JP2005116341A - Thermostat protector and thermostat sensor - Google Patents

Thermostat protector and thermostat sensor Download PDF

Info

Publication number
JP2005116341A
JP2005116341A JP2003349177A JP2003349177A JP2005116341A JP 2005116341 A JP2005116341 A JP 2005116341A JP 2003349177 A JP2003349177 A JP 2003349177A JP 2003349177 A JP2003349177 A JP 2003349177A JP 2005116341 A JP2005116341 A JP 2005116341A
Authority
JP
Japan
Prior art keywords
elastic
radius
thermo
conductive material
thermosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349177A
Other languages
Japanese (ja)
Other versions
JP4223368B2 (en
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003349177A priority Critical patent/JP4223368B2/en
Publication of JP2005116341A publication Critical patent/JP2005116341A/en
Application granted granted Critical
Publication of JP4223368B2 publication Critical patent/JP4223368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure the long term stability of a thermo sensor of a type in which the elastic deformation energy of an elastic body supporting elastic deformation energy by jointing and fixing with a fusible material such as solder is operated by being released by the melting of the fusible body and to improve the reliability of the action of a thermo protector using such a thermo sensor. <P>SOLUTION: A thermo sensor A is interposed between a pair of electrodes 41, 42, which uses the melting point or softening point of a fusible material 2 as an action temperature in which, in a state both ends of an elastic conductive material with a curvature radius r being overlapped, the conductive material is formed in a larger diameter into an annular body 1 of a radius R (R>r) and both the ends are jointed with a fusible material 2 and given elastic deformation energy, and by the release of the elastic deformation energy due to the melting or softening of the fusible material 2, the conductive material is shrunk to the annular body of the curvature radius r. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクタ及びこのサーモプロテクタに使用するサーモセンサに関するものである。   The present invention relates to a thermoprotector whose operating temperature is the melting point or softening point of a fusible material and a thermosensor used in the thermoprotector.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、蓄積弾性歪エネルギーを利用する弾性歪エネルギー型、バイメタルスイッチのような熱応力型が存在する。
弾性歪エネルギー型としては、例えば図8の(イ)に示すように弾性金属環1'を強制的に扁平に曲げ、この曲げ弾性金属環1'を曲げ反力に抗し一対の電極4',4'に所定融点の可溶合金(はんだ)2'で固定して弾性歪エネルギーを蓄積させ、周囲温度が可溶合金2'の融点まで昇温して可溶合金が溶融されると、図8の(ロ)に示すように弾性金属環1'の弾性歪エネルギーを解放し弾性金属環1'と一方の電極4'との接合を脱離して通電を遮断するものが知られている(特許文献1参照)。
また、図9の(イ)に示すように一端にリード端子13'を取付けた金属ケース14'内に一端側から所定融点のペレット2'、座板15'、圧縮スプリング1'、座板16'を順次に収容し、更に外周が金属ケース内面に摺動接触されたコンタクト42'を収容し、リードピン貫通ブッシング17'を金属ケース14'の他端側に固定し、このブッシング17'とコンタクト42'との間に引外しスプリング18'を組み込んでリード端子13'→金属ケース14'→コンタクト42'→リードピン41'を経る導通路を構成し、周囲温度がペレット2'の融点まで昇温されてペレット2'が溶融されると、図9の(ロ)に示すように圧縮スプリング1'の圧縮応力を解放させて引外しスプリング18'の圧縮応力でリードピン41'の先端からコンタクト42'を離隔させて前記導通路を遮断するものも知られており、いわゆる、ペレットタイプ温度ヒューズと称されている(非特許文献1参照)。
前記の熱応力型としては、既述した通りバイメタルスイッチが知られている。
Accumulated elastic strain energy is detected as a thermo protector that detects abnormal heat generation in electronic and electrical devices, cuts off the device from the power supply by a cut-off operation based on this detection, prevents the device from overheating, and prevents the occurrence of fire. There are elastic strain energy types and thermal stress types such as bimetal switches.
As the elastic strain energy type, for example, as shown in FIG. 8 (a), the elastic metal ring 1 ′ is forcibly bent flat, and the bending elastic metal ring 1 ′ is resisted against the bending reaction force and a pair of electrodes 4 ′. , 4 ′ is fixed with a soluble alloy (solder) 2 ′ having a predetermined melting point, and elastic strain energy is accumulated. When the ambient temperature is raised to the melting point of the soluble alloy 2 ′ and the soluble alloy is melted, As shown in FIG. 8B, there is known one that releases the elastic strain energy of the elastic metal ring 1 ′ and disconnects the connection between the elastic metal ring 1 ′ and one electrode 4 ′ to cut off the energization. (See Patent Document 1).
Further, as shown in FIG. 9 (a), a pellet 2 ′ having a predetermined melting point, a seat plate 15 ′, a compression spring 1 ′, and a seat plate 16 from one end side in a metal case 14 ′ having a lead terminal 13 ′ attached to one end. 'Is sequentially accommodated, and the contact 42' whose outer periphery is slidably contacted with the inner surface of the metal case is accommodated, and the lead pin through bushing 17 'is fixed to the other end side of the metal case 14'. A trip spring 18 'is assembled between the lead terminal 13', the metal case 14 ', the contact 42', and the lead pin 41 ', and the ambient temperature is raised to the melting point of the pellet 2'. When the pellet 2 'is melted, the compression stress of the compression spring 1' is released as shown in FIG. 9B, and the contact 42 'from the tip of the lead pin 41' by the compression stress of the tripping spring 18 '. Separated It is also known to cut off the conduction path, and it is called a so-called pellet type thermal fuse (see Non-Patent Document 1).
As described above, a bimetal switch is known as the thermal stress type.

特開平7−29481号公報JP 7-29481 A 電気工学ハンドブック1988の第818頁Page 818 of Electrical Engineering Handbook 1988

しかしながら、図8に示す弾性歪エネルギー型では、可溶合金2’による弾性金属環1’の接合固定箇所が局所的であり、弾性金属環1’の反力に基づき可溶合金2’に作用する単位断面積当たりの作用力(応力)が大きく、可溶合金2’がクリープ変形し易く、このクリープ変形に基づく接合箇所の抵抗値増加による自己発熱が往々に発生し、更に、溶融合金の糸引きも生じ易く、動作誤差や動作不安定が懸念される。
また、図9に示すペレットタイプでは、座板による均圧化のためにペレットを一様に圧縮できても構造が複雑であり、小型化やコスト面での不利を免れ得ない。
更に、バイメタルタイプは復帰型であり、オン・オフの繰返しが進むにつれてヒステリシスにより動作温度が経時的に上昇する危険性がある。
However, in the elastic strain energy type shown in FIG. 8, the joining and fixing part of the elastic metal ring 1 ′ by the soluble alloy 2 ′ is local and acts on the soluble alloy 2 ′ based on the reaction force of the elastic metal ring 1 ′. Since the acting force (stress) per unit cross-sectional area is large, the soluble alloy 2 ′ is likely to undergo creep deformation, self-heating due to an increase in the resistance value of the joint portion based on this creep deformation often occurs. Stringing is also likely to occur, and there are concerns about operational errors and operational instability.
In the pellet type shown in FIG. 9, the structure is complicated even if the pellet can be uniformly compressed for pressure equalization by the seat plate, and the disadvantages in terms of downsizing and cost cannot be avoided.
Further, the bimetal type is a return type, and there is a risk that the operating temperature rises with time due to hysteresis as the ON / OFF repetition progresses.

