mixed fatty acid ester of cellulose in which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate are also preferably used.
  • the butyryl group forming butyrate may be linear or branched.
  • Cellulose acetate propionate containing a propionate group as a substituent has excellent water resistance and is useful as a film for liquid crystal image display devices.
  • the method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • the number average molecular weight of the cellulose ester is preferably 70000 to 250,000, since it has high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.
  • cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).
  • a cellulose ester solution generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).
  • the organic solvent used for preparing these dopes it is preferable that the cellulose ester can be dissolved and has an appropriate boiling point.
  • the cellulose ester can be dissolved and has an appropriate boiling point.
  • methylene chloride methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl
  • organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.
  • the boiling point of the organic solvent used is 30-80.
  • the boiling point of the good solvent described above is, for example, methylene chloride (boiling point 40.4 ° C.), methyl acetate (boiling point 56.32 ° C.), acetone (boiling point 56.3 ° C.), ethyl acetate (boiling point 76. 82 ° C.).
  • methylene chloride or methyl acetate having excellent solubility is preferably used.
  • the organic solvent it is preferable to contain 0.1% by mass to 40% by mass of an alcohol having 1 to 4 carbon atoms. It is particularly preferable that the alcohol is contained at 5 to 30% by mass.
  • the solvent After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.
  • Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.
  • ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.
  • the cellulose ester film used in the present invention is preferably stretched at least in the width direction.
  • the cellulose ester film is 1.01 times to the width direction.
  • the film is preferably stretched 1.5 times. More preferably, it is biaxially stretched in the width direction and the longitudinal direction, and when the residual solvent is 3% by mass to 40% by mass, 1.01 to 1.5 times in the width direction and the longitudinal direction, respectively. It is desirable to be stretched. By doing in this way, the light diffusable film excellent in planarity and light diffusibility can be obtained.
  • the residual solvent amount is represented by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time
  • N is the mass when the web of M is dried at 110 ° C. for 3 hours.
  • the biaxially stretched cellulose ester film preferably has a light transmittance of 90% or more, more preferably 93% or more.
  • an embossed portion is formed on the film by an embossing roll having irregularities formed on the surface and an embossing roll facing the embossing roll.
  • the surface temperature of the embossing roll is preferably adjusted in relation to the melting point of the base film and the glass transition point.
  • the melting point of TAC triacetyl cellulose
  • the glass transition temperature is 107.
  • the surface temperature of the embossing roll is preferably adjusted between 204 ° C. and 251 ° C.
  • the substrate film according to the present invention preferably has a thickness of 15 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, and moisture permeability was measured according to JIS Z 0208 (25 ° C., 90% RH).
  • the value is preferably 200 g / m 2 ⁇ 24 hours or less, more preferably 10 to 180 g / m 2 ⁇ 24 hours or less, and particularly preferably 160 g / m 2 ⁇ 24 hours or less.
  • the film thickness is 20 to 80 ⁇ m and the moisture permeability is within the above range.
  • the base film according to the present invention is used as a long film, and specifically has a thickness of about 500 m to 8000 m and is usually provided in a roll shape.
  • the width of the base film is preferably 1 to 4 m.
  • plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters.
  • a plasticizer or the like can be preferably used.
  • phosphate plasticizers triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc.
  • phthalate ester plasticizers diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, and other trimellitic plasticizers such as tributyl trimellitate, triphenyl trimellitate, triethyl
  • trimellitate such as trimellitate, tetrabutyl pyromellitate, tetrafluoro
  • glycolate plasticizers such as nilpyromellitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc., citrate plasticizer
  • polyester plasticizer a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used.
  • the aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used.
  • glycol ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.
  • the amount of these plasticizers to be used is preferably 1% by mass to 20% by mass, particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.
  • the content is at least 1% by mass or more, preferably 2% by mass or more.
  • an ultraviolet absorber is preferably used for the optical film of the present invention.
  • the ultraviolet absorber those which are excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and have little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.
  • benzotriazole-based ultraviolet absorbers examples include the following ultraviolet absorbers as specific examples, but the present invention is not limited thereto.
  • UV-1 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
  • UV-2 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • UV-3 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole
  • UV-4 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole
  • UV-5 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole
  • UV-6 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
  • UV-7 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-ch
  • UV-10 2,4-dihydroxybenzophenone
  • UV-11 2,2'-dihydroxy-4-methoxybenzophenone
  • UV-12 2-hydroxy-4-methoxy-5-sulfobenzophenone
  • UV-13 Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
  • a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less.
  • a benzotriazole-based ultraviolet absorber is particularly preferably used.
  • the ultraviolet absorber having a distribution coefficient of 9.2 or more described in JP-A No. 2001-187825 improves the surface quality of a long film and is excellent in coating properties.
  • polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6) and (7) of Japanese Patent Application No. 2000-156039 Alternatively, an ultraviolet absorbing polymer is also preferably used.
  • PUVA-30M manufactured by Otsuka Chemical Co., Ltd.
  • the like are commercially available.
  • fine particles similar to those described in the coating layer containing an actinic radiation curable resin can be used.
  • the primary average particle diameter of the fine particles added to the cellulose ester film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm.
  • These fine particles preferably form secondary particles having a particle size of 0.1 to 5 ⁇ m and are contained in the cellulose ester film, and the preferable average particle size is 0.1 to 2 ⁇ m, more preferably 0.2 to 0.6 ⁇ m.
  • irregularities having a height of about 0.10 to 20 ⁇ m are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
  • the primary average particle size of the fine particles used in the present invention is measured by observing particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, and using the average value, The average particle size was taken.
  • the apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter.
  • a larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention.
  • Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed with the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.
  • the apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.
  • Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.
  • Preparation Method A After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.
  • Preparation Method B After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.
  • Preparation Method C Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.
  • Preparation method A is excellent in dispersibility of silicon dioxide fine particles
  • preparation method C is excellent in that silicon dioxide fine particles are difficult to re-aggregate.
  • the preparation method B described above is a preferable preparation method that is excellent in both dispersibility of the silicon dioxide fine particles and difficulty in reaggregation of the silicon dioxide fine particles.
  • the concentration of silicon dioxide when the silicon dioxide fine particles are mixed with a solvent and dispersed is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and most preferably 15% by mass to 20% by mass.
  • a higher dispersion concentration is preferable because liquid turbidity with respect to the added amount tends to be low, and haze and aggregates are improved.
  • the solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.
  • the amount of silicon dioxide fine particles added to the cellulose ester is preferably 0.01 parts by mass to 5.0 parts by mass and more preferably 0.05 parts by mass to 1.0 part by mass with respect to 100 parts by mass of the cellulose ester. Preferably, 0.1 part by weight to 0.5 part by weight is most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.
  • Disperser can be a normal disperser. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersing silicon dioxide fine particles, a medialess disperser is preferred because of its low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable.
  • the high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube.
  • the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 ⁇ m. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.
  • the high-pressure dispersing apparatus examples include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing apparatuses such as a homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.
  • casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.
  • the film is peeled off, dried and wound into a roll, and then the optical thin film layer according to the present invention is provided.
  • packaging is usually performed in order to protect the product from dirt, static electricity, and the like.
  • the packaging material is not particularly limited as long as the above purpose can be achieved, but a material that does not hinder volatilization of the residual solvent from the film is preferable.
  • Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. Those in which the fibers are mesh cloth are more preferably used.
  • the cellulose ester film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.
  • Co-casting is a sequential multilayer casting method in which two or three layers are configured through different dies, and a simultaneous multilayer casting method in which two or three slits are combined in a die having two or three slits. Any of the multilayer casting methods combining sequential multilayer casting and simultaneous multilayer casting may be used.
  • the cellulose ester used in the present invention is preferably used as a support having a small amount of bright spot foreign matter when formed into a film.
  • the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.
  • the polarizing plate used for the evaluation at this time is preferably composed of a protective film having no bright spot foreign matter, and preferably a glass plate is used for protecting the polarizer.
  • the occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated cellulose contained in the cellulose ester.
  • the use of cellulose ester with a small amount of unacetylated cellulose It can be removed and reduced by filtering the dissolved dope solution. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.
  • the bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.
  • the bright spots of 0.005 mm to 0.01 mm are preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm 2 or less.
  • the number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.
  • the filter medium conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used.
  • the absolute filtration accuracy is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
  • the optical functional layer of the present invention is preferably an antireflection layer provided on the hard coat layer.
  • the antireflection layer or other thin film of the present invention may be formed directly on the substrate film, but may be formed thereon via another layer.
  • examples of the coating layer (thin film forming side coating layer, optical functional layer) applied to the surface on the thin film forming side of the base film include a hard coat layer, an antiglare layer, an adhesive layer, an antistatic layer, and the like.
  • a hard coat layer, an antiglare layer, and an antistatic layer are preferably applied, and in the case of the optical film of the present invention, in particular, in order to increase the surface hardness of the optical film, the “other layer” Is preferably provided.
  • a back coat layer may be provided on the side where the antireflection layer or other thin film is formed and on the side opposite to the base film.
  • a hard coat layer used for an optical film will be described as a coating layer as an “other layer” useful for the present invention.
  • the hard coat layer is preferably a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays, and an antireflection film having excellent scratch resistance can be obtained.
  • an ultraviolet curable compound resin
  • the ultraviolet curable resin layer of the hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer.
  • the ultraviolet curable resin layer refers to a layer mainly composed of a resin which is cured through a crosslinking reaction or the like by irradiation with an active ray such as an electron beam in addition to ultraviolet rays.
  • Typical examples of the ultraviolet curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used.
  • Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
  • UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). And can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (see, for example, JP-A-59-151110).
  • UV curable polyester acrylate resins can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers (see, for example, JP-A-59-151112). .
  • ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738).
  • a photoreaction initiator for example, JP-A-1- No. 105738.
  • the photoinitiator one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
  • ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc.
  • the said photoinitiator can also be used as a photosensitizer.
  • specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
  • the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • Adekaoptomer KR / BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI Hard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10 , DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.
  • the UV curable resin layer can be applied by a known method.
  • the solvent for coating the ultraviolet curable resin layer for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used.
  • propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether, preferably propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass.
  • the solvent contained above is used.
  • any light source that generates ultraviolet rays can be used.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ⁇ 10000mJ / cm 2 degrees, preferably 50 ⁇ 2000mJ / cm 2.
  • the near ultraviolet region to the visible light region it can be used by using a sensitizer having an absorption maximum in that region.
  • the UV curable resin composition is coated and dried and then irradiated with UV light from a light source.
  • the irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
  • inorganic or organic fine particles it is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent black bands and to improve the scratch resistance.
  • the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of the organic fine particles include polymethacrylic acid.
  • Methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder
  • Polyamide-based resin powder, polyimide-based resin powder, or polyfluorinated ethylene-based resin powder, and the like can be added to the ultraviolet curable resin composition.
  • the average particle size of these fine particle powders is preferably 0.005 to 5 ⁇ m, more preferably 0.1 to 5.0 ⁇ m, and further preferably 0.1 to 4.0 ⁇ m added to the coating composition for forming the hard coat layer. It is particularly preferable from the viewpoint of the stability of the composition.
  • the proportion of the ultraviolet curable resin composition and the fine particle powder is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
  • the layer formed by curing the ultraviolet curable resin formed in this way is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JIS B 0601, but Ra is 0.1. It may be an antiglare layer of about 1 ⁇ m.
  • the liquid film thickness (also referred to as wet film thickness) during coating is about 1 to 100 ⁇ m, preferably 0.1 to 30 ⁇ m, more preferably 0.5 to 30 ⁇ m.
  • the dry film thickness is an average film thickness of 0.1 to 30 ⁇ m, preferably 1 to 20 ⁇ m.
  • the base film used in the present invention is preferably provided with a back coat layer containing fine particles on the back side.
  • Examples of the fine particles contained in the backcoat layer useful in the present invention include fine particles of inorganic compounds or fine particles of organic compounds.
  • the particles contained in the backcoat layer are 0.1 to 50% by weight, preferably 0.1 to 10% by weight, based on the binder.
  • the increase in haze is preferably 1% or less, particularly preferably 0 to 0.1%.
  • the organic solvent used in the back coat layer is not particularly limited, but since the anti-curl function can be imparted to the back coat layer, the organic solvent that dissolves the cellulose ester film and the resin of the cellulose ester film material or the organic solvent that swells. Solvents are useful. These may be appropriately selected depending on the curl degree of the cellulose ester film, the type of resin, the mixing ratio, the coating amount, and the like.
  • organic solvent examples include benzene, toluene, xylene, dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, N-methylpyrrolidone, 1,3-dimethyl- 2-Imidazolidinone.
  • organic solvent examples include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, and n-butanol, but the organic solvent is not particularly limited thereto.
  • a coating liquid film thickness (sometimes referred to as a wet film thickness) is 1 to 100 ⁇ m using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater or the like. In particular, 5 to 30 ⁇ m is preferable.
  • the back coat layer can be applied in two or more steps. Further, the backcoat layer may also serve as an easy adhesion layer for improving the adhesion with the polarizer.
  • Examples of the resin used for the back coat layer include vinyl chloride / vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, copolymer of vinyl acetate and vinyl alcohol, partially hydrolyzed vinyl chloride / vinyl acetate copolymer, and chloride.
  • Vinyl homopolymers or copolymers such as vinyl / vinylidene chloride copolymer, vinyl chloride / acrylonitrile copolymer, ethylene / vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, cellulose nitrate, cellulose acetate Cellulose ester resins such as propionate, cellulose diacetate, cellulose triacetate, cellulose acetate phthalate, cellulose acetate butyrate resin, maleic acid and / or Is a copolymer of acrylic acid, acrylic acid ester copolymer, acrylonitrile / styrene copolymer, chlorinated polyethylene, acrylonitrile / chlorinated polyethylene / styrene copolymer, methyl methacrylate / butadiene / styrene copolymer, acrylic resin, polyvinyl ace
  • the antireflection layer which is the optical functional layer of the present invention, and the optical film coated therewith will be described.
  • At least one of a metal oxide layer, a metal oxynitride, a metal nitride, an organic polymer, and a liquid crystal compound is formed on the aforementioned base film, It is preferable to do.
  • the antireflection layer may be formed directly on the base film, but at least one hard coat layer or other coating layer may be provided and formed on the base film having an uneven surface. This is a preferred method because it is less likely to be scratched in the process of handling the optical film and the step of making the optical film into a polarizing plate to be described later.
  • the above-mentioned cured resin layer having a center line average surface roughness (Ra) defined by JIS B 0601 of 0.01 to 1 ⁇ m is preferable.
  • These are actinic radiation curable resin layers that are cured by actinic radiation such as ultraviolet rays.
  • An optical film excellent in scratch resistance can be obtained by forming the metal oxide layer according to the present invention on the resin layer cured by such ultraviolet rays.
  • an antireflection layer of an optical film is formed by laminating a high refractive index layer having a refractive index higher than that of the base film and a low refractive index layer having a refractive index lower than that of the base film on the base film.
  • Those laminated in the order of refractive index layer / low refractive index layer are preferably used from the viewpoint of reducing the reflectance.
  • the present invention is not limited only to lamination in this order, and may be reversed, or a medium refractive index layer having a refractive index higher than that of the base film and lower than that of the high refractive index layer during this period.
  • the present invention can also be achieved with a configuration of three or more layers sandwiching.
  • a metal oxide layer particularly preferably used as an example of the antireflection layer of the present invention will be described.
  • the metal oxide layer is preferably used as at least one of a high refractive index layer and a low refractive index layer.
  • the antireflection layer is preferably formed by coating.
  • the base film, the high refractive index layer, and the low refractive index layer preferably have a refractive index that satisfies the following relationship.
  • Refractive index of low refractive index layer ⁇ refractive index of base film ⁇ refractive index of hard coat layer ⁇ refractive index of high refractive index layer
  • an optical film provided with an antiglare antireflection layer by imparting irregularities to the hard coat layer or the high refractive index layer.
  • a layer structure in the order of a base film, a hard coat layer (antiglare layer), a medium refractive index layer, a high refractive index layer, and a low refractive index layer is also a preferable configuration. It is preferable to impart an antiglare property to the low refractive index layer on the surface, and an antiglare layer may be provided on the surface.
  • a high refractive index layer having a refractive index higher than that of the base film is provided between the base film provided with the base film or the hard coat layer and the low refractive index layer. It is preferable to provide it. In addition, it is preferable to provide a middle refractive index layer between the base film and the high refractive index layer in order to reduce the reflectance.
  • the refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20.
  • the film thickness of the high refractive index layer is preferably 5 nm to 1 ⁇ m, more preferably 10 nm to 0.2 ⁇ m, and most preferably 30 nm to 0.2 ⁇ m from the characteristics of the optical interference layer.
  • the haze of the high refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less.
  • the strength of the high refractive index layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more, with a pencil hardness of 1 kg load.
  • the high refractive index layer preferably contains conductive particles, inorganic particles having a composition different from the conductive particles, and a binder. Either or both of the conductive particles and the inorganic particles may be used.
  • the conductive particles used for the high refractive index layer preferably have a refractive index of 1.60 to 2.60, and more preferably 1.65 to 2.50.
  • the average particle diameter of the primary particles of the conductive particles is preferably 10 to 200 nm, more preferably 20 to 150 nm, and most preferably 30 to 100 nm.
  • the average particle diameter of the conductive fine particles can also be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. Further, it may be measured by a particle size distribution meter using a dynamic light confusion method or a static light confusion method. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the conductive particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
  • the amount of conductive particles used is preferably 5 to 85% by mass in the high refractive index layer. It is more preferably 10 to 80% by mass, and most preferably 20 to 75% by mass. If the amount used is small, desired effects such as refractive index and conductivity cannot be obtained, and if it is too large, film strength is deteriorated.
  • the conductive particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium.
  • a liquid having a boiling point of 60 to 170 ° C. is preferably used.
  • dispersion solvent examples include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, acetone alcohol) , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, di
  • the conductive particles can be dispersed in the medium using a disperser.
  • the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill.
  • a sand grinder mill and a high-speed impeller mill are particularly preferred.
  • preliminary dispersion processing may be performed.
  • the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder. It is also preferable to contain a dispersant.
  • the high refractive index layer contains inorganic particles having a composition different from that of the conductive particles.
  • the inorganic particles used are one kind of inorganic particles selected from the group consisting of hollow silica, colloidal silica, and magnesium fluoride.
  • the amount of the inorganic particles used is preferably 1 to 30% by mass in the high refractive index layer, more preferably 3 to 25% by mass, and most preferably 5 to 20% by mass. If the amount used is small, desired effects such as scratch resistance, adhesion, hardness, chemical resistance under high temperature and high humidity cannot be obtained, and if too large, film strength is deteriorated.
  • the high refractive index layer preferably uses a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer.
  • the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin.
  • polyolefin polyolefin
  • crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin.
  • a crosslinked product of polyolefin, polyether and polyurethane is preferred, a crosslinked product of polyolefin and polyether is more preferred, and a crosslinked product of polyolefin is most preferred.
  • the crosslinked polymer has an anionic group.
  • the anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film.
  • the anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.
  • anionic group examples include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred.
  • the anionic group may be in a salt state.
  • the cation that forms a salt with the anionic group is preferably an alkali metal ion.
  • the proton of the anionic group may be dissociated.
  • the linking group that connects the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof.
  • the crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure.
  • the proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable.
  • the repeating unit may have two or more anionic groups.
  • the crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure).
  • Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring.
  • the amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group.
  • the benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.
  • the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred.
  • the amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group.
  • the group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably a carbon number. 1 to 6 alkyl groups.
  • the counter ion of the quaternary ammonium group is preferably a halide ion.
  • the linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred.
  • the ratio is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, the content is 0.1 to 28% by mass.
  • the cross-linked polymer is prepared by blending a monomer for generating a cross-linked polymer to prepare a coating solution for forming a high refractive index layer and a medium refractive index layer, and is generated by a polymerization reaction simultaneously with or after coating of the coating solution. Is preferred. Each layer is formed with the production of the crosslinked polymer.
  • the monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution.
  • the monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles.
  • the monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution.
  • the monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group.
  • Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, penta Erythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate , Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-
  • monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group.
  • examples of commercially available monomers having an anionic group include KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.).
  • Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Chemical Industry Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Co., Ltd.), etc. It is done.
  • Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co., Ltd.). And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).
  • the polymer polymerization reaction can be a photopolymerization reaction or a thermal polymerization reaction.
  • a photopolymerization reaction is particularly preferable.
  • a polymerization initiator is preferably used for the polymerization reaction.
  • the above-mentioned thermal polymerization initiator and photopolymerization initiator used for forming the binder polymer of the hard coat layer may be mentioned.
  • a commercially available polymerization initiator may be used as the polymerization initiator.
  • a polymerization accelerator may be used.
  • the addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers.
  • the coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application
  • a polymer having a relatively high refractive index for the high refractive index layer.
  • the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. .
  • Polymers having other cyclic (aromatic, heterocyclic, and alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.
  • the metal oxide layer is preferably provided by coating a coating solution containing inorganic fine particles containing a metal oxide.
  • a high refractive index layer may be formed from an organometallic compound having film-forming ability.
  • organometallic compound can be dispersed in an appropriate medium or is in a liquid state.
  • organometallic compounds include metal alcoholates (eg, titanium tetraethoxide, titanium tetra-i-propoxide, titanium tetra-n-propoxide, titanium tetra-n-butoxide, titanium tetra-sec-butoxide, titanium Tetra-tert-butoxide, aluminum triethoxide, aluminum tri-i-propoxide, aluminum tributoxide, antimony triethoxide, antimony riboxide, zirconium tetraethoxide, zirconium tetra-i-propoxide, zirconium tetra-n- Propoxide, zirconium tetra-n-butoxide, zirconium tetra-sec-butoxide, zirconium tetra-tert-butoxide), chelate compounds (eg, di-isopropoxytit
  • a layer lower than the refractive index of the base film is referred to as a low refractive index layer.
  • a low-refractive-index layer formed by cross-linking of a fluorine-containing resin that is cross-linked by heat or ionizing radiation hereinafter also referred to as “fluorinated resin before cross-linking”
  • fluorinated resin before cross-linking a low-refractive index layer by a sol-gel method, and particles and a binder polymer
  • a low refractive index layer having voids between or inside the particles is used.
  • the refractive index of the low refractive index layer is low, it is preferable because the antireflection performance is improved, but it is difficult from the viewpoint of imparting strength to the low refractive index layer. From this balance, the refractive index of the low refractive index layer is preferably in the range of 1.30 to 1.45.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 30 nm to 0.2 ⁇ m, from the characteristics as an optical interference layer.
  • fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group.
  • fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (Osaka Organic Chemical) or M-2020 (Daikin)), fully or partially fluorinated vinyl ethers, etc.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluor
  • Examples of the monomer for imparting a crosslinkable group include glycidyl methacrylate, vinyltrimethoxysilane, ⁇ -methacryloyloxypropyltrimethoxysilane, vinylglycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule.
  • Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.).
  • crosslinkable group examples include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group.
  • the fluorine-containing copolymer When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type.
  • a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator
  • it is a thermosetting type.
  • crosslinking by irradiation with light preferably ultraviolet rays, electron beams, etc.
  • the ionizing radiation curable type is used.
  • a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking.
  • the monomer that can be used in combination is not particularly limited.
  • olefins ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.
  • acrylic esters methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl
  • methacrylic acid esters methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.
  • styrene derivatives styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene, etc.
  • vinyl ethers methyl vinyl ether) Etc.
  • vinyl esters vinyl acetate, vinyl propionate, vinyl cinnamate, etc.
  • acrylamides N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.
  • methacrylamides Ronitoriru derivatives and the like
  • polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties.
  • polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
  • the proportion of each monomer used to form the fluorinated copolymer before cross-linking is preferably 20 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer,
  • the amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.
  • the fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
  • Fluorine-containing resin before crosslinking is commercially available and can be used.
  • Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.
  • the low refractive index layer comprising a crosslinked fluorine-containing resin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.
  • the low refractive index layer containing a crosslinked fluorine-containing resin as a constituent component contains inorganic particles.
  • inorganic fine particles used in the low refractive index layer amorphous particles are preferably used, and are preferably composed of metal oxides, nitrides, sulfides or halides, and metal oxides are particularly preferable.
  • inorganic fine particles containing two or more metals may be used.
  • Particularly preferred inorganic fine particles are silicon dioxide fine particles, that is, silica fine particles.
  • the average particle size of the inorganic fine particles is preferably 0.001 to 0.2 ⁇ m, and more preferably 0.005 to 0.05 ⁇ m.
  • the particle diameter of the fine particles is preferably as uniform (monodispersed) as possible. If the particle size of the inorganic fine particles is too large, light is scattered and the film becomes opaque. If the particle size is too small, the particles are likely to aggregate and difficult to synthesize and handle.
  • the compounding amount of the inorganic fine particles is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and particularly preferably 10 to 50% by mass with respect to the total mass of the low refractive index layer.
  • the inorganic fine particles are preferably used after being subjected to a surface treatment.
  • the surface treatment method includes physical surface treatment such as plasma discharge treatment and corona discharge treatment and chemical surface treatment using a coupling agent, but the use of a coupling agent is preferred.
  • an organoalkoxy metal compound eg, titanium coupling agent, silane coupling agent, etc.
  • treatment with a silane coupling agent described later is particularly effective.
  • sol-gel materials can be used as the material for the low refractive index layer.
  • metal alcoholates alcolates such as silane, titanium, aluminum, zirconium, etc.
  • organoalkoxy metal compounds and hydrolysates thereof can be used.
  • alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable.
  • Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane.
  • organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, ⁇ -glycidyloxypropyltrialkoxysilane, ⁇ -glycidyloxypropylmethyl dialkoxysilane, ⁇ - (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, ⁇ -methacryloyloxypropyltrialkoxysilane, ⁇ -aminopropyltrialkoxysilane, ⁇ -mercaptopropyltrialkoxysilane, ⁇ -chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds (for example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxys
  • the low refractive index layer it is also preferable to use a layer formed using microparticles between or within the fine particles using inorganic or organic fine particles.
  • the average particle diameter of the fine particles is preferably from 0.5 to 200 nm, more preferably from 1 to 100 nm, still more preferably from 3 to 70 nm, and most preferably from 5 to 40 nm.
  • the particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.
  • the inorganic fine particles are preferably amorphous.
  • the inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride.
  • metal atoms Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable.
  • An inorganic compound containing two kinds of metals may be used.
  • a particularly preferred inorganic compound is silicon dioxide, ie silica.
  • the microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous.
  • (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A No. 53-112732 and Japanese Patent Publication No. 57-9051) or a precipitation method (described in APPLIED OPTICS, Vol. 27, page 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, silicon dioxide sol) may be used.
  • the inorganic fine particles having microvoids are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer.
  • an appropriate medium for example, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.
  • the organic fine particles are also preferably amorphous.
  • the organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method).
  • the organic fine particle polymer preferably contains a fluorine atom.
  • the proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass.
  • the ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%.
  • the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers.
  • fluoroolefins for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene
  • fluoro-2,2-dimethyl-1,3-dioxole fluorinated alkyl esters of acrylic acid or methacrylic acid
  • fluorinated vinyl ethers for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene
  • a copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used.
  • monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate).
  • Methacrylic acid esters for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate
  • styrenes for example, styrene, vinyl toluene, ⁇ -methyl styrene
  • vinyl ethers for example, methyl vinyl ether
  • vinyl esters examples thereof include vinyl acetate and vinyl propionate
  • acrylamides for example, N-tert-butylacrylamide, N-cyclohexylacrylamide
  • methacrylamides and acrylonitriles examples thereof include vinyl acetate and vinyl propionate
  • acrylamides for example, N-tert-butylacrylamide, N-cyclohexylacrylamide
  • methacrylamides and acrylonitriles for example, N-tert-butylacrylamide, N-cyclohexylacrylamide
  • polyfunctional monomers examples include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.
  • dienes eg, butadiene, pentadiene
  • esters of polyhydric alcohols and acrylic acid eg, ethylene glycol diacrylate, 1,4-cyclohexane di
  • the micro voids between the particles can be formed by stacking at least two fine particles.
  • spherical particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between particles with a porosity of 26% by volume are formed.
  • spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed.
  • the porosity varies considerably from the above theoretical value.
  • the refractive index of the low refractive index layer is lowered.
  • the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the low refractive index layer) by adjusting the particle size of the fine particles. Can be adjusted. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform low refractive index layer in which the size of microvoids between particles is uniform. Thereby, although the low refractive index layer is microscopically a microvoided porous film, it can be optically or macroscopically uniform.
  • the interparticle microvoids are preferably closed in the low refractive index layer by fine particles and a polymer. The closed air gap also has an advantage that light scattering on the surface of the low refractive index layer is less than that of an opening opened on the surface of the low refractive index layer.
  • the macroscopic refractive index of the low refractive index layer becomes lower than the sum of the refractive indexes of the components constituting the low refractive index layer.
  • the refractive index of the layer is the sum of the refractive indices per volume of the layer components.
  • the refractive index of the constituent component of the low refractive index layer such as fine particles or polymer is larger than 1, whereas the refractive index of air is 1.00. Therefore, a low refractive index layer having a very low refractive index can be obtained by forming microvoids.
  • the low refractive index layer preferably contains 5 to 80% by mass of polymer.
  • the polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids.
  • the amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
  • the amount of the polymer is preferably 10 to 30% by mass with respect to the total amount of the low refractive index layer.
  • (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder.
  • the polymer to be bonded to the surface treatment agent (1) is preferably the shell polymer (2) or the binder polymer (3).
  • the polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer.
  • the polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer and performing a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to carry out a combination of two or all of the above (1) to (3), and to carry out a combination of (1) and (3) or a combination of (1) to (3). Particularly preferred.
  • (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
  • the fine particles are subjected to a surface treatment to improve the affinity with the polymer.
  • the surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment.
  • an organoalkoxy metal compound eg, titanium coupling agent, silane coupling agent
  • the fine particles are made of silicon dioxide, surface treatment with a silane coupling agent can be carried out particularly effectively.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane.
  • silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and ⁇ -glycidyloxypropylmethyldiethoxysilane.
  • ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane, ⁇ -methacryloyloxypropylmethyldiethoxy are those having a disubstituted alkyl group with respect to silicon.
  • Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, ⁇ -acryloyloxypropyltrimethoxysilane and ⁇ -methacryloyloxy Particularly preferred are propyltrimethoxysilane, ⁇ -acryloyloxypropylmethyldimethoxysilane, ⁇ -acryloyloxypropylmethyldiethoxysilane, ⁇ -methacryloyloxypropylmethyldimethoxysilane and ⁇ -methacryloyloxypropylmethyldiethoxysilane.
  • silane coupling agents Two or more coupling agents may be used in combination.
  • other silane couplings may be used.
  • Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof.
  • the surface treatment with the coupling agent can be carried out by adding the coupling agent to the dispersion of fine particles and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days.
  • inorganic acids for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid
  • organic acids for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid
  • salts thereof eg, metal salts, ammonium salts
  • the polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain.
  • a polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred.
  • Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred.
  • the refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases.
  • the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms.
  • the polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom.
  • ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Mention may be made of esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole
  • the polymer forming the shell may be a copolymer comprising a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom.
  • the repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom.
  • ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyl toluene, ⁇ -methyl styrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides
  • a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking.
  • the shell polymer may have crystallinity.
  • Tg glass transition temperature
  • the core-shell fine particles preferably contain 5 to 90% by volume, more preferably 15 to 80% by volume of a core composed of inorganic fine particles. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
  • the binder binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain.
  • the binder polymer is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
  • Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol).
  • esters of polyhydric alcohols and (meth) acrylic acid eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol.
  • a crosslinked structure may be introduced into the binder polymer by a reaction of a crosslinkable group.
  • crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxyl groups, methylol groups, and active methylene groups.
  • Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure.
  • a functional group that exhibits crosslinkability as a result of the decomposition reaction such as a block isocyanate group, may be used.
  • the cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
  • the polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer is a thermal polymerization initiator or a photopolymerization initiator, and the photopolymerization initiator is more preferable.
  • photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums.
  • acetophenones examples include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone.
  • phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • the binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after coating the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.
  • a polymer for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin
  • each layer of the optical film or the coating solution thereof includes a polymerization inhibitor, a leveling agent, a thickener, a coloring inhibitor, an ultraviolet ray Absorbers, silane coupling agents, antistatic agents and adhesion promoters may be added.
  • a polymerization inhibitor for the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the winding length of the present invention refers to the length of the optical film that has been wound into a roll after being embossed.
  • the winding length of the optical film is preferably 500 to 8000 m.
  • the winding length of the optical film is less than 500 m, the number of windings of the obtained optical film is too large, and it is difficult to cope with packaging, which is not preferable.
  • the winding length of the optical film exceeds 8000 m, blocking or the like increases, which is not preferable.
  • Examples 1 to 13, Comparative Examples 1 and 2 A cellulose ester film having a length of 3900 m, a width of 1.4 m, and a film thickness of 40 ⁇ m was produced as follows. A back coat layer was provided on one side of the base film, a hard coat layer was provided on the side opposite to the back coat layer, and the following antireflection layer was then applied. Thereafter, an embossed portion as shown below was provided. From the formation of the substrate film to the formation of the antireflection layer, the film was not wound up, but continuously, and wound into a roll after forming the embossed portion. At this time, the base film had a melting point of 300 ° C. and a glass transition temperature of 107 ° C.
  • the prepared dope A was cast on a stainless steel belt.
  • the solvent was evaporated on the stainless steel belt, and the web was peeled off from the stainless steel belt.
  • the peeled web was introduced into a tenter dryer, both ends were gripped with clips and dried at 80 ° C. while being stretched 1.1 times in the width direction, and placed in a roll dryer having respective drying zones of 110 ° C. and then 125 ° C. Drying was terminated while being conveyed through a number of arranged rolls, and a cellulose ester film was prepared.
  • the following backcoat layer coating composition was die-coated so as to have a wet film thickness of 13 ⁇ m, and dried at a drying temperature of 90 ° C. to coat a backcoat layer.
  • ⁇ Backcoat layer coating composition Acetone 30 parts by weight Ethyl acetate 45 parts by weight Isopropyl alcohol 10 parts by weight Diacetyl cellulose 0.5 parts by weight Ultrafine silica 2% acetone dispersion (Aerosil 200V, manufactured by Nippon Aerosil Co., Ltd.) 0.2 parts by weight
  • the following hard coat layer coating composition is die coated on the surface opposite to the back coat layer, dried at 80 ° C. for 5 minutes, and then irradiated with 160 mJ / cm 2 of ultraviolet rays, and the total dry film thickness with the following antireflection layer was provided with a hard coat layer so as to be 5 ⁇ m, and a hard coat film was prepared.
  • ⁇ Hard coat layer coating composition Dipentaerythritol hexaacrylate 70 parts by weight Trimethylolpropane triacrylate 30 parts by weight Photoinitiator (Irgacure 184 (manufactured by Ciba Japan)) 4 parts by weight Ethyl acetate 150 parts by weight Propylene glycol monomethyl ether 150 parts by weight Silicon compound (BYK-307 (manufactured by Big Chemie Japan)) 0.4 parts by mass When the pencil hardness of the hard coat layer was measured, it showed a hardness of 3H and an abrasion resistance effect.
  • the following coating solution for a high refractive index layer is applied using a bar coater, dried at 60 ° C., then irradiated with ultraviolet rays to cure the coating layer, and a high refractive index layer (refractive index 1). .9) was formed. Furthermore, the following coating solution for a low refractive index layer was applied using a bar coater, dried at 60 ° C., then irradiated with ultraviolet rays to cure the coating layer, and the low refractive index layer (refractive index 1.45). ) To form an optical film.
  • the ratio of the above titanium dioxide dispersion and the titanium dioxide dispersion of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.) is increased, and the refractive index of the high refractive index layer is increased.
  • the amount was adjusted so as to be a ratio, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a polypropylene filter having a pore size of 0.4 ⁇ m to prepare a coating solution for a high refractive index layer.
  • this coating liquid was applied to a cellulose ester film and dried, and the refractive index after UV curing was measured, a high refractive index layer having a refractive index of 1.9 and a dry film thickness of 68 nm was obtained.
  • Preparation of coating solution for low refractive index layer 200 g of a methanol dispersion of silica fine particles having an average particle size of 15 nm (methanol silica sol, manufactured by Nissan Chemical Co., Ltd.), 3 g of a silane coupling agent (KBM-503, manufactured by Shin-Etsu Silicone Co., Ltd.) and 2 g of 0.1 mol / L hydrochloric acid
  • the mixture was stirred at room temperature for 5 hours and then allowed to stand at room temperature for 3 days to prepare a dispersion of silica fine particles treated with silane coupling.
  • An embossing roll with irregularities formed on the surface is heated and pressed against the optical film in which the hard coat layer / antireflection layer is coated on the cellulose ester film, and the width of the embossed film is 20 mm wide at both ends in the width direction of the optical film.
  • An embossed part of 10 ⁇ m was prepared under the following conditions to obtain optical films of Examples 1 to 12 and Comparative Examples 1 to 4 shown in Table 1.
  • Embossing roll material Carbon steel (S45C), quenching treatment
  • Embossing roll surface layer No processing
  • Embossing roll surface temperature 200-260 ° C.
  • the length of the embossed part is La, and the length of the unembossed part is Lb.
  • Comparative Example 1 in which the surface roughness Ra of the side surface of the marking ring and the surface roughness Ra of the upper surface are smaller than 10 ⁇ m, the elongation percentage of the embossed portion is increased and the black band is also generated. This caused quality problems.
  • Comparative Example 2 is an example in which embossing was produced at a conventional low film-forming speed (60 n / min). In this case, since the film forming speed is low, even when the surface roughness Ra of the side surface of the marking ring is 10 ⁇ m or more and the surface roughness Ra of the upper surface is 10 ⁇ m or more, the elongation rate of the embossed part and the black band There was no problem.
  • the method for producing an optical film according to the present embodiment uses an embossing apparatus having an embossing roll having an engraved ring and an embossing back roll, and presses the embossing roll against a long film serving as a base material.
  • the surface roughness Ra of the side surface of the marking ring is in the range of 10 to 20 ⁇ m even though the film forming speed is high.
  • the surface roughness Ra of the upper surface of the marking ring is preferably 10 to 20 ⁇ m.
  • polishing on the upper surface of the marking ring also increases the friction with the base film resin on the upper surface in addition to the side surface of the marking ring described above. It is possible to obtain an optical film in which no occurrence occurs.
  • the side surface and the upper surface of the marking ring are polished using two or more selected from a wire brush, a blast treatment, and a vertical polishing machine.
  • polishing by using a blast processing apparatus, it is possible to perform polishing processing of minute uneven portions.
  • Blasting can be applied to workpieces made of inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials, and with compressed fluid
  • inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials
  • compressed fluid By spraying at a constant angle and speed, optimum polishing is possible even when the processed surface has a deformed portion.
  • a desired surface roughness can be more effectively imparted to the surface composed of the side surface and the upper surface of the marking ring, and according to the embossing device provided with this marking ring, the end portion An optical film in which no elongation occurs can be obtained.
  • the surface temperature of the embossed back roll is preferably 10 to 50 ° C. or less.
  • the temperature of the embossing roll provided in the embossing device to a low temperature, the heat transfer from the embossing ring surface can be suppressed, and the end elongation of the optical film can be suppressed.
  • the width of the rib shape of the optical film manufactured using the embossing apparatus is 3 to 100 ⁇ m.
  • the friction with the base film resin is increased by using the method of the optical film of the present invention manufactured by using an embossing apparatus having an engraved ring having a surface roughness Ra of 10 to 20 ⁇ m, embossing When the embossing ring pushes in the base film in the step of performing, no end elongation occurs and no black band in a roll shape occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Polarising Elements (AREA)

