JP2005116767A - Heat dissipation member, circuit board, and semiconductor component - Google Patents

Heat dissipation member, circuit board, and semiconductor component Download PDF

Info

Publication number
JP2005116767A
JP2005116767A JP2003348903A JP2003348903A JP2005116767A JP 2005116767 A JP2005116767 A JP 2005116767A JP 2003348903 A JP2003348903 A JP 2003348903A JP 2003348903 A JP2003348903 A JP 2003348903A JP 2005116767 A JP2005116767 A JP 2005116767A
Authority
JP
Japan
Prior art keywords
ceramic
heat
heat dissipation
heat radiating
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003348903A
Other languages
Japanese (ja)
Inventor
Yasushi Hara
康 原
Tomoo Tanaka
智雄 田中
Masaya Ito
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003348903A priority Critical patent/JP2005116767A/en
Publication of JP2005116767A publication Critical patent/JP2005116767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation member which has a double-layered structure by joining a ceramics member to both sides of a heatsink formed of a metal or the like, has high yield in manufacturing, and is excellent in heat-resistant cycle property. <P>SOLUTION: The heat dissipation member 1 is formed by joining ceramics members 1b, 1c to both sides of a heatsink 1a formed of a metal or the like. The surface roughness Ra of a junction surface in contact with other members of the ceramics members 1b, 1c is made ≤2.0 μm. Yield in manufacturing and heat-resistance cycle property can be remarkably improved simultaneously. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子などの発熱性電子部品を搭載する放熱部材並びに回路基板及びそれらに半導体素子を組み付けた半導体部品に関する。   The present invention relates to a heat radiating member on which a heat generating electronic component such as a semiconductor element is mounted, a circuit board, and a semiconductor component in which a semiconductor element is assembled.

電気自動車、ハイブリッド車、家庭用機器のインバーター制御に用いられるIGBT等に組み込まれるパワーモジュールやスイッチング電源モジュール等のいわゆる発熱性電子部品は、文字通り通電により発熱する。この熱は半導体素子等の正常な動作を妨げたり、回路基板に亀裂を生じさせる等のトラブル要因になるため、通常、これら発熱性電子部品には銅板やアルミニウム板等の放熱部材が一体に設けられている。そして多くの場合、さらなる熱対策として前記放熱部材の下面にヒートシンクが取り付けられる。   So-called exothermic electronic components such as power modules and switching power supply modules incorporated in IGBTs used for inverter control of electric vehicles, hybrid vehicles, and household devices literally generate heat when energized. Since this heat causes troubles such as hindering normal operation of semiconductor elements and causing cracks in the circuit board, usually these heat-generating electronic components are integrally provided with heat dissipation members such as copper plates and aluminum plates. It has been. In many cases, a heat sink is attached to the lower surface of the heat radiating member as a further heat countermeasure.

金属等からなる放熱板の両面にセラミックス部材を接合して複層構造にすると、反りのない高性能の放熱部材が得られる。
本発明は斯かる複層構造の放熱部材をさらに改良するべくなされたもので、具体的には、製造時の歩留が高くしかも耐熱サイクル性に優れた放熱部材の提供を目的とする。
When a ceramic member is joined to both surfaces of a heat radiating plate made of metal or the like to form a multilayer structure, a high-performance heat radiating member without warping can be obtained.
The present invention has been made to further improve such a heat radiating member having a multilayer structure. Specifically, an object of the present invention is to provide a heat radiating member having a high yield at the time of manufacture and excellent heat cycle resistance.

