JP2005121439A - 排ガス流量計測方法およびその装置 - Google Patents

排ガス流量計測方法およびその装置 Download PDF

Info

Publication number
JP2005121439A
JP2005121439A JP2003355690A JP2003355690A JP2005121439A JP 2005121439 A JP2005121439 A JP 2005121439A JP 2003355690 A JP2003355690 A JP 2003355690A JP 2003355690 A JP2003355690 A JP 2003355690A JP 2005121439 A JP2005121439 A JP 2005121439A
Authority
JP
Japan
Prior art keywords
flow rate
differential pressure
exhaust gas
frequency
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003355690A
Other languages
English (en)
Inventor
Hiroshi Nakamura
博司 中村
Masayuki Adachi
正之 足立
Ichiro Asano
一朗 浅野
Jiro Senda
二郎 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003355690A priority Critical patent/JP2005121439A/ja
Priority to DE07002436.9T priority patent/DE07002436T1/de
Priority to EP07002436A priority patent/EP1793210A3/en
Priority to EP04019438A priority patent/EP1508788B1/en
Priority to EP17157248.0A priority patent/EP3190393A1/en
Priority to DE602004004709T priority patent/DE602004004709T2/de
Priority to DE17157248.0T priority patent/DE17157248T1/de
Priority to US10/919,925 priority patent/US7110878B2/en
Publication of JP2005121439A publication Critical patent/JP2005121439A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】 脈動のある排ガスの流量を測定する際に、この脈動によって生じる測定誤差を的確に補正し、流量計測精度の向上を達成できる差圧式の排ガス流量計測方法および排ガス流量計測装置を提供する。
【解決手段】 エンジン排ガスExの流量Qを測定する差圧式流量計10において、検出した差圧信号Pdを周波数分解し、周波数分解によって得られた周波数に応じた補正係数を用いて補正することにより、脈動が発生して流量信号Qpit に誤差が生じた場合にも正確な流量Qを求める。
【選択図】 図5