Abstract

The objective of the present invention is to provide a method that is for producing an optical film and whereby, in a step for performing embossing, when an embossing ring presses a substrate film, edge stretching of the embossed section does not arise, and black bands and blocking do not arise when the film is in a roll shape. Namely, the method for producing an optical film produced by using an embossing device, which is provided with an embossing back roller and an embossing roller having an imprinting ring, to press the embossing roller to an elongated film that is the substrate, and after performing embossing, rolling up the film, is characterized by the film production speed being at least 80 m/minute and the surface roughness (Ra) of the side surface of the imprinting ring being 10-20 μm.

Description

光学フィルムの製造方法Manufacturing method of optical film
 本発明は光学フィルムの製造方法に関する。 The present invention relates to a method for producing an optical film.
 近年、CRTの他、液晶テレビやプラズマディスプレイ(PDP)、有機ELディスプレイ等種々の表示装置が開発されてきており、それらの画面サイズが大型化してきている。大画面化及び高画質化に伴って、視認性を改善するため反射防止層等が形成された光学フィルムを表示装置前面に張り付けることが行われている。また、このような表示装置では、直接、手が触れたり、物が接触したりすることがあり傷を付け易い。そこで、通常は傷つき防止のためにハードコート層を基材フィルム上に形成したものや更にその上に反射防止層等が形成されたハードコート層付き光学フィルムが用いられてきている。 In recent years, various display devices such as a liquid crystal television, a plasma display (PDP), and an organic EL display have been developed in addition to a CRT, and their screen sizes are increasing. With an increase in screen size and image quality, an optical film on which an antireflection layer or the like is formed is attached to the front surface of a display device in order to improve visibility. Moreover, in such a display apparatus, a hand may touch directly or an object may contact, and it is easy to damage it. Therefore, in general, an optical film with a hard coat layer in which a hard coat layer is formed on a base film for preventing scratches and an antireflection layer or the like formed thereon is used.
 このような表示装置用の光学フィルムとしては、特に最近、大画面化により1000mm以上、更に2000mm以上の幅広フィルムが必要となってきている。また、携帯電話やノートパソコン用として厚みが40μm程度の薄い基材フィルムが使用されるようになってきた。そのため、基材フィルムにはセルロースエステル等の樹脂フィルムが使用され、その上に光学機能層として、ハードコート層、反射防止層、防汚層または防眩層を形成することが行われている。 As such an optical film for a display device, a wide film having a size of 1000 mm or more, and further 2000 mm or more has recently been required due to a large screen. In addition, a thin base film having a thickness of about 40 μm has been used for mobile phones and notebook computers. Therefore, a resin film such as cellulose ester is used as the base film, and a hard coat layer, an antireflection layer, an antifouling layer or an antiglare layer is formed thereon as an optical functional layer.
 しかし、上記のように広幅化のために基材フィルムが幅広となった場合、または薄膜化のために基材フィルムの厚さを薄くした場合には、光学機能層を形成した後の光学フィルムを巻き取る段階で、ロールの巻き締まりの不均一な箇所が発生しやすくなる。このロールの不均一な巻き締まりは、フィルム表面同士の接着(以降、ブロッキングと称する。)も起こしやすくする。ブロッキングの発生したロールから繰り出したフィルムは、しわや傷などが発生し、表示装置への適応ができなくなり、収率の低下を招いてしまう。 However, when the base film becomes wider for widening as described above, or when the thickness of the base film is reduced for thinning, the optical film after forming the optical functional layer In the stage of winding up, non-uniform portions of the roll tightening are likely to occur. This non-uniform winding of the roll also facilitates adhesion between the film surfaces (hereinafter referred to as blocking). A film fed out from a roll in which blocking occurs causes wrinkles, scratches, etc., and cannot be applied to a display device, resulting in a decrease in yield.
 このような問題に対して、光学フィルムの巻きとり状態でのフィルムの変形を防止する目的で、フィルムの幅方向両側部にナーリング或いはエンボスと呼ばれるフィルム面よりも嵩高くした部分を設けることが従来より提案されている。 In order to prevent the deformation of the film in the wound state of the optical film, it is conventional to provide a portion that is bulkier than the film surface called knurling or embossing on both sides in the width direction of the film in order to prevent such a problem. More proposed.
 例えば、特許文献1には、歯の先端形状を90°~130°にしたエンボスロールを用いて、フィルム端部の表面に押し当て、フィルム端部の膜厚を嵩高く変形させてエンボス加工を行う方法が提案されている。 For example, in Patent Document 1, an embossing roll having a tooth tip shape of 90 ° to 130 ° is used to press against the surface of the film end, and the film thickness at the film end is deformed to make the embossing process bulky. A way to do it has been proposed.
特開平11-262950号公報JP 11-262950 A
 前記従来技術において、例えば特許文献1の方法を用いてエンボス加工を行うと、光学フィルムを巻きとる速度を従来よりも速くした場合や、光学フィルムの巻きとり長をより長尺にした場合に、ロール状に巻いた状態でのブラックバンドという問題を充分に抑制できず、特に、光学フィルムにおいて、巻きとり速度を80m/min以上とした場合、エンボスの加工性にて、エンボス刻印表面と樹脂フィルムとの引っ掛かりが大きくなり、下記にて説明しているひげ状の繊維状異物が極めて劣化することが新たに分かった。 In the prior art, for example, when embossing is performed using the method of Patent Document 1, when the speed of winding the optical film is faster than before, or when the winding length of the optical film is made longer, The problem of the black band in the rolled state cannot be sufficiently suppressed. Especially in the case of an optical film, when the winding speed is 80 m / min or more, the embossed surface and the resin film are embossed. It has been newly found that the beard-like fibrous foreign matter described below is extremely deteriorated.
 エンボス加工を行うことでフィルム表面に付着する異物が増加している。このことは、エンボス加工を行う際の基材フィルムがエンボスロールから離れる時に、熱可塑性のあるフィルムがエンボスロールからうまく離れず、局所的にエンボスロールと接着した状態で伸びて、ひげ状の繊維状異物が発生していることに起因している。 異物 Foreign matter adhering to the film surface is increased by embossing. This means that when the base film when embossing is separated from the embossing roll, the thermoplastic film is not well separated from the embossing roll and stretches in a state where it is locally adhered to the embossing roll, and the beard-like fibers This is due to the occurrence of a foreign material.
 また、この繊維状異物が発生することで、エンボス加工面が劣化し、エンボス加工面に形成される凸部(以降、リブと称する)の形状が小さくなってしまう。 In addition, the occurrence of the fibrous foreign matter deteriorates the embossed surface and reduces the shape of the convex portion (hereinafter referred to as a rib) formed on the embossed surface.
 本発明は、前記従来技術に鑑みてなされたものであり、その解決すべき課題は、基材フィルムにエンボス加工を行う工程において、エンボス刻印を押込む際のフィルムの端部伸びが発生せず、また、ロール状でのブラックバンドの発生しない光学フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the prior art, and the problem to be solved is that, in the step of embossing the base film, the end of the film does not stretch when the embossed stamp is pressed. Another object of the present invention is to provide a method for producing an optical film that does not generate a black band in a roll shape.
 前記課題を解決するために、本発明者らは、製膜速度が80m/分以上である高速の光学フィルムの製造方法において、前記製造に用いられるエンボス装置に備えられたエンボスリングの刻印リングに着目し、鋭意検討を行った。この結果、刻印リングの表面を特定の範囲になるように研磨することによって、光学フィルムの端部伸びが発生せず、また、ロール状にした場合にブラックバンドが発生しないことを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors, in a high-speed optical film manufacturing method having a film-forming speed of 80 m / min or more, include an embossing ring imprinting ring provided in an embossing device used for the manufacturing. Attention was paid to the study. As a result, it was found that by polishing the surface of the engraved ring so as to be in a specific range, the end portion of the optical film does not occur, and no black band occurs when it is formed into a roll. It came to complete.
 すなわち、本発明に係る光学フィルムの製造方法は、刻印リングを有するエンボスロール及びエンボスバックロールを備えたエンボス装置を用いて、基材となる長尺状のフィルムに前記エンボスロールを押し当て、エンボス加工を施した後、前記フィルムを巻きとって製造された光学フィルムの製造方法であって、製膜速度が80m/分以上であり、前記刻印リングの側面の表面粗さRaが、10~20μmであることを特徴とする。 That is, the method for producing an optical film according to the present invention uses an embossing device having an embossing roll having an engraved ring and an embossing back roll, and presses the embossing roll against a long film serving as a substrate. A method of manufacturing an optical film manufactured by winding the film after processing, wherein the film forming speed is 80 m / min or more, and the surface roughness Ra of the side surface of the marking ring is 10 to 20 μm. It is characterized by being.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の製造方法によって製造された光学フィルムを示す模式図である。It is a schematic diagram which shows the optical film manufactured by the manufacturing method of this invention. 凸部の高さHの1/2のところで、凸部を平面で切断した断面図である。It is sectional drawing which cut | disconnected the convex part in the plane in the half of the height H of a convex part. エンボス加工工程の模式図である。It is a schematic diagram of an embossing process. エンボス加工部の概略側面図である。It is a schematic side view of an embossing part. 本発明の製造方法の一実施形態に係る製造装置を模式的に示すフローシートである。It is a flow sheet which shows typically a manufacturing device concerning one embodiment of a manufacturing method of the present invention.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 (光学フィルムの製造方法)
 本実施形態に係る光学フィルムの製造方法においては、刻印リング及びエンボスロールを備えたエンボス装置を用いて、基材となる長尺状のフィルムに前記エンボスロールを押し当て、エンボス加工を施した後、前記フィルムを巻きとって製造された光学フィルムであって、製膜速度が80m/分以上であり、前記刻印リングの側面の表面粗さRaが、10~20μmであることを特徴とする。
(Optical film manufacturing method)
In the manufacturing method of the optical film according to the present embodiment, after the embossing roll is pressed against the long film serving as the base material using an embossing device provided with a marking ring and an embossing roll, An optical film produced by winding the film, characterized in that the film-forming speed is 80 m / min or more, and the surface roughness Ra of the side surface of the marking ring is 10 to 20 μm.
 製膜速度が速い場合、特に80m/分以上の場合、刻印リングの側面の表面粗さRaを、10~20μmとすることにより、エンボスリングが基材フィルムを押込む際に端部伸びが発生しにくい。また、ひげ同士がくっつくなどして生じる、いわゆるブロッキングの発生や、ブラックバンドの発生を防止することができる。 When the film forming speed is high, especially at 80 m / min or higher, the surface roughness Ra of the side surface of the marking ring is set to 10 to 20 μm, so that the edge elongation occurs when the embossing ring pushes the base film. Hard to do. In addition, it is possible to prevent the occurrence of so-called blocking caused by sticking of beards or the like, and the occurrence of black bands.
 本発明におけるエンボス加工を施す工程とは、基材となる長尺状のフィルムの表面に、凹凸を形成したエンボスロールを押し当てることにより、基材フィルムの表面に、凹凸部を形成し、他のフィルム表面より嵩高くする工程である。 The step of embossing in the present invention is to form an uneven portion on the surface of the base film by pressing an embossing roll having uneven portions on the surface of the long film as the base material, It is the process of making it bulkier than the film surface.
 また、本発明の光学フィルムの製造方法において、製造時におけるエンボスロールの表面層は、少なくとも炭化物、窒化物、炭素窒化物、またはダイヤモンドライクカーボン(以降、DLCと称する。)、炭窒化チタン(以降、TiCNと称する。)の何れかを有することが好ましい。これらの材質を用いることで、ひげ状の繊維状異物の発生率を低減することができる。 In the method for producing an optical film of the present invention, the surface layer of the embossing roll at the time of production is at least carbide, nitride, carbon nitride, diamond-like carbon (hereinafter referred to as DLC), titanium carbonitride (hereinafter referred to as “carbonic nitride”). , Referred to as TiCN). By using these materials, it is possible to reduce the incidence of whiskers of fibrous foreign matter.
 また、本発明の光学フィルムの製造方法において、その製造工程中、基材となる長尺状のフィルムに光学機能層を塗布する工程を有するとき、エンボス加工を施す工程は、光学機能層を塗布する工程の前後に施すことが好ましい。このようにすることで、光学機能層を均一に塗布することができる。また、光学機能層を塗布した光学フィルムを巻き取る工程においても異物やブラックバンドの発生を防止することができる。 Moreover, in the manufacturing method of the optical film of this invention, when it has the process of apply | coating an optical functional layer to the elongate film used as a base material during the manufacturing process, the process of embossing apply | coats an optical functional layer It is preferable to apply before and after the step. By doing in this way, an optical function layer can be apply | coated uniformly. Further, it is possible to prevent the generation of foreign matters and black bands in the step of winding the optical film coated with the optical functional layer.
 図1(a)は、エンボス部を有する本発明の光学フィルム1の平面図を模式図で示す。エンボス加工部分12は、光学フィルム側端部の表面より嵩高くした複数の凹凸(凸部13、凹部14)の部分であり、光学フィルム1の長尺方向に形成されている。 FIG. 1 (a) schematically shows a plan view of the optical film 1 of the present invention having an embossed portion. The embossed portion 12 is a portion of a plurality of irregularities (convex portions 13 and concave portions 14) that are bulkier than the surface of the optical film side end portion, and is formed in the longitudinal direction of the optical film 1.
 光学フィルム1の表面には、光学機能層が塗布されていてもよく、この場合エンボス部12は光学機能層の最上層の表面より高く形成される。また、光学機能層が塗布されない場合は、光学フィルム1の表面より高いエンボス部が形成される。凹凸の形状については特に限定されず、種々なパターンのものが用いられ、また、凸状の厚膜部を形成したものでも良い。 An optical functional layer may be applied to the surface of the optical film 1, and in this case, the embossed portion 12 is formed higher than the surface of the uppermost layer of the optical functional layer. Further, when the optical functional layer is not applied, an embossed portion higher than the surface of the optical film 1 is formed. The shape of the unevenness is not particularly limited, and various patterns may be used, or a convex thick film portion may be formed.
 図1(b)は、形成されたエンボス加工部分12の複数の凹凸のうち、一対の凹凸(13,14)を光学フィルム1の厚さ方向に切断した断面図を示す。 FIG. 1 (b) shows a cross-sectional view in which a pair of irregularities (13, 14) among a plurality of irregularities of the formed embossed portion 12 is cut in the thickness direction of the optical film 1.
 図2は、図1の凸部13を光学フィルム1の表面と平行な平面(図1のA-A)断面で、凸部13の高さHの1/2のところで切断した断面図を示す。 FIG. 2 is a cross-sectional view of the convex portion 13 of FIG. 1 cut along a plane (AA in FIG. 1) parallel to the surface of the optical film 1 and at half the height H of the convex portion 13. .
 本発明の光学フィルムにおいては、この断面部分における凸部形状の幅Wは、3~100μmであることが好ましく、10~30μmであることがさらに好ましい。前記平均幅が3μmより小さいと強度不足となり、100μmより大きいと端部伸びによるフレア故障となってしまう。 In the optical film of the present invention, the width W of the convex shape at the cross section is preferably 3 to 100 μm, and more preferably 10 to 30 μm. If the average width is smaller than 3 μm, the strength is insufficient, and if it is larger than 100 μm, a flare failure due to end elongation occurs.
 ここで、平均幅Wとは、図2の凸部13の断面形状の各編の中央部の幅W1、W2、W3、W4を測定し、その平均値を平均幅Wとする。また、断面形状が図2のような四角形でない場合は、ほぼ等間隔で4カ所測定し、その平均値を算出する。 Here, the average width W is determined by measuring the widths W1, W2, W3, and W4 of the central portion of each knitting of the cross-sectional shape of the convex portion 13 in FIG. If the cross-sectional shape is not a quadrangle as shown in FIG. 2, four points are measured at almost equal intervals, and the average value is calculated.
 また、断面積Sが2500~10000μmの範囲とすることで、巻きとる速度を速くしたり、また、巻きとり長を長くしても、ロール状に巻いた状態でのブラックバンドの発生を抑制することができ、シワや傷の少ない光学フィルムを得ることができる。 In addition, by setting the cross-sectional area S in the range of 2500 to 10000 μm 2 , even if the winding speed is increased or the winding length is increased, the generation of a black band in a rolled state is suppressed. And an optical film with few wrinkles and scratches can be obtained.
 凸部のフィルムの表面からの平均高さH(μm)は、1.0~20μmであることが好ましく、3~10μmであることがさらに好ましい。前記平均高さHが1.0μmより小さいとフィルム層間高さ不足となり、20μmより大きいと巻き締まりが発生しやすくなってしまう。 The average height H (μm) from the surface of the convex film is preferably 1.0 to 20 μm, and more preferably 3 to 10 μm. If the average height H is less than 1.0 μm, the film interlayer height is insufficient, and if it is greater than 20 μm, winding tightening tends to occur.
 また、上記の断面積S(μm)と凸部のフィルムの表面からの平均高さH(μm)との比S/Hが、100~3000であることが好ましい。S/Hをこの範囲とすることで、ロール状に巻いた状態でのブラックバンドの発生を、さらに抑制することができ、よりシワや傷の少ない光学フィルムを得ることができる。フィルム表面からの平均高さHとは、凸部のフィルム表面からの高さをほぼ均等な間隔で10カ所、幅手で3列測定し、その計30点の平均値とした。 The ratio S / H between the cross-sectional area S (μm 2 ) and the average height H (μm) from the surface of the convex film is preferably 100 to 3000. By setting S / H within this range, the generation of a black band in a rolled state can be further suppressed, and an optical film with fewer wrinkles and scratches can be obtained. The average height H from the film surface was determined by measuring the height of the convex portion from the film surface at 10 places at approximately equal intervals and 3 rows in width, and taking the average value of 30 points in total.
 また、上記の断面積Sμmと凹部の最も広い幅Yμm(図2参照)との比S/Yが、10~300であることが好ましい。S/Yをこの範囲とすることで、ロール状に巻いた状態でのブラックバンドの発生をさらに抑制することができ、よりシワや傷の少ない光学フィルムを得ることができる。凹部の最も広い幅Yとは、図2の断面図の用に凹部の幅で最も広い距離の部分である。 Further, the ratio S / Y between the above-mentioned cross-sectional area S μm 2 and the widest width Y μm of the recess (see FIG. 2) is preferably 10 to 300. By setting S / Y within this range, it is possible to further suppress the generation of a black band in a rolled state, and to obtain an optical film with fewer wrinkles and scratches. The widest width Y of the recess is a portion of the widest distance in the width of the recess for the cross-sectional view of FIG.
 また、エンボス加工が施されたフィルムの側端部には、一対の凹凸が、10~300個/cm形成されていることが好ましい。一対の凹凸を10~300個/cm形成することで、ロール状に巻いた状態でのブラックバンドの発生をさらに抑制することができ、よりシワや傷の少ない光学フィルムを得ることができる。 Further, it is preferable that 10 to 300 pieces / cm 2 of a pair of irregularities are formed on the side end portion of the embossed film. By forming the pair of irregularities at 10 to 300 pieces / cm 2, it is possible to further suppress the generation of black bands in a rolled state, and to obtain an optical film with fewer wrinkles and scratches.
 本発明の光学フィルムを製造する方法としては、エンボスを付与する工程において、複数の刻印リングをフィルムの側端部の表面に押しつけて、複数の凹凸の対を形成するものであって、刻印リングをフィルムに押しつけた際に、刻印リングにより押しのけられたフィルム部材により形成される凸部の高さを、刻印リングを押し付ける圧力、加工温度によって所定の高さにすることが好ましい。 As a method for producing the optical film of the present invention, in the step of embossing, a plurality of engraved rings are pressed against the surface of the side end portion of the film to form a plurality of concave and convex pairs. When the film is pressed against the film, the height of the convex portion formed by the film member pushed away by the marking ring is preferably set to a predetermined height depending on the pressure and processing temperature for pressing the marking ring.
 また、本発明の光学フィルムの製造方法において、基材となる長尺状のフィルムに光学機能層を塗布する工程を有するとき、エンボス加工を施す工程は、光学機能層を塗布する工程の前後に施すことが好ましい。このようにすることで、光学機能層を均一に塗布することができるとともに、光学機能層を塗布した光学フィルムを巻き取る工程においても異物やブラックバンドの発生を防止することができる。 Moreover, in the manufacturing method of the optical film of this invention, when it has the process of apply | coating an optical functional layer to the elongate film used as a base material, the process of embossing is before and after the process of apply | coating an optical functional layer. It is preferable to apply. By doing in this way, while being able to apply | coat an optical functional layer uniformly, generation | occurrence | production of a foreign material and a black band can also be prevented in the process of winding up the optical film which apply | coated the optical functional layer.
 図3(a)は、円筒状の平坦な表面21(平坦部ともいう。)に複数の刻印リング20を有するエンボスロール61と、エンボスロール61と光学フィルム1を挟んで対抗して配置されたエンボスバックロール62とにより光学フィルム1の両端部にエンボス加工を行うエンボス工程を模式的に示した図である。 3A, an embossing roll 61 having a plurality of engraved rings 20 on a cylindrical flat surface 21 (also referred to as a flat portion), and the embossing roll 61 and the optical film 1 are disposed to face each other. It is the figure which showed typically the embossing process of embossing to the both ends of the optical film 1 with the embossing back roll 62. FIG.
 また、図3(b)は、刻印リング20により光学フィルムに凹凸を形成する形成部を拡大した図である。刻印リング20は、先端部20aが平坦な面を有する四角錐状をしている。この刻印リング20をフィルム1の表面にギャップを設けて押しつけ、凸部13を形成している。 FIG. 3B is an enlarged view of a forming portion for forming irregularities on the optical film by the marking ring 20. The marking ring 20 has a quadrangular pyramid shape in which the tip portion 20a has a flat surface. The engraved ring 20 is pressed against the surface of the film 1 with a gap to form the convex portion 13.
 また、刻印リングの形状としては、刻印61の上面(押し付け面)が平坦な面を有する四角錐を例として用いているが、三角錐や円錐状、円筒状でもよく、頂部が円弧状であってもよい。 As the shape of the marking ring, a quadrangular pyramid having a flat surface on the upper surface (pressing surface) of the marking 61 is used as an example. However, a triangular pyramid, a conical shape, or a cylindrical shape may be used. May be.
 図4は、前記図3(b)のエンボス工程を側面から示した概略図である。光学フィルム1の幅方向の端部に幅B、高さhの凸部13が形成される。ここでエンボスの高さhとは、フィルム表面からエンボスロールにより形成された凸部までの高さをいう。エンボスロール61の加熱方法は、特に限定されるものではなく、ロール内部に加熱流体を流したり、ハロゲンヒータを用いたり誘電発熱で加熱することができる。 FIG. 4 is a schematic view showing the embossing process of FIG. 3B from the side. A convex portion 13 having a width B and a height h is formed at the end in the width direction of the optical film 1. Here, the height h of the emboss refers to the height from the film surface to the convex portion formed by the emboss roll. The heating method of the embossing roll 61 is not specifically limited, A heating fluid can be flowed inside a roll, a halogen heater can be used, or it can heat by dielectric heat_generation | fever.
 エンボスの高さhは、ブロッキングやブラックバンドを防止するため、所定の高さを得る必要がある。そこで、所定のエンボスの高さhを得るために、エンボスロール61の表面温度、エンボスロールの押し付け圧を調整する。しかしながら、エンボスロールと刻印リングとの摩擦により、エンボス部の凹凸に、ひげ状の短い繊維状異物が発生してしまうことがある。 The emboss height h needs to be a predetermined height to prevent blocking and black bands. Therefore, in order to obtain a predetermined emboss height h, the surface temperature of the embossing roll 61 and the pressing pressure of the embossing roll are adjusted. However, due to the friction between the embossing roll and the marking ring, a short whisker-like fibrous foreign matter may be generated on the unevenness of the embossed portion.
 このひげ状の繊維状異物の大きさは、直径1~100μm、長さ10~1000μm程度で、発生本数は、幅Bが2cmの場合、1つのエンボス凹凸に対し、1本以上から50本程度発生する。このひげは、エンボス加工時にエンボスロール61がフィルムから離れる時に、熱可塑性のある光学フィルム1が局所的にのびることでひげ状の繊維状異物が発生する。製膜速度が速い場合、特に80m/分以上の場合、このひげ状の繊維状異物が、エンボス高さを不均一にし、ロール状にしたときのブラックバンドが発生したり、エンボス部から離脱してひげがフィルムに異物が付着したりすることが顕著に起こり得る。 The size of the whisker-like fibrous foreign matter is about 1 to 100 μm in diameter and about 10 to 1000 μm in length, and when the width B is 2 cm, the number of generated is about 1 to 50 per embossed unevenness. appear. When the embossing roll 61 moves away from the film during embossing, the whiskers cause whisker-like fibrous foreign matter due to local expansion of the thermoplastic optical film 1. When the film forming speed is high, particularly when the film forming speed is 80 m / min or more, the whisker-like fibrous foreign matter makes the embossed height non-uniform, and a black band is generated when it is made into a roll shape or is detached from the embossed part. As a result, it is possible that the foreign matter adheres to the film.
 そこで、エンボスロールにおける刻印リングの側面を研磨することで、製膜速度が速い場合においても、ひげの発生を防ぐことができる。刻印リングの側面の表面粗さRaは10~20μmであり、13μm~17μmであることが好ましい。Raが10μmより小さいと端部伸びが発生しやすくなり、20μmより大きいとひげが発生しやすくなってしまう。 Therefore, by polishing the side surface of the marking ring in the embossing roll, it is possible to prevent the generation of whiskers even when the film forming speed is high. The surface roughness Ra of the side surface of the marking ring is 10 to 20 μm, and preferably 13 to 17 μm. If Ra is less than 10 μm, end portion elongation tends to occur, and if it is larger than 20 μm, whiskers are likely to occur.
 さらに、エンボスロールにおける刻印リングの上面を研磨すると、より一層、ひげの発生を防ぐことができる。前記刻印リングの上面の表面粗さRaは10~20μmであり、13μm~17μmであることが好ましい。Raが10μmより小さいとリング表面の研磨が困難でこれ以下の表面粗さはひげには影響なく、20μmより大きいとひげが発生しやすくなってしまう。 Furthermore, if the upper surface of the engraved ring in the embossing roll is polished, the generation of whiskers can be further prevented. The surface roughness Ra of the upper surface of the marking ring is 10 to 20 μm, preferably 13 to 17 μm. If Ra is less than 10 μm, it is difficult to polish the ring surface, and the surface roughness below this does not affect the whisker, and if it is more than 20 μm, whiskers tend to occur.
 刻印リングの側面及び上面の研磨方法は、ワイヤーブラシ、ブラスト処理、バーチカル研磨機から選ばれる二種以上を用いて研磨されることが好ましい。研磨に関しては、ブラスト加工装置を使用することによって、微小凹凸部分の研磨加工も行うことができる。 The polishing method of the side and top surfaces of the marking ring is preferably polished using two or more selected from a wire brush, a blast treatment, and a vertical polishing machine. With respect to polishing, by using a blast processing apparatus, it is possible to perform polishing processing of minute uneven portions.
 また、ブラスト処理は、金属、ガラス・セラミックス等の無機材料、プラスチック等の合成樹脂、その他の樹脂、木材、岩石、その他各種材質の被加工物を研磨対象とすることが可能であり、圧縮流体と共にある一定の角度、速度で吹き付けることにより、加工表面が変形部を有する場合でも、最適な研磨が可能である。 In addition, blasting can be applied to workpieces made of inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials. In addition, by spraying at a certain angle and speed, optimum polishing is possible even when the processed surface has a deformed portion.
