JP2005119791A - Paper sheet conveying device - Google Patents

Paper sheet conveying device Download PDF

Info

Publication number
JP2005119791A
JP2005119791A JP2003355945A JP2003355945A JP2005119791A JP 2005119791 A JP2005119791 A JP 2005119791A JP 2003355945 A JP2003355945 A JP 2003355945A JP 2003355945 A JP2003355945 A JP 2003355945A JP 2005119791 A JP2005119791 A JP 2005119791A
Authority
JP
Japan
Prior art keywords
transport
speed
conveyance
conveying
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003355945A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yamamoto
吉博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003355945A priority Critical patent/JP2005119791A/en
Publication of JP2005119791A publication Critical patent/JP2005119791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Controlling Sheets Or Webs (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paper sheet conveying device capable of controlling the conveying speeds of a plurality of driving motors to be constant for each section in starting, a normal operation, or stopping when a plurality of divided conveying passages are driven by the plurality of driving motors. <P>SOLUTION: The paper sheet conveying device comprises a first conveying passage 20a for conveying a paper sheet 11a, an encoder 7a for measuring the conveying speed, a second conveying passage 20b for taking in the paper sheet 11a conveyed from the first conveying passage 20a, an encoder 7b for measuring the conveying speed, and control circuits 8a and 8b for controlling the conveying speeds of the first and second conveying passages 20a and 20b comparing the measurement results of the encoders 7a and 7b. The control circuits 8a and 8b control the the conveying speeds of these conveying passages to be constant in starting, the normal operation, or stopping. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の搬送路から構成される紙葉類搬送装置の起動時の搬送速度、通常動作時の搬送速度及び停止時の搬送速度を起動時、通常動作時及び停止時の各区分毎に複数の搬送路の搬送速度が等速になるように搬送速度を制御する紙葉類搬送装置に関する。   The present invention provides a conveyance speed at the start of a paper sheet conveyance device composed of a plurality of conveyance paths, a conveyance speed at the time of normal operation, and a conveyance speed at the time of stop for each section at the time of activation, normal operation, and stop. In particular, the present invention relates to a paper sheet transport apparatus that controls the transport speed so that the transport speeds of a plurality of transport paths are constant.

例えば、郵便物や紙幣などの紙葉類を搬送する紙葉類搬送装置は、紙葉類の取り出し部、紙葉類の形状検出部及び紙葉面の情報検出部、並びにこれら検出の結果による印字、分岐及び集積を行う。また、これら機能の異なる各部が搬送路にそって連続に配置されるため、一連の処理部を搬送するまでに必然的に搬送路が長くなる。従って、通常は搬送路を分割し、これら分割した複数の搬送路をそれぞれ独立した駆動モータによって連続した搬送路を形成する。   For example, a paper sheet transport device that transports paper sheets such as mail and banknotes is based on a paper sheet take-out unit, a paper sheet shape detection unit, a paper sheet surface information detection unit, and the results of these detections. Perform printing, branching and stacking. In addition, since the parts having different functions are continuously arranged along the transport path, the transport path is inevitably elongated before the series of processing units is transported. Therefore, normally, the conveyance path is divided, and a plurality of the divided conveyance paths are continuously formed by independent drive motors.

しかしながら、上記複数の駆動モータをもった搬送路では、駆動モータのモータトルクの差、ローラ若しくはベルトなどの負荷の差、又は紙葉類の重さの差などにより、起動時や停止時にそれぞれの搬送路のスピードが変化し、紙葉類の追い付きや重なりなどの不具合が発生しやすいという問題があった。   However, in the conveyance path having the plurality of drive motors, the difference between the motor torque of the drive motor, the load of the roller or the belt, or the difference in the weight of the paper sheets may be caused at the time of starting or stopping. There was a problem that the speed of the conveyance path changed and problems such as catching up and overlapping of paper sheets were likely to occur.

これを解決する技術として、搬送される紙葉類間のギャップを補正する紙葉類搬送装置が知られている(例えば、特許文献1参照。)。
特開2001−97592号公報 (第1頁、図1)
As a technique for solving this problem, a paper sheet transport device that corrects a gap between transported paper sheets is known (see, for example, Patent Document 1).
JP 2001-97592 A (first page, FIG. 1)

しかしながら特許文献1記載の紙葉類搬送装置は、起動時や停止時などの搬送速度の急激な速度変化や負荷変動がある場合には搬送路を通過する時間が急激に変化し、適切なギャップが確保できないため、複数の搬送路が独立した駆動モータによって駆動される紙葉類搬送装置には適用できないという問題がある。   However, the paper sheet transport device described in Patent Document 1 has a rapid change in the transport speed when there is a rapid speed change or load variation at the time of start or stop, and an appropriate gap. Therefore, there is a problem that it cannot be applied to a paper sheet transport apparatus in which a plurality of transport paths are driven by independent drive motors.

そこでこの発明は、分割された複数の搬送路が複数の駆動モータにより駆動されるとき、これら複数の駆動モータの搬送速度を起動時、通常動作時及び停止時の各区分毎に複数の搬送路の搬送速度が等速になるように速度差を低減する紙葉類搬送装置を提供することを目的とする。   Accordingly, the present invention provides a plurality of transport paths for each section at the time of starting, normal operation, and stopping when the plurality of divided transport paths are driven by a plurality of drive motors. It is an object of the present invention to provide a paper sheet transport device that reduces the speed difference so that the transport speed of the paper is constant.

本発明は上記目的を達成するために、紙葉類を搬送する第1の搬送路と、この第1の搬送路の搬送速度を測定する第1の搬送速度測定手段と、前記第1の搬送路から搬送されてきた前記紙葉類を取り込む隣接して配置された第2の搬送路と、前記第2の搬送路の搬送速度を測定する第2の搬送速度測定手段と、
前記第1及び第2の搬送速度測定手段の測定結果を比較して前記第1の搬送路及び前記第2の搬送路の搬送速度を制御する各々第1及び第2の制御手段とを有することを特徴とする。
To achieve the above object, the present invention provides a first transport path for transporting paper sheets, a first transport speed measuring means for measuring the transport speed of the first transport path, and the first transport. A second transport path arranged adjacent to take in the paper sheets transported from the path, a second transport speed measuring means for measuring the transport speed of the second transport path,
Comparing the measurement results of the first and second transport speed measuring means, the first and second control means for controlling the transport speed of the first transport path and the second transport path, respectively. It is characterized by.