請求項1に記載したように、金属等からなる放熱板の両面にセラミックス部材を接合してなる放熱部材であって、前記セラミックス部材の他の部材に接する接合面の面粗度Raを2.0μm以下にした放熱部材を提供する。
また、請求項2に記載したように前記セラミックス部材は、破壊靭性が5MPam0.5以上、3点曲げ強度が500MPa以上、熱伝導率が50W/mK以上である請求項1記載の放熱部材を提供する。
また、請求項3に記載したように前記セラミックス部材は、窒化珪素を主成分とし、該窒化珪素にIIa族元素の成分を含むことを特徴とする請求項1又は2記載の放熱部材を提供する。
また、請求項4に記載したように前記セラミックス部材の窒化珪素は80〜99重量%、また、セラミックス部材のIIa族元素の成分は酸化物換算で0.3〜8重量%である請求項3記載の放熱部材を提供する。
また、請求項5に記載したように、請求項1乃至4の何れか一つに記載の放熱部材の前記二枚のセラミックス部材のうちの何れか一方の外面に回路金属層を一体に接合してなる回路基板を提供する。
また、請求項6に記載したように、請求項1乃至4の何れか一つに記載の放熱部材又は請求項5に記載の回路基板に半導体素子を設けてなる半導体部品を提供する。
As described in claim 1, the heat dissipation member is formed by bonding ceramic members to both surfaces of a heat dissipation plate made of metal or the like, and the surface roughness Ra of the bonding surface in contact with the other members of the ceramic member is 2. A heat dissipating member having a thickness of 0 μm or less is provided.
Further, as described in claim 2, the ceramic member has a fracture toughness of 5 MPam 0.5 or more, a three-point bending strength of 500 MPa or more, and a thermal conductivity of 50 W / mK or more. provide.
Further, as described in claim 3, the ceramic member is mainly composed of silicon nitride, and the silicon nitride includes a IIa group element component. .
Further, as described in claim 4, the silicon nitride of the ceramic member is 80 to 99% by weight, and the component of group IIa element of the ceramic member is 0.3 to 8% by weight in terms of oxide. A heat dissipation member as described is provided.
In addition, as described in claim 5, a circuit metal layer is integrally bonded to an outer surface of one of the two ceramic members of the heat dissipation member according to any one of claims 1 to 4. A circuit board is provided.
According to a sixth aspect of the present invention, there is provided a semiconductor component in which a semiconductor element is provided on the heat dissipating member according to any one of the first to fourth aspects or the circuit board according to the fifth aspect.

請求項1記載の発明では、放熱板の両面にセラミックス部材を接合してなる放熱部材に対し、前記セラミックス部材の例えば放熱板に接する接合面の JIS B 0601 に準拠する面粗度Raを2.0μm以下にすることで、製造時の歩留と耐熱サイクル性の飛躍的な向上が同時に達成できる。   In the invention of claim 1, the surface roughness Ra in accordance with JIS B 0601 of the joining surface of the ceramic member, for example, contacting the heat radiating plate, is 2. By making it 0 μm or less, a dramatic improvement in the yield during manufacturing and the heat cycle performance can be achieved at the same time.

また、放熱部材においてセラミックス部材の破壊靭性、3点曲げ強度、熱伝導率の三要素は極めて重要であり、これらを請求項2に記載した値に規定することで、製造時の歩留が高く、耐熱サイクル性に優れ、十分な放熱特性を持った放熱部材が得られる。ちなみに破壊靭性が5MPam0.5以上であると、衝撃によるクラック等への脆さによる製造時の歩留の低下を抑制し且つクラックに対する耐性不足による耐熱サイクル性の低下を抑制する。また、曲げ強度が500MPa以上であると、取り扱いが容易で製造時に壊れづらく歩留の低下を抑制し且つ熱応力に対する耐性不足による耐熱サイクル性の低下を抑制する。また、熱伝導率が50W/mK以上であると放熱特性が十分で温度の上昇を抑制する。なお、本発明において、破壊靭性の測定はJIS R 1607、3点曲げ強度の測定はJIS R 1601、熱伝導率の測定はJIS R 1611によって行うことができる。 In addition, in the heat dissipation member, the three elements of fracture toughness, three-point bending strength, and thermal conductivity of the ceramic member are extremely important. By defining these values to the values described in claim 2, the yield during manufacture is high. A heat dissipating member having excellent heat cycle characteristics and sufficient heat dissipating characteristics can be obtained. Incidentally, when the fracture toughness is 5 MPam 0.5 or more, the decrease in production yield due to brittleness to cracks due to impact is suppressed, and the decrease in heat cycleability due to insufficient resistance to cracks is suppressed. In addition, when the bending strength is 500 MPa or more, handling is easy, and it is difficult to break during manufacturing, thereby suppressing a decrease in yield and suppressing a decrease in heat cycleability due to insufficient resistance to thermal stress. Further, if the thermal conductivity is 50 W / mK or more, the heat dissipation characteristics are sufficient and the temperature rise is suppressed. In the present invention, fracture toughness can be measured by JIS R 1607, three-point bending strength can be measured by JIS R 1601, and thermal conductivity can be measured by JIS R 1611.