Description

本発明は、自動車などのエンジンから排出される排ガスの流量計測方法およびその装置に関するものであり、より詳しくは、ピトー管式流量計などを用いて排ガス流量を計測する際に、エンジンの脈動によって生じる測定誤差を補正することができる差圧式排ガス流量計測方法およびその装置に関するものである。
例えば排気管内を流れる排ガスの流量を測定する差圧式流量計の一つに、ピトー管式流量計がある。このピトー管式流量計においては、標準状態換算のガス流量Qpit (t) 〔m3 /min〕は、下記(1)式によって与えられる。なお、本明細書の説明においては、時間tによる時系列的な値を示す符号に「(t) 」を付加して、例えばガス流量Qpit (t) と表わす。
Qpit (t)=K×√〔{Pg (t) /101.3}×{293.15/Tg (t) }×{Pd(t)/γg }〕 …式(1)
ここで、 K:比例係数
Pg (t) :ガス圧力〔κPa〕
Tg (t) :ガス温度〔K〕
Pd(t) :差圧
γg :標準状態におけるガス密度〔g/m3
すなわち、比例係数Kを予め求めておけば、管内を流れる排ガスの温度、圧力、ピトー管の差圧の測定値から、前記排ガスの流量を得ることができる。
このピトー管式流量計は、エンジンからの排ガスの流量を測定する際に用いられることがあるが、エンジンの排ガスには、その排出圧力に脈動が生じることが知られている。この脈動はエンジン排ガスの固有の問題であり、その脈動のメカニズムやその影響を根本的に解明する努力が各方面でなされている。そして、前記ピトー管式流量計を用いてエンジン排ガスの流量を連続測定する場合には、この排ガスの圧力(差圧)を直接測定するために、脈動発生時にはその影響を直接受けて測定誤差が大きくなることがあった。
図8は、圧力変動のあるガスの流量をピトー管を用いて測定したときにおける流量の測定値とガス流量の真値の比を示す図である。また、図9は前記ピトー管を用いて測定した流量の出力波形を示す図であり、流量を一定にして測定した例を示している。そして、ここではガスの流路に排気量の異なる短気筒エンジンを接続し、この短気筒エンジンを回転させることにより、圧力変動を発生させている。図8,9が示すように、ガスの流れにある周波数の脈動が与えられるときに、ピトー管式流量計の測定値とガス流量の真値との間に大きな差が生じ、脈動の振幅が大きくなればなるほどピトー管式流量計の測定値とガス流量の真値との差は大きくなることが分かる。
また、高い周波数の脈動は触媒筒やマフラーなどによって取り除かれるものの、エンジンがアイドリング状態である場合など、低い周波数の脈動が生じるときには、脈動周波数も低くなり、ピトー管式流量計が脈動による影響を強く受けるので、これによって誤差が大きくなる。
そこで、特許文献1ではエンジンの脈動影響を低減するために、流量計を設置する排気管の上流側に排ガスの脈動を吸収するバッファタンクを設けることや、このバッファタンクの容量をエンジン回転数に応じて変化させるようにして低減される脈動の周波数を変更可能とすることが考えられている。また、エンジンがアイドリング状態であるときには、ピトー管式流量計によって計測した流量の出力を用いずに、ある設定された固定値を利用することも考えられている。
特開平10−318810号公報 特開2003−14593号公報 特開平10−213464号公報
ところが、前記従来の測定方法では何れもエンジンから排出される排ガスの流量のありのままを測定することができなかった。すなわち、アイドリング状態で測定値の代わりに固定値を用いる場合は、アイドリング状態では差圧の測定値を全く無視した固定値を出力するので、アイドリング状態で排出される排ガスの流量を全く測定できないという問題があった。
また、特許文献1のように排気管の上流側にバッファタンクを設けた場合には、脈動を完全に取り除くことが困難であるだけでなく、可変容量のバッファタンクを形成したり、エンジン回転数にあわせてバッファタンクの容量を変える機構を設ける必要があるなど装置構成が大掛かりにならざるを得なかった。そして、バッファタンクを用いて測定対象である排ガスの流量を調整して、その脈動を低減しているので、脈動を有する流量(測定対象)のありのままを測定できないという問題があった。
本発明は、上述の事柄に留意してなされたもので、その目的は、脈動のある排ガスの流量を測定する際に、この脈動によって生じる測定誤差を的確に補正し、流量計測精度の向上を達成できる差圧式の排ガス流量計測方法および排ガス流量計測装置を提供することである。
上記目的を達成するために、第1発明の排ガス流量計測方法は、エンジン排ガスの流量を測定する差圧式流量計において、検出した差圧信号を周波数分解し、周波数分解によって得られた周波数に応じた補正係数を用いて補正することにより、脈動が発生して流量信号に誤差が生じた場合にも正確な流量を求めることを特徴としている(請求項1)。
第2発明の排ガス流量計測方法は、エンジン排ガスの流量を測定する差圧式流量計において、検出した差圧信号を周波数分解し、周波数分解によって得られた周波数と振幅に基づいて得られる補正係数を用いた補正を施すことにより、脈動が発生して流量信号に誤差が生じた場合にも正確な流量を求めることを特徴としている(請求項2)。
排ガスの流路に、異なる周波数および振幅で圧力変動するガスを流し、この排ガス流路内を流れるガスの差圧信号から求めた流量を実際に流したガスの流量と比較することにより、該周波数と振幅に対応する補正係数を求めてもよい(請求項3)。
第3発明の排ガス流量計測装置は、管内を流れる排ガスにおける差圧を検出する差圧計と、この差圧計によって検出した差圧信号を周波数分解すると共に周波数分解によって得られた周波数に応じた補正係数を用いて補正した流量を求める演算処理部とを有することを特徴としている(請求項4)。
第4発明の排ガス流量計測装置は、管内を流れる排ガスにおける差圧を検出する差圧計と、この差圧計によって検出した差圧信号を周波数分解し、周波数分解によって得られた周波数と振幅に基づいて得られる補正係数を用いた補正を施すことにより補正した流量を求める演算処理部とを有することを特徴としている(請求項5)。
