JP2005114615A - Method and apparatus for measuring wetting properties on solid surface - Google Patents
Method and apparatus for measuring wetting properties on solid surface Download PDFInfo
- Publication number
- JP2005114615A JP2005114615A JP2003350865A JP2003350865A JP2005114615A JP 2005114615 A JP2005114615 A JP 2005114615A JP 2003350865 A JP2003350865 A JP 2003350865A JP 2003350865 A JP2003350865 A JP 2003350865A JP 2005114615 A JP2005114615 A JP 2005114615A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- droplet
- wettability
- shape
- contact angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、固体に対する液体のぬれ性の測定方法及び測定装置に関するものである。 The present invention relates to a method and an apparatus for measuring wettability of a liquid with respect to a solid.
固体表面のぬれ性制御は、接着、成型、塗装、摺動等、多くの産業分野において重要な課題である。所望のぬれ性を持つ表面を得るために、シランカップリング剤等の各種表面処理剤による被覆処理、イオン注入、UVオゾン処理等の様々な方法で化学的に表面物性を制御する技術が開発、利用されている。 Control of wettability of a solid surface is an important issue in many industrial fields such as adhesion, molding, painting, and sliding. In order to obtain a surface with the desired wettability, a technology to chemically control surface properties was developed by various methods such as coating treatment with various surface treatment agents such as silane coupling agents, ion implantation, UV ozone treatment, It's being used.
固体表面におけるぬれ性は、一般に液体の接触角により表される。従来より接触角の測定には、平板状の固体の上に液滴を滴下したサンプルを水平方向から顕微鏡等の拡大光学系で観察し、液滴が固体の表面(以下、固体面と言う)と接する角度を測定する方法が採られている。以前からの測定方式である、固体上の液滴を写真撮影する方式から、近年では、CCDカメラで固体上の液滴の画像を取得し、コンピュータでデータを処理する方式等がある。 The wettability on a solid surface is generally expressed by the contact angle of the liquid. Conventionally, the contact angle is measured by observing a sample in which a droplet is dropped on a flat solid with a magnifying optical system such as a microscope from the horizontal direction. The droplet is a solid surface (hereinafter referred to as a solid surface). The method of measuring the angle which touches is taken. In recent years, there is a method of taking a photograph of a droplet on a solid, which is a conventional measurement method, and a method of acquiring an image of a droplet on a solid with a CCD camera and processing data with a computer.
前記一般の方式によると、接触角の測定に際して、図7に示すように、平板状の固体71の固体面72上に液滴73を滴下した試料を、顕微鏡などの拡大光学系によって、表面72と平行な方向である横方向Mから観察し、液滴73が表面72と接する角度、つまり接触角θを測定する。 According to the general method, when measuring the contact angle, as shown in FIG. 7, a sample in which a droplet 73 is dropped on a solid surface 72 of a plate-like solid 71 is subjected to a surface 72 using a magnifier optical system such as a microscope. The angle at which the liquid droplet 73 contacts the surface 72, that is, the contact angle θ is measured.
しかしながら、このような方法では、試料を横方向から観察する必要があったため、試料の大きさを小さく制限せざるを得なかった。このため、大きな試料の測定や広い範囲での表面状態の分布評価は非常に困難であった。 However, in such a method, since it is necessary to observe the sample from the lateral direction, the size of the sample has to be limited to be small. For this reason, it was very difficult to measure a large sample and evaluate the distribution of the surface state over a wide range.
そこで、近年では、液滴を上部から観測し、接触角を求める方法が提案されている。例えば特許文献1や特許文献2においては、液滴の体積と、液滴上部に設置したカメラを用いて射影直径を読み取り、接触角を算出する方法が提案されている。
Therefore, in recent years, a method has been proposed in which a droplet is observed from above and the contact angle is obtained. For example, Patent Document 1 and
又、特許文献3においては、液滴近傍にミラーを配置し、液滴の側面像を上部から観測して接触角αを測定する方法が提案され、更に特許文献4では、平板状の固体の上に液滴を滴下した試料について、レーザー共焦点顕微鏡を用いて液体の3次元画像を取得し接触角θを得る方法が提案されている。 Patent Document 3 proposes a method of measuring a contact angle α by arranging a mirror in the vicinity of a droplet and observing a side image of the droplet from above, and Patent Document 4 further discloses a method for measuring a flat solid. A method for obtaining a contact angle θ by acquiring a three-dimensional image of a liquid using a laser confocal microscope with respect to a sample on which a droplet is dropped is proposed.
しかしながら、従来の接触角測定においては以下のような問題があった。 However, the conventional contact angle measurement has the following problems.