本発明の目的は、弾性歪エネルギーをはんだ等の可溶材による接合固定で支持している弾性体の弾性歪エネルギーが可溶体の溶融で解放されて動作するタイプのサーモセンサの長期安定性を保証し、かかるサーモセンサを使用するサーモプロテクタの動作の信頼性の向上を図ることにある。   The purpose of the present invention is to guarantee the long-term stability of a thermosensor that operates with the elastic strain energy released by melting of the fusible material, which is supported by bonding and fixing with a fusible material such as solder. In addition, the reliability of the operation of the thermo protector using such a thermo sensor is improved.

請求項1に係るサーモプロテクタは、所定曲率半径の弾性導電材の両端部を重ねた状態で前記所定曲率半径よりも大なる半径の環状体に拡径成形しその両端部を可溶材で接合して弾性歪エネルギーを付与し、可溶材の溶融乃至は軟化による弾性歪エネルギーの解放で前記所定曲率半径の環状体に縮径させるように可溶材の融点乃至は軟化点を動作温度とするサーモセンサを一対の電極間に挾持したことを特徴とする。   The thermoprotector according to claim 1 is formed by expanding the diameter of the elastic conductive material having a predetermined curvature radius into an annular body having a radius larger than the predetermined curvature radius, and joining the both ends with a soluble material. A thermosensor having an operating temperature at the melting point or softening point of the soluble material so that the elastic strain energy is applied and the elastic strain energy is released by melting or softening of the soluble material to reduce the diameter of the soluble material to the annular body having the predetermined curvature radius. Is held between a pair of electrodes.

請求項2に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、弾性導電材が金属単体、金属と樹脂との積層体または樹脂と導電性粒子との混合体であることを特徴とする。   The thermo protector according to claim 2 is the thermo protector according to claim 1, wherein the elastic conductive material is a single metal, a laminate of metal and resin, or a mixture of resin and conductive particles.

請求項3に係るサーモプロテクタは、請求項1または2のサーモプロテクタにおいて、接合される弾性導電材両端部の接合面に、孔、窪みまたは切欠きを設けて可溶材を食い込ませたことを特徴とする。   The thermo protector according to claim 3 is characterized in that, in the thermo protector according to claim 1 or 2, a fusible material is bitten by providing a hole, a dent or a notch in a joint surface of both ends of the elastic conductive material to be joined. And

請求項4に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、接合される弾性導電材両端部の接合面を粗面としたことを特徴とする。   A thermo protector according to claim 4 is characterized in that, in the thermo protector according to any one of claims 1 to 3, the joint surfaces of both ends of the elastic conductive material to be joined are roughened.

請求項5に係るサーモプロテクタは、請求項1〜4何れかのサーモプロテクタにおいて、可溶材が低融点金属であることを特徴とする。   The thermo protector according to claim 5 is the thermo protector according to any one of claims 1 to 4, wherein the soluble material is a low melting point metal.

請求項6に係るサーモプロテクタは、請求項1〜4何れかのサーモプロテクタにおいて、可溶材が熱可塑性樹脂であることを特徴とする。   The thermo protector according to claim 6 is the thermo protector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin.

請求項7に係るサーモプロテクタは、請求項1〜6何れかのサーモプロテクタにおいて、弾性導電材環状体が多重コイル状であることを特徴とする。   The thermo protector according to claim 7 is the thermo protector according to any one of claims 1 to 6, characterized in that the elastic conductive material annular body has a multi-coil shape.

請求項8に係るサーモプロテクタは、請求項1〜7何れかのサーモプロテクタにおいて、電極間の間隔GがR>G>rであることを特徴とする。   The thermo protector according to claim 8 is the thermo protector according to any one of claims 1 to 7, characterized in that the distance G between the electrodes is R> G> r.

請求項9に係るサーモプロテクタは、請求項1〜8何れかのサーモプロテクタにおいて、電極の弾性応力によりサーモセンサが加圧されていることを特徴とする。   The thermo protector according to claim 9 is the thermo protector according to any one of claims 1 to 8, wherein the thermo sensor is pressurized by the elastic stress of the electrode.

請求項10に係るサーモプロテクタは、請求項1〜9何れかのサーモプロテクタにおいて、電極とサーモセンサとの接触箇所に、融点若しくは軟化点が可溶材のそれよりも低い可溶導電材が付加されていることを特徴とする。   The thermo protector according to claim 10 is the thermo protector according to any one of claims 1 to 9, wherein a soluble conductive material having a melting point or a softening point lower than that of the soluble material is added to a contact portion between the electrode and the thermo sensor. It is characterized by.

請求項11に係るサーモプロテクタは、請求項1〜10何れかのサーモプロテクタにおいて、電極とサーモセンサとの接触箇所に、通電で発熱して可溶材を溶融若しくは軟化させる抵抗材が介在されていることを特徴とする。   The thermo protector according to claim 11 is the thermo protector according to any one of claims 1 to 10, wherein a resistance material that melts or softens the soluble material by generating heat when energized is interposed at a contact portion between the electrode and the thermo sensor. It is characterized by that.

請求項12に係るサーモセンサは、所定曲率半径の弾性材の両端部を重ねた状態で曲率半径とは異なる半径の環状体に拡径または縮径成形しその両端部を可溶材で接合して弾性歪エネルギーを付与し、可溶材の溶融乃至は軟化による弾性歪エネルギーの解放で前記所定曲率半径の環状体に縮径または拡径させるように可溶材の融点乃至は軟化点を動作温度としたことを特徴とする。   The thermosensor according to claim 12 is formed by expanding or reducing the diameter of an elastic material having a radius of curvature different from that of an elastic material having a predetermined curvature radius, and joining the both ends with a soluble material. The operating temperature is the melting point or softening point of the soluble material so that elastic strain energy is applied and the elastic strain energy is released by melting or softening of the soluble material to reduce or expand the diameter of the annular body having the predetermined curvature radius. It is characterized by that.

両端部のスライドで所定半径rから半径R(R>r)の環状体に拡径成形した弾性導電材の弾性歪エネルギーを、可溶材による両端接合部の接合界面の剪断応力で支持しており、この剪断応力を接合面積を広くすることにより低くして接合界面を安定に保持できる。
また、サーモプロテクタでの実質的な電流経路が、一方の電極→弾性導電材からなる環状体の導電体→他方の電極であり、可溶材への通電が殆ど生じないから、可溶材の通電発熱が実質的に発生しない。更に、糸引きによる動作不良を防止できる。
従って、安定な動作を保証でき、可溶材の融点若しくは軟化点で正確に動作させることができ、バイメタルタイプでのオン・オフの繰返しが進むにつれてヒステリシスにより動作温度が経時的に上昇する不具合も排除できる。
The elastic strain energy of the elastic conductive material formed by expanding the diameter from the predetermined radius r to the radius R (R> r) by the slide at both ends is supported by the shear stress at the joint interface of the both ends joined by the soluble material. The shearing stress can be lowered by widening the joining area to stably maintain the joining interface.
In addition, since the substantial current path in the thermo protector is one electrode → the annular conductor made of an elastic conductive material → the other electrode, and the energization of the fusible material hardly occurs. Does not occur substantially. Furthermore, malfunction due to stringing can be prevented.
Therefore, stable operation can be guaranteed, accurate operation can be performed at the melting point or softening point of the fusible material, and the problem that the operating temperature rises over time due to hysteresis as the ON / OFF cycle of the bimetal type progresses is also eliminated. it can.