 また、エンボスロールの表面温度を基材フィルムのTg+50℃以上、Tg+150℃以下とすることによっても、ひげの発生をより防ぐことができる。Tgとはガラス転移温度のことである。エンボスロールの表面温度をTg+50℃より下げると、エンボス高さが十分に得られない。また、エンボスロールの表面温度をTgより上げると、エンボス部の凹凸にひげが発生してしまう。 Also, by making the surface temperature of the embossing roll Tg + 50 ° C. or higher and Tg + 150 ° C. or lower of the base film, generation of whiskers can be further prevented. Tg is the glass transition temperature. When the surface temperature of the embossing roll is lowered below Tg + 50 ° C., the embossing height cannot be obtained sufficiently. Further, when the surface temperature of the embossing roll is raised above Tg, a whisker occurs on the unevenness of the embossed portion.
 さらに、エンボス部を形成する際に、エンボスロールにおける刻印リングの熱により、光学フィルムを通じてエンボスバックロールにまで伝熱し、光学フィルムの裏面が伸びてしまうといった端部伸びが発生してしまう。 Furthermore, when the embossed portion is formed, the heat of the engraved ring in the emboss roll causes heat transfer to the embossed back roll through the optical film, and end elongation such that the back surface of the optical film extends.
 そこで、エンボスバックロールの表面温度を10~50℃の範囲内に設定することによって、上記端部伸びを防ぐことができ、20℃以上40℃以下であることがより好ましい。エンボスバックロールの表面温度を10℃より下げてしまうと、エンボスの加工性が劣化してしまう。また、エンボスロールの表面温度を50℃より上げると、端部伸びが発生してしまう。 Therefore, by setting the surface temperature of the embossed back roll within the range of 10 to 50 ° C., the end elongation can be prevented, and it is more preferably 20 ° C. or higher and 40 ° C. or lower. If the surface temperature of the embossed back roll is lowered below 10 ° C., the embossing processability is deteriorated. Further, when the surface temperature of the embossing roll is raised above 50 ° C., end elongation occurs.
 本発明に係るエンボス部の幅Bは特に限定はないが、5~30mm、好ましくは10~25mm、特に好ましくは15~20mmの幅である。エンボス部の場所に関しては光学機能層を塗布する幅の内外どちらでも良い。上記エンボス部の位置は、特に限定されないが、光学フィルムの幅方向の端部から0~30mmの部分にエンボス加工が施されていることが好ましい。また、本発明のような広幅の光学フィルムを用いる場合には、上記エンボス部は、光学フィルム端部だけではなく、その内側にも設けることが好ましい。すなわち、光学フィルムに複数列のエンボス部を設けることも好ましい。 The width B of the embossed portion according to the present invention is not particularly limited, but is 5 to 30 mm, preferably 10 to 25 mm, particularly preferably 15 to 20 mm. As for the location of the embossed portion, either the inside or outside of the width for applying the optical functional layer may be used. The position of the embossed portion is not particularly limited, but it is preferable that embossing is applied to a portion of 0 to 30 mm from the end in the width direction of the optical film. Moreover, when using the wide optical film like this invention, it is preferable to provide the said embossing part not only in the optical film edge part but in the inner side. That is, it is also preferable to provide a plurality of embossed portions on the optical film.
 また、本発明に係るエンボス部は、フィルムの少なくとも一方の面に形成されていればよく、また両面に形成されていてもよい。 Further, the embossed portion according to the present invention may be formed on at least one surface of the film, or may be formed on both surfaces.
 本発明では更に、光学フィルムをロール状に巻き取った時の巻き芯側(フィルムの巻き初めの方)~巻き中央部~巻き外側(フィルムの巻き終わりの方)の均一性を高めるため、巻き芯側のエンボス部の高さが巻き外側のエンボス部の高さよりも高く、該高さの差が10~20μmの範囲にすることが好ましく、3~8μmの範囲にすることがさらに好ましい。 In the present invention, in order to improve the uniformity from the winding core side (at the beginning of winding of the film) to the center of winding to the outside of the winding (at the end of winding of the film) when the optical film is rolled up, The height of the embossed portion on the core side is higher than the height of the embossed portion on the outside of the winding, and the difference in height is preferably in the range of 10 to 20 μm, more preferably in the range of 3 to 8 μm.
 例えば、巻き芯側エンボス高さ(15μm)/巻き中央部エンボス高さ(10μm)/巻き外側エンボス高さ(5μm)等の組み合わせになるように、エンボスロールの押し付け圧力または温度を変更して加工することにより、巻き芯側方向への巻き圧力によるエンボス部押されがあっても、所望のエンボスの高さを確保することができる。 For example, by changing the pressing pressure or temperature of the embossing roll so as to be a combination of the core-side embossing height (15 μm) / winding center embossing height (10 μm) / winding outer embossing height (5 μm), etc. By doing so, even if the embossed portion is pressed by the winding pressure in the winding core side direction, a desired height of the embossing can be ensured.
 光学フィルムをロール状に巻きとった際の巻き芯側方向への巻き圧力は、巻長3,900m~9,000mの場合には2.0~5.0MPaである。前記範囲の巻き圧力が光学フィルムにかかる場合、凸部のフィルム表面からの平均高さHは、0.1~3μmであることが好ましく、0.5~2.0μmであることがさらに好ましい。0.1μmより小さい場合は、フィルム層間高さが低く、貼り付き故障が発生しやすくなり、3μmより大きい場合は巻締まりが発生することになる。 The winding pressure in the direction of the core when the optical film is rolled up is 2.0 to 5.0 MPa when the winding length is 3,900 m to 9,000 m. When the winding pressure in the above range is applied to the optical film, the average height H of the convex portions from the film surface is preferably 0.1 to 3 μm, and more preferably 0.5 to 2.0 μm. If it is smaller than 0.1 μm, the film interlayer height is low, and sticking failure is likely to occur. If it is larger than 3 μm, winding tightening will occur.
 また、上記の巻き圧力が光学フィルムにかかる場合の平均高さHの標準偏差は0.1~2.0μmであることが好ましい。標準偏差が0.1μmより小さい場合は、エンボス加工精度が現実的に難しく加工性が困難であり、2.0μmより大きい場合は、元巻きでの巻径左右差が大きくなり、巻緩みの原因となる。 The standard deviation of the average height H when the above winding pressure is applied to the optical film is preferably 0.1 to 2.0 μm. When the standard deviation is smaller than 0.1 μm, embossing accuracy is practically difficult and workability is difficult, and when it is larger than 2.0 μm, the difference in right and left diameters of the original winding becomes large, causing the loosening of the winding. It becomes.
 また、エンボス部の伸びであるが、0.1~0.5%の範囲であることが好ましい。伸びが0.1%より小さい場合は、エンボスの加工範囲が狭くなりリブ形成が不十分になり、0.5%より大きい場合は、塗布加工など後工程での作業適性が悪くなる。 Also, the elongation of the embossed part is preferably in the range of 0.1 to 0.5%. When the elongation is smaller than 0.1%, the embossing range is narrowed and rib formation becomes insufficient. When the elongation is larger than 0.5%, workability in subsequent processes such as coating is deteriorated.
 これらのエンボス部を有する光学フィルムもしくは光学機能層が塗設される前後にエンボス加工が施された光学フィルムをロール状に巻き取る際の、巻きコアとしては、円筒状のコアであれば、どのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックであればどのようなものであっても良く、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。 As the winding core when winding the optical film having these embossed portions or the optical film embossed before and after the optical functional layer is coated in a roll shape, any core can be used. However, the plastic material is preferably a hollow plastic core, and the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature. For example, phenol resin, xylene Examples thereof include resins such as resins, melamine resins, polyester resins, and epoxy resins. A thermosetting resin reinforced with a filler such as glass fiber is preferable.
 また、本発明の光学フィルムの製造方法は、基材となる長尺状の光学フィルムの原料となる樹脂を溶液流延製膜法または溶融押出し製膜法で成膜する工程の後に、成膜されたフィルムにエンボス加工を施し、その後巻きとる工程を行うのが好ましい。更に、光学機能層の塗布は、基材となる光学フィルムの成膜工程後から巻き取る工程までの間に行うのが好ましい。このようにすることで、巻き取る工程を1回で行うことができ、ブラックバンドの発生をより抑制したロール状の光学フィルムを製造することができる。 In addition, the method for producing an optical film of the present invention is formed after a step of forming a resin, which is a raw material for a long optical film serving as a substrate, by a solution casting film forming method or a melt extrusion film forming method. It is preferable to perform an embossing process on the resulting film and then perform a winding process. Furthermore, the application of the optical functional layer is preferably performed during the period from the film forming process of the optical film serving as the substrate to the winding process. By doing in this way, the process to wind up can be performed at once and the roll-shaped optical film which suppressed generation | occurrence | production of the black band more can be manufactured.
 図5に、本発明に係る光学フィルムの製造方法を用いた光学フィルムの製造装置の一実施形態を示すが、本発明はこれに限定するものではない。 FIG. 5 shows an embodiment of an optical film manufacturing apparatus using the optical film manufacturing method according to the present invention, but the present invention is not limited to this.
 予め調液された熱可塑性樹脂溶液をダイス7より流延用ベルト8上に流延し、ウェブ(金属支持体上にドープを流延した以降の残留溶媒を含むフィルムをウェブと言う)を形成し、剥離後、テンター9によりウェブは延伸され、フィルム乾燥装置10により乾燥される。延伸されたウェブは、表面に凹凸を形成したエンボスロール61及びそれと対向したエンボスバックロール62によりウェブ上にエンボス部を形成する。その後エンボス部が形成されたフィルムは、巻き取りロール11により巻き取られる。 A preliminarily prepared thermoplastic resin solution is cast on a casting belt 8 from a die 7 to form a web (a film containing a residual solvent after casting a dope on a metal support is called a web). After peeling, the web is stretched by the tenter 9 and dried by the film drying apparatus 10. The stretched web forms an embossed portion on the web by an embossing roll 61 having irregularities formed on the surface and an embossing back roll 62 facing the embossing roll 61. Thereafter, the film on which the embossed portion is formed is wound up by the winding roll 11.
 図5ではエンボスロール61とエンボスバックロール62を、フィルム乾燥装置10の後ろに設置しているが、流延用ベルト8よりウェブを剥離した後から巻き取りロール11の間であれば、いずれの箇所に設置してもよい。つまり、エンボス加工されたフィルムを乾燥装置10によって乾燥させてもよい。また、光学機能層を塗布する場合には、フィルム乾燥装置10の後に光学機能層の塗布をおこない、その後、光学機能層の乾燥を行った後巻き取りロール11で巻きとるようにすれば良い。 In FIG. 5, the embossing roll 61 and the embossing back roll 62 are installed behind the film drying apparatus 10, but any of the winding rolls 11 after the web is peeled off from the casting belt 8 can be used. You may install in the place. That is, the embossed film may be dried by the drying device 10. Moreover, when apply | coating an optical function layer, after applying the optical function layer after the film drying apparatus 10, after drying the optical function layer, it should just wind with the winding roll 11. FIG.
 光学機能層を多層に塗布する場合は、光学機能層の乾燥後に連続して、次の光学機能層を塗布乾燥を行い、この工程を多数回繰り返すことで、多層の光学機能層を形成し、その後、巻き取りロール11で巻きとるようにすればよい。また、光学機能層を形成した後、巻き取りロール11の手前でエンボス部を形成するようにしても良い。 When the optical functional layer is applied in multiple layers, after the optical functional layer is dried, the next optical functional layer is applied and dried, and this process is repeated many times to form a multilayer optical functional layer. Then, the winding roll 11 may be wound. Further, after the optical functional layer is formed, the embossed portion may be formed in front of the take-up roll 11.
 (基材フィルム)
 本発明で用いることのできる基材となるフィルム(光学機能層を塗布しない場合は、基材フィルムが光学フィルムとなる。)について説明する。
(Base film)
The film used as the base material that can be used in the present invention (when the optical functional layer is not applied, the base film becomes an optical film) will be described.
 本発明に用いる基材フィルムとしては、製造が容易であること、光学機能層との接着性が良好であること、光学的に等方性であること、光学的に透明であること等が好ましい要件として挙げられる。透明とは、可視光の透過率60%以上であることを指し、好ましくは80%以上であり、特に好ましくは90%以上である。 As the base film used in the present invention, it is preferable that it is easy to manufacture, has good adhesion to the optical functional layer, is optically isotropic, is optically transparent, and the like. Listed as a requirement. Transparent means that the transmittance of visible light is 60% or more, preferably 80% or more, particularly preferably 90% or more.
 本発明に用いる基材フィルムは、セルロースエステル樹脂、ポリエステル樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリアクリレート樹脂、ノルボルネン樹脂、アクリルスチレン樹脂から選択される少なくとも1種の樹脂であることが好ましい。 The base film used in the present invention is at least one resin selected from cellulose ester resin, polyester resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyacrylate resin, norbornene resin, and acrylic styrene resin. preferable.
 例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテート、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオネア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることができる。中でも、セルローストリアセテートフィルム、ポリカーボネートフィルム、ポリスルホン(ポリエーテルスルホンを含む)フィルムが好ましく、本発明においては、特にセルロースエステル系フィルム(例えば、コニカタック製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR(コニカミノルタオプト(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, cycloolefin polymer film (Arton (manufactured by JSR)) ZEONEX, ZEONEA Ltd.)), polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, acrylic film or a glass plate or the like. Among them, a cellulose triacetate film, a polycarbonate film, and a polysulfone (including polyethersulfone) film are preferable, and in the present invention, in particular, a cellulose ester film (for example, Konicattak product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR ( Konica Minolta Opto Co., Ltd.)) is preferably used from the viewpoints of production, cost, transparency, isotropy, adhesion and the like. These films may be films produced by melt casting film formation or films produced by solution casting film formation.
 基材フィルムの光学特性としては膜厚方向のリターデーションRtが0nm~300nm、面内方向のリターデーションRoが0nm~1000nmのものが好ましく用いられる。 As the optical properties of the base film, those having a retardation Rt in the film thickness direction of 0 nm to 300 nm and a retardation Ro in the in-plane direction of 0 nm to 1000 nm are preferably used.
 本発明においては、基材フィルムとしてはセルロースエステルフィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。 In the present invention, it is preferable to use a cellulose ester film as the substrate film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.
 特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有する基材フィルム上に活性線硬化型樹脂層と反射防止層を設けた光学フィルムが好ましく用いられる。 In particular, when the substitution degree of acetyl group is X and the substitution degree of propionyl group or butyryl group is Y, X and Y are active ray curable resin layers on a base film having a mixed fatty acid ester of cellulose in the following range And an optical film provided with an antireflection layer is preferably used.
 2.3≦X+Y≦3.0
 0.1≦Y≦1.2
 特に、2.5≦X+Y≦2.85
 0.3≦Y≦1.2であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 1.2
In particular, 2.5 ≦ X + Y ≦ 2.85
It is preferable that 0.3 ≦ Y ≦ 1.2.
 本発明においては、基材フィルムとして、アクリル樹脂とセルロースエステルを含有させたフィルムを用いることが好ましい。これらを含有させた合成フィルムを用いることで、しなやかなフィルムとなる。 In the present invention, it is preferable to use a film containing an acrylic resin and a cellulose ester as the base film. By using a synthetic film containing these, a supple film is obtained.
 また、アクリル樹脂とセルロースエステルの質量比は95:5~30:70が好ましい。セルロースエステルの質量比が5質量%より小さいと、固脆くなり、70質量%より大きいとアクリル樹脂の性質を十分に発現できなくなる。 The mass ratio of the acrylic resin and the cellulose ester is preferably 95: 5 to 30:70. When the mass ratio of the cellulose ester is less than 5% by mass, it becomes brittle, and when it is greater than 70% by mass, the properties of the acrylic resin cannot be sufficiently expressed.
 また、前記アクリル樹脂の分子量が80000以上であり、前記セルロースエステルの分子量が75000以上であることが好ましい。アクリル樹脂の分子量が80000より小さいと脆くなり、セルロースエステルの分子量が75000より小さいと脆くなる。 The molecular weight of the acrylic resin is preferably 80000 or more, and the molecular weight of the cellulose ester is preferably 75000 or more. When the molecular weight of the acrylic resin is less than 80000, it becomes brittle, and when the molecular weight of the cellulose ester is less than 75000, it becomes brittle.
 前記セルロースエステルのアシル基の総置換度(T)は、2.0~3.0であることが好ましく、炭素数が3~7のアシル基の置換度は1.2~3.0であることが好ましい。これらの範囲を逸脱すると相溶性が劣化する。 The total substitution degree (T) of the acyl group of the cellulose ester is preferably 2.0 to 3.0, and the substitution degree of the acyl group having 3 to 7 carbon atoms is 1.2 to 3.0. It is preferable. Beyond these ranges, the compatibility deteriorates.
 本発明に係る基材フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることができる。 When cellulose ester is used as the substrate film according to the present invention, the cellulose used as the raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linters, wood pulp (derived from coniferous trees, derived from hardwoods), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.
 アシル化剤が酸クロライド(CHCOCl、CCOCl、CCOCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10-45804号に記載の方法等を参考にして合成することができる。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度(モル%)という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6~3.0)。 When the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl), the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804. In addition, the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution. In the cellulose ester, these acylating agents react with hydroxyl groups of cellulose molecules. Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution (mol%). For example, cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).
 本発明に用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルも好ましく用いられる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。 As the cellulose ester used in the present invention, a mixed fatty acid ester of cellulose in which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate Are also preferably used. The butyryl group forming butyrate may be linear or branched.
 プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。 Cellulose acetate propionate containing a propionate group as a substituent has excellent water resistance and is useful as a film for liquid crystal image display devices.
 アシル基の置換度の測定方法はASTM-D817-96の規定に準じて測定することができる。 The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
 セルロースエステルの数平均分子量は、70000~250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80000~150000である。 The number average molecular weight of the cellulose ester is preferably 70000 to 250,000, since it has high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.
 これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。 These cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).
 これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解でき、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、蟻酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、1,3-ジメチル-2-イミダゾリジノン等を挙げることができるが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。 As the organic solvent used for preparing these dopes, it is preferable that the cellulose ester can be dissolved and has an appropriate boiling point. For example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl-2-imidazolidinone, etc. Although it is Rukoto, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.
 また、製膜時の流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30~80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。 Further, from the viewpoint of preventing foaming in the web when the solvent is dried from the web (dope film) formed on the casting support during film formation, the boiling point of the organic solvent used is 30-80. The boiling point of the good solvent described above is, for example, methylene chloride (boiling point 40.4 ° C.), methyl acetate (boiling point 56.32 ° C.), acetone (boiling point 56.3 ° C.), ethyl acetate (boiling point 76. 82 ° C.).
 上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。 Among the good solvents described above, methylene chloride or methyl acetate having excellent solubility is preferably used.
 上記有機溶媒の他に、0.1質量%~40質量%の炭素原子数1~4のアルコールを含有させることが好ましい。特に好ましくは5~30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。 In addition to the organic solvent, it is preferable to contain 0.1% by mass to 40% by mass of an alcohol having 1 to 4 carbon atoms. It is particularly preferable that the alcohol is contained at 5 to 30% by mass. After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.
 炭素原子数1~4のアルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等を挙げることができる。 Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.
 これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%~95質量%に対してエタノール5質量%~30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることもできる。このとき、冷却溶解法によりドープを調製してもよい。 Of these solvents, ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.
 本発明で用いられるセルロースエステルフィルムは少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%~40質量%である時に幅手方向に1.01倍~1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒料が3質量%~40質量%である時に幅手方向及び長手方向に、各々1.01倍~1.5倍に延伸されることが望ましい。この様にすることにより、平面性及び光拡散性に優れた光拡散性フィルムを得ることができる。 The cellulose ester film used in the present invention is preferably stretched at least in the width direction. In particular, when the residual solvent amount is 3% by mass to 40% by mass in the solution casting process, the cellulose ester film is 1.01 times to the width direction. The film is preferably stretched 1.5 times. More preferably, it is biaxially stretched in the width direction and the longitudinal direction, and when the residual solvent is 3% by mass to 40% by mass, 1.01 to 1.5 times in the width direction and the longitudinal direction, respectively. It is desirable to be stretched. By doing in this way, the light diffusable film excellent in planarity and light diffusibility can be obtained.
 なお、残留溶媒量は下記の式により表される。 The residual solvent amount is represented by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time, and N is the mass when the web of M is dried at 110 ° C. for 3 hours.
 本発明においては、二軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上であることが好ましい。 In the present invention, the biaxially stretched cellulose ester film preferably has a light transmittance of 90% or more, more preferably 93% or more.
 セルロースエステルフィルムを2軸延伸した後、表面に凹凸を形成したエンボスロール及びそれと対向したエンボスロールによりフィルム上にエンボス部を形成する。 After biaxially stretching the cellulose ester film, an embossed portion is formed on the film by an embossing roll having irregularities formed on the surface and an embossing roll facing the embossing roll.
 本発明においては、基材フィルムの融点、ガラス転移点との関係で、エンボスロールの表面温度を調節することが好ましく、例えば、TAC(トリアセチルセルロース)の融点は300℃、ガラス転移温度は107℃であることを考慮すれば、エンボスロールの表面温度は、204℃~251℃の間に調節することが好ましい。 In the present invention, the surface temperature of the embossing roll is preferably adjusted in relation to the melting point of the base film and the glass transition point. For example, the melting point of TAC (triacetyl cellulose) is 300 ° C., and the glass transition temperature is 107. Considering that the temperature is 0 ° C., the surface temperature of the embossing roll is preferably adjusted between 204 ° C. and 251 ° C.
 このように条件でエンボス加工を施すことによって、長尺状光学フィルムのロール状での保管中の巻き形状の劣化を著しく改善することができる。 By embossing under such conditions as described above, it is possible to remarkably improve the deterioration of the winding shape during storage of the long optical film in roll form.
 本発明に係る基材フィルムは、その厚さが15~100μmのものが好ましく、更に好ましくは20~80μmであり、透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m・24時間以下であることが好ましく、更に好ましくは、10~180g/m・24時間以下であり、特に好ましくは、160g/m・24時間以下である。特には、膜厚20~80μmで透湿性が上記範囲内であることが好ましい。 The substrate film according to the present invention preferably has a thickness of 15 to 100 μm, more preferably 20 to 80 μm, and moisture permeability was measured according to JIS Z 0208 (25 ° C., 90% RH). The value is preferably 200 g / m 2 · 24 hours or less, more preferably 10 to 180 g / m 2 · 24 hours or less, and particularly preferably 160 g / m 2 · 24 hours or less. In particular, it is preferable that the film thickness is 20 to 80 μm and the moisture permeability is within the above range.
 本発明に係る基材フィルムは長尺フィルムとして用いられ、具体的には、500m~8000m程度のもので、通常、ロール状で提供される形態のものである。また、本発明の光学フィルムの製造方法の効果をより発揮させる観点から、基材フィルムの幅は1~4mであることが好ましい。 The base film according to the present invention is used as a long film, and specifically has a thickness of about 500 m to 8000 m and is usually provided in a roll shape. In addition, from the viewpoint of further exerting the effect of the method for producing an optical film of the present invention, the width of the base film is preferably 1 to 4 m.
 本発明の光学フィルムにセルロースエステルフィルムを用いる場合、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることができる。 When a cellulose ester film is used for the optical film of the present invention, it is preferable to contain the following plasticizer. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, citrate ester plasticizers, and polyesters. A plasticizer or the like can be preferably used.
 リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ-n-ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ-n-ブチルシトレート、アセチルトリ-n-(2-エチルヘキシル)シトレート等を好ましく用いることができる。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。 For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, and other trimellitic plasticizers such as tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutyl pyromellitate, tetrafluoro For glycolate plasticizers such as nilpyromellitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethyl glycolate, butylphthalylbutyl glycolate, etc., citrate plasticizers In this, triethyl citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.
 ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることができる。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4-シクロヘキシルジカルボン酸等を用いることができる。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブチレングリコール、1,3-ブチレングリコール、1,2-ブチレングリコール等を用いることができる。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。 As the polyester plasticizer, a copolymer of a dibasic acid and a glycol such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.
 これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%~20質量%が好ましく、特に好ましくは、3質量%~13質量%である。 The amount of these plasticizers to be used is preferably 1% by mass to 20% by mass, particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.