即ち、各種表面処理により化学的に表面物性を制御する方法においては、面内での表面処理が必ずしも均一に形成されておらず、面内にぬれ性のばらつきが生じる場合があった。又、経時的に表面のぬれ性が変化し、面内でばらつきを生じる場合があった。例えば、金型の表面処理においては、型表面に形成した離型膜の成膜状態のばらつき、成型による膜の剥離や成型材料の付着によるばらつき等が生じる場合が見られる。従って、これら面内でのぬれ性のばらつきや分布を効率的に評価することが望まれていた。 That is, in the method of chemically controlling the surface physical properties by various surface treatments, the surface treatment within the surface is not necessarily formed uniformly, and there may be a variation in wettability within the surface. Further, the wettability of the surface changes with time, and there may be variations in the surface. For example, in the surface treatment of a mold, there are cases where variations in the film formation state of the release film formed on the mold surface, variations due to film peeling due to molding, adhesion due to molding material, and the like occur. Therefore, it has been desired to efficiently evaluate the variation and distribution of wettability in these planes.
更に、これらの固体表面は必ずしも平面とは限らず、球面や傾斜のついた形状であることも多い。このような場合、表面処理膜の形成状態のばらつきや経時変化も場所によるムラが生じ易く、このような表面においては特に面内でのぬれ性のばらつきを効率良く評価することが望まれている。 Furthermore, these solid surfaces are not necessarily flat, and often have a spherical shape or an inclined shape. In such a case, variations in the formation state of the surface treatment film and changes over time are likely to be uneven depending on the location, and it is desired to efficiently evaluate the variation in wettability especially in such a surface. .
従来提案されている接触角の測定方法においては、観測視野がほぼ数mmφ以下であるため、広い領域を評価するには多大な手間を必要とした。噴霧等により複数の液滴を試料の広範囲に付与することは可能であるが、測定に時間を要し、液滴の蒸発や形状変化等が起こり測定精度が悪くなるという問題点があった。又、広範囲の形状を測定するには、試料を移動することが必要となり、この際振動により液滴形状が変化する畏れもあった。球面や傾斜のある面では特にこの点が問題となる。 In the conventionally proposed method for measuring a contact angle, since the observation field of view is approximately several mmφ or less, it takes a lot of labor to evaluate a wide area. Although it is possible to apply a plurality of droplets to a wide range of a sample by spraying or the like, there is a problem that measurement takes time, and droplets evaporate or change in shape and the measurement accuracy deteriorates. Further, in order to measure a wide range of shapes, it is necessary to move the sample, and in this case, the shape of the droplet may change due to vibration. This is especially a problem for spherical surfaces and inclined surfaces.
更に、液滴を上部から観測して接触角を求める従来の提案においては、液滴の径及び高さから液滴の形状を求め、接触角を算出する方法が用いられてきたが、試料が曲面や傾斜面を含む場合、この方法では接触角を算出することは困難である。 Furthermore, in the conventional proposal for determining the contact angle by observing the droplet from the top, a method for calculating the contact angle from the diameter and height of the droplet has been used. When a curved surface or an inclined surface is included, it is difficult to calculate the contact angle by this method.
そこで、本発明の主たる目的は、大面積試料、特に曲面や傾斜面を含む試料においても、試料面内の任意の箇所のぬれ性を効率良く評価し、これらの分布を容易に得ることを可能にした固体表面のぬれ性評価方法及び評価装置を提供することにある。 Therefore, the main object of the present invention is to efficiently evaluate the wettability of an arbitrary location in the sample surface and easily obtain these distributions even in a large area sample, particularly a sample including a curved surface or an inclined surface. An object of the present invention is to provide a method and an apparatus for evaluating the wettability of a solid surface.
本発明に係る固定表面のぬれ性評価方法は、試料上方に配置された光干渉型形状測定手段により、複数の液滴が付着した試料表面の三次元形状を測定する工程と、得られた三次元形状から試料に対する各液滴の接触角を求める工程と、試料の三次元形状と接触角から試料面内でのぬれ性の分布を求める工程から成ることを特徴とする。 The method for evaluating the wettability of a fixed surface according to the present invention includes a step of measuring a three-dimensional shape of a sample surface to which a plurality of droplets are attached by means of an optical interference type shape measuring means arranged above the sample, and the obtained tertiary The method includes a step of obtaining a contact angle of each droplet with respect to the sample from the original shape, and a step of obtaining a wettability distribution in the sample surface from the three-dimensional shape and contact angle of the sample.