図1は本発明に係るサーモセンサの基本的構造を示す図面である。
図1の(イ)は、曲率半径rに曲げ加工した弾性導電材を示し、全長Lが2πr以上であり、両端部の重ね代が(L−2πr)とされている。
図1の(ロ)〜(ハ)はサーモセンサを示し、図1の(ロ)のように両端部の重ね代を周方向拡開力により減じて弾性導電環状体1の半径を前記rよりRに拡径し、この拡径状態のままで図1の(ハ)のように重ね両端部を可溶材2で接合してある。
この場合、拡径に従い周方向圧縮反力が増加していき、半径Rになったときの周方向圧縮反力をTとする。
FIG. 1 shows the basic structure of a thermosensor according to the present invention.
FIG. 1 (a) shows an elastic conductive material bent to a radius of curvature r, the total length L is 2πr or more, and the overlap margin at both ends is (L−2πr).
1 (b) to 1 (c) show thermosensors, and as shown in FIG. 1 (b), the overlap of both ends is reduced by the circumferential expansion force, and the radius of the elastic conductive annular body 1 is made larger than the above r. The diameter is expanded to R, and the both ends are overlapped with the soluble material 2 as shown in FIG.
In this case, the circumferential compression reaction force increases as the diameter increases, and T represents the circumferential compression reaction force when the radius R is reached.

図1の(ロ)において、mは弾性導電材を曲率半径rからRに増大することにより生じた曲げモーメント反力を示し、弾性導電材の曲げ剛性をEIとすると   In FIG. 1B, m represents a bending moment reaction force generated by increasing the elastic conductive material from the radius of curvature r to R, and the bending rigidity of the elastic conductive material is EI.

m=EI〔(1/r)−(1/R)〕   m = EI [(1 / r) − (1 / R)]

で与えられ、可溶材による両端部の接合で支持される曲げ歪エネルギーWは The bending strain energy W, which is given by

W=2πR・m2/(2EI)=πR・m2/(EI)   W = 2πR · m 2 / (2EI) = πR · m 2 / (EI)

で与えられる。
この曲げ歪エネルギーWは前記周方向拡開力が為す仕事W’に釣り合う。この仕事W’は、周方向拡開に基づく拡開距離が2π(R−r)であるから、ほぼ
Given in.
This bending strain energy W is balanced with the work W ′ performed by the circumferential expansion force. Since the work W ′ has an expansion distance of 2π (R−r) based on the circumferential expansion,

W’=Tπ(R−r)   W ′ = Tπ (R−r)

で与えられ、W=W’より From W = W ’

T=EI(R−r)/(r2R)   T = EI (Rr) / (r2R)

が成立し、可溶材による接合部の接合界面の面積をSとすると、接合界面に作用する剪断応力τは

Figure 2005116341
で与えられる。 If the area of the joint interface of the joint portion made of soluble material is S, the shear stress τ acting on the joint interface is
Figure 2005116341
Given in.

前記サーモセンサにおいて、周囲温度の上昇により可溶材2が溶融若しくは軟化されると、前記の弾性曲げ歪エネルギーが解放され、半径Rから元の半径rに縮径復元され、周囲温度が可溶材の融点若しくは軟化点になったことが検知される。   In the thermosensor, when the soluble material 2 is melted or softened due to an increase in the ambient temperature, the elastic bending strain energy is released, the diameter is restored from the radius R to the original radius r, and the ambient temperature is reduced to that of the soluble material. A melting point or softening point is detected.

前記弾性導電材1には、弾性金属単体の他、弾性金属と合成樹脂との積層体、弾性合成樹脂と金属との積層体、導電粒を混合した弾性合成樹脂等の複合体を使用でき、その弾性合成樹脂には繊維補強合成樹脂が含まれる。
導電材には、銅のような高導電率の金属の他、比抵抗値の相当に高い材料も含まれる。
前記可溶材2には、はんだのような低融点可溶合金や熱可塑性樹脂を使用できる。これら可溶材2の融点若しくは軟化点よりも、前記弾性導電材1の金属や合成樹脂の融点若しくは軟化点が低く設定される。
The elastic conductive material 1 can be a single elastic metal, a laminate of an elastic metal and a synthetic resin, a laminate of an elastic synthetic resin and a metal, an elastic synthetic resin mixed with conductive particles, or the like. The elastic synthetic resin includes a fiber reinforced synthetic resin.
The conductive material includes a material having a relatively high specific resistance in addition to a metal having a high conductivity such as copper.
The fusible material 2 may be a low melting point fusible alloy such as solder or a thermoplastic resin. The melting point or softening point of the metal or synthetic resin of the elastic conductive material 1 is set lower than the melting point or softening point of the soluble material 2.

本発明に係るサーモセンサにおいては、可溶材で接合された弾性導電材両端部の接合界面に前記式(1)で示す剪断力τが作用している。接合界面は、この剪断力に耐え得る強度を備えていなければならず、弾性導電材の高弾性率(Eが大)や環状体半径rの小寸法のために前記剪断力τが大となるときは、接合界面の剪断強度を高くする必要がある。そこで、接合される面の一方または双方に孔、窪み、切欠き設けて可溶材を食い込ませたり、接合される面の一方または双方を粗面としてアンカー効果を奏させることが有効である。
弾性導電材が弾性金属単体の場合、可溶材にははんだ等の低融点合金を用いることができ、この場合の可溶材による接合は、弾性導電材の重ね両端部間にはんだシートを介在させ、はんだシートと弾性金属材との間にフラックスを塗布したうえではんだを加熱溶融させることにより行なうことができる。その加熱には、通電加熱、電磁誘導加熱等を用いることができる。
In the thermosensor according to the present invention, the shearing force τ represented by the above formula (1) is acting on the joint interface between both ends of the elastic conductive material joined with the soluble material. The joining interface must have a strength that can withstand this shearing force, and the shearing force τ becomes large due to the high elastic modulus (large E) of the elastic conductive material and the small size of the annular body radius r. Sometimes it is necessary to increase the shear strength of the bonding interface. Therefore, it is effective to provide a hole, a dent, or a notch in one or both of the surfaces to be joined so that the fusible material is bitten in, or to have one or both of the surfaces to be joined as a rough surface to provide an anchor effect.
When the elastic conductive material is an elastic metal simple substance, a low melting point alloy such as solder can be used as the soluble material, and in this case, the joining with the soluble material is performed by interposing a solder sheet between the overlapping ends of the elastic conductive material, It can be performed by applying a flux between the solder sheet and the elastic metal material and then heating and melting the solder. For the heating, electric heating, electromagnetic induction heating, or the like can be used.