 2種類の可塑剤を用いる場合の含有量は各々少なくとも1質量%以上であり、好ましくは各々2質量%以上含有することである。 When using two kinds of plasticizers, the content is at least 1% by mass or more, preferably 2% by mass or more.
 また本発明の光学フィルムには、紫外線吸収剤が好ましく用いられる。 Moreover, an ultraviolet absorber is preferably used for the optical film of the present invention.
 紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。 As the ultraviolet absorber, those which are excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and have little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
 本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。 Specific examples of the ultraviolet absorber preferably used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, and the like. However, it is not limited to these.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。 Examples of the benzotriazole-based ultraviolet absorbers include the following ultraviolet absorbers as specific examples, but the present invention is not limited thereto.
 UV-1:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール
 UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
 UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
 UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
 UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
 UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
 UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
 UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(TINUVIN171、Ciba製)
 UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6- (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- Mixture of 4-hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba)
 また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。 Moreover, although the following specific examples are shown as a benzophenone type ultraviolet absorber, this invention is not limited to these.
 UV-10:2,4-ジヒドロキシベンゾフェノン
 UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
 UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
 UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
 本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。 As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.
 また、特開2001-187825号に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。 Also, the ultraviolet absorber having a distribution coefficient of 9.2 or more described in JP-A No. 2001-187825 improves the surface quality of a long film and is excellent in coating properties. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.
 また、特開平6-148430号に記載の一般式(1)または一般式(2)、特願2000-156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。高分子紫外線吸収剤としては、PUVA-30M(大塚化学(株)製)等が市販されている。 Further, the polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6) and (7) of Japanese Patent Application No. 2000-156039 ( Alternatively, an ultraviolet absorbing polymer) is also preferably used. As a polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) and the like are commercially available.
 また、本発明に用いられるセルロースエステルフィルムには滑り性を付与するため、活性線硬化型樹脂を含む塗布層で記載したのと同様の微粒子を用いることができる。 Further, in order to impart slipperiness to the cellulose ester film used in the present invention, fine particles similar to those described in the coating layer containing an actinic radiation curable resin can be used.
 本発明に用いられるセルロースエステルフィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5~16nmであり、特に好ましくは、5~12nmである。これらの微粒子は0.1~5μmの粒径の2次粒子を形成してセルロースエステルフィルムに含まれることが好ましく、好ましい平均粒径は0.1~2μmであり、更に好ましくは0.2~0.6μmである。これにより、フィルム表面に高さ0.10~20μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることができる。 The primary average particle diameter of the fine particles added to the cellulose ester film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm. These fine particles preferably form secondary particles having a particle size of 0.1 to 5 μm and are contained in the cellulose ester film, and the preferable average particle size is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. As a result, irregularities having a height of about 0.10 to 20 μm are formed on the film surface, thereby providing appropriate slipperiness to the film surface.
 本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万~200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって、1次平均粒子径とした。 The primary average particle size of the fine particles used in the present invention is measured by observing particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, and using the average value, The average particle size was taken.
 微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90~200g/リットルであり、特に好ましくは、100~200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。 The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.
 1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000~1200℃にて空気中で燃焼させることで得ることができる。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することができる。 Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed with the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.
 上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。 The apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.
 見掛比重(g/リットル)=二酸化珪素質量(g)/二酸化珪素の容積(リットル) Apparent specific gravity (g / liter) = mass of silicon dioxide (g) / volume of silicon dioxide (liter)
 本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。 Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.
 《調製方法A》
 溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
<< Preparation Method A >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.
 《調製方法B》
 溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method B >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.
 《調製方法C》
 溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method C >>
Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.
 調製方法Aは二酸化珪素微粒子の分散性に優れ、調製方法Cは二酸化珪素微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法Bは二酸化珪素微粒子の分散性と、二酸化珪素微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。 Preparation method A is excellent in dispersibility of silicon dioxide fine particles, and preparation method C is excellent in that silicon dioxide fine particles are difficult to re-aggregate. Among them, the preparation method B described above is a preferable preparation method that is excellent in both dispersibility of the silicon dioxide fine particles and difficulty in reaggregation of the silicon dioxide fine particles.
 《分散方法》
 二酸化珪素微粒子を溶剤などと混合して分散する時の二酸化珪素の濃度は5質量%~30質量%が好ましく、10質量%~25質量%が更に好ましく、15~20質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
《Distribution method》
The concentration of silicon dioxide when the silicon dioxide fine particles are mixed with a solvent and dispersed is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and most preferably 15% by mass to 20% by mass. A higher dispersion concentration is preferable because liquid turbidity with respect to the added amount tends to be low, and haze and aggregates are improved.
 使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。 The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.
 セルロースエステルに対する二酸化珪素微粒子の添加量はセルロースエステル100質量部に対して、二酸化珪素微粒子は0.01質量部~5.0質量部が好ましく、0.05質量部~1.0質量部が更に好ましく、0.1質量部~0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。 The amount of silicon dioxide fine particles added to the cellulose ester is preferably 0.01 parts by mass to 5.0 parts by mass and more preferably 0.05 parts by mass to 1.0 part by mass with respect to 100 parts by mass of the cellulose ester. Preferably, 0.1 part by weight to 0.5 part by weight is most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.
 分散機は通常の分散機が使用できる。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。二酸化珪素微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1~2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。 Disperser can be a normal disperser. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersing silicon dioxide fine particles, a medialess disperser is preferred because of its low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable. The high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. When processing with a high-pressure dispersion apparatus, for example, the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 μm. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.
 上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)製UHN-01等が挙げられる。 Examples of the high-pressure dispersing apparatus include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation, or a nanomizer manufactured by Nanomizer, and other manton gorin type high-pressure dispersing apparatuses such as a homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.
 また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。 In addition, casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.
 また、流延後に剥離して乾燥されロール状に巻き取られた後、本発明に係る光学薄膜層が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されないが、フィルムからの残留溶媒の揮発を妨げないものが好ましい。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。 In addition, after casting, the film is peeled off, dried and wound into a roll, and then the optical thin film layer according to the present invention is provided. Until processing or shipment, packaging is usually performed in order to protect the product from dirt, static electricity, and the like. The packaging material is not particularly limited as long as the above purpose can be achieved, but a material that does not hinder volatilization of the residual solvent from the film is preferable. Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. Those in which the fibers are mesh cloth are more preferably used.
 本発明に用いられるセルロースエステルフィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。 The cellulose ester film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.
 共流延とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。 Co-casting is a sequential multilayer casting method in which two or three layers are configured through different dies, and a simultaneous multilayer casting method in which two or three slits are combined in a die having two or three slits. Any of the multilayer casting methods combining sequential multilayer casting and simultaneous multilayer casting may be used.
 また、本発明に用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが、支持体として好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。 Further, the cellulose ester used in the present invention is preferably used as a support having a small amount of bright spot foreign matter when formed into a film. In the present invention, the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.
 このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。 The polarizing plate used for the evaluation at this time is preferably composed of a protective film having no bright spot foreign matter, and preferably a glass plate is used for protecting the polarizer. The occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated cellulose contained in the cellulose ester. As countermeasures, the use of cellulose ester with a small amount of unacetylated cellulose, It can be removed and reduced by filtering the dissolved dope solution. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.
 輝点異物は、輝点の直径0.01mm以上のものが200個/cm以下であることが好ましく、更に好ましくは、100個/cm以下、50個/cm以下、30個/cm以下、10個/cm以下であることが好ましいが、特に好ましくは、0であることである。 The bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.
 また、0.005mm~0.01mmの輝点についても200個/cm以下であることが好ましく、更に好ましくは、100個/cm以下、50個/cm以下、30個/cm以下、10個/cm以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。 Also, the bright spots of 0.005 mm to 0.01 mm are preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm 2 or less. The number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.
 輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。 When removing bright spot foreign matter by filtration, it is preferable to filter the composition in which a plasticizer is added and mixed, rather than filtering a cellulose ester dissolved alone, because the bright spot foreign matter removal efficiency is high. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, and 10 μm or less, and particularly preferably 5 μm or less.
 これらは、適宜組み合わせて使用することもできる。濾材はサーフェースタイプでもデプスタイプでも用いることができるが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。 These can be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.
 次に本発明に係る基材フィルムに塗設される光学機能層について述べる。 Next, the optical functional layer coated on the base film according to the present invention will be described.
 本発明の光学機能層とは、ハードコート層上に設けられた反射防止層であることが好ましい。 The optical functional layer of the present invention is preferably an antireflection layer provided on the hard coat layer.
 本発明の反射防止層またはその他の薄膜は、上記基材フィルムに直接形成してもよいが、他の層を介してその上に形成してもよい。 The antireflection layer or other thin film of the present invention may be formed directly on the substrate film, but may be formed thereon via another layer.
 本発明において、基材フィルムの薄膜形成側の面に塗布する塗布層(薄膜形成側塗布層、光学機能層)としては、ハードコート層、防眩層、接着層、帯電防止層等を挙げることができ、ハードコート層、防眩層、帯電防止層が好ましく塗布され、特に、本発明の光学フィルムの場合には、ハードコート層を光学フィルムの表面硬度を高めるために、特に「他の層」として設けることが好ましい。また、反射防止層またはその他の薄膜を形成する側と基材フィルムの反対側にバックコート層を設けてもよい。 In the present invention, examples of the coating layer (thin film forming side coating layer, optical functional layer) applied to the surface on the thin film forming side of the base film include a hard coat layer, an antiglare layer, an adhesive layer, an antistatic layer, and the like. A hard coat layer, an antiglare layer, and an antistatic layer are preferably applied, and in the case of the optical film of the present invention, in particular, in order to increase the surface hardness of the optical film, the “other layer” Is preferably provided. Further, a back coat layer may be provided on the side where the antireflection layer or other thin film is formed and on the side opposite to the base film.
 ここで、本発明に有用な「他の層」としての塗布層として、光学フィルムに用いられるハードコート層について述べる。 Here, a hard coat layer used for an optical film will be described as a coating layer as an “other layer” useful for the present invention.
 ハードコート層は、紫外線により硬化する紫外線硬化化合物(樹脂)を含有する層であることが好ましく、耐擦り傷性に優れた反射防止フィルムを得ることができる。 The hard coat layer is preferably a layer containing an ultraviolet curable compound (resin) that is cured by ultraviolet rays, and an antireflection film having excellent scratch resistance can be obtained.
 ハードコート層の紫外線硬化樹脂層は、エチレン性不飽和モノマーを含む成分を重合させて形成した樹脂層であることが好ましい。ここで、紫外線硬化樹脂層は、紫外線の外に電子線のような活性線照射により架橋反応などを経て硬化する樹脂を主たる成分とする層をいう。紫外線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることができる。 The ultraviolet curable resin layer of the hard coat layer is preferably a resin layer formed by polymerizing a component containing an ethylenically unsaturated monomer. Here, the ultraviolet curable resin layer refers to a layer mainly composed of a resin which is cured through a crosslinking reaction or the like by irradiation with an active ray such as an electron beam in addition to ultraviolet rays. Typical examples of the ultraviolet curable resin include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. be able to.
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、若しくはプレポリマーを反応させて得られた生成物に更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151110号等を参照)。 In general, UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). And can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (see, for example, JP-A-59-151110).
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号を参照)。 UV curable polyester acrylate resins can be easily obtained by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers (see, for example, JP-A-59-151112). .
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることができる(例えば、特開平1-105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種若しくは2種以上を選択して使用することができる。 Specific examples of ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738). As the photoinitiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
 また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。 Specific examples of ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc.
 これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用できる。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系の光反応剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1~10質量%添加することができ、2.5~6質量%であることが好ましい。 These resins are usually used together with known photosensitizers. Moreover, the said photoinitiator can also be used as a photosensitizer. Specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Further, when using an epoxy acrylate photoreactive agent, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
 樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。 Examples of the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond. Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
 例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、旭電化工業株式会社製)、或いはコーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業株式会社製)、或いはセイカビームPHC2210(S)、PHCX-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、或いはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、或いはRC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、大日本インキ化学工業株式会社製)、或いはオーレックスNo.340クリヤ(中国塗料株式会社製)、あるいはサンラッドH-601(三洋化成工業株式会社製)、或いはSP-1509、SP-1507(昭和高分子株式会社製)、或いはRCC-15C(グレース・ジャパン株式会社製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成株式会社製)或いはこの他の市販のものから適宜選択して利用できる。 For example, as an ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (manufactured by Asahi Denka Kogyo Co., Ltd.) Or KOHEI Hard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHCX-9 (K-3), PHC2213, DP-10 , DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (above, large Manufactured by Seika Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC- 5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Co., Ltd.) (Manufactured by company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available products.
 紫外線硬化樹脂層は公知の方法で塗設することができる。紫外線硬化樹脂層を塗設する際の溶媒としては、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒の中から適宜選択し、或いはこれらを混合し利用できる。好ましくは、プロピレングリコールモノ(炭素数1~4のアルキル基)アルキルエーテルできはプロピレングリコールモノ(炭素数1~4のアルキル基)アルキルエーテルエステルを5質量%以上、更に好ましくは5~80質量%以上含有する溶媒が用いられる。 The UV curable resin layer can be applied by a known method. As the solvent for coating the ultraviolet curable resin layer, for example, it can be appropriately selected from hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, or a mixture thereof can be used. . Preferably, propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether, preferably propylene glycol mono (alkyl group having 1 to 4 carbon atoms) alkyl ether ester is 5% by mass or more, more preferably 5 to 80% by mass. The solvent contained above is used.
 紫外線硬化性樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20~10000mJ/cm程度あればよく、好ましくは、50~2000mJ/cmである。近紫外線領域~可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用できる。 As a light source for forming a cured film layer by photocuring reaction of an ultraviolet curable resin, any light source that generates ultraviolet rays can be used. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ~ 10000mJ / cm 2 degrees, preferably 50 ~ 2000mJ / cm 2. In the near ultraviolet region to the visible light region, it can be used by using a sensitizer having an absorption maximum in that region.
 紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒~5分がよく、紫外線硬化性樹脂の硬化効率、作業効率とから3秒~2分がより好ましい。 The UV curable resin composition is coated and dried and then irradiated with UV light from a light source. The irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
 こうして得た硬化皮膜層に、ブラックバンドを防止するため、また対擦り傷性等を高めるために無機或いは有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができ、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等を挙げることができ、紫外線硬化性樹脂組成物に加えることができる。これらの微粒子粉末の平均粒径としては、0.005~5μmが好ましく0.1~5.0μm、さらには0.1~4.0μmであることがハードコート層を形成する塗布組成物に添加した際の組成物の安定性から特に好ましい。 It is preferable to add inorganic or organic fine particles to the cured film layer thus obtained in order to prevent black bands and to improve the scratch resistance. Examples of the inorganic fine particles include silicon oxide, titanium oxide, aluminum oxide, tin oxide, zinc oxide, calcium carbonate, barium sulfate, talc, kaolin, calcium sulfate, and the like, and examples of the organic fine particles include polymethacrylic acid. Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder Polyamide-based resin powder, polyimide-based resin powder, or polyfluorinated ethylene-based resin powder, and the like can be added to the ultraviolet curable resin composition. The average particle size of these fine particle powders is preferably 0.005 to 5 μm, more preferably 0.1 to 5.0 μm, and further preferably 0.1 to 4.0 μm added to the coating composition for forming the hard coat layer. It is particularly preferable from the viewpoint of the stability of the composition.
 紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1~30質量部となるように配合することが望ましい。 Desirably, the proportion of the ultraviolet curable resin composition and the fine particle powder is 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
 この様にして形成された紫外線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが膜厚1~50nmのハードコート層であっても、Raが0.1~1μm程度の防眩層であってもよい。 The layer formed by curing the ultraviolet curable resin formed in this way is a hard coat layer having a center line average roughness Ra of 1 to 50 nm as defined in JIS B 0601, but Ra is 0.1. It may be an antiglare layer of about 1 μm.
 ハードコート層や防眩層、またはバックコート層を基材に塗布する方法としては、グラビアコーター、スピナーコーター、ワイヤーバーコーター、ロールコーター、リバースコーター、押し出しコーター、エアードクターコーター等公知の方法を用いることができる。塗布の際の液膜厚(ウェット膜厚ともいう)で1~100μm程度で、0.1~30μmが好ましく、より好ましくは、0.5~30μmである。また、ドライ膜厚としては平均膜厚0.1~30μm、好ましくは1~20μmである。 As a method for applying the hard coat layer, the antiglare layer, or the back coat layer to the substrate, a known method such as a gravure coater, a spinner coater, a wire bar coater, a roll coater, a reverse coater, an extrusion coater or an air doctor coater is used. be able to. The liquid film thickness (also referred to as wet film thickness) during coating is about 1 to 100 μm, preferably 0.1 to 30 μm, more preferably 0.5 to 30 μm. The dry film thickness is an average film thickness of 0.1 to 30 μm, preferably 1 to 20 μm.
 (バックコート層)
本発明に用いられる基材フィルムは、裏面側に微粒子を含有するバックコート層を設けることが好ましい。
(Back coat layer)
The base film used in the present invention is preferably provided with a back coat layer containing fine particles on the back side.
 本発明に有用なバックコート層に含ませる微粒子としては、無機化合物の微粒子または有機化合物の微粒子を挙げることができ、前述のセルロースエステルフィルムに含有させる微粒子、微粒子の粒径、微粒子の見掛比重、分散方法等ほぼ同様である。 Examples of the fine particles contained in the backcoat layer useful in the present invention include fine particles of inorganic compounds or fine particles of organic compounds. The fine particles to be contained in the cellulose ester film, the particle diameter of the fine particles, and the apparent specific gravity of the fine particles. The dispersion method is almost the same.
 バックコート層に含まれる粒子は、バインダーに対して0.1~50質量%好ましくは0.1~10質量%であることが好ましい。添加量は多い方が、動摩擦係数が低くなり、また少ない方がヘイズが低く、凝集物も少なくなる。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく、特に0~0.1%であることが好ましい。 The particles contained in the backcoat layer are 0.1 to 50% by weight, preferably 0.1 to 10% by weight, based on the binder. The larger the addition amount, the lower the dynamic friction coefficient, and the smaller the addition amount, the lower the haze and the fewer the aggregates. When the back coat layer is provided, the increase in haze is preferably 1% or less, particularly preferably 0 to 0.1%.
 バックコート層に使用される有機溶媒は特に限定されないが、バックコート層にアンチカール機能を付与することもできるので、セルロースエステルフィルム及びセルロースエステルフィルムの素材の樹脂を溶解させる有機溶媒または膨潤させる有機溶媒が有用である。これらをセルロースエステルフィルムのカール度合、樹脂の種類、混合割合、塗布量等により適宜選べばよい。 The organic solvent used in the back coat layer is not particularly limited, but since the anti-curl function can be imparted to the back coat layer, the organic solvent that dissolves the cellulose ester film and the resin of the cellulose ester film material or the organic solvent that swells. Solvents are useful. These may be appropriately selected depending on the curl degree of the cellulose ester film, the type of resin, the mixing ratio, the coating amount, and the like.
 バックコート層に使用し得る有機溶媒としては、例えば、ベンゼン、トルエン、キシレン、ジオキサン、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、酢酸メチル、酢酸エチル、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどがある。 Examples of the organic solvent that can be used for the backcoat layer include benzene, toluene, xylene, dioxane, acetone, methyl ethyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, N-methylpyrrolidone, 1,3-dimethyl- 2-Imidazolidinone.
 溶解させない有機溶媒としては、例えば、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブタノールなどがあるが、有機溶媒としては特にこれらに限定されるものではない。 Examples of the organic solvent that is not dissolved include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, and n-butanol, but the organic solvent is not particularly limited thereto.