請求項3記載の発明で素材として選択した窒化珪素は、絶縁板として使用できるセラミックスの中で強度、靭性などの機械的特性が優れていてセラミックス部材に最適であり、さらにその窒化珪素に加えたIIa族元素の成分が、セラミックス部材の熱伝導率の高レベル維持、焼結性の向上、生産性の向上という作用を発揮し、それらの相乗効果で放熱部材の製造時の歩留と耐熱サイクル性の向上に大きく貢献する。そして前記窒化珪素とIIa族元素の成分の酸化物換算量は請求項4に記載した範囲の割合で配合するのが最もよい。   Silicon nitride selected as a material in the invention of claim 3 is excellent in mechanical properties such as strength and toughness among ceramics that can be used as an insulating plate, and is optimal for a ceramic member. Group IIa element has the effect of maintaining high thermal conductivity of ceramic members, improving sinterability, and improving productivity, and the synergistic effect of these components increases the yield and heat cycle during the manufacture of heat dissipation members. Greatly contributes to the improvement of sex. And the oxide conversion amount of the component of the said silicon nitride and a IIa group element is the best to mix | blend in the ratio of the range described in Claim 4.

また、前記構成の放熱部材に回路金属層を一体に接合してなる請求項5記載の回路基板や、前記構成の放熱部材又は回路基板に半導体素子を設けてなる請求項6記載の半導体部品も上記の利益が享受できる。   The circuit board according to claim 5, wherein a circuit metal layer is integrally joined to the heat dissipation member having the above configuration, and the semiconductor component according to claim 6, wherein a semiconductor element is provided on the heat dissipation member or the circuit board having the above configuration. The above benefits can be enjoyed.

以下に本発明の実施の形態を図面を参照しつつ説明する。なお、図1は放熱部材の分解斜視図、図2は半導体部品の分解斜視図、図3は使用状態を示す正面図、図4は曲げ試験を示す概略の正面図である。
放熱部材1は、図1の分解斜視図に示したように放熱板1aの上下両面にセラミックス部材1b,1cを接合してなる。
Embodiments of the present invention will be described below with reference to the drawings. 1 is an exploded perspective view of the heat radiating member, FIG. 2 is an exploded perspective view of the semiconductor component, FIG. 3 is a front view showing a use state, and FIG. 4 is a schematic front view showing a bending test.
As shown in the exploded perspective view of FIG. 1, the heat dissipating member 1 is formed by bonding ceramic members 1b and 1c to the upper and lower surfaces of the heat dissipating plate 1a.

前記放熱板1aは放熱性を備えていればどのようなものでもよいが、好ましくはAl又はAlにCu、Si、Mgなどの中から一種又は二種以上の金属を加えたAl合金、或いはCu又はCuにFe、Ag、Zr、Mo、Wなどの中から一種又は二種以上を加えたCu合金、Al−SiC等のような金属とセラミックスの複合材がよい。これらの材料は放熱性に優れしかも低コストだからである。   The radiator plate 1a may be any material as long as it has heat dissipation properties, but preferably Al or Al alloy obtained by adding one or more metals from Cu, Si, Mg, etc. to Al or Al, or Cu. Alternatively, a metal and ceramic composite such as Cu alloy obtained by adding one or more of Cu, Fe, Ag, Zr, Mo, W, or the like, Al-SiC, or the like is preferable. This is because these materials are excellent in heat dissipation and low in cost.