本発明に係るサーモセンサを製作するには、前記半径rの弾性導電環状体に、例えばマンドレル(半径R)を挿入して同環状体を半径Rに拡径し、この環状体の両端重ね部を可溶材で接合することができる。
拡径前の半径rの弾性導電環状体は、半径rの弾性導電筒状体をスパイラル状に切断すると共にスパイラル1ピッチ以上の長さで切断する方法、弾性導電帯条体または線状体を回転マンドレルにスパイラル状に巻き付けて曲げ加工しつつこれをマンドレル先端から送り出すと共にスパイラル1ピッチ以上の長さで切断する方法等による得ることができる。
In order to manufacture the thermosensor according to the present invention, for example, a mandrel (radius R) is inserted into the elastic conductive annular body having the radius r to expand the annular body to the radius R, and both ends of the annular body are overlapped. Can be joined with a soluble material.
The elastic conductive annular body having the radius r before the diameter expansion is obtained by cutting the elastic conductive cylindrical body having the radius r into a spiral shape and cutting with a length of one pitch or more of the spiral, an elastic conductive strip or a linear body. It can be obtained by, for example, a method in which a spiral mandrel is wound around a rotating mandrel and bent, and this is sent out from the tip of the mandrel and cut by a length of one pitch or more of the spiral.

この半径rの弾性導電環状体に曲げ加工歪が残留していると、半径Rの弾性導電環状体を得るための可溶材による接合時の加熱でその残留歪が解放される。
かかる弾性導電環状体を有するサーモセンサでは、前記した動作後、すなわち可溶材の溶融若しくは軟化により半径Rの弾性導電環状体が縮径された後の半径が前記の半径rよりもやや大きくなるが、この半径が前記半径Rよりも充分に小であれば、前記の残留歪は許容できる。
If bending strain remains in the elastic conductive ring having the radius r, the residual strain is released by heating at the time of joining with the soluble material for obtaining the elastic conductive ring having the radius R.
In a thermosensor having such an elastic conductive ring, the radius after the above-described operation, that is, after the elastic conductive ring having a radius R is reduced by melting or softening of the soluble material, is slightly larger than the radius r. If the radius is sufficiently smaller than the radius R, the residual strain is acceptable.

前記半径rの弾性導電環状体の弾性導電材は、帯状材、線状材(断面は例えば丸形、ほぼ正方形等)の何れであってもよい。弾性導電材が金属と合成樹脂との積層体である場合、通常帯状材が使用される。この積層体の積層数は三層以上とすることもできる。
前記環状体の巻数は、図1に示した単数の他、多重とすることもできる。多重とすれば、式(1)において、接合面積Sを大きくでき、前記剪断反力Tを広い接合界面に分散させ得、接合界面の剪断応力τの低減を促すことができるから、弾性導電材が高弾性でその弾性率Eが高くても、剪断応力τを低く保持してサーモセンサの安定性保持を確保できる。
The elastic conductive material of the elastic conductive ring having the radius r may be any of a band-shaped material and a linear material (the cross section is, for example, round or substantially square). When the elastic conductive material is a laminate of a metal and a synthetic resin, a strip-shaped material is usually used. The number of laminated layers can be three or more.
The number of turns of the annular body may be multiple as well as the single number shown in FIG. If multiple, the bonding area S in Formula (1) can be increased, the shear reaction force T can be dispersed over a wide bonding interface, and the reduction of the shear stress τ at the bonding interface can be promoted. Even if the elastic modulus E is high and the elastic modulus E is high, the shear stress τ can be kept low to ensure the stability of the thermosensor.

図2の(イ)は本発明に係るサーモプロテクタの一実施例を示す平面図(透視図)、図2の(ロ)は同じく側面図、図2の(ハ)は図2の(イ)におけるハ−ハ断面図である。
図2において、3は絶縁体ハウジングであり、一対の電極部材41,42を固着してある。この電極部材は、図4にも示されているように本体部411(421)と扁平リード部412(422)とを備えている。前記絶縁体ハウジング3は、例えば射出成形により製作でき、チャージ樹脂には前記可溶材の融点若しくは軟化点よりも高軟化点の合成樹脂を用いることができる。電極材の固着は、金型に一対の電極材をセットしてハウジングを射出成形すること、またはスリット付きハウジングを成形し、そのスリットに電極材の本体部を差し込み、その本体部をハウジング内面に接着剤またはリベッティング等で固定することにより行なうことができる。
図2において、51はハウジング3の底側に嵌合または接着したベース絶縁体、例えばセラミックス板、ガラス繊維強化ポリエステル樹脂板のようなFRP板、耐熱性プラスチック板等である。
Aは本発明に係るサーモセンサであり、その外径Rを電極41,42の本体部411,421の間隔Gよりも大として電極の本体部411,421間に弾性的に挾持してある。このサーモセンサAの弾性導電環状体1が金属箔と合成樹脂との積層体である場合、環状体の外周面は金属箔面とされる。
52はハウジング3の上面側に嵌合または接着したカバープレートであり、例えばセラミックス板、ガラス繊維強化ポリエステル樹脂板のようなFRP板、耐熱性プラスチック板等を使用できる。
2 (a) is a plan view (perspective view) showing an embodiment of a thermoprotector according to the present invention, FIG. 2 (b) is a side view, and FIG. 2 (c) is FIG. 2 (a). FIG.
In FIG. 2, 3 is an insulator housing to which a pair of electrode members 41 and 42 are fixed. As shown in FIG. 4, the electrode member includes a main body portion 411 (421) and a flat lead portion 412 (422). The insulator housing 3 can be manufactured by, for example, injection molding, and a synthetic resin having a softening point higher than the melting point or softening point of the soluble material can be used as the charge resin. The electrode material is fixed by setting a pair of electrode materials in a mold and injection molding the housing, or forming a housing with a slit, inserting the main body of the electrode material into the slit, and placing the main body on the inner surface of the housing. It can be performed by fixing with an adhesive or riveting.
In FIG. 2, reference numeral 51 denotes a base insulator fitted or adhered to the bottom side of the housing 3, for example, a ceramic plate, an FRP plate such as a glass fiber reinforced polyester resin plate, a heat resistant plastic plate, or the like.
A is a thermosensor according to the present invention, and its outer diameter R is elastically held between the main body portions 411 and 421 of the electrodes, with the outer diameter R being larger than the interval G between the main body portions 411 and 421 of the electrodes 41 and 42. When the elastic conductive annular body 1 of the thermosensor A is a laminate of a metal foil and a synthetic resin, the outer peripheral surface of the annular body is a metal foil surface.
Reference numeral 52 denotes a cover plate fitted or bonded to the upper surface side of the housing 3. For example, a ceramic plate, an FRP plate such as a glass fiber reinforced polyester resin plate, a heat resistant plastic plate, or the like can be used.