 バックコート層塗布組成物の塗布方法としては、グラビアコーター、ディップコーター、ワイヤーバーコーター、リバースコーター、押し出しコーター等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1~100μmとすることが好ましく、特に5~30μmが好ましい。 As a coating method of the backcoat layer coating composition, a coating liquid film thickness (sometimes referred to as a wet film thickness) is 1 to 100 μm using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater or the like. In particular, 5 to 30 μm is preferable.
 バックコート層は2回以上に分けて塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねても良い。 The back coat layer can be applied in two or more steps. Further, the backcoat layer may also serve as an easy adhesion layer for improving the adhesion with the polarizer.
 バックコート層に用いられる樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマー或いはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースエステル系樹脂、マレイン酸及び/またはアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることができるが、これらに限定されるものではない。特に好ましくはセルロースジアセテート、セルロースアセテートプロピオネートのようなセルロース系樹脂層である。 Examples of the resin used for the back coat layer include vinyl chloride / vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, copolymer of vinyl acetate and vinyl alcohol, partially hydrolyzed vinyl chloride / vinyl acetate copolymer, and chloride. Vinyl homopolymers or copolymers such as vinyl / vinylidene chloride copolymer, vinyl chloride / acrylonitrile copolymer, ethylene / vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, cellulose nitrate, cellulose acetate Cellulose ester resins such as propionate, cellulose diacetate, cellulose triacetate, cellulose acetate phthalate, cellulose acetate butyrate resin, maleic acid and / or Is a copolymer of acrylic acid, acrylic acid ester copolymer, acrylonitrile / styrene copolymer, chlorinated polyethylene, acrylonitrile / chlorinated polyethylene / styrene copolymer, methyl methacrylate / butadiene / styrene copolymer, acrylic resin, polyvinyl acetal resin, polyvinyl butyral resin, polyester polyurethane Resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene / butadiene resin, rubber resin such as butadiene / acrylonitrile resin, silicon resin, fluorine resin, polymethyl methacrylate , A copolymer of polymethyl methacrylate and polymethyl acrylate, etc. The present invention is not limited to these. Particularly preferred are cellulose resin layers such as cellulose diacetate and cellulose acetate propionate.
 次に、本発明の光学機能層である反射防止層、及びそれを塗設した光学フィルムについて述べる。 Next, the antireflection layer, which is the optical functional layer of the present invention, and the optical film coated therewith will be described.
 本発明の光学フィルムの製造方法においては、金属酸化物層、金属酸窒化物、金属窒化物、有機ポリマー、液晶化合物の少なくとも1種を前述の基材フィルム上に形成させて、反射防止層とすることが好ましい。反射防止層は基材フィルム上に直接形成してもよいが、前記ハードコート層や他の被覆層を少なくとも1層設け、凹凸面を有する基材フィルム上に形成させてもよい。光学フィルムの取り扱い性や光学フィルムを後述する偏光板にする際の工程で、傷が付きにくくなることから好ましい方法である。他の被覆層としては、JIS B 0601で規定される中心線平均表面粗さ(Ra)が0.01~1μmの前述の硬化樹脂層が好ましい。これらは紫外線等の活性線により硬化する活性線硬化樹脂層である。この様な紫外線で硬化された樹脂層の上に本発明に係る金属酸化物層を形成させることによって耐擦り傷性に優れた光学フィルムを得ることができる。 In the method for producing an optical film of the present invention, at least one of a metal oxide layer, a metal oxynitride, a metal nitride, an organic polymer, and a liquid crystal compound is formed on the aforementioned base film, It is preferable to do. The antireflection layer may be formed directly on the base film, but at least one hard coat layer or other coating layer may be provided and formed on the base film having an uneven surface. This is a preferred method because it is less likely to be scratched in the process of handling the optical film and the step of making the optical film into a polarizing plate to be described later. As the other coating layer, the above-mentioned cured resin layer having a center line average surface roughness (Ra) defined by JIS B 0601 of 0.01 to 1 μm is preferable. These are actinic radiation curable resin layers that are cured by actinic radiation such as ultraviolet rays. An optical film excellent in scratch resistance can be obtained by forming the metal oxide layer according to the present invention on the resin layer cured by such ultraviolet rays.
 一般に光学フィルムの反射防止層は、基材フィルム上に屈折率が基材フィルムよりも高い高屈折率層と、屈折率が基材フィルムよりも低い低屈折率層を積層して形成され、高屈折率層/低屈折率層の順に積層されているものが、反射率を減少させる点から好ましく用いられる。 In general, an antireflection layer of an optical film is formed by laminating a high refractive index layer having a refractive index higher than that of the base film and a low refractive index layer having a refractive index lower than that of the base film on the base film. Those laminated in the order of refractive index layer / low refractive index layer are preferably used from the viewpoint of reducing the reflectance.
 なお、この順による積層のみに本発明が限定されるものではなく、逆でも良いし、またはこの間に基材フィルムよりも屈折率が高く、高屈折率層よりも屈折率が低い中屈折率層を挟んだ3層以上の構成でも本発明を達成することができる。 Note that the present invention is not limited only to lamination in this order, and may be reversed, or a medium refractive index layer having a refractive index higher than that of the base film and lower than that of the high refractive index layer during this period. The present invention can also be achieved with a configuration of three or more layers sandwiching.
 本発明の反射防止層の一例として特に好ましく用いられる金属酸化物層について説明する。 A metal oxide layer particularly preferably used as an example of the antireflection layer of the present invention will be described.
 金属酸化物層は高屈折率層、低屈折率層の少なくともいずれかの1層に用いられることが好ましい。 The metal oxide layer is preferably used as at least one of a high refractive index layer and a low refractive index layer.
 金属酸化物層を設ける方法には、塗布、大気圧プラズマCVD法、スパッタ、蒸着等の方法があるが、本発明では反射防止層は塗布によって形成することが好ましい。 There are methods for providing a metal oxide layer, such as coating, atmospheric pressure plasma CVD, sputtering, and vapor deposition. In the present invention, the antireflection layer is preferably formed by coating.
 金属酸化物層を塗布によって形成する方法について説明する。 A method for forming a metal oxide layer by coating will be described.
 本発明の光学フィルムの基本的な構成を説明する。基材フィルム、高屈折率層及び低屈折率層は、以下の関係を満足する屈折率を有することが好ましい。 The basic configuration of the optical film of the present invention will be described. The base film, the high refractive index layer, and the low refractive index layer preferably have a refractive index that satisfies the following relationship.
 低屈折率層の屈折率<基材フィルムの屈折率<ハードコート層の屈折率<高屈折率層の屈折率 Refractive index of low refractive index layer <refractive index of base film <refractive index of hard coat layer <refractive index of high refractive index layer
 また、本発明においては、ハードコート層或いは高屈折率層に凹凸を付与して防眩性反射防止層を備えた光学フィルムとすることも好ましい。 In the present invention, it is also preferable to provide an optical film provided with an antiglare antireflection layer by imparting irregularities to the hard coat layer or the high refractive index layer.
 この他、基材フィルム、ハードコート層(防眩層)、中屈折率層、高屈折率層、低屈折率層、の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することが好ましく、表面に防眩層を設けてもよい。 In addition, a layer structure in the order of a base film, a hard coat layer (antiglare layer), a medium refractive index layer, a high refractive index layer, and a low refractive index layer is also a preferable configuration. It is preferable to impart an antiglare property to the low refractive index layer on the surface, and an antiglare layer may be provided on the surface.
 (高屈折率層)
 本発明においては、反射率の低減のために、基材フィルム若しくはハードコート層を付与した基材フィルムと低屈折率層との間に、屈折率が基材フィルムよりも高い高屈折率層を設けることが好ましい。また、基材フィルムと高屈折率層との間に中屈折率層を設けることは、反射率の低減のために好ましい。高屈折率層の屈折率は、1.55~2.30であることが好ましく、1.57~2.20であることが更に好ましい。高屈折率層の膜厚は、光学干渉層の特性から、5nm~1μmであることが好ましく、10nm~0.2μmであることが更に好ましく、30nm~0.2μmであることが最も好ましい。高屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。高屈折率層は、導電性粒子とそれと組成の異なる無機粒子、及びバインダーを含むことが好ましい。導電性粒子と無機粒子は両方もしくはどちらか片方のみの使用でもよい。
(High refractive index layer)
In the present invention, in order to reduce the reflectance, a high refractive index layer having a refractive index higher than that of the base film is provided between the base film provided with the base film or the hard coat layer and the low refractive index layer. It is preferable to provide it. In addition, it is preferable to provide a middle refractive index layer between the base film and the high refractive index layer in order to reduce the reflectance. The refractive index of the high refractive index layer is preferably 1.55 to 2.30, and more preferably 1.57 to 2.20. The film thickness of the high refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.2 μm from the characteristics of the optical interference layer. The haze of the high refractive index layer is preferably 5% or less, more preferably 3% or less, and most preferably 1% or less. The strength of the high refractive index layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more, with a pencil hardness of 1 kg load. The high refractive index layer preferably contains conductive particles, inorganic particles having a composition different from the conductive particles, and a binder. Either or both of the conductive particles and the inorganic particles may be used.
 高屈折率層に用いる導電性粒子は、屈折率が1.60~2.60であることが好ましく、1.65~2.50であることが更に好ましい。導電性粒子の1次粒子の平均粒子径は、10~200nmであることが好ましく、20~150nmであることが更に好ましく、30~100nmであることが最も好ましい。導電性微粒子の平均粒子径は、走査電子顕微鏡(SEM)などによる電子顕微鏡写真から計測することもできる。また、動的光錯乱法や静的光錯乱法などを利用する粒度分布計などによって計測してもよい。粒径が小さすぎると凝集しやすくなり、分散性が劣化する。粒径が大きすぎるとヘイズが著しく上昇し好ましくない。導電性粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状あるいは不定形状であることが好ましい。 The conductive particles used for the high refractive index layer preferably have a refractive index of 1.60 to 2.60, and more preferably 1.65 to 2.50. The average particle diameter of the primary particles of the conductive particles is preferably 10 to 200 nm, more preferably 20 to 150 nm, and most preferably 30 to 100 nm. The average particle diameter of the conductive fine particles can also be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. Further, it may be measured by a particle size distribution meter using a dynamic light confusion method or a static light confusion method. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the conductive particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.
 導電性粒子の使用量は、高屈折率層中に5~85質量%が好ましい。10~80質量%であることがより好ましく、20~75質量%が、最も好ましい。使用量が少ないと所望の屈折率や導電性などの効果が得られず、多すぎると膜強度の劣化などが発生する。 The amount of conductive particles used is preferably 5 to 85% by mass in the high refractive index layer. It is more preferably 10 to 80% by mass, and most preferably 20 to 75% by mass. If the amount used is small, desired effects such as refractive index and conductivity cannot be obtained, and if it is too large, film strength is deteriorated.
 上記導電性粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。無機微粒子の分散媒体としては、沸点が60~170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、時アセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1-メトキシ-2-プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メタノール及びイソプロパノールが特に好ましい。 The conductive particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium. As the dispersion medium for the inorganic fine particles, a liquid having a boiling point of 60 to 170 ° C. is preferably used. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, acetone alcohol) , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, Tiger hydrofuran), ether alcohols (e.g., 1-methoxy-2-propanol), propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate. Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methanol and isopropanol are particularly preferable.
 また導電性粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。 Further, the conductive particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder. It is also preferable to contain a dispersant.
 また、高屈折率層には、前述の導電性粒子とは組成の異なる無機粒子を含有する。使用する無機粒子は、中空シリカ、コロイダルシリカ、およびフッ化マグネシウムよりなる群の中から選ばれた1種の無機粒子であるものである。 Further, the high refractive index layer contains inorganic particles having a composition different from that of the conductive particles. The inorganic particles used are one kind of inorganic particles selected from the group consisting of hollow silica, colloidal silica, and magnesium fluoride.
 無機粒子の使用量は、高屈折率層中に1~30質量%が好ましく、3~25質量%であることがより好ましく、5~20質量%が、最も好ましい。使用量が少ないと所望の耐擦傷性や密着性、硬度、高温高湿下での耐薬品性といった効果が得られず、多すぎると膜強度の劣化などが発生する。 The amount of the inorganic particles used is preferably 1 to 30% by mass in the high refractive index layer, more preferably 3 to 25% by mass, and most preferably 5 to 20% by mass. If the amount used is small, desired effects such as scratch resistance, adhesion, hardness, chemical resistance under high temperature and high humidity cannot be obtained, and if too large, film strength is deteriorated.
 高屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。 The high refractive index layer preferably uses a polymer having a crosslinked structure (hereinafter also referred to as a crosslinked polymer) as a binder polymer. Examples of the crosslinked polymer include polymers having a saturated hydrocarbon chain such as polyolefin (hereinafter collectively referred to as polyolefin), and crosslinked products such as polyether, polyurea, polyurethane, polyester, polyamine, polyamide, and melamine resin. Among them, a crosslinked product of polyolefin, polyether and polyurethane is preferred, a crosslinked product of polyolefin and polyether is more preferred, and a crosslinked product of polyolefin is most preferred. Further, it is further preferable that the crosslinked polymer has an anionic group. The anionic group has a function of maintaining the dispersion state of the inorganic fine particles, and the crosslinked structure has a function of imparting a film forming ability to the polymer and strengthening the film. The anionic group may be directly bonded to the polymer chain or may be bonded to the polymer chain via a linking group, but is bonded to the main chain as a side chain via the linking group. Is preferred.
 アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、-CO-、-O-、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2~96質量%であることが好ましく、4~94質量%であることが更に好ましく、6~92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。 Examples of the anionic group include a carboxylic acid group (carboxyl), a sulfonic acid group (sulfo), and a phosphoric acid group (phosphono). Of these, sulfonic acid groups and phosphoric acid groups are preferred. Here, the anionic group may be in a salt state. The cation that forms a salt with the anionic group is preferably an alkali metal ion. Moreover, the proton of the anionic group may be dissociated. The linking group that connects the anionic group and the polymer chain is preferably a divalent group selected from —CO—, —O—, an alkylene group, an arylene group, and combinations thereof. The crosslinked polymer which is a preferable binder polymer is preferably a copolymer having a repeating unit having an anionic group and a repeating unit having a crosslinked structure. In this case, the proportion of the repeating unit having an anionic group in the copolymer is preferably 2 to 96% by mass, more preferably 4 to 94% by mass, and most preferably 6 to 92% by mass. preferable. The repeating unit may have two or more anionic groups.
 アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。尚、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。 The crosslinked polymer having an anionic group may contain other repeating units (a repeating unit having neither an anionic group nor a crosslinked structure). Other repeating units are preferably a repeating unit having an amino group or a quaternary ammonium group and a repeating unit having a benzene ring. The amino group or quaternary ammonium group has a function of maintaining the dispersed state of the inorganic fine particles, like the anionic group. The benzene ring has a function of increasing the refractive index of the high refractive index layer. The amino group, the quaternary ammonium group, and the benzene ring can obtain the same effect even if they are contained in a repeating unit having an anionic group or a repeating unit having a crosslinked structure.
 上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1~12のアルキル基であり、更に好ましくは炭素数1~6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、-CO-、-NH-、-O-、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06~32質量%であることが好ましく、0.08~30質量%であることが更に好ましく、0.1~28質量%であることが最も好ましい。 In the crosslinked polymer containing a repeating unit having an amino group or a quaternary ammonium group as a constituent unit, the amino group or quaternary ammonium group may be directly bonded to the polymer chain, or may be a side chain via a linking group. May be bonded to the polymer chain, but the latter is more preferred. The amino group or quaternary ammonium group is preferably a secondary amino group, a tertiary amino group or a quaternary ammonium group, more preferably a tertiary amino group or a quaternary ammonium group. The group bonded to the nitrogen atom of the secondary amino group, tertiary amino group or quaternary ammonium group is preferably an alkyl group, more preferably an alkyl group having 1 to 12 carbon atoms, still more preferably a carbon number. 1 to 6 alkyl groups. The counter ion of the quaternary ammonium group is preferably a halide ion. The linking group that connects the amino group or quaternary ammonium group to the polymer chain is a divalent group selected from —CO—, —NH—, —O—, an alkylene group, an arylene group, and combinations thereof. Is preferred. When the crosslinked polymer contains a repeating unit having an amino group or a quaternary ammonium group, the ratio is preferably 0.06 to 32% by mass, more preferably 0.08 to 30% by mass, Most preferably, the content is 0.1 to 28% by mass.
 架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1~50質量%、より好ましくは5~40質量%、更に好ましくは10~30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3~33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。 The cross-linked polymer is prepared by blending a monomer for generating a cross-linked polymer to prepare a coating solution for forming a high refractive index layer and a medium refractive index layer, and is generated by a polymerization reaction simultaneously with or after coating of the coating solution. Is preferred. Each layer is formed with the production of the crosslinked polymer. The monomer having an anionic group functions as a dispersant for inorganic fine particles in the coating solution. The monomer having an anionic group is preferably used in an amount of 1 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10 to 30% by mass with respect to the inorganic fine particles. The monomer having an amino group or a quaternary ammonium group functions as a dispersion aid in the coating solution. The monomer having an amino group or a quaternary ammonium group is preferably used in an amount of 3 to 33% by mass based on the monomer having an anionic group. These monomers can be made to function effectively before application of the coating liquid by a method in which a crosslinked polymer is produced by a polymerization reaction simultaneously with or after application of the coating liquid.
 2個以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノンが挙げられる。)、ビニルスルホン(例えば、ジビニルスルホンが挙げられる。)、アクリルアミド(例えば、メチレンビスアクリルアミドが挙げられる。)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM-21、PM-2(日本化薬(株)製)、AntoxMS-60、MS-2N、MS-NH4(日本乳化剤(株)製)、アロニックスM-5000、M-6000、M-8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX-8289(第一工業製薬(株)製)、NKエステルCB-1、A-SA(新中村化学工業(株)製)、AR-100、MR-100、MR-200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC-1615(第一工業製薬(株)製)等が挙げられる。 Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, penta Erythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate , Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives For example, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (for example, divinyl sulfone), acrylamide (for example, Methylene bisacrylamide) and methacrylamide. Commercially available monomers may be used as the monomer having an anionic group and the monomer having an amino group or a quaternary ammonium group. Examples of commercially available monomers having an anionic group include KAYAMAPMPM-21, PM-2 (manufactured by Nippon Kayaku Co., Ltd.), Antox MS-60, MS-2N, MS-NH4 (manufactured by Nippon Emulsifier Co., Ltd.). , Aronix M-5000, M-6000, M-8000 series (manufactured by Toagosei Chemical Industry Co., Ltd.), Biscote # 2000 series (manufactured by Osaka Organic Chemical Industry Co., Ltd.), New Frontier GX-8289 (Daiichi Kogyo Seiyaku NK ester CB-1, A-SA (manufactured by Shin-Nakamura Chemical Co., Ltd.), AR-100, MR-100, MR-200 (manufactured by Eighth Chemical Co., Ltd.), etc. It is done. Examples of commercially available monomers having a commercially available amino group or quaternary ammonium group include DMAA (manufactured by Osaka Organic Chemical Industry Co., Ltd.), DMAEA, DMAPAA (manufactured by Kojin Co., Ltd.), and Bremer QA (Nippon Yushi Co., Ltd.). And New Frontier C-1615 (Daiichi Kogyo Seiyaku Co., Ltd.).
 ポリマーの重合反応は、光重合反応または熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる前述した熱重合開始剤、及び光重合開始剤が挙げられる。 The polymer polymerization reaction can be a photopolymerization reaction or a thermal polymerization reaction. A photopolymerization reaction is particularly preferable. A polymerization initiator is preferably used for the polymerization reaction. For example, the above-mentioned thermal polymerization initiator and photopolymerization initiator used for forming the binder polymer of the hard coat layer may be mentioned.
 重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2~10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。 A commercially available polymerization initiator may be used as the polymerization initiator. In addition to the polymerization initiator, a polymerization accelerator may be used. The addition amount of the polymerization initiator and the polymerization accelerator is preferably in the range of 0.2 to 10% by mass of the total amount of monomers. The coating liquid (dispersion of inorganic fine particles containing monomer) may be heated to promote polymerization of the monomer (or oligomer). Moreover, it may heat after the photopolymerization reaction after application | coating, and may additionally process the thermosetting reaction of the formed polymer.
 高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。 It is preferable to use a polymer having a relatively high refractive index for the high refractive index layer. Examples of the polymer having a high refractive index include polystyrene, styrene copolymer, polycarbonate, melamine resin, phenol resin, epoxy resin, and polyurethane obtained by reaction of cyclic (alicyclic or aromatic) isocyanate and polyol. . Polymers having other cyclic (aromatic, heterocyclic, and alicyclic) groups and polymers having halogen atoms other than fluorine as substituents can also be used with a high refractive index.
 金属酸化物層は金属酸化物を含む無機微粒子を含有する塗布液を塗設することによって設けることが好ましい。 The metal oxide layer is preferably provided by coating a coating solution containing inorganic fine particles containing a metal oxide.
 皮膜形成能を有する有機金属化合物から、高屈折率層を形成してもよい。 A high refractive index layer may be formed from an organometallic compound having film-forming ability.
 有機金属化合物は、適当な媒体に分散し得るか、或いは液状であることが好ましい。有機金属化合物の例としては、金属アルコレート(例えば、チタンテトラエトキシド、チタンテトラ-i-プロポキシド、チタンテトラ-n-プロポキシド、チタンテトラ-n-ブトキシド、チタンテトラ-sec-ブトキシド、チタンテトラ-tert-ブトキシド、アルミニウムトリエトキシド、アルミニウムトリ-i-プロポキシド、アルミニウムトリブトキシド、アンチモントリエトキシド、アンチモントリブトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラ-i-プロポキシド、ジルコニウムテトラ-n-プロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-sec-ブトキシド、ジルコニウムテトラ-tert-ブトキシド)、キレート化合物(例えば、ジ-イソプロポキシチタニウムビスアセチルアセトネート、ジ-ブトキシチタニウムビスアセチルアセトネート、ジ-エトキシチタニウムビスアセチルアセトネート、ビスアセチルアセトンジルコニウム、アルミニウムアセチルアセトネート、アルミニウムジ-n-ブトキシドモノエチルアセトアセテート、アルミニウムジ-i-プロポキシドモノメチルアセトアセテート、トリ-n-ブトキシドジルコニウムモノエチルアセトアセテート)、有機酸塩(例えば、炭酸ジルコニールアンモニウム)及びジルコニウム等が挙げられる。 It is preferable that the organometallic compound can be dispersed in an appropriate medium or is in a liquid state. Examples of organometallic compounds include metal alcoholates (eg, titanium tetraethoxide, titanium tetra-i-propoxide, titanium tetra-n-propoxide, titanium tetra-n-butoxide, titanium tetra-sec-butoxide, titanium Tetra-tert-butoxide, aluminum triethoxide, aluminum tri-i-propoxide, aluminum tributoxide, antimony triethoxide, antimony riboxide, zirconium tetraethoxide, zirconium tetra-i-propoxide, zirconium tetra-n- Propoxide, zirconium tetra-n-butoxide, zirconium tetra-sec-butoxide, zirconium tetra-tert-butoxide), chelate compounds (eg, di-isopropoxytitanium bi Acetylacetonate, di-butoxytitanium bisacetylacetonate, di-ethoxytitanium bisacetylacetonate, bisacetylacetone zirconium, aluminum acetylacetonate, aluminum di-n-butoxide monoethylacetoacetate, aluminum di-i-propoxide monomethyl Acetoacetate, tri-n-butoxide zirconium monoethyl acetoacetate), organic acid salts (for example, zirconyl ammonium carbonate), zirconium and the like.