排ガスの流路に設けられてガスの流れに対して順次異なる周波数および振幅で圧力変動を生じさせる脈動発生装置と、圧力変動を発生させた状態で検出した差圧信号から求められる流量を実際に流したガスの流量と比較して該周波数と振幅に対応する補正係数を求める演算処理部と、該周波数と振幅に対応する補正係数を記録する記憶部を設けてもよい(請求項6)。
請求項1に記載の本発明の排ガス流量計測方法では、検出した差圧信号に含まれる脈動を取り除いたり低減したりするのではなく、この脈動の周波数分解を行って、脈動の周波数に応じた補正を施すことにより、脈動によって生じた誤差を補正できる。
つまり、検出した排ガスの流れによって生じる差圧が脈動影響を受けて実際の流量よりも異なる(例えば高めの)指示を出力することがあっても、生じた脈動の周波数に応じた補正係数に合わせた分だけ差圧信号に現れるオフセットを調整する(引き下げる)などして測定誤差を補正できるので、差圧式の流量計測の精度を向上できる。なお、前記測定誤差の補正は差圧信号のオフセット調整に限定されるものではなく、差圧信号や流量の測定値に補正係数を掛けることなどが考えられる。
したがって、本発明の排ガス流量計測方法では、検出した差圧信号に含まれる脈動を取り除くのではなく、この脈動を含めたありのままの流量測定を行うことができる。従来のようにエンジンの回転数に合わせて容量を変更できるように構成した大掛かりなバッファタンクや、レゾネータ、エンジン回転の測定機構など、外部のハードウェアを用いて排ガスの流れに手を加える必要がなく、全てが差圧計側で検出した差圧信号を用いて計算できるので、それだけ簡易で安価な装置を提供できる。
また、エンジンがアイドリング状態のような低回転の状態であるときにも、脈動を含む正確な流量を測定できるので、従来のようにエンジンがアイドリング状態であることを検知して、流量の測定値の代わりに所定の固定値を出力する必要もないので、エンジンのアイドリング状態を検出する機構を設ける必要がない。そして、なによりもエンジンの回転数に関係なく常に正確な流量のありのままを測定できる利点がある。
請求項2に記載の本発明の排ガス流量計測方法では、検出した差圧信号に含まれる脈動の周波数分解を行って、この周波数分解によって求められた周波数と振幅に基づいて得られる補正係数を用いてその時点での合成補正係数を求め、この合成補正係数による補正を施すことにより、あらゆる脈動によって生じた誤差を確実に補正できる。
したがって、本発明の排ガス流量計測方法では、検出した差圧信号に含まれる脈動を取り除くのではなく、この脈動を含めたありのままの流量測定を行うことができる。そして、外部のハードウェアを用いて排ガスの流れに手を加える必要がなく、全てが差圧計側で検出した差圧信号を用いて計算できるので、それだけ簡易で安価な装置を提供できる。また、エンジンがアイドリング状態のような低回転の状態であるときにも、脈動を含む正確な流量を測定でき、常に正確な流量のありのままを測定できる。
排ガスの流路に、異なる周波数および振幅で圧力変動するガスを流し、この排ガス流路内を流れるガスの差圧信号から求めた流量を実際に流したガスの流量と比較することにより、該周波数と振幅に対応する補正係数を求める場合(請求項3)には、脈動の各周波数成分の振幅に対応する補正係数を求めることができるので、それだけ正確な補正を行うことができる。
請求項4に記載の本発明の差圧式の排ガス流量計測装置では、測定対象の流量に生じた脈動を取り除くことなく、この脈動によって生じた測定誤差を補正できる。したがって、差圧式流量検出装置は、エンジンの回転数に合わせて容量を変更できるような大掛かりなバッファタンクや、レゾネータ、エンジン回転の測定機構など、外部のハードウェアを有する必要がなく、差圧計によって検出した差圧信号を演算処理部を用いて補正するだけでよい。つまり、ソフトウェア上の動作だけで正確な流量を出力でき、この排ガス流量計測装置の製造コストを低く抑えることができる。
また、エンジンがアイドリング状態のような低回転の状態であるときにも、脈動を含む正確な流量を検出できるので、従来のように可変容量のバッファタンクなどを用いて測定対象であるガスの流量に手を加えることも、差圧計による測定値を無視して固定値を出力することもなくして、エンジンの回転数に関係なく常に正確な流量の測定値を出力するという流量検出装置にあるべき役割を確実に果たすことができる。
請求項5に記載の本発明の差圧式の排ガス流量計測装置では、差圧計によって検出した差圧信号を演算処理部を用いて補正するソフトウェア上の処理だけで、脈動によって生じた測定誤差を補正できる。したがって、差圧式流量検出装置は、外部のハードウェアを有する必要がなく、排ガス流量計測装置の製造コストを低く抑えることができる。
また、圧力変動の周波数と振幅に合わせた補正を行うので、それだけ高い精度の補正を行うことができ、測定結果に対する信頼性を高めることができる。とりわけ、エンジンがアイドリング状態のような低回転の状態であるときにも、脈動を含む正確な流量を検出できるので、エンジンの回転数に関係なく常に正確な流量の測定値を出力するという流量検出装置にあるべき役割を確実に果たすことができる。
排ガスの流路に設けられてガスの流れに対して順次異なる周波数および振幅で圧力変動を生じさせる脈動発生装置と、圧力変動を発生させた状態で検出した差圧信号から求められる流量を実際に流したガスの流量と比較して該周波数と振幅に対応する補正係数を求める演算処理部と、該周波数と振幅に対応する補正係数を記録する記憶部を設けた場合(請求項6)には、差圧式流量計に合わせた、各脈動の周波数成分およびその振幅に対応する前記補正係数を求めることができるので、それだけ正確な補正を行うことができる。