図2の(イ)において、電極の本体部411,421とサーモセンサAとの接触箇所にサーモセンサの圧縮反力に基づく圧力pが作用しており、その接触箇所は面接触とされている。従って、電極41→サーモセンサAの導電材→電極42の経路の電気抵抗を充分に低くでき、良好な導通性を保証できる。
上記サーモプロテクタにおいて、外部温度の上昇によりサーモセンサAの可溶材が溶融若しくは軟化されると、サーモセンサの弾性導電環状体(半径R)に蓄えられた弾性曲げ歪エネルギーが解放され図3に示すように環状体1の半径が元の半径r(R>r)に縮径復元されて電極41,42とサーモセンサとの接触が解除される。
In FIG. 2A, the pressure p based on the compression reaction force of the thermosensor is applied to the contact portion between the body portions 411 and 421 of the electrode and the thermosensor A, and the contact portion is in surface contact. . Therefore, the electrical resistance of the path of the electrode 41 → the conductive material of the thermosensor A → the electrode 42 can be sufficiently lowered, and good electrical conductivity can be guaranteed.
In the above thermo protector, when the soluble material of the thermo sensor A is melted or softened due to an increase in the external temperature, the elastic bending strain energy stored in the elastic conductive ring (radius R) of the thermo sensor is released and shown in FIG. Thus, the radius of the annular body 1 is restored to the original radius r (R> r) and the contact between the electrodes 41 and 42 and the thermosensor is released.

本発明に係るサーモプロテクタは、電子・電気機器の過熱保護に使用できる。
この保護によれば、機器が過電流に基づき異常発熱すると、その発生熱で当該サーモセンサの可溶材が溶融若しくは軟化されて電極とサーモセンサとの接触解除により機器への通電が遮断される。従って、機器の温度がほぼ可溶材の融点若しくは軟化点Tmに達すると、サーモプロテクタの動作により機器への給電が遮断されて機器の上昇温度が前記温度Tmを越えるのを防止でき、機器の耐熱温度に相応して可溶材の融点若しくは軟化点を設定することにより、機器の過電流に基づく異常発熱を抑制し、ひいては機器の火災を未然に防止できる。
The thermo protector according to the present invention can be used for overheat protection of electronic and electrical equipment.
According to this protection, when the device abnormally generates heat due to overcurrent, the fusible material of the thermosensor is melted or softened by the generated heat, and the energization of the device is interrupted by releasing the contact between the electrode and the thermosensor. Therefore, when the temperature of the device almost reaches the melting point or softening point Tm of the fusible material, it is possible to prevent the temperature rise of the device from exceeding the temperature Tm by interrupting the power supply to the device due to the operation of the thermo protector. By setting the melting point or softening point of the fusible material according to the temperature, abnormal heat generation due to the overcurrent of the device can be suppressed, and thus the device can be prevented from being fired.

本発明に係るサーモプロテクタでは、可溶材に作用する主たる応力が剪断応力であり、式(1)から明らかなように可溶材による接合界面の面積Sを広くすることにより剪断応力τを充分に小さくできるから、可溶材のクリープを回避でき優れた安定性を保証できる。更に、接合される面に孔、窪み、切欠き設けて可溶材を食い込ませたり、接合される面を粗面としてアンカー効果を呈させることにより接合界面の剪断強度を強くでき、一層の安定性を保証できる。
図2の(イ)において、サーモセンサと電極との接触圧力pは、可溶材2による接合部に曲げモーメントとして作用するだけであり、この曲げモーメントにより接合部に作用する応力が剪断応力であるから、接触圧力pの作用にもかかわらず、上記安定性保証を確保できる。
In the thermo protector according to the present invention, the main stress acting on the fusible material is the shear stress, and as apparent from the equation (1), the shear stress τ is made sufficiently small by increasing the area S of the joining interface by the fusible material. Therefore, it is possible to avoid creep of the soluble material and to guarantee excellent stability. Furthermore, it is possible to increase the shear strength of the bonding interface by providing holes, dents, and notches on the surfaces to be joined, so that fusible materials can penetrate, and the surface to be joined has a rough surface to provide an anchoring effect, thereby increasing the shear strength of the joint interface. Can guarantee.
In FIG. 2A, the contact pressure p between the thermosensor and the electrode only acts as a bending moment on the joint portion formed by the soluble material 2, and the stress acting on the joint portion by this bending moment is a shear stress. Therefore, the stability guarantee can be ensured regardless of the action of the contact pressure p.

上記一対の電極の少なくとも一方に弾性金属材を用い、この電極の弾性で上記接触圧力を発生させることもできる。
前記サーモセンサと電極との接触部に臨んで導電材を付加しても、当該電極とサーモセンサとの間の抵抗を充分に低くして前記した良好な導通性を保証できる。その導電材には、融点若しくは軟化点が前記可溶材の融点若しくは軟化点よりも低い可溶合金、金属粒等の導電粒混合の導電性合成樹脂を使用でき、その付加量は接触部脱離時の導電材の糸引きを回避できる程度に調整してある。
このサーモプロテクタでは可溶材の溶融若しくは軟化以前に導電材が溶融若しくは軟化されるから、このサーモプロテクタにおいても円滑な動作を保証できる。
An elastic metal material may be used for at least one of the pair of electrodes, and the contact pressure may be generated by the elasticity of the electrodes.
Even if a conductive material is added facing the contact portion between the thermosensor and the electrode, the resistance between the electrode and the thermosensor can be sufficiently lowered to ensure the above-described good conductivity. As the conductive material, a conductive synthetic resin mixed with conductive particles such as a soluble alloy or metal particles whose melting point or softening point is lower than the melting point or softening point of the soluble material can be used. It has been adjusted to such an extent that the stringing of the conductive material at the time can be avoided.
In this thermo protector, since the conductive material is melted or softened before the fusible material is melted or softened, smooth operation can be ensured also in this thermo protector.

本発明に係るサーモセンサやサーモプロテクタにおいては、一方の電極→この電極とサーモセンサ外周の導電面との接触部→サーモセンサ外周の導電材→サーモセンサ外周面の導電面と他方の電極との接触部→他方の電極を主たる通電経路としてしており、この通電経路に可溶材が実質的に関与することはないから、可溶材に可溶合金を使用する場合、可溶合金の組成を比抵抗値に制約されることなく溶融特性のみから選定できる。
近来、環境衛生上、PbやCd等の生体系に有害な金属元素を含まない低融点合金を使用することがはんだの分野で要請されており、本発明においては、可溶材に比抵抗値の制約を受けることなく鉛やCd等フリーの低融点合金を使用できる。
In the thermosensor or thermoprotector according to the present invention, one electrode → the contact portion between this electrode and the conductive surface of the thermosensor outer periphery → the conductive material of the thermosensor outer periphery → the conductive surface of the thermosensor outer peripheral surface and the other electrode The contact part → the other electrode is the main energization path, and the fusible material is not substantially involved in this energization path. It can be selected only from the melting characteristics without being restricted by the resistance value.
Recently, it has been required in the field of soldering to use a low melting point alloy that does not contain a metal element harmful to living systems such as Pb and Cd for environmental hygiene. In the present invention, the soluble material has a specific resistance value. A free low melting point alloy such as lead or Cd can be used without any restrictions.