本発明によれば、分割された複数の搬送路が複数の駆動モータにより駆動されるとき、これら複数の駆動モータの搬送速度を起動時、通常動作時及び停止時の各区分毎に複数の搬送路の搬送速度を一定にすることができる紙葉類搬送装置を提供できる。   According to the present invention, when a plurality of divided conveyance paths are driven by a plurality of drive motors, a plurality of conveyance motors for each section at the time of start-up, normal operation, and stop are set to the conveyance speed of the plurality of drive motors. It is possible to provide a paper sheet transport device that can maintain a constant transport speed of the road.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1による郵便処理区分機機構部の構成図である。図1に示す郵便処理区分機の機構部は、A搬送機構部20a(第1の搬送路)及びB搬送機構部20b(第2の搬送路)から構成される。A搬送機構部20aとB搬送機構部20bは似た構成のためA搬送機構部20aを主に説明し、その後、異なる部分の説明を行う。   FIG. 1 is a configuration diagram of a mail processing sorter mechanism according to a first embodiment of the present invention. The mechanism part of the postal processing sorter shown in FIG. 1 includes an A transport mechanism unit 20a (first transport path) and a B transport mechanism unit 20b (second transport path). Since the A transport mechanism unit 20a and the B transport mechanism unit 20b are similar in configuration, the A transport mechanism unit 20a will be mainly described, and then different parts will be described.

A搬送機構部20aは、紙葉類11aを挟持して図示矢印X方向に搬送する搬送部21a、及び搬送される紙葉類11aの搬送速度を監視し搬送速度を補正する搬送速度補正部22aから構成される。   The A transport mechanism section 20a sandwiches the paper sheet 11a and transports it in the direction of the arrow X in the figure, and a transport speed correction section 22a that monitors the transport speed of the transported paper sheet 11a and corrects the transport speed. Consists of

搬送部21aは、動力源と、この動力源を伝達する動力伝達機構と、この機構から動力を受け紙葉類11aを搬送する搬送機構とから構成される。   The transport unit 21a includes a power source, a power transmission mechanism that transmits the power source, and a transport mechanism that transports the paper sheet 11a by receiving power from the mechanism.

動力源は、駆動モータ4a、及びこの駆動モータ4aの回転速度を設定する回転速度設定手段であるインバータ3aから構成される。   The power source includes a drive motor 4a and an inverter 3a which is a rotation speed setting means for setting the rotation speed of the drive motor 4a.

動力源を伝達する動力伝達機構は、駆動モータ4aの回転軸に配置されたプーリ5a1、このプーリ5a1に連結されて駆動力を伝達するドライブベルト6a、及びこのドライブベルト6aの駆動力を上記搬送機構に伝達するプーリ5a2から構成される。   The power transmission mechanism for transmitting the power source includes a pulley 5a1 disposed on the rotation shaft of the drive motor 4a, a drive belt 6a connected to the pulley 5a1 to transmit the driving force, and the driving force of the drive belt 6a transported as described above. The pulley 5a2 is transmitted to the mechanism.

搬送機構は、プーリ5a2が受けた駆動力によって回転する搬送ローラ2a1、この搬送ローラ2a1に連結されて駆動力を伝達する搬送ベルト1a、及びこの搬送ベルト1aによって駆動される搬送ローラ2a2、から構成される。   The transport mechanism includes a transport roller 2a1 that is rotated by a driving force received by the pulley 5a2, a transport belt 1a that is connected to the transport roller 2a1 and transmits the driving force, and a transport roller 2a2 that is driven by the transport belt 1a. Is done.

また、搬送速度補正部22aは、搬送ローラ2a2の回転軸に配置されて搬送速度を測定するエンコーダ7a(第1の搬送速度測定手段)、及びこのエンコーダ7aの出力信号を処理する制御回路8a(第1の制御手段)から構成される。   Further, the conveyance speed correction unit 22a is arranged on the rotation shaft of the conveyance roller 2a2, and measures an conveyance speed by an encoder 7a (first conveyance speed measurement means), and a control circuit 8a (processes an output signal of the encoder 7a). First control means).

制御回路8aは、上記エンコーダ7aから出力されるエンコーダパルスを計測することによってA搬送機構部の搬送速度を算出すると共に、B搬送機構部の制御回路8b(第2の制御手段)と接続されてB搬送機構部の搬送速度を算出する。   The control circuit 8a calculates the transport speed of the A transport mechanism by measuring the encoder pulse output from the encoder 7a, and is connected to the control circuit 8b (second control means) of the B transport mechanism. The transport speed of the B transport mechanism is calculated.

B搬送機構部20bはA搬送機構部20aと同様に構成されてA搬送機構部20aの搬送方向下流に配置される。   The B transport mechanism unit 20b is configured in the same manner as the A transport mechanism unit 20a, and is disposed downstream of the A transport mechanism unit 20a in the transport direction.

また、制御回路8aと制御回路8bは相互に接続されて、制御回路8aからはエンコーダ7aの出力信号を制御回路8bに送信し、この制御回路8bからはエンコーダ7b(第2の搬送速度測定手段)の出力信号を制御回路8aに送信する。このように構成することによってA搬送機構部の搬送速度とB搬送機構部の搬送速度を相互に算出することが可能になる。   The control circuit 8a and the control circuit 8b are connected to each other, and the control circuit 8a transmits the output signal of the encoder 7a to the control circuit 8b. The control circuit 8b receives the encoder 7b (second transport speed measuring means). ) Is transmitted to the control circuit 8a. With this configuration, it is possible to mutually calculate the transport speed of the A transport mechanism and the transport speed of the B transport mechanism.

次に、以上のように構成されたA搬送機構部とB搬送機構部によって搬送される紙葉類11a又は紙葉類11bの起動時間及び停止時間に関する説明を図2、図3を参照して説明する。   Next, with reference to FIG. 2 and FIG. 3, explanations regarding the start time and stop time of the paper sheet 11 a or the paper sheet 11 b transported by the A transport mechanism unit and the B transport mechanism unit configured as described above will be given. explain.

図2は、実施例1の郵便処理区分機機構部の起動から停止するまでの搬送速度を説明するタイミングチャートである。   FIG. 2 is a timing chart illustrating the conveyance speed from the start to the stop of the mail processing sorter mechanism according to the first embodiment.

図2(A)は、標準搬送速度のタイミングチャートである。すなわち、起動時は、搬送速度が0(m/s)(タイミングt1)から加速し、標準起動時間trs(s)で標準搬送速度Vs(m/s)に達する(タイミングt2)。停止時は、停止を指示されたところから減速を開始し(タイミングt3)、標準停止時間tfs(s)で搬送速度0(m/s)になる(タイミングt4)。   FIG. 2A is a timing chart of the standard conveyance speed. That is, at the time of activation, the conveyance speed is accelerated from 0 (m / s) (timing t1), and reaches the standard conveyance speed Vs (m / s) at the standard activation time trs (s) (timing t2). At the time of stop, deceleration is started from the point where the stop is instructed (timing t3), and the conveyance speed becomes 0 (m / s) at the standard stop time tfs (s) (timing t4).