また、セラミックス部材1b,1cは、例えば窒化珪素、窒化アルミニウム、酸化アルミニウム等で形成されるが、好ましくは窒化珪素がよい。そしてさらに好ましくは窒化珪素にIIa族元素の成分を加えて焼成したものがよく、なかでも80〜99重量%の窒化珪素成分に、酸化物換算で0.3〜8重量%のIIa族元素の成分を添加したものが最もよい。ちなみに窒化珪素量が80重量%以上では熱伝導率の低下を抑制し且つ粒界層部分に対する窒化珪素粒子部分の割合が十分に確保され接合強度の低下が抑制される。また、IIa族元素の成分の量が酸化物換算で0.3重量%以上では焼結性の低下が抑制され、逆に8重量%以下であると粒界層部分が過剰にならず接合強度の低下が抑制される。
前記IIa族元素の成分は、Mg、Ca、Sr、Baよりなり、IIa族元素の単体又はIIa族元素の酸化物、窒化物、炭窒化物などのIIa族元素を含む化合物の中から1種を単独成分又は2種以上を使用する。これらのIIa族元素の成分を含有させることにより、セラミックス部材1b,1cの熱伝導率の高レベル維持、焼結性の向上、生産性の向上に大きく貢献する。
The ceramic members 1b and 1c are made of, for example, silicon nitride, aluminum nitride, aluminum oxide or the like, and preferably silicon nitride. More preferably, silicon nitride is added with a IIa group element and baked. In particular, 80 to 99% by weight of a silicon nitride component is added to an oxide equivalent of 0.3 to 8% by weight of a IIa group element. What added the component is the best. Incidentally, when the amount of silicon nitride is 80% by weight or more, a decrease in thermal conductivity is suppressed, and a sufficient ratio of the silicon nitride particle portion to the grain boundary layer portion is secured, thereby suppressing a decrease in bonding strength. In addition, when the amount of the IIa group element component is 0.3% by weight or more in terms of oxide, the decrease in sinterability is suppressed. Is suppressed.
The component of the group IIa element is composed of Mg, Ca, Sr, and Ba, and is one kind of a compound containing a group IIa element such as a single group IIa element or an oxide, nitride, or carbonitride of the group IIa element. Are used alone or in combination of two or more. Inclusion of these IIa group elements greatly contributes to maintaining a high level of thermal conductivity, improving sinterability, and improving productivity of the ceramic members 1b and 1c.

しかしてセラミックス部材1b,1cは、 JIS R 1607 に準拠する破壊靭性が5MPam0.5以上、 JIS R 1601 に準拠する3点曲げ強度(図4の支点間距離x=30mm)が500MPa以上、 JIS R 1611 に準拠する熱伝導率が50W/mK以上、となるように材質・寸法が決められる。例えば、80〜99重量%の窒化珪素成分に、酸化物換算で0.3〜8重量%のIIa族元素の成分を添加し、その他の成分としてIIIa族元素の成分(例えば酸化イッテルビウム(Yb))を加えてセラミックス材料を製造し、そのセラミックス材料で板厚0.2mm〜0.5mmに加工したセラミックス部材1b,1cは上記性質を充足する。なお、上記性質を充足しているかはセラミックス部材1b,1cと同じ材料のJIS規定の試料片を用いて確認する。 Therefore, the ceramic members 1b and 1c have a fracture toughness in accordance with JIS R 1607 of 5 MPam 0.5 or more, a three-point bending strength in accordance with JIS R 1601 (distance between fulcrums x = 30 mm in FIG. 4) of 500 MPa or more, JIS The material and dimensions are determined so that the thermal conductivity conforming to R 1611 is 50 W / mK or more. For example, 0.3 to 8% by weight of a IIa group element in terms of oxide is added to 80 to 99% by weight of a silicon nitride component, and a IIIa group element component (for example, ytterbium oxide (Yb 2 Ceramic members 1b and 1c manufactured by adding O 3 )) to produce a ceramic material and processing the ceramic material to a plate thickness of 0.2 mm to 0.5 mm satisfy the above properties. Whether or not the above properties are satisfied is confirmed using a JIS-defined sample piece made of the same material as the ceramic members 1b and 1c.

前記放熱板1aとセラミックス部材1b,1cは、例えばろう付け法、ダイレクト・ボンデッド・カッパー法等により接合するが、本発明のセラミックス部材1b,1cは、放熱板1aとの接合面が JIS B 0601 に準拠する面粗度Ra=2.0μm以下に仕上げられている。   The heat radiating plate 1a and the ceramic members 1b and 1c are joined by, for example, a brazing method, a direct bonded copper method, or the like. Surface roughness Ra = 2.0 μm or less conforming to