上記弾性金属材1には、例えばリン青銅を使用できる。弾性材として樹脂を使用する場合、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等を可溶材の融点若しくは軟化点との相対的な関係を考慮して選択できる。弾性材として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   For example, phosphor bronze can be used for the elastic metal material 1. When using a resin as an elastic material, the melting point or softening point of a fusible material such as FRP in which the resin (thermoplastic resin or thermosetting resin) is reinforced with fibers such as glass fiber, metal fiber, synthetic fiber, high-rigidity engineering plastic, etc. Can be selected in consideration of the relative relationship with. As the elastic material, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

上記弾性材としての樹脂や可溶材としての熱可塑性樹脂には、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所望融点のものを選定できる。   Engineering materials such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, polysulfone, etc. Engineering plastics such as plastic, polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate, Polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, ionomer, AAS Fat, can be selected ones of a desired melting point from in ACS resin.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%Sn≦44%,55%In≦74%,1%≦Bi20%、(4)46%Sn≦70%,18%≦In48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%Sn≦60%,20%≦In50%,12%Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成、[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成、[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成、[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成、[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成等からサーモセンサまたはサーモプロテクタの動作温度に適合した融点の組成を選定することができる。   As the soluble alloy, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% Sn ≦ 70%, 0 .5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% Sn ≦ 44%, 55% In ≦ 74% 1% ≦ Bi 20%, (4) 46% Sn ≦ 70%, 18% ≦ In 48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In 37%, remaining Bi (However, Bi ± 2%, In and Sn ± 1% are excluded based on Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, and Sn16.3%, respectively. ), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% Sn ≦ 60%, 2 % ≦ In 50%, 12% Bi ≦ 33%, (8) 1 of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in any one of (8) (1) to (7) 0.01 to 7 parts by weight in total of seeds or two or more kinds, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 49% 3 to 5 parts by weight of Bi are added to 100 parts by weight of 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0. 3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9 ) To (13) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P or a total of 0.01 to 7 weights Addition, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, remaining Bi is 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P Or the composition of In-Sn-Bi alloy such as addition of two or more kinds in a total of 0.01 to 7 parts by weight, [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20% , Balance Bi, (17) (16) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P, or a total of 0.01 to 7 parts by weight, The composition of the Bi—Sn—Sb alloy such as [C] (18) 52% ≦ In ≦ 85%, the remaining Sn, (19) In 100 parts by weight of (18), Ag, Au, Cu, Ni, Pd, Composition of In—Sn based alloy such as addition of 0.01 to 7 parts by weight of one or more of Pt, Sb, Ga, Ge, and P, [D] (2 0) 45% ≦ Bi ≦ 55%, balance In, (21) One or two of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of the composition of (21) (20) In-Bi alloy composition such as addition of 0.01 to 7 parts by weight or more in total, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) 100 parts by weight of (22) Composition of Bi-Sn based alloy such as addition of 0.01 to 7 parts by weight in total of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P, [F] (24 ) A total of 0.01 to 7 parts by weight of one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P is added to 100 parts by weight of In, (25) 90% ≦ In ≦ One type of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P in 100 parts by weight of 99.9%, 0.1% ≦ Ag ≦ 10% Alternatively, two or more kinds are added in total 0.01 to 7 parts by weight, (26) 95% ≦ In ≦ 99.9%, 100% by weight of 0.1% ≦ Sb ≦ 5%, Au, Bi, Cu, Ni, The composition of the melting point suitable for the operating temperature of the thermosensor or thermoprotector from the composition of the In-based alloy such as 0.01 to 7 parts by weight of one or more of Pd, Pt, Ga, Ge, P added in total Can be selected.

電極材には、ニッケル、銅、銅合金例えばリン青銅等の導電性金属乃至は導電性弾性金属または合金を使用でき、必要に応じ鍍金することができる。   As the electrode material, a conductive metal such as nickel, copper, copper alloy such as phosphor bronze, or a conductive elastic metal or alloy can be used, and can be plated as necessary.

本発明において、弾性導電材の導電材には、比抵抗値の高いものも使用できる。この弾性導電材の導電材に比抵抗値の高い抵抗材を使用したサーモセンサやサーモプロテクタ(抵抗型サーモプロテクタと称する)では、所定電流に基づく抵抗材の自己発熱で可溶材を溶融若しくは軟化させて動作させることもでき、機器を前記した機器自体の昇温のみならず、他の原因からも保護できる。例えば、二次電池、特にリチウムイオン二次電池の過充電初期時での電圧変動を検知し、この検知に基づき前記抵抗材に発熱用電流を通電し、その抵抗材の自己発熱により可溶材を溶融若しくは軟化させてサーモセンサを動作させて過充電を抑制するのに使用することもできる。
前記抵抗材としては、鉄やクローム等の合金材、酸化金属粉等の抵抗粉体を混合した合成樹脂材を使用することもできる。
弾性導電材の導電材にこれらの抵抗材を使用することに代え、図1のサーモプロテクタにおいて、電極とサーモセンサとの接触面に抵抗体チップを介在させることも可能である。
図5は前記した2次電池の過充電保護回路の一例を示し、充電機Eと二次電池Bとの間にツエナダイオードD、トランジスタTr、本発明に係る抵抗型サーモプロテクタC1,C2等を接続してある。
而して、二次電池Bの端子電圧が過充電で急峻に変化されるとツエナダイオードDが導通され、トランジスタTrのベース−エミッタ間の導通によりサーモプロテクタC1,C2に二次電池B、充電機Eを電源として電流が流され、サーモプロテクタC1,C2の抵抗体の発熱で可溶材が溶融若しくは軟化されて二次電池Bが充電機Eから遮断される。
In the present invention, an elastic conductive material having a high specific resistance can be used. In a thermo sensor or thermo protector (referred to as a resistance type thermo protector) using a resistance material having a high specific resistance value as the conductive material of the elastic conductive material, the soluble material is melted or softened by the self-heating of the resistance material based on a predetermined current. The device can be protected not only from the temperature rise of the device itself but also from other causes. For example, a voltage fluctuation at the initial overcharge of a secondary battery, particularly a lithium ion secondary battery is detected, and a current for heating is applied to the resistance material based on this detection, and a soluble material is removed by self-heating of the resistance material. It can also be used to suppress overcharging by operating the thermosensor by melting or softening.
As the resistance material, an alloy material such as iron or chrome, or a synthetic resin material mixed with resistance powder such as metal oxide powder can be used.
Instead of using these resistance materials for the conductive material of the elastic conductive material, it is possible to interpose a resistor chip on the contact surface between the electrode and the thermosensor in the thermo protector of FIG.
FIG. 5 shows an example of the above-described secondary battery overcharge protection circuit. Between the charger E and the secondary battery B, a Zener diode D, a transistor Tr, and the resistance type thermoprotectors C1, C2 according to the present invention are provided. Connected.
Thus, when the terminal voltage of the secondary battery B is abruptly changed due to overcharge, the Zener diode D becomes conductive, and the secondary battery B and charge are connected to the thermoprotectors C1 and C2 by the conduction between the base and emitter of the transistor Tr. A current is supplied from the machine E as a power source, and the fusible material is melted or softened by the heat generated by the resistors of the thermo protectors C1 and C2, and the secondary battery B is disconnected from the charger E.