図2(B)は、起動時及び停止時の搬送速度が標準搬送速度に比べ速い場合のタイミングチャートである。すなわち、起動時間trh(s)が標準起動時間trs(s)に比べdtr(s)短い(タイミングt2)。また、停止時は、停止時間tfh(s)が標準停止時間tfs(s)に比べdtf(s)短い(タイミングt4)。以上の起動時間trh(s)及び停止時間tfh(s)を数式(1)、(2)で示す。   FIG. 2B is a timing chart in the case where the conveyance speed at the time of starting and stopping is faster than the standard conveyance speed. That is, the activation time trh (s) is dtr (s) shorter than the standard activation time trs (s) (timing t2). At the time of stop, the stop time tfh (s) is shorter than the standard stop time tfs (s) by dtf (s) (timing t4). The start time trh (s) and the stop time tfh (s) described above are expressed by Equations (1) and (2).

trh(s)=trs−dtr・・・・・・(1)
trh(s):搬送速度が速い場合の起動時間
dtr(s):標準起動時間とのずれ時間
tfh(s)=tfs―dtf・・・・・・(2)
tfh(s):搬送速度が速い場合の停止時間
dtf(s):標準停止時間とのずれ時間
図2(C)は、起動時及び停止時の搬送速度が標準搬送速度に比べ遅い場合のタイミングチャートである。すなわち、起動時間trl(s)が標準起動時間trs(s)に比べdtr(s)長い(タイミングt2)。また、停止時は、停止時間tfl(s)が標準停止時間tfs(s)に比べdtf(s)長い(タイミングt4)。以上の起動時間trl(s)及び停止時間tfl(s)を数式(3)、(4)で示す。
trh (s) = trs−dtr (1)
trh (s): start time when the conveyance speed is high dtr (s): deviation time from the standard start time tfh (s) = tfs−dtf (2)
tfh (s): Stop time when the transport speed is high dtf (s): Deviation time from the standard stop time FIG. 2C is a timing when the transport speed at the time of start and stop is slower than the standard transport speed. It is a chart. That is, the activation time trl (s) is dtr (s) longer than the standard activation time trs (s) (timing t2). At the time of stop, the stop time tfl (s) is dtf (s) longer than the standard stop time tfs (s) (timing t4). The start time trl (s) and the stop time tfl (s) described above are expressed by equations (3) and (4).

trl(s)=trs+dtr・・・・・・(3)
trl(s):搬送速度が遅い場合の起動時間
dtr(s):標準起動時間とのずれ時間
tfl(s)=tfs+dtf・・・・・・(4)
tfl(s):搬送速度が遅い場合の停止時間
dtf(s):標準停止時間とのずれ時間
図3は、郵便処理区分機機構部の標準起動時間trsに対する搬送速度が速い場合と遅い場合の関係を説明する図である。
trl (s) = trs + dtr (3)
trl (s): start time when the conveyance speed is slow dtr (s): deviation time from the standard start time tfl (s) = tfs + dtf (4)
tfl (s): Stop time when the transport speed is slow dtf (s): Deviation time from the standard stop time FIG. 3 shows a case where the transport speed is fast and slow with respect to the standard start time trs of the mail processing sorter mechanism. It is a figure explaining a relationship.

A搬送機構部とB搬送機構部がそれぞれ独立したモータ8a、8bによって駆動される場合、これらモータ8aと8bのトルク差、ドライブベルト6aと6b若しくは搬送ベルト1aと1bの柔らかさや長さの差、又は紙葉類の重さの差などによって負荷が変化するため、各搬送路の搬送速度が標準搬送速度からずれる場合がある。特に起動時と停止時は加速動作又は減速動作となるためそのずれが大きくなる。   When the A transport mechanism and the B transport mechanism are driven by independent motors 8a and 8b, the torque difference between these motors 8a and 8b, the difference in softness and length between the drive belts 6a and 6b or the transport belts 1a and 1b, respectively. Or the load varies depending on the difference in the weight of the paper sheets, etc., the transport speed of each transport path may deviate from the standard transport speed. In particular, when starting and stopping, the acceleration operation or the deceleration operation is performed, so that the deviation becomes large.

そのため、郵便処理区分機などの機構部は、上記搬送速度の搬送ずれに対する許容範囲Aが設定される。例えば、標準起動時間trsに対して±dtrsの許容値が数式(5)乃至(7)に示すように算出されて、標準起動時間trsの上限値trsh及び下限値trslが設定される。   For this reason, a mechanism A such as a mail processing sorting machine is set with an allowable range A for the conveyance deviation of the conveyance speed. For example, an allowable value of ± dtrs with respect to the standard activation time trs is calculated as shown in Equations (5) to (7), and an upper limit value trsh and a lower limit value trsl of the standard activation time trs are set.

trsl=trs−dtrs・・・・・・(5)
trsh=trs+dtrs・・・・・・(6)
A=2dtrs・・・・・・・・・・・・(7)
trs:標準起動時間
trsl:標準起動時間の下限値
trsh:標準起動時間の上限値
dtrs:許容値
A:許容範囲
従って、起動時間trが標準起動時間の下限値trslから標準起動時間の上限値trshの範囲の搬送速度は標準搬送速度ということになる。
trsl = trs−dtrs (5)
trsh = trs + dtrs (6)
A = 2dtrs (7)
trs: standard startup time trsl: lower limit value of standard startup time trsh: upper limit value of standard startup time dtrs: allowable value A: allowable range Therefore, the startup time tr is changed from the lower limit value trsl of the standard startup time to the upper limit value trsh of the standard startup time. The transport speed in this range is the standard transport speed.

一方、起動時間trが標準起動時間の下限値trsl以下の場合は搬送速度が速い範囲であり(図3のHの範囲)、標準起動時間の上限値trsh以上の場合は搬送速度が遅い範囲である(図3のLの範囲)。   On the other hand, when the activation time tr is equal to or lower than the lower limit value trsl of the standard activation time, the conveyance speed is in a fast range (range H in FIG. 3), and when the activation time tr is equal to or greater than the upper limit value trsh of the standard activation time, the conveyance speed is low. Yes (range L in FIG. 3).

次に、上述したようにA搬送機構部及びB搬送機構部で起動時の搬送速度の差を低減する方法を図4に示すフローチャートを参照して説明する。   Next, as described above, a method for reducing the difference in the conveyance speed at the time of activation between the A conveyance mechanism unit and the B conveyance mechanism unit will be described with reference to the flowchart shown in FIG.

なお、以下の制御においてA搬送機構部20a側は制御回路8a(第1の制御手段)によって制御され、B搬送機構部20b側は制御回路8b(第2の制御手段)よって制御される。また、これら制御回路8a、8bは主制御回路(図示しない)によって初期設定、緊急停止などの制御が行われる。A搬送機構部20aとB搬送機構部20bは同一構造であるため、以下、A搬送機構部20aの動作を主に説明し、B搬送機構部20bの動作は()内に置き換えて読むことができる。   In the following control, the A transport mechanism 20a side is controlled by the control circuit 8a (first control means), and the B transport mechanism 20b side is controlled by the control circuit 8b (second control means). The control circuits 8a and 8b are controlled by the main control circuit (not shown) such as initial setting and emergency stop. Since the A transport mechanism unit 20a and the B transport mechanism unit 20b have the same structure, the operation of the A transport mechanism unit 20a will be mainly described below, and the operation of the B transport mechanism unit 20b can be read in parentheses. it can.