なお、前記補正係数は差圧式流量計毎に、その製造時に一度だけ測定して求めればよいので、製造者側において脈動発生装置を有する差圧式流量検出装置を用いて、前記補正係数を測定し、これを記憶部に記録しておくことにより、使用者側の差圧式流量検出装置には脈動発生装置を設ける必要はない。そして、使用者は差圧式流量検出装置の記憶部に記録された複数の補正係数の中から使用する差圧式流量計に合わせた補正係数を用いるだけで正確な流量検出を行うことができ、差圧計毎に脈動発生装置を取付けて補正係数を作成しなおす必要はない。
なお、使用する差圧計が一つである場合は、複数の補正係数を記憶したり、その中から一つの補正係数を選択する必要はない。また、補正係数を記憶する記憶部はメモリチップとして差圧計側に添付させ、差圧計に合わせた補正係数の選択を自動的に行えるようにすることが望ましい。しかしながら、前記記憶部はフレキシブルディスク、CD−ROM、メモリカードなどであってもよい。さらに、補正係数をインターネットなどの通信手段を用いて転送して書換え可能な記憶部に記録することなどが考えられる。
以下、本発明の実施形態を、図を参照しながら説明する。図1は、本発明に係る差圧式流量検出装置を用いて自動車の排ガスの流量を測定する例を示す図であり、図2は前記差圧式流量検出装置の要部の構成を拡大して示す図である。
図1において、1は測定に供される自動車(種々の車両を含むので、以下の説明では、車両という)で、2は車両1のエンジン、3はエンジン2に連なり排ガスExが流れるガス流路の一例としての排気管、4は排気管3に設けられる触媒装置である。そして、5a,5bは前輪、後輪であり、6は路面である。また、前記排気管3および触媒装置4はこの車両1の排出系7を構成する各部であり、この排出系7は車両1の種類に従って定まる。
8は排気管3の下流端部に着脱自在に設けられ、排気管3を流れる排ガスExの流量によって生じる差圧を後述のピトー管を用いて検出する差圧計の一例としてのピトー管式差圧流量計、9はこの差圧計8によって得られる差圧信号Pdを信号処理して排ガスExの流量Q(流量信号)を演算して出力する演算処理部である。10は本実施例の差圧式流量検出装置であり、差圧計8と、演算処理部9とからなる。
なお、本例では演算処理部9が流量信号Qを出力しているように図示しており、この流量信号Qを例えばガス分析計によって測定した排ガスExに含まれる測定対象成分の濃度信号と掛け合わせることにより、この測定対象成分の排出量を求めることが可能である。しかしながら、本発明において演算処理部9が外部に何らかの流量信号Qを出力する構成は必ずしも必要はなく、その内部の演算処理において流量Qが求められればよい。また、前記差圧計はピトー管式差圧流量計に限られるものではなく、ベンチュリ式差圧流量計であってもよい。
図2は前記差圧式流量検出装置10の構成を拡大して示している。図2において、11は排気管3の下流端においてこれと着脱自在に接続されるアダプタ管で、排気管3と等しい内径を有し、その上流側に排気管3の下流端との接続部12を備え、その下流側は開放されている。
アダプタ管11内には、先端部13aを排ガスExの流れFの上流側に向けるように略L字状に屈曲させると共に同芯円状に配置された2つの管13b,13cからなる二重管構造のピトー管13が取り付けられている。また、この管13b,13cの間の流路は、先端部13aにおいて封止されており、かつ、側面部において排ガスExの流れFに面するように開設された開孔13dを備えている。つまり、本例のピトー管13は管13b,13cの間に、静圧検出用ピトー管13Aを形成すると共に、内側の管13bによって動圧検出用ピトー管13Bを形成している。そして、これらのピトー管13A,13Bは、連通管13e,13fを介して差圧センサ15に接続されており、この差圧センサ15によって排ガスExの流れFによる差圧(差圧信号)Pdが測定値として得られる。
16,17は動圧検出用ピトー管13Bの下流側のアダプタ管11の管内に挿入されるようにして設けられる温度センサ、圧力センサで、それぞれ排ガスExの温度Tおよび圧力Pを測定するものである。そして、前記差圧センサ15、温度センサ16および圧力センサ17の出力信号Pd,T,Pは、前記演算処理部9に入力されて、流量を標準状態での値に補正するのに用いられている。なお、18は前記各部材13〜17を収納するケースで、アダプタ管11に適宜の手段で着脱自在に取り付けられている。
演算処理部9は各信号Pd,T,Pを適宜演算処理してその時の流量Qを求める、つまり、演算処理部9には少なくともCPU20と記憶部21が備えられており、記憶部21に記録された演算処理プログラム22をCPU20が実行して、各信号Pd,T,Pを適宜演算処理することにより、流量Qを求めることができる。
そして、求められた流量Qを例えば図示していないNDIR型ガス分析装置によって測定された排ガスEx中のHC,CO,H2 Oなどの各成分の濃度に掛け合わせることにより、各成分の排出量を求めることも可能である。なお、前記差圧信号Pdには排ガスExの脈動によって、生じる圧力差の影響を受けるなどして、図8,9に示すような脈動周波数および振幅に依存する測定誤差が含まれる。
そこで、本発明においては、前記演算処理プログラム22をCPU20が実行することにより、演算処理部9において排ガスExの流れに生じた脈動の各周波数成分の振幅に応じて、脈動の影響で前記差圧信号Pdに生じる誤差をキャンセルして、排ガスGの正確な流量Qが得られるように構成している。
つまり、前記記憶部21には予めピトー管13の特性に合わせて求めておいた複数の補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)がテーブルデータ23として用意されており、演算処理プログラム22が示す演算をCPU20が実行するときに補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を用いて脈動の影響を的確に除去することができる。