図2は前記放熱部材1の一方(例えば図2において上側)のセラミックス部材1bの外面に回路金属層3aを接合して回路基板3としたものである。回路金属層3aの材料は、好ましくはAl又はAlにCu、Si、Mgなどの中から一種又は二種以上の金属を加えたAl合金、或いはCu又はCuにFe、Ag、Zr、Mo、Wなどの中から一種又は二種以上を加えたCu合金等がよい。前記回路金属層3aはセラミックス部材1bに対し、例えばろう付け法、ダイレクト・ボンデッド・カッパー法等により接合するが、本発明のセラミックス部材1bは、回路金属層3aとの接合面である図2における上面も JIS B 0601 に準拠する面粗度Ra=2.0μm以下に仕上げられている。
この回路金属層3aの上に半導体素子4a,4aを半田付け等で設置することによりパワーモジュールやスイッチング電源モジュール等の半導体部品4が出来る。
FIG. 2 shows a circuit board 3 in which a circuit metal layer 3a is bonded to the outer surface of one of the heat radiating members 1 (for example, the upper side in FIG. 2). The material of the circuit metal layer 3a is preferably Al or Al alloy obtained by adding one or more metals from Cu, Si, Mg, etc. to Al, or Al, or Cu, Cu, Fe, Ag, Zr, Mo, W Cu alloy etc. which added the 1 type (s) or 2 or more types from these etc. are good. The circuit metal layer 3a is bonded to the ceramic member 1b by, for example, a brazing method, a direct bonded copper method, or the like. The ceramic member 1b of the present invention is a bonding surface with the circuit metal layer 3a in FIG. The top surface is also finished to a surface roughness Ra = 2.0 μm or less in accordance with JIS B 0601.
By installing the semiconductor elements 4a, 4a on the circuit metal layer 3a by soldering or the like, a semiconductor component 4 such as a power module or a switching power supply module can be formed.

以上のようにして形成した半導体部品4は、図3に示したようにヒートシンク5等の取付部に対し、放熱部材1の四コーナーに固定用治具7を設けその固定用治具7に形成した透孔7aにネジ6を通して固定する。   The semiconductor component 4 formed as described above is formed on the fixing jig 7 by providing fixing jigs 7 at the four corners of the heat dissipating member 1 with respect to the mounting portions such as the heat sink 5 as shown in FIG. The screw 6 is fixed to the through hole 7a.

縦×横×厚みが70mm×40mm×3mmであるCu製の放熱板1aに、表1の割合のセラミックス材料からなるセラミックス部材1b,1cをろう付けして実施例1〜13の放熱部材1を製造し、セラミックス部材接合後の歩留と、耐熱サイクル性について試験した。なお、本実施例においてはIIa族元素の成分としてMgOを用い、IIIa族元素の成分としてYbを用いた。耐熱サイクル性の試験は、室温→−40℃→室温→125℃→室温の熱サイクルを繰り返し、接合面に入るクラック或いは接合部の剥離状況を観察した。
また、比較のため、前記実施例1〜13と同じ放熱板1aに、表1の割合のセラミックス材料からなるセラミックス部材1b,1cをろう付けして比較例1〜9の放熱部材1を製造し、実施例1〜13と同様にセラミックス部材接合後の歩留と、耐熱サイクル性について試験した。その結果を表1に示す。
Ceramic members 1b and 1c made of a ceramic material in the ratio of Table 1 are brazed to a Cu heat sink 1a having a length x width x thickness of 70 mm x 40 mm x 3 mm, and the heat radiation member 1 of Examples 1 to 13 is obtained. Manufactured and tested for yield after joining ceramic members and heat cycleability. In this example, MgO was used as the component of the group IIa element, and Yb 2 O 3 was used as the component of the group IIIa element. In the heat cycle resistance test, a thermal cycle of room temperature → −40 ° C. → room temperature → 125 ° C. → room temperature was repeated, and the cracks entering the joint surface or the peeling state of the joint portion were observed.
For comparison, the heat radiating members 1 of Comparative Examples 1 to 9 are manufactured by brazing ceramic members 1b and 1c made of the ceramic material in the ratio of Table 1 to the same heat radiating plate 1a as in Examples 1 to 13. Similarly to Examples 1 to 13, the yield after joining the ceramic members and the heat cycle resistance were tested. The results are shown in Table 1.