その一態様として、光干渉型形状測定手段として白色干渉計を用いることを特徴とするものである。 As one aspect thereof, a white interferometer is used as the optical interference type shape measuring means.
又、別の一態様として、光干渉型形状測定手段としてレーザー干渉計を用いることを特徴とするものである。 As another aspect, a laser interferometer is used as the optical interference type shape measuring means.
レーザー干渉計の形状測定領域が10mmφ以上200mmφ以下であることを特徴とするものである。 The shape measurement area of the laser interferometer is 10 mmφ or more and 200 mmφ or less.
更に又別の一態様において、試料形状が斜面或は球面を含むことを特徴とするものである。 In still another aspect, the sample shape includes a slope or a spherical surface.
又、液滴の形状を算出する方法として、液滴が付着してない状態と付着した状態での試料表面の三次元形状の差から算出することを特徴とするものである。 Further, as a method for calculating the shape of the droplet, the shape is calculated from the difference in the three-dimensional shape of the sample surface between the state where the droplet is not attached and the state where the droplet is attached.
又、別の一態様として、試料の傾斜角と試料に対する液滴の接触角の変化を予め求めておくことを特徴とするものである。 As another aspect, the change in the tilt angle of the sample and the contact angle of the droplet with respect to the sample is obtained in advance.
本発明に係る固体表面のぬれ性評価装置としては、光干渉型の三次元形状計測手段と、試料に対して複数の液滴を付与する手段と、試料の位置情報と画像情報の取り込み、液滴の形状から接触角の算出及び試料傾斜による接触角の補正を行うコンピュータを具備することを特徴とするものである。 The solid surface wettability evaluation apparatus according to the present invention includes an optical interference type three-dimensional shape measuring means, a means for applying a plurality of droplets to a sample, a sample position information and image information capturing, a liquid It comprises a computer that calculates the contact angle from the shape of the droplet and corrects the contact angle by tilting the sample.
その一態様として、前記複数の液滴を付与する手段として、液滴の噴霧或はインクジェット方式による液滴の付与手段を用いることを特徴とするものである。 As one aspect thereof, the means for applying the plurality of droplets is characterized by using droplet spraying means or droplet applying means by an ink jet method.
又、別の一態様として、試料ステージに傾斜機構が設けてあることを特徴とするものである。 As another aspect, the sample stage is provided with a tilting mechanism.
以上のような本発明に係る測定方法及び測定装置を用いることにより、大面積試料、特に曲面や傾斜面を含む試料においても、試料面内の任意の個所のぬれ性を効率よく評価し、これらの分布を容易に得ることが可能である。 By using the measurement method and the measurement apparatus according to the present invention as described above, even in a large area sample, particularly a sample including a curved surface or an inclined surface, the wettability of an arbitrary portion in the sample surface is efficiently evaluated. Can be easily obtained.
本発明によれば、大面積試料、特に曲面や傾斜面を含む試料においても、試料面内の任意の箇所のぬれ性を効率良く評価し、これらの分布を容易に得ることが可能となる。 According to the present invention, even in a large-area sample, particularly a sample including a curved surface or an inclined surface, it is possible to efficiently evaluate the wettability of an arbitrary portion in the sample surface and easily obtain these distributions.
以下に本発明の実施の形態を添付図面に基づいて説明する。 図1は本発明に係るぬれ性評価装置の構成を示す図である。ここでは、形状計測手段として白色干渉計を用いた装置を示す。 Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of a wettability evaluation apparatus according to the present invention. Here, an apparatus using a white interferometer as the shape measuring means is shown.
図1において、1は試料ステージ、2は試料、3は液滴、4は干渉計による三次元形状計測装置、5〜9はレーザー干渉計の構成部材であり、5は対物レンズ、6は垂直走査駆動部、7は光学系、8は光源、9はCCDカメラである。又、10は液滴付与手段、11,12は位置制御手段、13はコンピュータである。 In FIG. 1, 1 is a sample stage, 2 is a sample, 3 is a droplet, 4 is a three-dimensional shape measuring device using an interferometer, 5 to 9 are components of a laser interferometer, 5 is an objective lens, and 6 is vertical. A scanning drive unit, 7 is an optical system, 8 is a light source, and 9 is a CCD camera. Further, 10 is a droplet applying means, 11 and 12 are position control means, and 13 is a computer.