 (低屈折率層)
本発明における光学フィルムの低屈折率層は、基材フィルムの屈折率よりも低い層を低屈折率層という。熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、及び粒子とバインダーポリマーを用い、粒子間または粒子内部に空隙を有する低屈折率層等が用いられる。低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.30~1.45の範囲のものが好ましい。また、低屈折率層の膜厚は、光学干渉層としての特性から、5nm~0.5μmが好ましく、30nm~0.2μmであることがさらに好ましい。
(Low refractive index layer)
In the low refractive index layer of the optical film in the present invention, a layer lower than the refractive index of the base film is referred to as a low refractive index layer. Using a low-refractive-index layer formed by cross-linking of a fluorine-containing resin that is cross-linked by heat or ionizing radiation (hereinafter also referred to as “fluorinated resin before cross-linking”), a low-refractive index layer by a sol-gel method, and particles and a binder polymer A low refractive index layer having voids between or inside the particles is used. If the refractive index of the low refractive index layer is low, it is preferable because the antireflection performance is improved, but it is difficult from the viewpoint of imparting strength to the low refractive index layer. From this balance, the refractive index of the low refractive index layer is preferably in the range of 1.30 to 1.45. The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 30 nm to 0.2 μm, from the characteristics as an optical interference layer.
 架橋前の含フッ素樹脂として、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10-25388号、同10-147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。 Preferred examples of the fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (Osaka Organic Chemical) or M-2020 (Daikin)), fully or partially fluorinated vinyl ethers, etc. Is mentioned. Examples of the monomer for imparting a crosslinkable group include glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinylglycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). In the latter case, it is possible to introduce a crosslinked structure by adding a compound having a group that reacts with a functional group in the polymer and one or more reactive groups after copolymerization, as disclosed in JP-A-10-25388 and 10-147739. In the issue. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group. When the fluorine-containing copolymer is crosslinked by heating with a crosslinking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, it is a thermosetting type. In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, the ionizing radiation curable type is used.
 また上記モノマーに加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。 Further, in addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methyl styrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.
 架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20~70モル%、より好ましくは40~70モル%、架橋性基付与のためのモノマーが好ましくは1~20モル%、より好ましくは5~20モル%、併用されるその他のモノマーが好ましくは10~70モル%、より好ましくは10~50モル%の割合である。 The proportion of each monomer used to form the fluorinated copolymer before cross-linking is preferably 20 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer, The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.
 含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。 The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means of solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization or the like.
 架橋前の含フッ素樹脂は、市販されており使用することができる。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。 Fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), Opstar (JSR), etc. Can be mentioned.
 架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03~0.15の範囲、水に対する接触角が90~120度の範囲にあることが好ましい。 The low refractive index layer comprising a crosslinked fluorine-containing resin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.
 架橋した含フッ素樹脂を構成成分とする低屈折率層が無機粒子を含有することは、強度向上の点から好ましい。低屈折率層に用いられる無機微粒子としては、非晶質のものが好ましく用いられ、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、中でも金属酸化物が特に好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。2種以上の金属を含む無機微粒子を用いてもよい。特に好ましい無機微粒子は、二酸化珪素微粒子、即ちシリカ微粒子である。無機微粒子の平均粒径は0.001~0.2μmであることが好ましく、0.005~0.05μmであることがより好ましい。微粒子の粒径はなるべく均一(単分散)であることが好ましい。無機微粒子の粒径は大きすぎると光が散乱し、フィルムが不透明になり、小さすぎるものは凝集し易く合成及び取り扱いが困難である。 It is preferable from the point of strength improvement that the low refractive index layer containing a crosslinked fluorine-containing resin as a constituent component contains inorganic particles. As the inorganic fine particles used in the low refractive index layer, amorphous particles are preferably used, and are preferably composed of metal oxides, nitrides, sulfides or halides, and metal oxides are particularly preferable. As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. Inorganic fine particles containing two or more metals may be used. Particularly preferred inorganic fine particles are silicon dioxide fine particles, that is, silica fine particles. The average particle size of the inorganic fine particles is preferably 0.001 to 0.2 μm, and more preferably 0.005 to 0.05 μm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible. If the particle size of the inorganic fine particles is too large, light is scattered and the film becomes opaque. If the particle size is too small, the particles are likely to aggregate and difficult to synthesize and handle.
 無機微粒子の配合量は、低屈折率層の全質量の5~90質量%であることが好ましく、更に好ましくは10~70質量%であり、特に好ましくは10~50質量%である。無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合は後述するシランカップリング剤による処理が特に有効である。 The compounding amount of the inorganic fine particles is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and particularly preferably 10 to 50% by mass with respect to the total mass of the low refractive index layer. The inorganic fine particles are preferably used after being subjected to a surface treatment. The surface treatment method includes physical surface treatment such as plasma discharge treatment and corona discharge treatment and chemical surface treatment using a coupling agent, but the use of a coupling agent is preferred. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent, etc.) is preferably used. When the inorganic fine particles are silica, treatment with a silane coupling agent described later is particularly effective.
 また、低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ-グリシジルオキシプロピルトリアルコキシシラン、γ-グリシジルオキシプロピルメチルジアルコキシシラン、β-(3,4-エポキジシクロヘキシル)エチルトリアルコキシシラン、γ-メタクリロイルオキシプロピルトリアルコキシシラン、γ-アミノプロピルトリアルコキシシラン、γ-メルカプトプロピルトリアルコキシシラン、γ-クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。 Also, various sol-gel materials can be used as the material for the low refractive index layer. As such sol-gel materials, metal alcoholates (alcolates such as silane, titanium, aluminum, zirconium, etc.), organoalkoxy metal compounds and hydrolysates thereof can be used. In particular, alkoxysilane, organoalkoxysilane and its hydrolyzate are preferable. Examples of these include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), alkyltrialkoxysilane (methyltrimethoxysilane, ethyltrimethoxysilane, etc.), aryltrialkoxysilane (phenyltrimethoxysilane, etc.), dialkyl. Examples thereof include dialkoxysilane and diaryl dialkoxysilane. In addition, organoalkoxysilanes having various functional groups (vinyl trialkoxysilane, methylvinyl dialkoxysilane, γ-glycidyloxypropyltrialkoxysilane, γ-glycidyloxypropylmethyl dialkoxysilane, β- (3,4-epoxy) Dicyclohexyl) ethyltrialkoxysilane, γ-methacryloyloxypropyltrialkoxysilane, γ-aminopropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, γ-chloropropyltrialkoxysilane, etc.), perfluoroalkyl group-containing silane compounds ( For example, it is also preferable to use (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, etc.). In particular, the use of a fluorine-containing silane compound is preferable in terms of lowering the refractive index of the layer and imparting water and oil repellency.
 低屈折率層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5~200nmであることが好ましく、1~100nmであることがより好ましく、3~70nmであることが更に好ましく、5~40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。 As the low refractive index layer, it is also preferable to use a layer formed using microparticles between or within the fine particles using inorganic or organic fine particles. The average particle diameter of the fine particles is preferably from 0.5 to 200 nm, more preferably from 1 to 100 nm, still more preferably from 3 to 70 nm, and most preferably from 5 to 40 nm. The particle diameter of the fine particles is preferably as uniform (monodispersed) as possible.
 無機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。特に好ましい無機化合物は、二酸化珪素、即ちシリカである。 The inorganic fine particles are preferably amorphous. The inorganic fine particles are preferably made of a metal oxide, nitride, sulfide or halide, more preferably a metal oxide or a metal halide, and most preferably a metal oxide or a metal fluoride. . As metal atoms, Na, K, Mg, Ca, Ba, Al, Zn, Fe, Cu, Ti, Sn, In, W, Y, Sb, Mn, Ga, V, Nb, Ta, Ag, Si, B Bi, Mo, Ce, Cd, Be, Pb and Ni are preferable, and Mg, Ca, B and Si are more preferable. An inorganic compound containing two kinds of metals may be used. A particularly preferred inorganic compound is silicon dioxide, ie silica.
 無機微粒子内ミクロボイドは、例えば、粒子を形成するシリカの分子を架橋させることにより形成することができる。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル-ゲル法(特開昭53-112732号、特公昭57-9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することができる。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることもできる。市販の多孔質無機微粒子(例えば、二酸化珪素ゾル)を用いてもよい。ミクロボイドを有する無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。 The microvoids in the inorganic fine particles can be formed, for example, by crosslinking silica molecules forming the particles. Crosslinking silica molecules reduces the volume and makes the particles porous. (Porous) inorganic fine particles having microvoids are prepared by a sol-gel method (described in JP-A No. 53-112732 and Japanese Patent Publication No. 57-9051) or a precipitation method (described in APPLIED OPTICS, Vol. 27, page 3356 (1988)). Can be directly synthesized as a dispersion. Further, the powder obtained by the drying / precipitation method can be mechanically pulverized to obtain a dispersion. Commercially available porous inorganic fine particles (for example, silicon dioxide sol) may be used. The inorganic fine particles having microvoids are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone) are preferable.
 有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35~80質量%であることが好ましく、45~75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30~80モル%であることが更に好ましく、35~50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α-メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N-tert-ブチルアクリルアミド、N-シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4-シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4-シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4-ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。 The organic fine particles are also preferably amorphous. The organic fine particles are preferably polymer fine particles synthesized by polymerization reaction of monomers (for example, emulsion polymerization method). The organic fine particle polymer preferably contains a fluorine atom. The proportion of fluorine atoms in the polymer is preferably 35 to 80% by mass, and more preferably 45 to 75% by mass. It is also preferable to form microvoids in the organic fine particles by, for example, cross-linking the polymer forming the particles and reducing the volume. In order to crosslink the polymer forming the particles, it is preferable to use 20 mol% or more of the monomer for synthesizing the polymer as a polyfunctional monomer. The ratio of the polyfunctional monomer is more preferably 30 to 80 mol%, and most preferably 35 to 50 mol%. Examples of the monomer used for the synthesis of the organic fine particles include fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene) as examples of monomers containing fluorine atoms used to synthesize fluorine-containing polymers. Perfluoro-2,2-dimethyl-1,3-dioxole), fluorinated alkyl esters of acrylic acid or methacrylic acid, and fluorinated vinyl ethers. A copolymer of a monomer containing a fluorine atom and a monomer not containing a fluorine atom may be used. Examples of monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate). , Methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate), styrenes (for example, styrene, vinyl toluene, α-methyl styrene), vinyl ethers (for example, methyl vinyl ether), vinyl esters ( Examples thereof include vinyl acetate and vinyl propionate), acrylamides (for example, N-tert-butylacrylamide, N-cyclohexylacrylamide), methacrylamides and acrylonitriles. Examples of polyfunctional monomers include dienes (eg, butadiene, pentadiene), esters of polyhydric alcohols and acrylic acid (eg, ethylene glycol diacrylate, 1,4-cyclohexane diacrylate, dipentaerythritol hexaacrylate), Esters of polyhydric alcohol and methacrylic acid (for example, ethylene glycol dimethacrylate, 1,2,4-cyclohexanetetramethacrylate, pentaerythritol tetramethacrylate), divinyl compounds (for example, divinylcyclohexane, 1,4-divinylbenzene), divinyl Examples include sulfones, bisacrylamides (eg, methylenebisacrylamide) and bismethacrylamides.
 粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することができる。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節できる。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることができる。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることができる。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。 The micro voids between the particles can be formed by stacking at least two fine particles. When spherical particles having the same particle diameter (completely monodispersed) are closely packed, microvoids between particles with a porosity of 26% by volume are formed. When spherical fine particles having the same particle diameter are simply filled with cubic particles, microvoids between fine particles having a porosity of 48% by volume are formed. In an actual low-refractive index layer, the particle size distribution of fine particles and intra-particle microvoids exist, so the porosity varies considerably from the above theoretical value. When the porosity is increased, the refractive index of the low refractive index layer is lowered. When microvoids are formed by stacking fine particles, the size of the microvoids can be adjusted to an appropriate value (does not scatter light and cause no problem with the strength of the low refractive index layer) by adjusting the particle size of the fine particles. Can be adjusted. Furthermore, by making the particle diameters of the fine particles uniform, it is possible to obtain an optically uniform low refractive index layer in which the size of microvoids between particles is uniform. Thereby, although the low refractive index layer is microscopically a microvoided porous film, it can be optically or macroscopically uniform. The interparticle microvoids are preferably closed in the low refractive index layer by fine particles and a polymer. The closed air gap also has an advantage that light scattering on the surface of the low refractive index layer is less than that of an opening opened on the surface of the low refractive index layer.
 ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることができる。 By forming the microvoids, the macroscopic refractive index of the low refractive index layer becomes lower than the sum of the refractive indexes of the components constituting the low refractive index layer. The refractive index of the layer is the sum of the refractive indices per volume of the layer components. The refractive index of the constituent component of the low refractive index layer such as fine particles or polymer is larger than 1, whereas the refractive index of air is 1.00. Therefore, a low refractive index layer having a very low refractive index can be obtained by forming microvoids.
 低屈折率層は、5~80質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10~30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)~(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)~(3)全てを組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。 The low refractive index layer preferably contains 5 to 80% by mass of polymer. The polymer has a function of adhering fine particles and maintaining the structure of a low refractive index layer including voids. The amount of the polymer used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids. The amount of the polymer is preferably 10 to 30% by mass with respect to the total amount of the low refractive index layer. In order to adhere the fine particles with the polymer, (1) the polymer is bonded to the surface treatment agent of the fine particles, (2) the fine particles are used as a core, and a polymer shell is formed around the fine particles. It is preferable to use a polymer as the binder. The polymer to be bonded to the surface treatment agent (1) is preferably the shell polymer (2) or the binder polymer (3). The polymer (2) is preferably formed around the fine particles by a polymerization reaction before preparing the coating solution for the low refractive index layer. The polymer (3) is preferably formed by adding a monomer to the coating solution for the low refractive index layer and performing a polymerization reaction simultaneously with or after the coating of the low refractive index layer. It is preferable to carry out a combination of two or all of the above (1) to (3), and to carry out a combination of (1) and (3) or a combination of (1) to (3). Particularly preferred. (1) Surface treatment, (2) shell, and (3) binder will be described sequentially.
 (1)表面処理
 微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子が二酸化珪素からなる場合は、シランカップリング剤による表面処理が特に有効に実施できる。具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリメトキシシラン、γ-グリシジルオキシプロピルトリエトキシシラン、γ-(β-グリシジルオキシエトキシ)プロピルトリメトキシシラン、β-(3,4-エポシシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン及びβ-シアノエチルトリエトキシシランが挙げられる。
(1) Surface treatment It is preferable that the fine particles (particularly inorganic fine particles) are subjected to a surface treatment to improve the affinity with the polymer. The surface treatment can be classified into physical surface treatment such as plasma discharge treatment and corona discharge treatment, and chemical surface treatment using a coupling agent. It is preferable to carry out only chemical surface treatment or a combination of physical surface treatment and chemical surface treatment. As the coupling agent, an organoalkoxy metal compound (eg, titanium coupling agent, silane coupling agent) is preferably used. When the fine particles are made of silicon dioxide, surface treatment with a silane coupling agent can be carried out particularly effectively. Specific examples of the silane coupling agent include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane. Methoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxy Propyltriethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, Examples include N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.
 また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジエトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン、γ-グリシジルオキシプロピルフェニルジエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。 Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimethyl Kishishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.
 これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ-アクリロイルオキシプロピルトリメトキシシラン及びγ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルジエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン及びγ-メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。 Of these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxy are those having a disubstituted alkyl group with respect to silicon. Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxy Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.
 2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリングを用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n-プロピル、オルトケイ酸i-プロピル、オルトケイ酸n-ブチル、オルトケイ酸sec-ブチル、オルトケイ酸t-ブチル)及びその加水分解物が挙げられる。カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。 Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane couplings may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and hydrolysates thereof. The surface treatment with the coupling agent can be carried out by adding the coupling agent to the dispersion of fine particles and leaving the dispersion at a temperature from room temperature to 60 ° C. for several hours to 10 days. In order to accelerate the surface treatment reaction, inorganic acids (for example, sulfuric acid, hydrochloric acid, nitric acid, chromic acid, hypochlorous acid, boric acid, orthosilicic acid, phosphoric acid, carbonic acid), organic acids (for example, acetic acid, polyacrylic acid, Benzenesulfonic acid, phenol, polyglutamic acid), or salts thereof (eg, metal salts, ammonium salts) may be added to the dispersion.
 (2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35~80質量%のフッ素原子を含むことが好ましく、45~75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
(2) The polymer forming the shell is preferably a polymer having a saturated hydrocarbon as the main chain. A polymer containing a fluorine atom in the main chain or side chain is preferred, and a polymer containing a fluorine atom in the side chain is more preferred. Polyacrylic acid esters or polymethacrylic acid esters are preferred, and esters of fluorine-substituted alcohols with polyacrylic acid or polymethacrylic acid are most preferred. The refractive index of the shell polymer decreases as the content of fluorine atoms in the polymer increases. In order to reduce the refractive index of the low refractive index layer, the shell polymer preferably contains 35 to 80% by mass of fluorine atoms, and more preferably contains 45 to 75% by mass of fluorine atoms. The polymer containing a fluorine atom is preferably synthesized by a polymerization reaction of an ethylenically unsaturated monomer containing a fluorine atom. Examples of ethylenically unsaturated monomers containing fluorine atoms include fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole), Mention may be made of esters of fluorinated vinyl ethers and fluorine-substituted alcohols with acrylic acid or methacrylic acid.
 シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N-tertブチルアクリルアミド、N-シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。 The polymer forming the shell may be a copolymer comprising a repeating unit containing a fluorine atom and a repeating unit not containing a fluorine atom. The repeating unit containing no fluorine atom is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer containing no fluorine atom. Examples of ethylenically unsaturated monomers that do not contain fluorine atoms include olefins (eg, ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride), acrylic esters (eg, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylic acid esters (for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene and its derivatives (for example, styrene, divinylbenzene, vinyl toluene, α-methyl styrene), vinyl ether ( For example, methyl vinyl ether), vinyl esters (for example, vinyl acetate, vinyl propionate, vinyl cinnamate), acrylamide (for example, N-tertbutylacrylamide, N-cyclohexylacrylic) Amides), methacrylamide and acrylonitrile.