図3は補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を求める一つの方法を示す図である。図3において、40はCVS装置を用いた排ガスExの流量測定装置であり、前記アダプタ管11の下流側に接続された配管41に希釈空気42を導入する希釈空気導入管43を接続し、その上流側からSAO(Smooth Approach Orifice) 44、エアフィルタ45を接続し、前記配管41の希釈空気導入管43の接続点46より下流側にCFV(クリティカルフローベンチュリ)47およびブロア48を備えたCVS装置49を設けてなる。つまり、流量測定装置40を用いることにより前記希釈空気量を測定し、CFV47のトータル流量との差に基づいて排ガスExの流量を求めることにより、ピトー管式とは異なる測定原理で求められた排ガスExの流量を求めることができる。
また、前記接続点46の上流側と下流側におけるトレースガス(例えばCO2 )の濃度を分析し、希釈前のCO2 の濃度と、希釈後のCO2 の濃度の比と、CFV47のトータル流量から排ガスExの流量を計算してもよい。
図3に示す構成において、エンジン2は排ガスExの流れに対して順次異なる脈動周波数で圧力変動を生じさせる脈動発生装置となり、このエンジン2の回転数および負荷を順次変化させることにより異なる周波数および異なる振幅の脈動を発生させることができる。そして、脈動が含まれる排ガスExの流量をピトー管13を用いて測定し、このときピトー管13を用いて測定した流量Qpit を、別の測定原理(SAO流量計+CFV、または、CO2 トレース法+CFV)を用いて測定した流量Qsao+cfv またはQco2+cfv と比較する。
つまり、本例に示す流量測定装置40を用いて測定される流量Qsao+cfv またはQco2+cfv は、ピトー管13によって検出した差圧信号Pdを用いて求められる流量Qpit に比べて応答速度が遅く、脈動のありのままを測定することができないが、逆に、脈動する圧力変動の影響を受けにくいので、これを実際に流した排ガスExの流量Qcfv (以下、前記流量Qsao+cfv および/またはQco2+cfv を実際に流した排ガスExの流量Qcfv と表現することもある)と考えることができる。つまり、差圧計8から得られる流量Qpit を流量Qpit と比較することにより、差圧計8を用いて測定した流量Qpit にあらわれる脈動に起因する測定誤差の大きさを求めることができる。
図4は図3に示した装置を用いて測定した各流量Qpit,Qsao+cfv,Qco2+cfv を比較して示す図である。図4に示すように、差圧計8によって検出された流量Qpit は、矢印eに示す部分において、排ガスExの実際の流量(例えば流量QCFV :従来のCFV(Critical Flow Venturi) 法を用いた測定値)と比べて、引き上げられたような信号になっている(オフセットが発生している)ことが分かる。ゆえに、これらの流量Qpit,Qcfv の比Qpit /Qcfv を補正係数Aとして予め求めておき、差圧計8によって得られた流量Qpit のオフセット位置を調整することにより、差圧計8によって検出された流量Qpit を正確な流量Qとすることが可能であることが分かる。
また、前記流量Qpit は矢印eに示す部分において実際の流量Qcfv と比べて大きくずれた値(オフセット)となる。つまり、既に図8,9を用いて説明したように、流量Qpit,Qcfv 間のズレの大きさは脈動の周波数および振幅に応じて起こる。
そこで、各時点tにおける流量Qpit(t),Qcfv(t)の比Qpit(t)/Qcfv(t)の時間波形を例えばフーリエ変換し、脈動の各周波数成分Fmin 〜Fmax と振幅Ifmin(t) 〜Ifmax(t) を求め、この各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) に応じた補正係数A(Fmin,Ifmin(t)) 〜A(Fmax,Ifmax(t)) を求める。
ここで、ピトー管13の出力によって得られた流量Qpit(t)と真の流量Qcfv(t)の間には、各時点tにおいて異なる補正係数A(t) を用いて、下記の式(2)に示すような関係があると考えられる。
Qcfv(t)=Qpit(t)×A(t) … 式(2)
そして、前記補正係数A(t) は、各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) に応じた補正係数A(Fmin,Ifmin(t)) 〜A(Fmax,Ifmax(t)) の合成補正係数であると考えることができる。また、仮に最低周波数Fmin を2Hz、最大周波数Fmax を100Hzとすると、各時点tでの各周波数成分Fmin 〜Fmax は2〜100、各周波数成分2〜100の振幅IはI2 (t) 〜I100 (t) と表わすことができ、合成補正係数A(t) は以下の式(3)に示すようになる。
A(t) =A(2,I2(t)) ×A(3,I3(t)) ×…×A(99,I99(t)) ×A(100,I100(t))
… 式(3)
したがって、演算処理部9は、例えば前記エンジン2の回転数および負荷を順次変化させて、周波数成分Fmin 〜Fmax 毎に振幅Ifmin(t) 〜Ifmax(t) の異なる脈動を生じさせた状態で、ピトー管の出力によって得られた流量Qpit(t)と実際に流れた排ガスExの流量Qcfv(t)との比較を行うことにより、式(2)に示す関係を用いて、この時点tにおける補正係数A(t) を逆算することができる。同時に、各時点tにおける脈動の各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) を求めて、これを式(3)に代入することにより、各補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を求めることができる。
次いで、求められた各補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)をテーブルデータ23として記憶部21に記録する。すなわち、テーブルデータ23は表1に示すような二次元データである。