制御回路8a(8b)はインバータ3a(3b)に対してスタート信号を出力する(S1)。このスタート信号は予め制御回路8a(8b)に対し、起動時の基準速度に対して設定された電流周波数指令、又は電圧周波数指令からなる。   The control circuit 8a (8b) outputs a start signal to the inverter 3a (3b) (S1). This start signal is made up of a current frequency command or a voltage frequency command set in advance with respect to the reference speed at the start-up for the control circuit 8a (8b).

制御回路8a(8b)は、駆動モータ4a(4b)を起動するための周波数をインバータ3a(3b)に設定する。(S2(S7))。なお、この周波数は図2(A)で示す起動時間trsの間に搬送速度が標準搬送速度Vsに達するまで連続して設定される。例えば、標準起動時間が2秒(s)で、100ミリ秒(ms)に1回設定する場合は2秒間に20回設定されることになる。   The control circuit 8a (8b) sets the frequency for starting the drive motor 4a (4b) in the inverter 3a (3b). (S2 (S7)). This frequency is set continuously until the conveyance speed reaches the standard conveyance speed Vs during the activation time trs shown in FIG. For example, when the standard activation time is 2 seconds (s) and is set once in 100 milliseconds (ms), it is set 20 times in 2 seconds.

駆動モータ4a(4b)は、この結果図2(A)で示す搬送速度のタイミングチャートに従って駆動される。この駆動モータ4a(4b)の駆動力は、上述した動力源を伝達する機構によって搬送ローラ2a1(2b1)、2a2(2b2)及び搬送ベルト1a(1b)を駆動する。その結果、搬送路2a2(2b2)の回転軸に配置されたエンコーダ7a(7b)からエンコーダパルスが制御回路8a(8b)に出力される。   As a result, the drive motor 4a (4b) is driven in accordance with the conveyance speed timing chart shown in FIG. The driving force of the drive motor 4a (4b) drives the transport rollers 2a1 (2b1), 2a2 (2b2) and the transport belt 1a (1b) by the mechanism for transmitting the power source described above. As a result, an encoder pulse is output to the control circuit 8a (8b) from the encoder 7a (7b) disposed on the rotating shaft of the transport path 2a2 (2b2).

制御回路8a(8b)は、エンコーダ7a(7b)から出力されるエンコーダパルスEPA(EPB)と、エンコーダ7b(7a)から出力されるエンコーダパルスEPB(EPA)とを監視して比較し、エンコーダパルスの差分dEPを数式(8)、数式(9)で算出する(S3(S8))。なお、数式(9)はB搬送機構部の制御回路8bで算出される。   The control circuit 8a (8b) monitors and compares the encoder pulse EPA (EPB) output from the encoder 7a (7b) and the encoder pulse EPB (EPA) output from the encoder 7b (7a). The difference dEP is calculated by the formulas (8) and (9) (S3 (S8)). Formula (9) is calculated by the control circuit 8b of the B transport mechanism.

dEPab=EPA−EPB・・・・・・(8):A搬送機構部
dEPba=EPB−EPA・・・・・・(9):B搬送機構部
EPA:エンコーダ7aから出力されるエンコーダパルス数
EPB:エンコーダ7bから出力されるエンコーダパルス数
dEPab:EPAとEPBのエンコーダパルス数の差分
dEPba:EPBとEPAのエンコーダパルス数の差分
ここで、エンコーダ7a(7b)から出力されるエンコーダパルスがエンコー7b(7a)から出力されるエンコーダパルスより判定レベルKを越えるかどうかを数式(10)、数式(11)で求める。
dEPab = EPA-EPB (8): A transport mechanism section dEPba = EPB-EPA (9): B transport mechanism section EPA: Number of encoder pulses EPB output from the encoder 7a : Encoder pulse number output from encoder 7b dEPab: Difference in encoder pulse number between EPA and EPB dEPba: Difference in encoder pulse number between EPB and EPA Here, the encoder pulse output from encoder 7a (7b) is the encoder 7b ( Whether the determination level K is exceeded by the encoder pulse output from 7a) is obtained by Expressions (10) and (11).

dEPab−K≧0・・・・・・・・・・(10)
dEPba−K≧0・・・・・・・・・・(11)
K:dEPを判定する判定レベル
判定の結果、A搬送機構部20a(B搬送機構部20b)の方がB搬送機構部20b(A搬送機構部20a)より搬送速度が速い場合(S4のYes(S9のYes))、A搬送機構部20a(B搬送機構部20b)の搬送速度を下げるためインバータ3a(3b)に設定すべき周波数差分を算出し(S5(S10))、再設定すべき周波数を設定する(S2(S7))。しかしながら、A搬送機構部20a(B搬送機構部20b)の搬送速度がB搬送機構部20b(A搬送機構部20a)の搬送速度と同じ程度の場合(S4のNo(S9のN0))、搬送速度の変更を行う必要がないため周波数の再設定は行わない(S6(S11))。
dEPab-K ≧ 0 (10)
dEPba-K ≧ 0 (11)
K: Determination level for determining dEP As a result of the determination, if the transport speed of the A transport mechanism section 20a (B transport mechanism section 20b) is faster than that of the B transport mechanism section 20b (A transport mechanism section 20a) (Yes in S4) (Yes in S9)), a frequency difference to be set in the inverter 3a (3b) in order to lower the transport speed of the A transport mechanism 20a (B transport mechanism 20b) is calculated (S5 (S10)), and the frequency to be reset Is set (S2 (S7)). However, when the transport speed of the A transport mechanism 20a (B transport mechanism 20b) is approximately the same as the transport speed of the B transport mechanism 20b (A transport mechanism 20a) (No in S4 (NO in S9)), transport Since it is not necessary to change the speed, the frequency is not reset (S6 (S11)).

以上の動作を図5を参照して説明する。図5は、搬送速度補正を説明する図である。搬送速度補正は、起動時については図4で説明したようにA搬送機構部20a及びB搬送機構部20bの制御回路8a及び制御回路8bによって独立して同様に行われるため、ここではA搬送機構部20aの搬送速度補正を説明し、B搬送機構部20bの搬送速度補正を省略する。   The above operation will be described with reference to FIG. FIG. 5 is a diagram for explaining the conveyance speed correction. Since the conveyance speed correction is performed in the same manner independently by the control circuit 8a and the control circuit 8b of the A conveyance mechanism unit 20a and the B conveyance mechanism unit 20b as described with reference to FIG. The conveyance speed correction of the unit 20a will be described, and the conveyance speed correction of the B conveyance mechanism unit 20b will be omitted.

なお、図中のA搬送路とは、A搬送機構部20aによって紙葉類が搬送される搬送路のことである。同様にB搬送路とは、B搬送機構部20bによって紙葉類が搬送される搬送路のことである。   In addition, A conveyance path in a figure is a conveyance path along which a paper sheet is conveyed by A conveyance mechanism part 20a. Similarly, the B conveyance path is a conveyance path through which paper sheets are conveyed by the B conveyance mechanism unit 20b.