 後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5~90体積%含まれていることが好ましく、15~80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。 When the binder polymer (3) described later is used in combination, a crosslinkable functional group may be introduced into the shell polymer to chemically bond the shell polymer and the binder polymer by crosslinking. The shell polymer may have crystallinity. When the glass transition temperature (Tg) of the shell polymer is higher than the temperature at the time of forming the low refractive index layer, it is easy to maintain microvoids in the low refractive index layer. However, if Tg is higher than the temperature at which the low refractive index layer is formed, the fine particles are not fused, and the low refractive index layer may not be formed as a continuous layer (resulting in a decrease in strength). In that case, it is desirable to use a binder polymer (3) described later in combination, and form the low refractive index layer as a continuous layer with the binder polymer. By forming a polymer shell around the fine particles, core-shell fine particles are obtained. The core-shell fine particles preferably contain 5 to 90% by volume, more preferably 15 to 80% by volume of a core composed of inorganic fine particles. Two or more kinds of core-shell fine particles may be used in combination. Further, inorganic fine particles having no shell and core-shell particles may be used in combination.
 (3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。
(3) The binder binder polymer is preferably a polymer having a saturated hydrocarbon or polyether as the main chain, and more preferably a polymer having a saturated hydrocarbon as the main chain. The binder polymer is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder polymer, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
 2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4-ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。 Examples of monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol). Tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Pentaerythritol hexa (meth) acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinylbenzene and its derivatives (Eg 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg divinyl sulfone), acrylamide (eg methylene bisacrylamide) and methacrylamide Is mentioned. The polymer having a polyether as the main chain is preferably synthesized by a ring-opening polymerization reaction of a polyfunctional epoxy compound.
 2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。 In place of or in addition to the monomer having two or more ethylenically unsaturated groups, a crosslinked structure may be introduced into the binder polymer by a reaction of a crosslinkable group. Examples of crosslinkable functional groups include isocyanate groups, epoxy groups, aziridine groups, oxazoline groups, aldehyde groups, carbonyl groups, hydrazine groups, carboxyl groups, methylol groups, and active methylene groups. Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane can also be used as a monomer for introducing a crosslinked structure. A functional group that exhibits crosslinkability as a result of the decomposition reaction, such as a block isocyanate group, may be used. The cross-linking group is not limited to the above compound, and may be one that exhibits reactivity as a result of decomposition of the functional group.
 バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3-ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、1-ヒドロキシジメチルフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4-メチルチオ-2-モルフォリノプロピオフェノン及び2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4-ジクロロベンゾフェノン、4,4-ジクロロベンゾフェノン及びp-クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。 The polymerization initiator used for the polymerization reaction and the crosslinking reaction of the binder polymer is a thermal polymerization initiator or a photopolymerization initiator, and the photopolymerization initiator is more preferable. Examples of photopolymerization initiators include acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds , Fluoroamine compounds and aromatic sulfoniums. Examples of acetophenones include 2,2-diethoxyacetophenone, p-dimethylacetophenone, 1-hydroxydimethylphenyl ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-4-methylthio-2-morpholinopropiophenone and 2 -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone. Examples of benzoins include benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether. Examples of benzophenones include benzophenone, 2,4-dichlorobenzophenone, 4,4-dichlorobenzophenone and p-chlorobenzophenone. Examples of phosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
 バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。 The binder polymer is preferably formed by adding a monomer to the coating solution for the low refractive index layer, and at the same time as or after coating the low refractive index layer, by a polymerization reaction (further crosslinking reaction if necessary). Even if a small amount of polymer (for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin) is added to the coating solution for the low refractive index layer Good.
 光学フィルムの各層またはその塗布液には、前述した成分(無機微粒子、ポリマー、分散媒体、重合開始剤、重合促進剤)以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号)により、塗布により形成することができる。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。 In addition to the above-described components (inorganic fine particles, polymer, dispersion medium, polymerization initiator, polymerization accelerator), each layer of the optical film or the coating solution thereof includes a polymerization inhibitor, a leveling agent, a thickener, a coloring inhibitor, an ultraviolet ray Absorbers, silane coupling agents, antistatic agents and adhesion promoters may be added. Each layer of the antireflection film is formed by coating by dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating or extrusion coating (US Pat. No. 2,681,294). Can do. Two or more layers may be applied simultaneously. For the method of simultaneous application, US Pat. Nos. 2,761,791, 2,941,898, 3,508,947, 3,526,528 and Yuji Harasaki, Coating Engineering, page 253, It is described in Asakura Shoten (1973).
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明の巻取りの長さとは、前記光学フィルムがエンボス処理をされた後にロール状に巻き取られた長さをいう。光学フィルムの巻取長が500~8000mであるのが、好ましい。ここで、光学フィルムの巻取り長さが500m未満であれば、得られる光学フィルムの巻本数が多すぎて、包装の対応が困難であるので、好ましくない。また光学フィルムの巻取長が8000mを超えると、ブロッキング等が増大するので、好ましくない。 The winding length of the present invention refers to the length of the optical film that has been wound into a roll after being embossed. The winding length of the optical film is preferably 500 to 8000 m. Here, if the winding length of the optical film is less than 500 m, the number of windings of the obtained optical film is too large, and it is difficult to cope with packaging, which is not preferable. On the other hand, when the winding length of the optical film exceeds 8000 m, blocking or the like increases, which is not preferable.
 以下、本発明を実施例を挙げて具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the embodiments of the present invention are not limited thereto.
(実施例1~13、比較例1~2)
 長さ3900m、幅1.4m、膜厚40μmのセルロースエステルフィルムを下記のように作製した。この基材フィルムの一方の面にバックコート層を設け、更にバックコート層とは反対の面にハードコート層を設け、次いで下記反射防止層を塗設した。その後、下記に示すようなエンボス部を設けた。基材フィル作成から反射防止層の形成までは、フィルムの巻き取りは行わず、連続的に行い、エンボス部形成後にロール状に巻きとった。この時の基材フィルムの融点は、300℃、ガラス転移温度は、107℃であった。
(Examples 1 to 13, Comparative Examples 1 and 2)
A cellulose ester film having a length of 3900 m, a width of 1.4 m, and a film thickness of 40 μm was produced as follows. A back coat layer was provided on one side of the base film, a hard coat layer was provided on the side opposite to the back coat layer, and the following antireflection layer was then applied. Thereafter, an embossed portion as shown below was provided. From the formation of the substrate film to the formation of the antireflection layer, the film was not wound up, but continuously, and wound into a roll after forming the embossed portion. At this time, the base film had a melting point of 300 ° C. and a glass transition temperature of 107 ° C.
 (セルロースエステルフィルムの作製)
〈ドープの調製〉
 セルローストリアセテート(アセチル基置換度2.9)
100質量部
 トリフェニルホスフェイト 10質量部
 ビフェニルジフェニルホスフェイト 2質量部
 チヌビン326(チバ・ジャパン(株)製) 0.5質量部
 アエロジル R972V(日本アエロジル(株)製) 0.2質量部
 メチレンクロライド 405質量部
 エタノール 45質量部
 以上を密閉型の溶解釜に投入し、攪拌しながら70℃で完全に溶解し、冷却後、安積濾紙(株)製の安積濾紙No.244を使用して濾過してドープAを得た。調製したドープAをステンレスベルト上に流延した。ステンレスベルト上で、溶媒を蒸発させ、ステンレスベルト上からウェブを剥離した。剥離したウェブをテンター乾燥機に導入し、両端をクリップで把持して幅方向に1.1倍延伸しながら80℃で乾燥させ、110℃、次いで125℃の各乾燥ゾーンを有するロール乾燥機内に配置された多数のロールを通して搬送させながら乾燥を終了させセルロースエステルフィルムを作成した。
(Production of cellulose ester film)
<Preparation of dope>
Cellulose triacetate (acetyl group substitution degree 2.9)
100 parts by mass Triphenyl phosphate 10 parts by mass Biphenyl diphenyl phosphate 2 parts by mass Tinuvin 326 (manufactured by Ciba Japan Co., Ltd.) 0.5 parts by mass Aerosil R972V (manufactured by Nippon Aerosil Co., Ltd.) 0.2 parts by mass Methylene chloride 405 parts by mass Ethanol 45 parts by mass The above was put into a closed-type dissolution kettle, completely dissolved at 70 ° C. with stirring, and after cooling, Azumi Filter Paper No. Filtration using 244 gave Dope A. The prepared dope A was cast on a stainless steel belt. The solvent was evaporated on the stainless steel belt, and the web was peeled off from the stainless steel belt. The peeled web was introduced into a tenter dryer, both ends were gripped with clips and dried at 80 ° C. while being stretched 1.1 times in the width direction, and placed in a roll dryer having respective drying zones of 110 ° C. and then 125 ° C. Drying was terminated while being conveyed through a number of arranged rolls, and a cellulose ester film was prepared.
 (バックコート層の塗設)
 下記のバックコート層塗布組成物をウェット膜厚13μmとなるようにダイコートし、乾燥温度90℃にて乾燥させバックコート層を塗設した。
(Coating back coat layer)
The following backcoat layer coating composition was die-coated so as to have a wet film thickness of 13 μm, and dried at a drying temperature of 90 ° C. to coat a backcoat layer.
 〈バックコート層塗布組成物〉
 アセトン 30質量部
 酢酸エチル 45質量部
 イソプロピルアルコール 10質量部
 ジアセチルセルロース 0.5質量部
 超微粒子シリカ2%アセトン分散液((アエロジル200V)日本アエロジル(株)製)0.2質量部
<Backcoat layer coating composition>
Acetone 30 parts by weight Ethyl acetate 45 parts by weight Isopropyl alcohol 10 parts by weight Diacetyl cellulose 0.5 parts by weight Ultrafine silica 2% acetone dispersion (Aerosil 200V, manufactured by Nippon Aerosil Co., Ltd.) 0.2 parts by weight
 (ハードコート層の塗設)
前記バックコート層とは反対の面に下記ハードコート層塗布組成物をダイコートし、80℃で5分間乾燥した後160mJ/cmの紫外線を照射し、下記反射防止層との乾燥膜厚の合計が5μmとなるようにハードコート層を設け、ハードコートフィルムを作成した。
(Coating of hard coat layer)
The following hard coat layer coating composition is die coated on the surface opposite to the back coat layer, dried at 80 ° C. for 5 minutes, and then irradiated with 160 mJ / cm 2 of ultraviolet rays, and the total dry film thickness with the following antireflection layer Was provided with a hard coat layer so as to be 5 μm, and a hard coat film was prepared.
 〈ハードコート層塗布組成物〉
 ジペンタエリスリトールヘキサアクリレート
70質量部
 トリメチロールプロパントリアクリレート 30質量部
 光反応開始剤(イルガキュア184(チバ・ジャパン(株)製)) 4質量部
 酢酸エチル 150質量部
 プロピレングリコールモノメチルエーテル 150質量部
 シリコン化合物(BYK-307(ビックケミージャパン社製)) 0.4質量部
 ハードコート層の鉛筆硬度を測定したところ3Hの硬度を示し、耐擦り傷性効果を示した。
<Hard coat layer coating composition>
Dipentaerythritol hexaacrylate 70 parts by weight Trimethylolpropane triacrylate 30 parts by weight Photoinitiator (Irgacure 184 (manufactured by Ciba Japan)) 4 parts by weight Ethyl acetate 150 parts by weight Propylene glycol monomethyl ether 150 parts by weight Silicon compound (BYK-307 (manufactured by Big Chemie Japan)) 0.4 parts by mass When the pencil hardness of the hard coat layer was measured, it showed a hardness of 3H and an abrasion resistance effect.
 (光学フィルムの作製)
 前記で作製したハードコートフィルム上に反射防止層を形成した。
(Production of optical film)
An antireflection layer was formed on the hard coat film prepared above.
 ハードコートフィルムの上に、下記高屈折率層用塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ、高屈折率層(屈折率1.9)を形成した。更にその上に、下記低屈折率層用塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化して低屈折率層(屈折率1.45)を形成し、光学フィルムを作成した。 On the hard coat film, the following coating solution for a high refractive index layer is applied using a bar coater, dried at 60 ° C., then irradiated with ultraviolet rays to cure the coating layer, and a high refractive index layer (refractive index 1). .9) was formed. Furthermore, the following coating solution for a low refractive index layer was applied using a bar coater, dried at 60 ° C., then irradiated with ultraviolet rays to cure the coating layer, and the low refractive index layer (refractive index 1.45). ) To form an optical film.
 〈高屈折率層/低屈折率層の作製〉
(二酸化チタン分散物の調製)
 二酸化チタン(1次粒子質量平均粒径:50nm、屈折率:2.70)30質量部、アニオン性ジアクリレートモノマー(PM21、日本化薬(株)製)4.5質量部、カチオン性メタクリレートモノマー(DMAEA、興人(株)製)0.3質量部及びメチルエチルケトン65.2質量部を、サンドグラインダーにより分散し、二酸化チタン分散物を調製した。
<Preparation of high refractive index layer / low refractive index layer>
(Preparation of titanium dioxide dispersion)
Titanium dioxide (primary particle mass average particle diameter: 50 nm, refractive index: 2.70) 30 parts by mass, anionic diacrylate monomer (PM21, Nippon Kayaku Co., Ltd.) 4.5 parts by mass, cationic methacrylate monomer (DMAEA, manufactured by Kojin Co., Ltd.) 0.3 parts by mass and 65.2 parts by mass of methyl ethyl ketone were dispersed by a sand grinder to prepare a titanium dioxide dispersion.
 (高屈折率層用塗布液の調製)
 シクロヘキサノン1152.8g及びメチルエチルケトン37.2gに、光重合開始剤(イルガキュア907、チバガイギー社製)0.06g及び光増感剤(カヤキュアーDETX、日本化薬(株)製)0.02gを溶解した。更に、上記の二酸化チタン分散物及びジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)の二酸化チタン分散物の比率を増加させ、高屈折率層の屈折率となるように量を調節して、室温で30分間攪拌した後、孔径0.4μmのポリプロピレン製フィルターで濾過して、高屈折率層用塗布液を調製した。この塗布液を、セルロースエステルフィルムに塗布、乾燥し紫外線硬化後の屈折率を測定したところ、屈折率1.9、乾燥膜厚68nmの高屈折率層が得られた。
(Preparation of coating solution for high refractive index layer)
In 1152.8 g of cyclohexanone and 37.2 g of methyl ethyl ketone, 0.06 g of a photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy) and 0.02 g of a photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) were dissolved. Furthermore, the ratio of the above titanium dioxide dispersion and the titanium dioxide dispersion of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku Co., Ltd.) is increased, and the refractive index of the high refractive index layer is increased. The amount was adjusted so as to be a ratio, and the mixture was stirred at room temperature for 30 minutes, and then filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a coating solution for a high refractive index layer. When this coating liquid was applied to a cellulose ester film and dried, and the refractive index after UV curing was measured, a high refractive index layer having a refractive index of 1.9 and a dry film thickness of 68 nm was obtained.
 (低屈折率層用塗布液の調製)
 平均粒径15nmのシリカ微粒子のメタノール分散液(メタノールシリカゾル、日産化学(株)製)200gにシランカップリング剤(KBM-503、信越シリコーン(株)製)3g及び0.1mol/L塩酸2gを加え、室温で5時間攪拌した後、3日間室温で放置して、シランカップリング処理したシリカ微粒子の分散物を調製した。分散物35.04gに、イソプロピルアルコール58.35g及びジアセトンアルコール39.34gを加えた。また、光重合開始剤(イルガキュア907、チバガイギー社製)1.02g及び光増感剤(カヤキュアーDETX、日本化薬(株)製)0.51gを772.85gのイソプロピルアルコールに溶解した溶液を加え、更に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)25.6gを加えて溶解した。得られた溶液67.23gを、上記分散液、イソプロピルアルコール及びジアセトンアルコールの混合液に添加した。混合物を20分間室温で攪拌し、孔径0.4μmのポリプロピレン製フィルターで濾過して、低屈折率層用塗布液を調製した。この塗布液をセルロースエステルフィルムに塗布、乾燥し紫外線硬化後の屈折率を測定したところ、屈折率は1.45、乾燥膜厚100nmであった。
(Preparation of coating solution for low refractive index layer)
200 g of a methanol dispersion of silica fine particles having an average particle size of 15 nm (methanol silica sol, manufactured by Nissan Chemical Co., Ltd.), 3 g of a silane coupling agent (KBM-503, manufactured by Shin-Etsu Silicone Co., Ltd.) and 2 g of 0.1 mol / L hydrochloric acid In addition, the mixture was stirred at room temperature for 5 hours and then allowed to stand at room temperature for 3 days to prepare a dispersion of silica fine particles treated with silane coupling. To 35.04 g of the dispersion, 58.35 g of isopropyl alcohol and 39.34 g of diacetone alcohol were added. Further, 1.02 g of photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy) and 0.51 g of photosensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.) in 772.85 g of isopropyl alcohol were added. Furthermore, 25.6 g of a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) was added and dissolved. 67.23 g of the resulting solution was added to the above dispersion, a mixture of isopropyl alcohol and diacetone alcohol. The mixture was stirred for 20 minutes at room temperature and filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a coating solution for a low refractive index layer. When this coating liquid was applied to a cellulose ester film and dried, and the refractive index after UV curing was measured, the refractive index was 1.45 and the dry film thickness was 100 nm.
 《エンボス部の作製》
 セルロースエステルフィルムに上記ハードコート層/反射防止層を塗設した光学フィルムに、表面に凹凸を形成したエンボスロールを加熱して押し当て、光学フィルムの幅方向両端部に、幅20mm、エンボス高さ10μmのエンボス部を以下の条件で作成し、表1に示す実施例1~12、比較例1~4の光学フィルムとした。
<Production of embossed part>
An embossing roll with irregularities formed on the surface is heated and pressed against the optical film in which the hard coat layer / antireflection layer is coated on the cellulose ester film, and the width of the embossed film is 20 mm wide at both ends in the width direction of the optical film. An embossed part of 10 μm was prepared under the following conditions to obtain optical films of Examples 1 to 12 and Comparative Examples 1 to 4 shown in Table 1.
 エンボスロールの材質:炭素鋼(S45C)、焼き入れ処理実施
 エンボスロールの表面層:加工なし、DLC層1μm蒸着、TiCN層1μm蒸着
 エンボスロール表面温度:200~260℃
Embossing roll material: Carbon steel (S45C), quenching treatment Embossing roll surface layer: No processing, DLC layer 1 μm deposition, TiCN layer 1 μm deposition Embossing roll surface temperature: 200-260 ° C.
 〔評価〕
 (エンボス加工部伸び率の評価方法)
 フィルムから、エンボス加工部、エンボス非加工部それぞれにおいて、長手方向に同等の長さ、幅手方向にエンボス加工幅分切り取る。
[Evaluation]
(Embossed part elongation rate evaluation method)
From the film, the embossed part and the non-embossed part are each cut by the same length in the longitudinal direction and the embossed width in the width direction.
 エンボス加工部の長さをLa、エンボス非加工部の長さをLbとする。 The length of the embossed part is La, and the length of the unembossed part is Lb.
 ○:La/Lb<100.1%
 △:100.1%≦La/Lb<100.5%
 ×:La/Lb≧100.5%
○: La / Lb <100.1%
Δ: 100.1% ≦ La / Lb <100.5%
×: La / Lb ≧ 100.5%
 (ブラックバンドの評価)
 上記の方法により作製した実施例1~13、比較例1~2の光学フィルムのロール状態でのブラックバンドの発生の有無を目視により観察し、ブラックバンドの発生が全く観察されない場合を○、使用上問題ないもののわずかに観察されるものを△、ブラックバンドによりフィルムにシワや異物が発生し、製品としては使用困難になったものを×とした。
(Evaluation of black band)
The optical films of Examples 1 to 13 and Comparative Examples 1 and 2 produced by the above method were visually observed for the occurrence of black bands in the roll state, and when no black bands were observed, ○ Although it was not a problem, it was evaluated as Δ when slightly observed, and when the film was wrinkled or foreign due to the black band and became difficult to use as a product, it was rated as x.
 以上の評価結果を表1に示す。 The above evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、刻印リングの側面の表面粗さRaが10~20μmである実施例1~13については、エンボス加工部の伸び率に問題はなく、またブラックバンドにつても発生しなかった。 As is apparent from the results in Table 1, in Examples 1 to 13 where the surface roughness Ra of the side surface of the marking ring is 10 to 20 μm, there is no problem in the elongation ratio of the embossed portion, and the black band is also observed. Did not occur.
 一方で、刻印リングの側面の表面粗さRa、及び上面の表面粗さRaが10μmより小さお比較例1については、エンボス加工部の伸び率が大きくなり、またブラックバンドについても発生してしまったために品質的に問題が生じた。 On the other hand, in Comparative Example 1 in which the surface roughness Ra of the side surface of the marking ring and the surface roughness Ra of the upper surface are smaller than 10 μm, the elongation percentage of the embossed portion is increased and the black band is also generated. This caused quality problems.
 比較例2については、従来の低速製膜速度(60n/min)にてエンボスを作製した例である。この場合については、製膜速度が低いことから、刻印リングの側面の表面粗さRaが10μm以上、上面の表面粗さRaが10μm以上であっても、エンボス加工部の伸び率やブラックバンドについても問題は生じなかった。 Comparative Example 2 is an example in which embossing was produced at a conventional low film-forming speed (60 n / min). In this case, since the film forming speed is low, even when the surface roughness Ra of the side surface of the marking ring is 10 μm or more and the surface roughness Ra of the upper surface is 10 μm or more, the elongation rate of the embossed part and the black band There was no problem.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 すなわち、本実施形態に係る光学フィルムの製造方法は、刻印リングを有するエンボスロール及びエンボスバックロールを備えたエンボス装置を用いて、基材となる長尺状のフィルムに前記エンボスロールを押し当て、エンボス加工を施した後、前記フィルムを巻きとって製造された光学フィルムの製造方法であって、製膜速度が80m/分以上であり、前記刻印リングの側面の表面粗さRaが、10~20μmであることを特徴とする。 That is, the method for producing an optical film according to the present embodiment uses an embossing apparatus having an embossing roll having an engraved ring and an embossing back roll, and presses the embossing roll against a long film serving as a base material. A method for producing an optical film produced by winding the film after embossing, wherein the film-forming speed is 80 m / min or more, and the surface roughness Ra of the side surface of the marking ring is 10 to 10 It is characterized by being 20 μm.
 このような構成によれば、製膜速度が高速であるにもかかわらず、刻印リングの側面の表面粗さRaが10~20μmという範囲であることから、刻印リング側面と基材フィルム樹脂との摩擦が大きくなり、エンボス加工を行う工程においてエンボスロールが基材フィルムを押込む際に、加工面に形成されるリブの体積が大きくなり、基材フィルムの長手方向及び幅手方向の伸びである端部伸びの発生しない光学フィルムを得ることができる。 According to such a configuration, the surface roughness Ra of the side surface of the marking ring is in the range of 10 to 20 μm even though the film forming speed is high. When the embossing roll pushes the base film in the embossing process, the volume of ribs formed on the processed surface increases and the base film is elongated in the longitudinal direction and the width direction. An optical film in which no end elongation occurs can be obtained.
 前記光学フィルムの製造方法において、刻印リングの上面の表面粗さRaが、10~20μmであることが好ましい。 In the method for producing an optical film, the surface roughness Ra of the upper surface of the marking ring is preferably 10 to 20 μm.
 このような構成によれば、刻印リングの上面に対しても研磨することで、上述の刻印リング側面に加えて上面についても、基材フィルム樹脂との摩擦が大きくなることで、さらに端部伸びが発生しない光学フィルムを得ることができる。 According to such a configuration, polishing on the upper surface of the marking ring also increases the friction with the base film resin on the upper surface in addition to the side surface of the marking ring described above. It is possible to obtain an optical film in which no occurrence occurs.
 また、前記光学フィルムの製造方法において、刻印リングの側面及び上面が、ワイヤーブラシ、ブラスト処理、バーチカル研磨機から選ばれる二種以上を用いて研磨されることが好ましい。研磨に関しては、ブラスト加工装置を使用することによって、微小凹凸部分の研磨加工も行うことができる。 In the method for producing an optical film, it is preferable that the side surface and the upper surface of the marking ring are polished using two or more selected from a wire brush, a blast treatment, and a vertical polishing machine. With respect to polishing, by using a blast processing apparatus, it is possible to perform polishing processing of minute uneven portions.
 ブラスト処理は、金属、ガラス・セラミックス等の無機材料、プラスチック等の合成樹脂、その他の樹脂、木材、岩石、その他各種材質の被加工物を研磨対象とすることが可能であり、圧縮流体と共にある一定の角度、速度で吹き付けることにより、加工表面が変形部を有する場合でも、最適な研磨が可能である。 Blasting can be applied to workpieces made of inorganic materials such as metals, glass and ceramics, synthetic resins such as plastics, other resins, wood, rocks, and other various materials, and with compressed fluid By spraying at a constant angle and speed, optimum polishing is possible even when the processed surface has a deformed portion.
 このような構成によれば、刻印リングの側面及び上面からなる表面に対して、より効果的に所望の表面粗さを付与することができ、この刻印リングを備えたエンボス装置によれば端部伸びが発生しない光学フィルムを得ることができる。 According to such a configuration, a desired surface roughness can be more effectively imparted to the surface composed of the side surface and the upper surface of the marking ring, and according to the embossing device provided with this marking ring, the end portion An optical film in which no elongation occurs can be obtained.
 また、前記光学フィルムの製造方法において、前記エンボスバックロールの表面温度が10~50℃以下であることが好ましい。 In the method for producing an optical film, the surface temperature of the embossed back roll is preferably 10 to 50 ° C. or less.
 このような構成によれば、エンボス装置に備えられたエンボスロールの温度を低温に調整することによって、エンボスリング表面からの伝熱を抑え、光学フィルムの端部伸びを抑制することができる。 According to such a configuration, by adjusting the temperature of the embossing roll provided in the embossing device to a low temperature, the heat transfer from the embossing ring surface can be suppressed, and the end elongation of the optical film can be suppressed.
 また、前記光学フィルムの製造方法において、前記エンボス装置を用いて製造された光学フィルムのリブ形状の幅が、3~100μmであることが好ましい。 In the optical film manufacturing method, it is preferable that the width of the rib shape of the optical film manufactured using the embossing apparatus is 3 to 100 μm.
 このような構成によれば、光学フィルムをロール状にする際に、ブラックバンドの発生を抑制することができる。 According to such a configuration, generation of a black band can be suppressed when the optical film is rolled.
 この出願は、2011年2月9日に出願された日本国特許出願特願2011-025846を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2011-025846 filed on Feb. 9, 2011, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 側面の表面粗さRaが、10~20μmである刻印リングを備えるエンボス装置を用いて製造した本発明の光学フィルムの方法を用いれば、基材フィルム樹脂との摩擦が大きくなることから、エンボス加工を行う工程において、エンボスリングが基材フィルムを押込む際に、端部伸びが発生せず、また、ロール状でのブラックバンドが発生しない。
 