Figure 2005116767
Figure 2005116767

表1の実施例1〜4と比較例1,2の放熱部材1は、セラミックス部材1b,1cのセラミックス特性中、接合面の面粗度のみ異ならせたものである。この実施例1〜4と比較例1,2の接合後歩留と耐熱サイクル性に関するデータによれば、セラミックス部材1b,1cの面粗度が放熱部材1の歩留と耐熱サイクル性に明らかに影響を与えていることが確認でき、特にセラミックス部材1b,1cの面粗度Raが2.0μm以下の場合に接合後歩留と耐熱サイクル性の両面で満足できる成果が得られている、ということが確認できた。
その他にも比較例3〜6と実施例1〜13の比較によりセラミックス部材1b,1cの破壊靭性、曲げ強度、熱伝導率が放熱部材1の歩留と耐熱サイクル性を高めるために重要であって、本発明の規定範囲内で満足できる成果が得られていること、また、比較例7〜9と実施例1〜13の比較によりセラミックス部材1b,1cを構成する窒化珪素とIIa族元素の成分の配合比率が放熱部材1の歩留と耐熱サイクル性を高めるために重要であって、本発明の規定範囲内で満足できる成果が得られていることが確認できた。
The heat radiating members 1 of Examples 1 to 4 and Comparative Examples 1 and 2 in Table 1 differ from each other only in the surface roughness of the ceramic surfaces of the ceramic members 1b and 1c. According to the data on the post-joining yield and heat cycle characteristics of Examples 1 to 4 and Comparative Examples 1 and 2, the surface roughness of the ceramic members 1b and 1c is apparent in the yield and heat cycle characteristics of the heat dissipating member 1. In particular, when the surface roughness Ra of the ceramic members 1b and 1c is 2.0 μm or less, satisfactory results are obtained in terms of both post-joining yield and heat cycle resistance. I was able to confirm.
In addition, by comparing Comparative Examples 3 to 6 and Examples 1 to 13, the fracture toughness, bending strength, and thermal conductivity of the ceramic members 1b and 1c are important for increasing the yield and heat cycle resistance of the heat radiating member 1. Thus, satisfactory results are obtained within the specified range of the present invention, and the comparison between Comparative Examples 7 to 9 and Examples 1 to 13 shows the relationship between silicon nitride and IIa group elements constituting the ceramic members 1b and 1c. It was confirmed that the compounding ratio of the components is important for improving the yield and heat cycle performance of the heat dissipating member 1, and that satisfactory results were obtained within the specified range of the present invention.

なお、本発明はもちろん本実施例にとらわれない。例えば本実施例においては固定用治具7を用いて半導体部品4をヒートシンク5に設置したが、放熱部材1の例えば四コーナーに透孔を形成し、その透孔にネジを通して固定してもよい。
また、本実施例においては、IIa族元素の成分およびIIIa族元素の成分として酸化物を用いたが、単体もしくは他の化合物でもよい。
さらに、セラミックス部材1b,1cには、特性を阻害しない範囲であれば、着色あるいは特性改善のためにIVa,Va,VIa族元素の成分を1種以上含有させてもよい。
Of course, the present invention is not limited to this embodiment. For example, in this embodiment, the semiconductor component 4 is installed on the heat sink 5 using the fixing jig 7. However, through holes may be formed in, for example, four corners of the heat radiating member 1, and the through holes may be fixed by screws. .
In this embodiment, oxides are used as the IIa group element component and the IIIa group element component, but they may be simple substances or other compounds.
Furthermore, the ceramic members 1b and 1c may contain one or more IVa, Va, and VIa group elements for coloring or improving the characteristics as long as the characteristics are not impaired.

放熱部材の分解斜視図である。It is a disassembled perspective view of a heat radiating member. 半導体部品の分解斜視図である。It is a disassembled perspective view of a semiconductor component. 使用状態を示す正面図である。It is a front view which shows a use condition. 曲げ試験を示す概略の正面図である。It is a schematic front view which shows a bending test.

符号の説明Explanation of symbols

1 …放熱部材
1a…放熱板(セラミックス部材に接合する他の部材)
1b…セラミックス部材
1c…セラミックス部材
3 …回路基板
3a…回路金属層(セラミックス基板に接合する他の部材)
4 …半導体部品
4a…半導体素子
DESCRIPTION OF SYMBOLS 1 ... Radiation member 1a ... Radiation plate (other members joined to ceramic member)
DESCRIPTION OF SYMBOLS 1b ... Ceramic member 1c ... Ceramic member 3 ... Circuit board 3a ... Circuit metal layer (Other member joined to a ceramic substrate)
4 ... Semiconductor component 4a ... Semiconductor element

Claims (6)