図5(A)は、A搬送路の搬送速度補正を説明する補正前の図で、A搬送機構部20aの起動時の搬送速度30ra、及び停止時の搬送速度30fa、並びにB搬送機構部20bの起動時の搬送速度31rb、及び停止時の搬送速度31fbを図示したものである。この図では、起動時、停止時共にA搬送機構部20aがB搬送機構部20bに比べて搬送速度が速い場合の一例を示している。   FIG. 5A is a diagram before correction for explaining the correction of the conveyance speed of the A conveyance path. The conveyance speed 30ra when the A conveyance mechanism unit 20a is started, the conveyance speed 30fa when the A conveyance mechanism unit 20 is stopped, and the B conveyance mechanism unit 20b. The figure shows the transport speed 31rb at the time of starting and the transport speed 31fb at the time of stop. This figure shows an example in which the transport speed of the A transport mechanism section 20a is higher than that of the B transport mechanism section 20b both at startup and at stop.

ここでは、起動時の任意の時刻tnでA搬送機構部20aの搬送速度がB搬送機構部20bの搬送速度に相当するエンコーダパルス数の差分dEPabが数式(10)を満たし、搬送速度補正が必要な場合を示している。なお、停止時については後述する。   Here, at any time tn at the time of activation, the difference dEPab in the number of encoder pulses corresponding to the transport speed of the A transport mechanism section 20a corresponds to the transport speed of the B transport mechanism section 20b satisfies Expression (10), and the transport speed correction is necessary. Shows the case. The stop time will be described later.

図5(B)は、A搬送路の搬送速度補正を説明する補正後の図で、A搬送機構部20aの起動時の搬送速度30ra、及び停止時の搬送速度30fa、並びにB搬送機構部20bの起動時の搬送速度31rb、及び停止時の搬送速度31fbを図示したものである。以下、起動時について説明する。   FIG. 5B is a post-correction diagram illustrating the correction of the conveyance speed of the A conveyance path. The conveyance speed 30ra when the A conveyance mechanism unit 20a is started, the conveyance speed 30fa when the A conveyance mechanism 20a is stopped, and the B conveyance mechanism unit 20b. The figure shows the transport speed 31rb at the time of starting and the transport speed 31fb at the time of stop. Hereinafter, the startup will be described.

この図では、A搬送機構部20aの起動時の搬送速度がB搬送機構部20bより速いため、上記dEPabの値がdEPabを判定する判定レベルKを超える時刻tnで、A搬送機構部20aの搬送速度をB搬送機構部20bの搬送速度に合わせるために速度が減速される。この処理は任意の時刻tn+1の場合にも同様に処理される。この結果、起動時、A搬送機構部20a、B搬送機構部20b共異なった搬送速度で搬送されるが、起動時の時刻tnでA搬送機構部20aの搬送速度はB搬送機構部の搬送速度に合わせられる。   In this figure, since the transport speed when the A transport mechanism section 20a is started is faster than that of the B transport mechanism section 20b, the transport of the A transport mechanism section 20a is performed at time tn when the value of dEPab exceeds the determination level K for determining dEPab. The speed is reduced to match the speed with the transport speed of the B transport mechanism 20b. This process is similarly performed at an arbitrary time tn + 1. As a result, at the time of startup, the A transport mechanism unit 20a and the B transport mechanism unit 20b are transported at different transport speeds. At the time tn at the time of startup, the transport speed of the A transport mechanism unit 20a is the transport speed of the B transport mechanism unit. Adapted to.

上記エンコーダパルス監視が例えば100(ms)毎に行われる場合、この監視に合わせて周波数の再設定も行われる。   When the encoder pulse monitoring is performed, for example, every 100 (ms), the frequency is reset according to the monitoring.

なお、停止時については後述する。   The stop time will be described later.

上述したようにA搬送機構部20aとB搬送機構部20bのようにそれぞれ独立した駆動力によって搬送される搬送路の起動時の搬送速度の速度差を低減する方法は、各制御回路によって搬送速度の速い方の搬送速度を遅い方の搬送速度に合わせるように行われる。このようにするのは、搬送速度の遅い搬送路は何らかの負荷が一時的に加わり搬送速度が遅くなっている場合が考えられ、この状態の搬送速度を上げることは新たな障害が発生する場合も考えられるためである。   As described above, the method of reducing the speed difference between the transport speeds at the time of starting the transport path that is transported by the independent driving force, such as the A transport mechanism section 20a and the B transport mechanism section 20b, is performed by each control circuit. This is performed so that the faster transport speed is matched to the slower transport speed. This is because the transport path with a low transport speed may be subjected to some load and the transport speed is slow, and increasing the transport speed in this state may cause a new failure. This is because it is considered.

次に、A搬送機構部20a及びB搬送機構部20bで停止時の搬送速度を一定にする方法を図6に示すフローチャートを参照して説明する。この図6に示す停止時の搬送速度を一定にする方法と、図4に示す起動時の搬送速度を一定にする方法とは、A搬送機構部20aのエンコーダパルス7aとB搬送機構部20bのエンコーダパルス7bの間に所定値を越えるエンコーダパルス差が生じた場合の搬送速度の補正方法が異なる。従って、この部分の説明を行いその他の部分の説明は省略する。なお、A搬送機構部20aとB搬送機構部20bは同一構造であるため、以下、A搬送機構部20aの動作を主に説明し、B搬送機構部20bの動作は()内に置き換え読むことにより説明する。   Next, a method for making the transport speed at the stop time constant in the A transport mechanism section 20a and the B transport mechanism section 20b will be described with reference to the flowchart shown in FIG. The method of making the conveyance speed at the time of stop shown in FIG. 6 and the method of making the conveyance speed at the time of activation shown in FIG. 4 constant are the same as the encoder pulse 7a of the A conveyance mechanism unit 20a and the B conveyance mechanism unit 20b. The conveyance speed correction method is different when an encoder pulse difference exceeding a predetermined value is generated between the encoder pulses 7b. Therefore, this part will be described and the description of other parts will be omitted. Since the A transport mechanism unit 20a and the B transport mechanism unit 20b have the same structure, the operation of the A transport mechanism unit 20a will be mainly described below, and the operation of the B transport mechanism unit 20b will be read in parentheses. Will be described.