Figure 2005121439
なお、本例では測定信号Qpit /Qcfv をフーリエ変換することにより、脈動の各周波数成分Fmin 〜Fmax と振幅Ifmin〜Ifmaxを求めることができ、この振幅Ifmin〜Ifmaxを用いて、各周波数成分Fmin 〜Fmax に対応する前記補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)から、各時点tにおける合成補正係数A(t)を求める。
また、上述の例では脈動の各周波数成分Fmin 〜Fmax の振幅Ifmin〜Ifmaxを流量比Qpit /Qcfv から求める例を示しているが、ピトー管13によって検出された差圧信号Pdから各周波数成分Fmin 〜Fmax の振幅Ifmin〜Ifmaxを求めてよいことはいうまでもない。さらに、前記流量Qpit,Qcfv 間に現れるオフセットは、上述した流量比Qpit /Qcfv として表せるものだけでなく、流量差Qpit −Qcfv として表せるものも考えられる。この場合、前記式(3)を適宜調整する。
何れにしても、上述のようにして求められた各補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)は記憶部21に記録されることにより、使用者は使用するピトー管13に合わせて、適切な補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を選択することにより、脈動発生時にもより正確な流量検出を行うことができる。
また、前記補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)はピトー管13の特性に合わせた値であるから、ピトー管13の製造時に一度測定すればよいので、差圧式流量検出装置10のメーカ側において、前記流量測定装置40を用い、前記補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を求めればよい。したがって、各利用者は記憶部21にピトー管13の特性に合わせた補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を記録しておけば、前記流量測定装置40を用いた補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)の演算をしなおす必要はない。さらに、補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)はフレキシブルディスクのような記録媒体を用いて順次追加登録できるようにしてもよく、データ通信によってメーカ側からダウンロードできるようにしてもよい。
さらに、上述の例では、異なる測定原理で流量測定する流量測定装置40を用いてより正確な補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を求める例を示しているが、この流量測定装置40を設ける代わりに図1に示す差圧計8の上流側に、従来の特許文献1に示されるような可変容量のバッファタンクを設けてもよい。つまり、可変容量のバッファタンクを用いて、差圧計8に脈動が入らないようにした状態で求めた流量を正しい流量として、脈動による流量Qpit への影響を測定することにより、前記補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)を求めてもよい。
次に、使用者が図1に示した構成の差圧式流量検出装置10を用いて、排ガスExの流量Qを測定するときの詳細な動作を説明する。
図5は排ガスの流れとその流量測定を行う信号処理の流れとを示すブロック図、図6は差圧式流量検出装置10による一連の動作の流れを説明する図、図7は信号処理の内容を概念的に説明する図である。図5〜7において図1〜6と同じ符号を付した部分は同一または同等の部分であるから、その詳細な説明を省略する。
図5に示すように、エンジン2から排出される排ガスExは排気系7を通ってピトー管13の部分まで流れる。また、ピトー管13内の圧力は連通管13e,13fによって連通連結された差圧センサ15によって測定される。9aは演算処理部9内のAD変換器であり、このAD変換器9aによってサンプリング時間τ毎にデジタル信号に変換された信号が前記CPU20に入力されることにより、以下に説明する一連の動作を実行する。
つまり、図5において、符号2,7,13,13e,13f,15に示す部分は、物理的な排気ガスExの流れを示しており、符号15,9a,20に示す部分は、電気的な信号の流れを示している。同様に、図6に示す動作には、差圧計8などのハードウェアの動作に加えて、前記演算処理プログラム22(ソフトウェア)に示される手順に従ったCPU20の動作が含まれており、差圧Pdの検出から排ガス流量Qの算出までの処理の内容を示している。
図6において、S1はピトー管13による差圧の測定を示している。すなわち、排ガスExの流れFに伴って静圧検出用ピトー管13Aと動圧検出用ピトー管13Bとの間に差圧が検出される。
S2は差圧センサ15による差圧信号Pdの出力を示している。すなわち、ピトー管13A,13Bに接続された差圧センサ15はこの差圧をアナログ電気信号の差圧信号Pdに変換して出力する。ここで、検出される差圧信号Pdには、図7(A)に示すように、幾つかの周波数成分Fa,Fb…が含まれている。
図6に示す、S3は前記差圧信号PdのAD変換を示している。つまり、アナログの差圧信号Pdをデジタル変換することにより、前記演算処理部9はこの差圧の測定信号Pdを取り込んで演算処理することができる。なお、本実施例ではAD変換器9aが演算処理部9の入力部に設けられる例を示しているが、このAD変換器は差圧計8の出力部に設けられてもよい。
S4は前記差圧信号Pdを時間τ間隔で系列的に前記記憶部21内のバッファに蓄積する処理を示している。なお、このバッファへの蓄積はソフトウェアによって行うことでハードウェアの構成を簡単にすることも可能であるが、専用回路などを用いてハードウェアによって行って演算処理部20にかける負担を小さくしてもよい。
また、前記バッファの大きさは時間T秒間の差圧信号Pdを記憶して以下の処理S5〜S8を行える程度の大きさであればよいが、本実施例におけるバッファの大きさは例えば、前記時間Tを500ミリ秒とする程度の大きさのバッファを設ける。なお、ここでは仮に周波数分解する脈動の最低周波数を2Hzとするので、最低の周波数成分を検出するのに500ミリ秒のバッファを設ける必要がある。一方、最大の周波数成分(例えば100Hz)を検出するためには、前記AD変換器9aのサンプリングタイムτを5ミリ秒程度とすることが望ましい。
S5は差圧信号Pd(t) を周波数分解する処理を示している。すなわち、バッファ内に蓄積された差圧信号Pd(t) を用いて、現時点tの差圧信号Pd(t) に含まれる波形の各周波数成分を分解することにより、該波形に含まれる各周波数成分Fmin 〜Fmax と振幅Ifmin(t) 〜Ifmax(t) をそれぞれ得ることができる。
なお、前記周波数分解は高速フーリエ変換を用いた方法が考えられるが、この処理はソフトウェアによる処理に限られるものではなく、専用回路などのハードウェアを用いて行ってもよい。また、周波数分解はスペクトラム・アナライザなどを用いて各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) を求めてもよい。
図7(A)に示す例では、測定開始から時点t1 までは脈動が発生しておらず、各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) はいずれも0であるが、時点t1 〜t2 の間はある周波数成分Faにおいて振幅Ifaが検出され、時点t2 〜t3 においては、別の周波数成分Fbにおいて振幅Ifbが検出され、時点t3 〜t4 においては、さらに別の周波数成分Fcにおいて振幅Ifcが検出された例を示している。また、Pd0(t)は脈動の影響がない場合の差圧信号を示している。
図6に示す、S6は前記補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)と、各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) との関係から、合成された補正係数A(t) を決定する処理を示している。すなわち、この処理S6において、演算処理部20はテーブルデータ23として記憶部21に記録された補正係数A(Fmin,Ifmin)〜A(Fmax,Ifmax)と、前記処理S5において求めた現時点tで差圧信号Pdに生じている周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) とを用いて調整して、現時点tでの合成された補正係数A(t) を求める。
図7(A),7(B)に示す例を用いて、具体的に説明すると、時点t1 までは振幅Ifmin(t) 〜Ifmax(t) はいずれも0であるから、合成補正係数A(t) =1である。一方、時点t1 〜t2 においては、ある一つの周波数成分Faにおいて振幅Ifaが検出されるので、合成補正係数A(t) はこの周波数成分Faにおいて振幅Ifa(t) を用いたA(Fa,Ifa(t)) である。
そして、時点t2 〜t3 においては、周波数成分Fbにおいて振幅Ifb(t) が検出されるので、合成補正係数A(t) は前記式(3)に前記値Ifb(t) を代入することにより、以下の式(4)のように求めることができる。なお、図7(A)には説明を簡単にするために差圧信号Pdに単一の周波数成分(Faなど)のみを有するようにしているが、前記周波数分解によって複数の周波数成分Fa, Fb, …の振幅Ifmin(t) 〜Ifmax(t) を検出することも考えられ、その場合に以下の式は検出した周波数成分Fa, Fb, …の数分の多項式となる。
A(t) =1×…×A(Fb,Ifb(t)) ×…×1
=A(Fb,Ifb(t)) … 式(4)
以後、同様に各時点tにおける合成補正係数A(t) は、この時点tにおける各周波数成分Fmin 〜Fmax の振幅Ifmin(t) 〜Ifmax(t) を用いて求められる。
図6に示す、S7は前記差圧計8から得られた差圧信号Pd(t) と合成された補正係数A(t) を用いて現時点tの補正された流量Qを演算する処理を示している。すなわち、前記式(1)を用いて差圧計8から得られる差圧信号Pd(t) を用いて求められる流量Qpit(t)を、以下の式(5)に示すように、処理S6において求めた合成された補正係数A(t) を用いて、補正することにより、脈動の影響をキャンセルした精度のよい正確な流量Q(t) を求め、これを出力することができる。(なお、図7(B)には平均化処理した流量Qpit(t),Q(t) の例を示している)
Q(t) =Qpit(t)/A(t) … 式(5)
前記正確な流量Q(t) を求める計算は前記式(5)が示すように、一旦流量Qpit(t)を算出した後に前記補正係数A(t) を用いて補正することに限られるものではない。つまり、脈動の影響を補正した差圧信号Pd'(t) を求めた後に、式(1) によりこの差圧信号Pd'(t) を用いて正確な流量Q(t) を求めてもよい。
なお、図6に示す、処理S1〜S7はいずれも測定が継続する限り連続して行われるものである。
以上詳述したように、本例の差圧式流量検出装置10を用いて求められる流量Qout(t)は、発生した脈動の詳細な部分を的確に捕らえると共に、脈動によって生じる測定誤差が補正されているので、流量を正確に測定することができる。
本発明の差圧式流量検出装置の実施例を示す全体構成説明図である。 前記差圧式流量検出装置の要部を拡大して示す図である。 前記差圧式流量検出装置に用いられる補正係数を求める方法を説明する図である。 各測定原理で検出された流量の測定結果を示す図である。 本発明の差圧式流量検出装置の動作を説明する図である。 本発明の差圧式流量検出装置の動作を説明する図である。 本発明の差圧式流量検出装置の動作を説明する図である。 周波数と排ガス流量の関係(特性曲線)を示す図である。 脈動が生じたときの排ガス流量信号を示す図である。
符号の説明
2 脈動発生装置
3 ガス流路
7 ガス流路の系
8 差圧計
9 演算処理部
23 記憶部
A(Fmin,Ifmin)〜A(Fmax,Ifmax) 補正係数
Ex ガス
Pd 差圧信号
Q 流量