Since the friction with the base film resin is increased by using the method of the optical film of the present invention manufactured by using an embossing apparatus having an engraved ring having a surface roughness Ra of 10 to 20 μm, embossing When the embossing ring pushes in the base film in the step of performing, no end elongation occurs and no black band in a roll shape occurs.

Claims (5)

  1.  刻印リングを有するエンボスロール及びエンボスバックロールを備えたエンボス装置を用いて、基材となる長尺状のフィルムに前記エンボスロールを押し当て、エンボス加工を施した後、前記フィルムを巻きとって製造された光学フィルムの製造方法であって、
     製膜速度が80m/分以上であり、
     前記刻印リングの側面の表面粗さRaが、10~20μmであることを特徴とする光学フィルムの製造方法。
    Using an embossing device equipped with an embossing roll having an engraved ring and an embossing back roll, the embossing roll is pressed against a long film as a base material, embossed, and then rolled to produce the film. A method for producing an optical film, comprising:
    The film forming speed is 80 m / min or more,
    A method for producing an optical film, wherein the surface roughness Ra of the side surface of the marking ring is 10 to 20 μm.
  2.  前記刻印リングの上面の表面粗さRaが、10~20μmであることを特徴とする請求項1に記載の光学フィルムの製造方法。 2. The method for producing an optical film according to claim 1, wherein the surface roughness Ra of the upper surface of the marking ring is 10 to 20 μm.
  3.  前記刻印リングの側面及び上面が、ワイヤーブラシ、ブラスト処理、バーチカル研磨機から選ばれる二種以上を用いて研磨されることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1 or 2, wherein the side surface and the upper surface of the marking ring are polished using two or more kinds selected from a wire brush, a blast treatment, and a vertical polishing machine.
  4.  前記エンボスバックロールの表面温度が10~50℃であることを特徴とする請求項1~3のいずれかに記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 3, wherein a surface temperature of the embossed back roll is 10 to 50 ° C.
  5.  前記エンボス装置を用いて製造された光学フィルムの凸部形状の幅が、3~100μmであることを特徴とする請求項1~4のいずれかに記載の光学フィルムの製造方法。 5. The method for producing an optical film according to claim 1, wherein the width of the convex shape of the optical film produced using the embossing apparatus is 3 to 100 μm.
PCT/JP2012/000893 2011-02-09 2012-02-09 Method for producing optical film WO2012108209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012556802A JPWO2012108209A1 (en) 2011-02-09 2012-02-09 Manufacturing method of optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025846 2011-02-09
JP2011-025846 2011-02-09

Publications (1)

Publication Number Publication Date
WO2012108209A1 true WO2012108209A1 (en) 2012-08-16

Family

ID=46638429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000893 WO2012108209A1 (en) 2011-02-09 2012-02-09 Method for producing optical film

Country Status (2)

Country Link
JP (1) JPWO2012108209A1 (en)
WO (1) WO2012108209A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
JP2014218016A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Knurling device and method, and film roll production method
WO2017141781A1 (en) * 2016-02-15 2017-08-24 シャープ株式会社 Optical member and acrylic polymer composition
WO2018071936A1 (en) * 2016-10-19 2018-04-26 Teufelberger Ges.M.B.H. Plastic strap and process for manufacturing plastic straps

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240228A (en) * 2005-03-07 2006-09-14 Konica Minolta Opto Inc Optical film and its manufacturing method
JP2009073154A (en) * 2007-09-25 2009-04-09 Konica Minolta Opto Inc Optical film and method for producing optical film
JP2009208358A (en) * 2008-03-04 2009-09-17 Konica Minolta Opto Inc Optical film
JP2010269506A (en) * 2009-05-21 2010-12-02 Bridgestone Corp Method for producing ethylene-unsaturated ester copolymer film for forming laminate
JP2010274615A (en) * 2009-06-01 2010-12-09 Konica Minolta Opto Inc Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849068B2 (en) * 2005-09-21 2011-12-28 コニカミノルタオプト株式会社 Antiglare antireflection film and method for producing antiglare antireflection film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240228A (en) * 2005-03-07 2006-09-14 Konica Minolta Opto Inc Optical film and its manufacturing method
JP2009073154A (en) * 2007-09-25 2009-04-09 Konica Minolta Opto Inc Optical film and method for producing optical film
JP2009208358A (en) * 2008-03-04 2009-09-17 Konica Minolta Opto Inc Optical film
JP2010269506A (en) * 2009-05-21 2010-12-02 Bridgestone Corp Method for producing ethylene-unsaturated ester copolymer film for forming laminate
JP2010274615A (en) * 2009-06-01 2010-12-09 Konica Minolta Opto Inc Method of manufacturing optical film, optical film, polarizing plate and liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
JP2014218016A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Knurling device and method, and film roll production method
WO2017141781A1 (en) * 2016-02-15 2017-08-24 シャープ株式会社 Optical member and acrylic polymer composition
JPWO2017141781A1 (en) * 2016-02-15 2018-09-20 シャープ株式会社 Optical member and acrylic polymerizable composition
WO2018071936A1 (en) * 2016-10-19 2018-04-26 Teufelberger Ges.M.B.H. Plastic strap and process for manufacturing plastic straps

Also Published As

Publication number Publication date
JPWO2012108209A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP4849068B2 (en) Antiglare antireflection film and method for producing antiglare antireflection film
JP4655663B2 (en) Method for producing roll-shaped film having coating layer, roll-shaped optical film, polarizing plate, liquid crystal display device
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP2007052333A (en) Surface-roughened optical film, method for producing the same, polarizing plate and image display device
JP2007233129A (en) Manufacturing method of glare-proof film, glare-proof film, glare-proof antireflection film and image display device
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP4400211B2 (en) Low reflection laminate and method for producing low reflection laminate
JP4924505B2 (en) Antiglare film, method for producing the same, polarizing plate using antiglare film, and display device
JP4479260B2 (en) Manufacturing method of optical film
JP2005148444A (en) Clear hard coating member, antireflection layered body using the same, and manufacturing method thereof
WO2012108209A1 (en) Method for producing optical film
JP2006146027A (en) Antiglare antireflection film, polarizing plate and display
JP2007156145A (en) Antireflection film, method of manufacturing same and image display device
JP2009288412A (en) Method for producing optical film, optical film, polarizing plate and liquid crystal display apparatus
JP2005309120A (en) Antireflection film, polarizing plate, and image display device
JP2005077795A (en) Optical film and its manufacturing method
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP2004258469A (en) Anti-reflection film, manufacturing method therefor, polarizer, and display device
WO2012108208A1 (en) Method for producing optical film
JP2006154200A (en) Antiglare antireflection film, manufacturing method of antiglare antireflection film and polarizing plate and display device using the same
JP2006010923A (en) Clear hard coat film, its manufacturing method, and antireflection film using the same
JP2009223129A (en) Method for manufacturing optical film, optical film, polarizing plate, and liquid crystal display device
JP2004029660A (en) Manufacturing method for optical film, optical film, and polarizing plate and display device provided with optical film
JP2005096095A (en) Hard coat film and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744761

Country of ref document: EP

Kind code of ref document: A1