制御回路8a(8b)は、エンコーダ7a(7b)から出力されるエンコーダパルスEPA(EPB)と、エンコーダ7b(7a)から出力されるエンコーダパルスEPB(EPA)とを監視して比較し、エンコーダパルスの差分dEPabをA搬送機構部20aは数式(12)で算出し(S22)、dEPbaをB搬送機構部20bは数式(13)で算出する(S27)。   The control circuit 8a (8b) monitors and compares the encoder pulse EPA (EPB) output from the encoder 7a (7b) and the encoder pulse EPB (EPA) output from the encoder 7b (7a). The difference dEPab is calculated by the formula (12) by the A transport mechanism unit 20a (S22), and the B transport mechanism unit 20b is calculated by the formula (13) (S27).

dEPab=EPA−EPB・・・・・・(12):A搬送機構部
dEPba=EPB−EPA・・・・・・(13):B搬送機構部
EPA:エンコーダ7aから出力されるエンコーダパルス数
EPB:エンコーダ7bから出力されるエンコーダパルス数
dEPab:EPAとEPBの差分
dEPba:EPBとEPAの差分
ここで、エンコーダパルスの差分dEPab又はdEPbaが判定レベルK以上かどうかを数式(14)で求める。
dEPab = EPA-EPB (12): A transport mechanism section dEPba = EPB-EPA (13): B transport mechanism section EPA: Number of encoder pulses EPB output from the encoder 7a : Number of encoder pulses output from the encoder 7b dEPab: Difference between EPA and EPB dEPba: Difference between EPB and EPA Here, whether the difference dEPab or dEPba of the encoder pulse is equal to or higher than the determination level K is obtained by Expression (14).

dEPab−K≧0・・・・・・・・・・(14)
dEPba−K≧0・・・・・・・・・・(15)
K:dEPab又はdEPbaを判定する判定レベル
数式(14)が成立する場合(S23のYes)は、搬送速度Aは搬送速度Bより遅いため、搬送速度Aの速度を上げるためにインバータ3a(3b)に設定すべき周波数差分を算出し(S24(S29))、再設定すべき周波数を設定する(S21(S26))。しかしながら、A搬送機構部20a(B搬送機構部20b)の搬送速度がB搬送機構部20b(A搬送機構部20a)の搬送速度と同じ程度の場合(S23のNo(S28のN0))、搬送速度の変更を行う必要がないため周波数の再設定は行わない(S25(S30))。
dEPab-K ≧ 0 (14)
dEPba-K ≧ 0 (15)
K: Determination Level for Determining dEPab or dEPba When Formula (14) is satisfied (Yes in S23), since the transport speed A is slower than the transport speed B, the inverter 3a (3b) is used to increase the transport speed A. The frequency difference to be set is calculated (S24 (S29)), and the frequency to be reset is set (S21 (S26)). However, when the transport speed of the A transport mechanism 20a (B transport mechanism 20b) is approximately the same as the transport speed of the B transport mechanism 20b (A transport mechanism 20a) (No in S23 (N0 in S28)), transport Since it is not necessary to change the speed, the frequency is not reset (S25 (S30)).

上記エンコーダパルス監視が例えば100(ms)毎に行われる場合、この監視に合わせて周波数の再設定も行われる。   When the encoder pulse monitoring is performed, for example, every 100 (ms), the frequency is reset according to the monitoring.

次に、図5(B)を用いて停止時の搬送速度補正を説明する。図5(B)は、A搬送機構部20aの搬送速度を説明する補正後の図で、A搬送機構部20aの起動時の搬送速度30ra、及び停止時の搬送速度30fa、並びにB搬送機構部20bの起動時の搬送速度31rb、及び停止時の搬送速度31fbを図示したものである。以下、停止時について説明する。   Next, the conveyance speed correction at the time of stop is demonstrated using FIG. 5 (B). FIG. 5B is a post-correction diagram illustrating the transport speed of the A transport mechanism unit 20a. The transport speed 30ra when the A transport mechanism unit 20a is started, the transport speed 30fa when the A transport mechanism unit 20a is stopped, and the B transport mechanism unit. The conveyance speed 31rb at the time of starting of 20b and the conveyance speed 31fb at the time of a stop are shown in figure. Hereinafter, the stop time will be described.

この図では、A搬送機構部20aの停止時の搬送速度がB搬送機構部20bより遅いため、上記dEPabの値がdEPabを判定する判定レベルKを超える時刻tmで、B搬送機構部20bの搬送速度にA搬送機構部20aの搬送速度を合わせるために速度が加速される。この処理は任意の時刻tm+1の場合にも同様に処理される。この結果、停止時、A搬送機構部20a、B搬送機構部20b共異なった搬送速度で搬送されるが停止時の時刻tmでB搬送機構部の搬送速度になる。   In this figure, since the transport speed when the A transport mechanism unit 20a is stopped is slower than that of the B transport mechanism unit 20b, the transport of the B transport mechanism unit 20b is performed at time tm when the value of dEPab exceeds the determination level K for determining dEPab. The speed is accelerated in order to match the transport speed of the A transport mechanism unit 20a with the speed. This process is similarly performed at an arbitrary time tm + 1. As a result, at the time of stop, both the A transport mechanism unit 20a and the B transport mechanism unit 20b are transported at different transport speeds, but at the time tm at the time of stop, the transport speed of the B transport mechanism unit is reached.

上述したようにA搬送機構部20aとB搬送機構部20bのようにそれぞれ独立した駆動力によって搬送される搬送路の停止時の搬送速度差を低減するために、搬送速度の遅い方の搬送速度を速い方の搬送速度に合わせるように制御される。このようにするのは、搬送速度を減速している場合には、搬送速度の速い搬送路の方が負荷による慣性力が大きいために減速されにくく、また相対的に搬送速度の遅い搬送路は所定値通り減速されている場合があるため、搬送速度の遅い搬送路の搬送速度を搬送路の速い搬送路の搬送速度に合わせるためである。   As described above, in order to reduce the difference in transport speed when the transport path transported by independent driving forces, such as the A transport mechanism section 20a and the B transport mechanism section 20b, the transport speed of the slower transport speed is reduced. Is controlled to match the faster conveyance speed. This is because when the conveyance speed is reduced, the conveyance path with a high conveyance speed is less likely to be decelerated because the inertial force due to the load is larger, and the conveyance path with a relatively low conveyance speed is This is because there is a case where the speed is decelerated according to a predetermined value, so that the transport speed of the transport path having the slow transport speed is matched with the transport speed of the transport path having the fast transport path.

以上述べたように第1の実施例によれば、A搬送機構部とB搬送機構部のようにそれぞれ独立した駆動力によって搬送される搬送路の搬送速度を起動時及び停止時など、搬送速度の急激な速度変化や負荷変動がある場合にも、各区分毎にこれら搬送路の搬送速度が等速になるように速度差を低減することができる。また、この搬送速度差が低減されることによって、紙葉類の衝突や重なりなどの不具合の発生を防止できる。   As described above, according to the first embodiment, the transport speed of the transport path transported by independent driving forces, such as the A transport mechanism section and the B transport mechanism section, at the start time and at the stop time, etc. Even when there is a sudden speed change or load fluctuation, the speed difference can be reduced so that the transport speeds of these transport paths are constant for each section. In addition, by reducing the difference in transport speed, it is possible to prevent the occurrence of problems such as paper sheet collision and overlap.

図7は、本発明の実施例2による搬送機構部が搬送方向に複数配置された場合の配置図である。各搬送機後部の搬送路1a乃至1eには紙葉類11a乃至11eが存在していて、図示矢印X方向に搬送されている。   FIG. 7 is an arrangement diagram when a plurality of conveyance mechanism units according to the second embodiment of the present invention are arranged in the conveyance direction. Paper sheets 11a to 11e exist in the transport paths 1a to 1e at the rear of each transport machine, and are transported in the direction of the arrow X in the drawing.