Claims (6)

  1. エンジン排ガスの流量を測定する差圧式流量計において、
    検出した差圧信号を周波数分解し、
    周波数分解によって得られた周波数に応じた補正係数を用いて補正することにより、脈動が発生して流量信号に誤差が生じた場合にも正確な流量を求めることを特徴とする排ガス流量計測方法。
  2. エンジン排ガスの流量を測定する差圧式流量計において、
    検出した差圧信号を周波数分解し、
    周波数分解によって得られた周波数と振幅に基づいて得られる補正係数を用いた補正を施すことにより、脈動が発生して流量信号に誤差が生じた場合にも正確な流量を求めることを特徴とする排ガス流量計測方法。
  3. 排ガスの流路に、異なる周波数および振幅で圧力変動するガスを流し、この排ガス流路内を流れるガスの差圧信号から求めた流量を実際に流したガスの流量と比較することにより、該周波数と振幅に対応する補正係数を求めることを特徴とする請求項2に記載の排ガス流量計測方法。
  4. 管内を流れる排ガスにおける差圧を検出する差圧計と、
    この差圧計によって検出した差圧信号を周波数分解すると共に周波数分解によって得られた周波数に応じた補正係数を用いて補正した流量を求める演算処理部とを有することを特徴とする排ガス流量計測装置。
  5. 管内を流れる排ガスにおける差圧を検出する差圧計と、
    この差圧計によって検出した差圧信号を周波数分解し、周波数分解によって得られた周波数と振幅に基づいて得られる補正係数を用いた補正を施すことにより補正した流量を求める演算処理部とを有することを特徴とする排ガス流量計測装置。
  6. 排ガスの流路に設けられてガスの流れに対して順次異なる周波数および振幅で圧力変動を生じさせる脈動発生装置と、圧力変動を発生させた状態で検出した差圧信号から求められる流量を実際に流したガスの流量と比較して該周波数と振幅に対応する補正係数を求める演算処理部と、該周波数と振幅に対応する補正係数を記録する記憶部を設けた請求項5に記載の排ガス流量計測装置。
JP2003355690A 2003-08-18 2003-10-15 排ガス流量計測方法およびその装置 Pending JP2005121439A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003355690A JP2005121439A (ja) 2003-10-15 2003-10-15 排ガス流量計測方法およびその装置
DE07002436.9T DE07002436T1 (de) 2003-08-18 2004-08-16 Verfahren und Vorrichtung zur Messung des Emissionsdurchsatzes
EP07002436A EP1793210A3 (en) 2003-08-18 2004-08-16 Emission flow rate measuring method and apparatus
EP04019438A EP1508788B1 (en) 2003-08-18 2004-08-16 Emission flow rate measuring method and apparatus
EP17157248.0A EP3190393A1 (en) 2003-08-18 2004-08-16 Emission flow rate measuring method and apparatus
DE602004004709T DE602004004709T2 (de) 2003-08-18 2004-08-16 Verfahren und Vorrichtung zur Messung des Abgasdurchflusses
DE17157248.0T DE17157248T1 (de) 2003-08-18 2004-08-16 Emissionsdurchlaufratenmessverfahren und -vorrichtung
US10/919,925 US7110878B2 (en) 2003-08-18 2004-08-17 Method and apparatus for measuring exhaust gas flow rate and it's application system for analyzing the exhaust gases from an engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355690A JP2005121439A (ja) 2003-10-15 2003-10-15 排ガス流量計測方法およびその装置