金属等からなる放熱板の両面にセラミックス部材を接合してなる放熱部材であって、
前記セラミックス部材の他の部材に接する接合面の面粗度Raを2.0μm以下にしたことを特徴とする放熱部材。
A heat radiating member formed by joining ceramic members on both sides of a heat radiating plate made of metal or the like,
A heat radiating member characterized in that a surface roughness Ra of a bonding surface in contact with another member of the ceramic member is 2.0 μm or less.
前記セラミックス部材は、破壊靭性が5MPam0.5以上、3点曲げ強度が500MPa以上、熱伝導率が50W/mK以上であることを特徴とする請求項1記載の放熱部材。 2. The heat dissipation member according to claim 1, wherein the ceramic member has a fracture toughness of 5 MPam 0.5 or more, a three-point bending strength of 500 MPa or more, and a thermal conductivity of 50 W / mK or more. 前記セラミックス部材は、窒化珪素を主成分とし、該窒化珪素にIIa族元素の成分を含むことを特徴とする請求項1又は2記載の放熱部材。   The heat radiating member according to claim 1 or 2, wherein the ceramic member contains silicon nitride as a main component, and the silicon nitride contains a IIa group element component. 前記セラミックス部材の窒化珪素は80〜99重量%、また、IIa族元素の成分は酸化物換算で0.3〜8重量%であることを特徴とする請求項3記載の放熱部材。   The heat radiating member according to claim 3, wherein silicon nitride of the ceramic member is 80 to 99% by weight, and a component of group IIa element is 0.3 to 8% by weight in terms of oxide. 請求項1乃至4の何れか一つに記載の放熱部材の前記二枚のセラミックス部材のうちの何れか一方の外面に回路金属層を一体に接合してなることを特徴とする回路基板。   A circuit board comprising a circuit metal layer integrally joined to an outer surface of any one of the two ceramic members of the heat dissipation member according to claim 1. 請求項1乃至4の何れか一つに記載の放熱部材又は請求項5に記載の回路基板に半導体素子を設けてなることを特徴とする半導体部品。   A semiconductor component comprising a heat dissipation member according to any one of claims 1 to 4 or a circuit board according to claim 5 provided with a semiconductor element.
JP2003348903A 2003-10-07 2003-10-07 Heat dissipation member, circuit board, and semiconductor component Pending JP2005116767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348903A JP2005116767A (en) 2003-10-07 2003-10-07 Heat dissipation member, circuit board, and semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348903A JP2005116767A (en) 2003-10-07 2003-10-07 Heat dissipation member, circuit board, and semiconductor component

Publications (1)

Publication Number Publication Date
JP2005116767A true JP2005116767A (en) 2005-04-28

Family

ID=34540917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348903A Pending JP2005116767A (en) 2003-10-07 2003-10-07 Heat dissipation member, circuit board, and semiconductor component

Country Status (1)

Country Link
JP (1) JP2005116767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181715A (en) * 2010-11-22 2016-10-13 株式会社東芝 Ceramic heat sink material for pressure contact structure, and semiconductor module using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181715A (en) * 2010-11-22 2016-10-13 株式会社東芝 Ceramic heat sink material for pressure contact structure, and semiconductor module using the same

Similar Documents

Publication Publication Date Title
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
JP2003017627A (en) Ceramic circuit board and semiconductor module using the same
JP2003086747A (en) Insulation circuit board, its manufacturing method and semiconductor power element using the same
JP2011166126A (en) Liquid-cooled integrated substrate, and method of manufacturing the same
JP6601512B2 (en) Power module substrate with heat sink and power module
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2003197826A (en) Ceramic circuit board and semiconductor module using the same
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP4044449B2 (en) Power module substrate
JP4451746B2 (en) Electric element cooling module
JP2007096252A (en) Liquid-cooling circuit substrate and liquid cooling electronic device
JP2005116767A (en) Heat dissipation member, circuit board, and semiconductor component
JP4496040B2 (en) Electric element cooling module
JP4496043B2 (en) Electric element cooling module
JP7192469B2 (en) Mounting structure of insulated circuit board with heat sink to housing
JP4496041B2 (en) Electric element cooling module
JP4496042B2 (en) Electric element cooling module
JP2002084046A (en) Ceramic circuit board
JP4496044B2 (en) Electric element cooling module
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JP2009188366A (en) Integral semiconductor heat dissipating substrate and its manufacturing method
JP4468338B2 (en) Manufacturing method of ceramic circuit board
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JP2004327732A (en) Ceramic circuit board and electrical circuit module
JP5319463B2 (en) Silicon nitride substrate with improved positioning and semiconductor device using the same