ここで、搬送機構部20cの搬送路1cに着目して、この搬送路1cの通常動作時の搬送速度を補正する場合の動作を説明する。搬送機後部20cの制御回路8c(図示しない)は、この搬送機後部20cのエンコーダ7cのエンコーダパルスEPC、及びこれより搬送方向下流に配置された搬送機構部20d、20eのエンコーダ7d、7ebから出力されるエンコーダパルスEPD、EPEの中から最も少ないエンコーダパルスの値(搬送速度が最も遅い)との差分dEPを算出する。EPDが最も少ない場合の例を数式(16)乃至(19)に示す。   Here, paying attention to the conveyance path 1c of the conveyance mechanism unit 20c, an operation in correcting the conveyance speed during the normal operation of the conveyance path 1c will be described. The control circuit 8c (not shown) of the rear part 20c of the transport machine outputs from the encoder pulse EPC of the encoder 7c of the rear part 20c of the transport machine and the encoders 7d and 7eb of the transport mechanism parts 20d and 20e arranged downstream of the transport direction. The difference dEP from the smallest encoder pulse value (slowest conveyance speed) is calculated from the encoder pulses EPD and EPE. Formulas (16) to (19) show examples when EPD is the smallest.

dEPcd=EPC−EPD・・・・・・(16)
dEPcd:エンコーダパルスEPCとエンコーダパルスEPDの差分
dEPcd−K≧0・・・・・・・・・・(17)
dEPed=EPE−EPD・・・・・・(18)
dEPed:エンコーダパルスEPEとエンコーダパルスEPDの差分
dEPed−K≧0・・・・・・・・・・(19)
K:dEPを判定する判定レベル。
dEPcd = EPC-EPD (16)
dEPcd: difference between encoder pulse EPC and encoder pulse EPD dEPcd−K ≧ 0 (17)
dEPed = EPE-EPD (18)
dEPed: difference between encoder pulse EPE and encoder pulse EPD dEPed−K ≧ 0 (19)
K: Determination level for determining dEP.

EPDが最も少なく、かつ、数式(17)、(19)が成立する場合、搬送機構部20cの搬送速度を搬送機構部20dの搬送速度に合わせて減速する。すなわち、注目した搬送機構部20cの搬送速度は、この搬送機構部20cより搬送方向下流に配置された搬送機構部の搬送速度の最も遅い搬送速度に設定される。   When EPD is the smallest and Formulas (17) and (19) are satisfied, the transport speed of the transport mechanism unit 20c is reduced in accordance with the transport speed of the transport mechanism unit 20d. That is, the transport speed of the transport mechanism section 20c that has been noticed is set to the transport speed that is the slowest transport speed of the transport mechanism section disposed downstream of the transport mechanism section 20c in the transport direction.

同様に、搬送機構部20bの搬送路1bに着目して、この搬送路1bの通常動作時の搬送速度は、搬送機構部20b乃至搬送機構部20eの中から搬送速度が最も遅い搬送路の搬送速度に設定される。他の搬送路も同様であるため説明を省略する。   Similarly, paying attention to the transport path 1b of the transport mechanism section 20b, the transport speed during the normal operation of the transport path 1b is the transport speed of the transport path with the slowest transport speed among the transport mechanism sections 20b to 20e. Set to speed. Since the other conveyance paths are the same, description thereof is omitted.

このようにすることによって、分割された複数の搬送機構部の搬送路が複数の駆動モータにより駆動されるとき、これら複数の搬送路の搬送速度を一定になるように制御することができるため、紙葉類の衝突や重なりなどの不具合の発生が防止できる。よって紙葉類の損傷がない。   By doing in this way, when the conveyance paths of the plurality of divided conveyance mechanisms are driven by a plurality of drive motors, the conveyance speed of the plurality of conveyance paths can be controlled to be constant. It is possible to prevent the occurrence of defects such as paper sheet collision and overlap. Therefore, there is no damage of paper sheets.

本発明の実施例1による郵便処理区分機機構部の構成図。The block diagram of the mail processing sorter mechanism part by Example 1 of this invention. 郵便処理区分機機構部の起動から停止するまでの搬送速度を説明するタイミングチャート。The timing chart explaining the conveyance speed from starting to a stop of a mail processing sorter mechanism part. 郵便処理区分機機構部の標準起動時間に対する搬送速度が速い場合と遅い場合の関係を説明する図。The figure explaining the relationship between the case where the conveyance speed with respect to the standard starting time of a mail processing sorter mechanism part is quick, and is slow. 郵便処理区分機機構部のA搬送機構部及びB搬送機構部で起動時の搬送速度を一定にするフローチャート。The flowchart which makes constant the conveyance speed at the time of starting in A conveyance mechanism part and B conveyance mechanism part of a mail processing sorter mechanism part. 制御回路でのA搬送機構部とB搬送機構部の搬送速度補正を説明する図。The figure explaining the conveyance speed correction | amendment of A conveyance mechanism part and B conveyance mechanism part in a control circuit. 郵便処理区分機機構部のA搬送機構部及びB搬送機構部で停止時の搬送速度を一定にするフローチャート。The flowchart which makes constant the conveyance speed at the time of a stop in A conveyance mechanism part and B conveyance mechanism part of a mail processing sorter mechanism part. 本発明の実施例2による搬送機構部が搬送方向に複数配置された場合の配置図。FIG. 9 is a layout diagram when a plurality of transport mechanism units according to the second embodiment of the present invention are disposed in the transport direction.

符号の説明Explanation of symbols

1a、1b 搬送ベルト
2a1、2a2、2b1、2b2 搬送ローラ
3a、3b インバータ
4a、4b モータ
5a1、5a2、5b1、5b2 プーリ
6a、6b ドライブベルト
7a、7b エンコーダ
8a、8b 制御回路
11a、11b 紙葉類
20a A搬送機構部
20b B搬送機構部
21a、21b 搬送部
22a、22b 搬送速度補正部
1a, 1b Conveying belt 2a1, 2a2, 2b1, 2b2 Conveying roller 3a, 3b Inverter 4a, 4b Motor 5a1, 5a2, 5b1, 5b2 Pulley 6a, 6b Drive belt 7a, 7b Encoder 8a, 8b Control circuits 11a, 11b Paper sheets 20a A transport mechanism section 20b B transport mechanism sections 21a, 21b transport sections 22a, 22b transport speed correction section

Claims (5)