Publications (1)

Publication Number Publication Date
JP2005121439A true JP2005121439A (ja) 2005-05-12

Family

ID=34613161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355690A Pending JP2005121439A (ja) 2003-08-18 2003-10-15 排ガス流量計測方法およびその装置

Country Status (1)

Country Link
JP (1) JP2005121439A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127864A (ja) * 2010-12-16 2012-07-05 Toyota Motor Corp 脈動流の流量測定方法およびガス流量測定装置
JP2013092504A (ja) * 2011-10-27 2013-05-16 Toyota Motor Corp 流量測定方法及び装置
JP2013246020A (ja) * 2012-05-25 2013-12-09 Tlv Co Ltd ドレン流量計
US9562797B2 (en) 2011-03-15 2017-02-07 Toyota Jidosha Kabushiki Kaisha Flow rate measuring apparatus
WO2020066548A1 (ja) * 2018-09-26 2020-04-02 日立オートモティブシステムズ株式会社 内燃機関制御装置
CN113039412A (zh) * 2018-11-30 2021-06-25 日立安斯泰莫株式会社 物理量测定装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127864A (ja) * 2010-12-16 2012-07-05 Toyota Motor Corp 脈動流の流量測定方法およびガス流量測定装置
US9562797B2 (en) 2011-03-15 2017-02-07 Toyota Jidosha Kabushiki Kaisha Flow rate measuring apparatus
JP2013092504A (ja) * 2011-10-27 2013-05-16 Toyota Motor Corp 流量測定方法及び装置
JP2013246020A (ja) * 2012-05-25 2013-12-09 Tlv Co Ltd ドレン流量計
WO2020066548A1 (ja) * 2018-09-26 2020-04-02 日立オートモティブシステムズ株式会社 内燃機関制御装置
JPWO2020066548A1 (ja) * 2018-09-26 2021-05-13 日立Astemo株式会社 内燃機関制御装置
US11365699B2 (en) 2018-09-26 2022-06-21 Hitachi Astemo, Ltd. Internal combustion engine control device
CN113039412A (zh) * 2018-11-30 2021-06-25 日立安斯泰莫株式会社 物理量测定装置
CN113039412B (zh) * 2018-11-30 2023-09-22 日立安斯泰莫株式会社 物理量测定装置

Similar Documents

Publication Publication Date Title
EP1508788B1 (en) Emission flow rate measuring method and apparatus
KR100436483B1 (ko) 코리올리 유량계용 계기 전자부품, 및 그것에 의해 사용되는 흐름 교정 계수를 검증하는 방법
US7865318B2 (en) Meter electronics and methods for verification diagnostics for a flow meter
EP1817554B1 (en) Method and apparatus for determining flow pressure using density information
US8151653B2 (en) Coriolis flowmeter
US20050209793A1 (en) Doppler ultrasonic flowmeter, and processor and method thereof with quantization error correction
JP2009500643A (ja) コリオリモード処理手法
CN104655215B (zh) 排气测量装置
US9151649B2 (en) Ultrasonic flow metering system with an upstream pressure transducer
CN107850474B (zh) 用于确定气体的物理参数的方法
US8352206B2 (en) Method for the signal linearization of a gas sensor output signal
JP2005121439A (ja) 排ガス流量計測方法およびその装置
KR101817752B1 (ko) 복합센서를 이용한 호흡기체 분석장치 및 호흡기체 분석방법
JP2021517967A (ja) 定容量サンプリング(cvs)排気ガス分析システムにおける質量流量計を較正するための方法
JP5569383B2 (ja) 脈動流の流量測定方法およびガス流量測定装置
JP2004117261A (ja) 車載型排ガス分析装置
JP3602078B2 (ja) 人工衛星の姿勢検出装置
JP4447266B2 (ja) 排ガス流量計測装置およびこれを用いた排ガス計測システム
JP2024020048A (ja) 車両搭載型の排ガス分析装置、排ガス分析方法、及び、排ガス分析装置用プログラム
JP6199167B2 (ja) 排ガス測定装置及び排ガス測定プログラム
JP2004144574A (ja) 差圧式流量計
US20210381868A1 (en) Method for Determining Flow Measurement Values of a Coriolis Mass Flowmeter in the Presence of a of a Two-phase Flow
JP3672670B2 (ja) 配管容量推定装置
JP2001174297A (ja) 流量計測方法および流量計測装置
RU2385449C2 (ru) Способ и устройство для определения давления потока с использованием информации о плотности