上記の実施例では、弾性材に導電性を付与しているが、導電性は任意要件とすることもでき、図6の(イ)はかかるサーモプロテクタの一実施例の動作前の平面図を、図6の(ロ)同じく動作後の平面図を示している。
図6の(イ)において、3はハウジングであり、固定接点部4110を有する電極材41と可動接点部4210を有する電極材42とを固設してある。51はハウジング3の底側に嵌合または接着したベースプレートである。Aはサーモセンサであり、曲率半径rの環状弾性材(弾性金属材、FRPのような弾性樹脂材、複合弾性材等)の両端部を重ねた状態で半径R(R>r)の環状体1に拡径成形しその両端部を可溶材2で接合して弾性歪エネルギーを付与し、可溶材2の溶融乃至は軟化による弾性歪エネルギーの解放で前記曲率半径rの環状体に縮径させるようにしてあり、可動接点部4210の背後のハウジング内空間に装着しその弾性反力で可動接点部4210を固定接点部4110に接触させてある。ハウジングの上側に嵌合したカバープレートは図示されていない。
In the above embodiment, conductivity is imparted to the elastic material. However, the conductivity may be an optional requirement, and FIG. 6 (a) is a plan view before operation of an embodiment of such a thermo protector. FIG. 6B is a plan view after the same operation.
In FIG. 6A, reference numeral 3 denotes a housing, in which an electrode material 41 having a fixed contact portion 4110 and an electrode material 42 having a movable contact portion 4210 are fixed. Reference numeral 51 denotes a base plate fitted or bonded to the bottom side of the housing 3. A is a thermosensor, and an annular body having a radius R (R> r) in a state in which both ends of an annular elastic material (elastic metal material, elastic resin material such as FRP, composite elastic material, etc.) having a radius of curvature r are stacked. 1 is expanded in diameter and joined at both ends with a fusible material 2 to give elastic strain energy, and the elastic material is melted or softened to release the elastic strain energy to reduce the diameter to an annular body having the curvature radius r. The movable contact portion 4210 is mounted in the inner space of the housing behind the movable contact portion 4210, and the movable contact portion 4210 is brought into contact with the fixed contact portion 4110 by the elastic reaction force. The cover plate fitted on the upper side of the housing is not shown.

このサーモプロテクタにおいて、常時は、一方の電極材の固定接点部→この固定接点部と他方の電極材の可動接点部との接触面→他方の電極材の経路で導通されている。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材がその融点若しくは軟化点にまで加熱されると、サーモセンサの弾性材の曲げ歪エネルギーにより図6の(ロ)に示すようにサーモセンサAが半径rに縮径されて可動接点部4210が固定接点部4110から脱離され、非復帰の通電オフが完結される。
In this thermoprotector, the electrical connection is normally made in the path of the fixed contact portion of one electrode material → the contact surface between the fixed contact portion and the movable contact portion of the other electrode material → the other electrode material.
The operation of the thermo protector will be described. When the soluble material is heated to its melting point or softening point due to an increase in the external temperature, the thermo-sensor as shown in FIG. The sensor A is reduced in diameter to the radius r, the movable contact portion 4210 is detached from the fixed contact portion 4110, and the non-return energization is completed.

上記のサーモセンサの何れの実施例においても、弾性曲げ歪エネルギーを蓄える前の原環状体の半径rを弾性曲げ歪エネルギーを蓄えた後の環状体の半径Rに対し、r<Rとしているが、サーモプロテクタの接点構造によっては、弾性曲げ歪エネルギーを蓄える前の原環状体の半径rを弾性曲げ歪エネルギーを蓄えた後の環状体の半径Rに対し、r>Rとすることもできる。この場合も、サーモプロテクタの接点構造に応じ弾性材の導電性を必須要件とすること、または任意要件とすることができる。
図7の(イ)は、r>Rとしたサーモプロテクタの一実施例の動作前の平面図を、図7の(ロ)同じく動作後の平面図を示している。
図7の(イ)において、3はハウジングであり、可動接点部420を有する一対の電極材42,42を固設してある。51はハウジング3の底側に嵌合または接着したベースプレートである。Aはサーモセンサであり、曲率半径Rの環状弾性材(弾性金属材、FRPのような弾性樹脂材、複合弾性材等)の両端部を重ねた状態で半径r(R>r)の環状体1に縮径成形しその両端部を可溶材2で接合して弾性歪エネルギーを付与し、可溶材2の溶融乃至は軟化による弾性歪エネルギーの解放で前記曲率半径Rの環状体に拡径させるようにしてあり、前記両電極材42,42の接点部420,420間に収容してある。ハウジングの上側に嵌合したカバープレートは図示されていない。
In any of the above-described thermosensors, the radius r of the original annular body before storing the elastic bending strain energy is set to r <R with respect to the radius R of the annular body after storing the elastic bending strain energy. Depending on the contact structure of the thermo protector, the radius r of the original annular body before storing the elastic bending strain energy can be set to r> R with respect to the radius R of the annular body after storing the elastic bending strain energy. Also in this case, the conductivity of the elastic material can be an essential requirement or an optional requirement depending on the contact structure of the thermoprotector.
FIG. 7 (a) shows a plan view before operation of an embodiment of the thermoprotector with r> R, and FIG. 7 (b) shows a plan view after the same operation.
In FIG. 7A, reference numeral 3 denotes a housing, which has a pair of electrode members 42 and 42 each having a movable contact portion 420 fixed thereto. Reference numeral 51 denotes a base plate fitted or bonded to the bottom side of the housing 3. A is a thermosensor, and an annular body having a radius r (R> r) in a state where both ends of an annular elastic material (elastic metal material, elastic resin material such as FRP, composite elastic material, etc.) having a radius of curvature R are stacked. 1 is reduced in diameter and joined at both ends with a fusible material 2 to give elastic strain energy, and is expanded into an annular body having the radius of curvature R by releasing the elastic strain energy by melting or softening the fusible material 2. In this manner, the electrode members 42 are accommodated between the contact portions 420 of the electrode members 42. The cover plate fitted on the upper side of the housing is not shown.

このサーモプロテクタにおいて、常時は、両電極材の可動接点部の弾性的接触で導通されている。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材がその融点若しくは軟化点にまで加熱されると、サーモセンサAの環状弾性材1の曲げ歪エネルギーにより図7の(ロ)に示すようにサーモセンサAが半径Rに拡径され、その拡径で両可動接点部420,420が拡開され、非復帰の通電オフが完結される。
In this thermo-protector, it is normally connected by elastic contact of the movable contact portions of both electrode materials.
The operation of this thermo protector will be described. When the soluble material is heated to its melting point or softening point due to an increase in the external temperature, the bending strain energy of the annular elastic material 1 of the thermo sensor A is shown in FIG. Thus, the thermosensor A is expanded to a radius R, and the movable contact portions 420 and 420 are expanded by the expanded diameter, and the non-returning energization-off is completed.

リチウムイオン2次電池、リチウムポリマー2次電池等の高いエネルギー密度の2次電池では、その高いエネルギー密度のために異常時の発熱温度が高く、その発熱を検知して電池を不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては薄型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   High energy density secondary batteries, such as lithium ion secondary batteries and lithium polymer secondary batteries, have a high heat generation temperature due to the high energy density, and the heat is detected so that the battery is de-energized. Although a protector is required, the thermo protector according to the present invention can be easily reduced in thickness and can be favorably incorporated into a battery pack, and can be suitably used as a thermo protector for a battery.