紙葉類を搬送する第1の搬送路と、
この第1の搬送路の搬送速度を測定する第1の搬送速度測定手段と、
前記第1の搬送路から搬送されてきた前記紙葉類を取り込む隣接して配置された第2の搬送路と、
前記第2の搬送路の搬送速度を測定する第2の搬送速度測定手段と、
前記第1及び第2の搬送速度測定手段の測定結果を比較して前記第1の搬送路及び前記第2の搬送路の搬送速度を制御する各々第1及び第2の制御手段と
を有することを特徴とする紙葉類搬送装置。
A first transport path for transporting paper sheets;
First transport speed measuring means for measuring the transport speed of the first transport path;
A second transport path arranged adjacent to take in the paper sheets transported from the first transport path;
Second transport speed measuring means for measuring the transport speed of the second transport path;
Comparing the measurement results of the first and second transport speed measuring means, the first and second control means for controlling the transport speed of the first transport path and the second transport path, respectively. Paper sheet conveying device characterized by the above.
前記第1又は第2の制御手段は、
起動時又は通常動作時、前記第1の搬送速度測定手段の測定結果と、前記第2の搬送速度測定手段の測定結果とを比較した結果、前記第1又は第2の搬送速度の遅い方の搬送速度を当該搬送路の搬送速度になるように制御する請求項1記載の紙葉類搬送装置。
The first or second control means includes
As a result of comparing the measurement result of the first transport speed measuring means with the measurement result of the second transport speed measuring means at the start-up or normal operation, the slower of the first or second transport speed The paper sheet transport apparatus according to claim 1, wherein the transport speed is controlled so as to be equal to the transport speed of the transport path.
前記第1又は第2の制御手段はさらに、
停止時、前記第1の搬送速度測定手段による測定結果と、前記第2の搬送速度測定手段による測定結果とを比較した結果、前記第1又は第2の搬送速度の速い方の搬送速度を当該搬送路の搬送速度になるように制御する請求項1記載の紙葉類搬送装置。
The first or second control means further includes
At the time of stop, as a result of comparing the measurement result by the first transport speed measuring means and the measurement result by the second transport speed measuring means, the faster transport speed of the first or second transport speed is The paper sheet transport apparatus according to claim 1, wherein the paper sheet transport device is controlled to have a transport speed of the transport path.
紙葉類を搬送する複数の搬送路と、
前記複数の搬送路の搬送速度を測定する複数の搬送速度測定手段と、
起動時又は通常動作時、前記複数の搬送路の内、当該搬送路の搬送方向下流に配置された前記複数の搬送路の各対応する搬送速度測定手段による測定の結果、搬送速度の最も遅い搬送路の搬送速度を当該搬送路の搬送速度となるように当該搬送速度を制御する当該制御手段と
を有することを特徴とする請求項1記載の紙葉類搬送装置。
A plurality of conveyance paths for conveying paper sheets;
A plurality of transport speed measuring means for measuring transport speeds of the plurality of transport paths;
As a result of measurement by the corresponding conveyance speed measuring means of the plurality of conveyance paths arranged downstream in the conveyance direction of the plurality of conveyance paths at the time of start-up or normal operation, conveyance with the slowest conveyance speed The paper sheet conveying apparatus according to claim 1, further comprising: a control unit configured to control the conveying speed so that the conveying speed of the path becomes equal to the conveying speed of the conveying path.
前記当該制御手段はさらに、
停止時、前記複数の搬送路の搬送速度測定手段による測定結果を比較した結果、当該搬送路の搬送速度を前記複数の搬送路の搬送速度の内で搬送速度の最も速い搬送速度になるように当該搬送路の搬送速度を制御する請求項4記載の紙葉類搬送装置。
The control means further includes
As a result of comparing the measurement results of the conveyance speed measuring means of the plurality of conveyance paths when stopped, the conveyance speed of the conveyance path is set to the highest conveyance speed among the conveyance speeds of the plurality of conveyance paths. The paper sheet transport apparatus according to claim 4, wherein the transport speed of the transport path is controlled.
JP2003355945A 2003-10-16 2003-10-16 Paper sheet conveying device Pending JP2005119791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355945A JP2005119791A (en) 2003-10-16 2003-10-16 Paper sheet conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355945A JP2005119791A (en) 2003-10-16 2003-10-16 Paper sheet conveying device

Publications (1)

Publication Number Publication Date
JP2005119791A true JP2005119791A (en) 2005-05-12

Family

ID=34613338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355945A Pending JP2005119791A (en) 2003-10-16 2003-10-16 Paper sheet conveying device

Country Status (1)

Country Link
JP (1) JP2005119791A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574727U (en) * 1978-11-16 1980-05-23
JPS624153A (en) * 1985-06-26 1987-01-10 Nec Corp Paper sheet transfer control device
JPS62215414A (en) * 1986-03-14 1987-09-22 Kyoto Seisakusho:Kk Relay conveyance system for material in material conveying device
JPS63211098A (en) * 1987-02-27 1988-09-01 株式会社日立製作所 Paper money replenisher
JPH06239440A (en) * 1993-02-18 1994-08-30 Dainippon Screen Mfg Co Ltd Substrate conveyer device
JP2001097592A (en) * 1999-09-30 2001-04-10 Hitachi Ltd Paper sheet conveyor
JP2003012183A (en) * 2001-06-26 2003-01-15 Juki Corp Conveying system of charging and sealing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574727U (en) * 1978-11-16 1980-05-23
JPS624153A (en) * 1985-06-26 1987-01-10 Nec Corp Paper sheet transfer control device
JPS62215414A (en) * 1986-03-14 1987-09-22 Kyoto Seisakusho:Kk Relay conveyance system for material in material conveying device
JPS63211098A (en) * 1987-02-27 1988-09-01 株式会社日立製作所 Paper money replenisher
JPH06239440A (en) * 1993-02-18 1994-08-30 Dainippon Screen Mfg Co Ltd Substrate conveyer device
JP2001097592A (en) * 1999-09-30 2001-04-10 Hitachi Ltd Paper sheet conveyor
JP2003012183A (en) * 2001-06-26 2003-01-15 Juki Corp Conveying system of charging and sealing device

Similar Documents

Publication Publication Date Title
US10640315B2 (en) Drive apparatus and image forming apparatus
US10435261B2 (en) Sheet conveying apparatus and image forming apparatus
US7793934B2 (en) Sheet conveying device and image forming apparatus
JP5994610B2 (en) Conveying apparatus and image forming apparatus
JP5025435B2 (en) Sheet conveying apparatus, image forming apparatus, and image reading apparatus
US6572103B1 (en) Method and system for tracking document trailing edge position
JP2005119791A (en) Paper sheet conveying device
US20080181710A1 (en) Web conveyance method and apparatus of tandem printing system
JP2007041370A (en) Image forming apparatus
US6499734B1 (en) System and method for detecting a document trailing edge exiting feeder
JP2008308282A (en) Conveying device
US6883800B2 (en) Paper convey method and device in image forming apparatus
JP2012166956A (en) Sheet conveying system and image forming apparatus, and image reader
JPH1159965A (en) Paper carrying device
JP2005335935A (en) Paper carrying device
JPH06127753A (en) Paper transfer controller
JP2016118602A (en) Image forming apparatus
JP4380415B2 (en) Paper transport device
JP2007246277A (en) Method and device for carrying and controlling steel plate
JP2014046466A (en) Image forming apparatus and control method thereof, and program
JP2006248704A (en) Control device for paper feeding device
JPH05270693A (en) Control method for sheet conveying device
JP6523096B2 (en) Image forming device
JP7203603B2 (en) Sheet processing device and image forming device
JP2009274787A (en) Document feeder, image reading apparatus using it, and image forming system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602