本発明に係るサーモセンサを示す図面である。1 is a view showing a thermosensor according to the present invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 図2に示すサーモプロテクタの動作状態を示す図面である。It is drawing which shows the operation state of the thermo protector shown in FIG. 図2に示すサーモプロテクタにおける電極を示す図面である。It is drawing which shows the electrode in the thermoprotector shown in FIG. 本発明に係る抵抗型サーモプロテクタの使用例を示す回路図である。It is a circuit diagram which shows the usage example of the resistance type thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector. 従来のサーモプロテクタの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thermoprotector.

符号の説明Explanation of symbols

1 弾性材
2 可溶材
A サーモセンサ
3 ハウジング
41 電極
42 電極
DESCRIPTION OF SYMBOLS 1 Elastic material 2 Soluble material A Thermo sensor 3 Housing 41 Electrode 42 Electrode

Claims (12)

所定曲率半径の弾性導電材の両端部を重ねた状態で前記所定半径より大なる半径の環状体に拡径成形しその両端部を可溶材で接合して弾性歪エネルギーを付与し、可溶材の溶融乃至は軟化による弾性歪エネルギーの解放で前記所定曲率半径の環状体に縮径させるように可溶材の融点乃至は軟化点を動作温度とするサーモセンサを一対の電極間に挾持したことを特徴とするサーモプロテクタ。 In a state where both ends of the elastic conductive material having a predetermined curvature radius are overlapped, the diameter of the ring is increased to an annular body having a radius larger than the predetermined radius, and both ends are joined with a soluble material to give elastic strain energy. A thermosensor having a melting point or softening point of the fusible material as an operating temperature is sandwiched between a pair of electrodes so as to reduce the diameter to the annular body having the predetermined radius of curvature by releasing elastic strain energy by melting or softening. Thermo protector. 弾性導電材が金属単体、金属と樹脂との積層体または樹脂と導電性粒子との混合体であることを特徴とする請求項1記載のサーモプロテクタ。 2. The thermoprotector according to claim 1, wherein the elastic conductive material is a single metal, a laminate of metal and resin, or a mixture of resin and conductive particles. 接合される弾性導電材両端部の接合面に、孔、窪みまたは切欠きを設けて可溶材を食い込ませたことを特徴とする請求項1または2記載のサーモプロテクタ。 3. The thermo protector according to claim 1, wherein a fusible material is bitten by providing holes, dents, or notches on joint surfaces of both ends of the elastic conductive material to be joined. 接合される弾性導電材両端部の接合面を粗面としたことを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The thermo protector according to any one of claims 1 to 3, wherein a joining surface of both ends of the elastic conductive material to be joined is a rough surface. 可溶材が低融点金属であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the soluble material is a low melting point metal. 可溶材が熱可塑性樹脂であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin. 弾性導電材環状体が多重コイル状であることを特徴とする請求項1〜6何れか記載のサーモプロテクタ。 The thermo-protector according to claim 1, wherein the elastic conductive material annular body has a multi-coil shape. 電極間の間隔GがR>G>rであることを特徴とする請求項1〜7何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein a gap G between the electrodes is R> G> r. 電極の弾性応力によりサーモセンサが加圧されていることを特徴とする請求項1〜8何れか記載のサーモプロテクタ。 The thermo protector according to claim 1, wherein the thermo sensor is pressurized by elastic stress of the electrode. 電極とサーモセンサとの接触箇所に、融点若しくは軟化点が可溶材のそれよりも低い可溶導電材が付加されていることを特徴とする請求項1〜9何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 9, wherein a soluble conductive material having a melting point or a softening point lower than that of the soluble material is added to a contact portion between the electrode and the thermosensor. 電極とサーモセンサとの接触箇所に、通電で発熱して可溶材を溶融若しくは軟化させる抵抗体が介在されていることを特徴とする請求項1〜10何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 10, wherein a resistor that generates heat by energization to melt or soften the soluble material is interposed at a contact portion between the electrode and the thermosensor. 所定曲率半径の弾性材の両端部を重ねた状態で曲率半径とは異なる半径の環状体に拡径または縮径成形しその両端部を可溶材で接合して弾性歪エネルギーを付与し、可溶材の溶融乃至は軟化による弾性歪エネルギーの解放で前記の所定曲率半径の環状体に縮径または拡径させるように可溶材の融点乃至は軟化点を動作温度としたことを特徴とするサーモセンサ。 With both ends of an elastic material having a predetermined radius of curvature overlapped, an annular body having a radius different from that of the curvature radius is expanded or contracted, and both ends are joined with a soluble material to give elastic strain energy. A thermosensor characterized in that the melting point or softening point of the fusible material is set to the operating temperature so that the elastic body is contracted or expanded by releasing elastic strain energy by melting or softening.
JP2003349177A 2003-10-08 2003-10-08 Thermo protector Expired - Fee Related JP4223368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349177A JP4223368B2 (en) 2003-10-08 2003-10-08 Thermo protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349177A JP4223368B2 (en) 2003-10-08 2003-10-08 Thermo protector

Publications (2)

Publication Number Publication Date
JP2005116341A true JP2005116341A (en) 2005-04-28
JP4223368B2 JP4223368B2 (en) 2009-02-12

Family

ID=34541110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349177A Expired - Fee Related JP4223368B2 (en) 2003-10-08 2003-10-08 Thermo protector

Country Status (1)

Country Link
JP (1) JP4223368B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272387A (en) * 2009-05-22 2010-12-02 Uchihashi Estec Co Ltd Protection element
CN105216562A (en) * 2015-11-06 2016-01-06 重庆渝达六星动力机械有限公司 The anti-slipping chain of motor cycle tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272387A (en) * 2009-05-22 2010-12-02 Uchihashi Estec Co Ltd Protection element
CN105216562A (en) * 2015-11-06 2016-01-06 重庆渝达六星动力机械有限公司 The anti-slipping chain of motor cycle tire

Also Published As

Publication number Publication date
JP4223368B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5274013B2 (en) Electrical composite element
US6686722B2 (en) Battery pack containing a circuit breaker
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
EP2026359A1 (en) Protective device
KR200487774Y1 (en) Protection device
JP6195910B2 (en) Protective device
US20110140827A1 (en) Circuit protection device
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
KR20160134492A (en) Integral complex safety apparatus
WO2004114331A1 (en) Ptc thermistor and method for protecting circuit
JP4223368B2 (en) Thermo protector
JP2006296180A (en) Protection component, protecting device, battery pack and portable electronic device
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP2005063792A (en) Heat sensitive element and thermo-protector
US7652860B2 (en) Polymer PTC device
JP6592299B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP4223354B2 (en) Thermo protector
TWI727472B (en) Fuse resistor assembly and method of manufacturing the fuse resistor assembly
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP2009212007A (en) Protection element
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
JP4387227B2 (en) Thermo protector
WO2023074752A1 (en) Breaker
CN111247613B (en) Thermal particle type thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081014

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111128

LAPS Cancellation because of no payment of annual fees