試料台1は、外部から伝わってくる振動を内部に設けられている空気ばねによって吸収する除震機構になっている。装置周辺で振動が発生しても、試料台1が振動を吸収するので、試料2上の液滴3や干渉計4が揺れ動くことを防ぐ。これによって、接触角の測定が確実に行われる。
The sample stage 1 is a seismic isolation mechanism that absorbs vibration transmitted from the outside by an air spring provided inside. Even if vibration occurs around the apparatus, the sample stage 1 absorbs the vibration, so that the droplet 3 and the interferometer 4 on the
位置制御手段11,12は、コンピュータ13によって制御され、X、Y、Z軸方向への駆動が可能である。又、必要に応じステージを任意の角度にチルトすることもできる。
The position control means 11 and 12 are controlled by the
干渉計4は、測定対象物の表面からの反射光と参照面からの反射光とを干渉させた時に得られる干渉縞に基づいて測定対象物の三次元表面形状を測定する手段であり、非接触、高精度且つ高速の形状測定が可能な装置として知られている。該干渉計4においては、対物レンズ5そのものがミラウ干渉計、マイケルソン干渉計等の等光路干渉計になっており、ハーフミラー(不図示)で光を分岐し、被測定面、内部参照鏡(不図示)で反射し、再びハーフミラー上で結合する光路差が等しい時に干渉を生じるようになっている。
The interferometer 4 is a means for measuring the three-dimensional surface shape of the measurement object based on the interference fringes obtained when the reflected light from the surface of the measurement object interferes with the reflected light from the reference surface. It is known as a device capable of contact, high-precision and high-speed shape measurement. In the interferometer 4, the
白色光源7は可干渉距離が短く干渉縞の発生する範囲を狭いため、干渉縞は対物レンズ5を垂直走査駆動部(ピエゾ素子)6により光軸方向に垂直駆動しながらCCDカメラ8で収集し、得られた干渉縞の情報を高さ情報の検出に利用する。
Since the white light source 7 has a short coherence distance and a narrow range in which interference fringes are generated, the interference fringes are collected by the
干渉計4としては、光源7としてHe−Ne等のレーザー光源を用いたレーザー干渉計を用いることもできる。マイケルソン干渉計を用いたレーザー干渉計により、平面基板上の液滴を観測したときに得られる干渉縞の一例を図2に示す。図2のように液滴部分に縞が等高線として現れる様子が観測される。 As the interferometer 4, a laser interferometer using a laser light source such as He—Ne can be used as the light source 7. An example of interference fringes obtained when a droplet on a flat substrate is observed with a laser interferometer using a Michelson interferometer is shown in FIG. As shown in FIG. 2, it is observed that stripes appear as contour lines in the droplet portion.
レーザー光源は可干渉性が高いが、サブミクロン以上の凹凸を持つ表面形状を計測する場合、干渉縞が密になり過ぎて計測が困難となる。本発明においては、試料に対して斜め方向から光を入射することにより等高線の感度を一般の干渉法に比べて低くすることで、より大きな凹凸形状も測定することが可能な斜入射方式の干渉計も好ましく用いられる。この方法では数10mm〜200mmφ程度の領域の形状計測が可能であり、干渉計を用いた形状計測は大面積試料の計測に有効である。 Although the laser light source has high coherence, when measuring a surface shape having irregularities of submicron or more, interference fringes become too dense and measurement becomes difficult. In the present invention, the oblique incidence type interference that can measure a larger concavo-convex shape by lowering the sensitivity of the contour line by making light incident on the sample from an oblique direction as compared with a general interference method. A total is also preferably used. In this method, shape measurement of an area of about several tens mm to 200 mmφ is possible, and shape measurement using an interferometer is effective for measurement of a large area sample.
液滴付与手段10は、短時間に複数の液滴を試料表面に付与できるものであれば良く、霧吹きやインクジェット方式の液滴付与手段を用いることができる。 The droplet applying means 10 may be any means as long as it can apply a plurality of droplets to the sample surface in a short time, and spraying or ink jet type droplet applying means can be used.
コンピュータ13は、干渉計4、液滴付与手段10、位置制御手段11、12の駆動を制御するとともに、干渉計4から送出された座標のデータや画像情報を取り込む。又、液滴形状から接触角θを算出する操作も同コンピュータ13によって行われる。
The
接触角θを算出する方式については、予め液滴が付着してない状態の試料について表面形状を測定し、液滴が付着した状態での試料表面の三次元形状の差から算出する。 Regarding the method for calculating the contact angle θ, the surface shape is measured in advance for a sample in a state where no droplet is attached, and is calculated from the difference in the three-dimensional shape of the sample surface in the state where the droplet is attached.
試料が平滑な場合、液滴の形状は球の一部と見なされ、図3のように液滴31と試料表面32との接触角θは液滴の半径rと高さhより求めることができる。しかし、斜面や球面を含む試料においては、図4に示したように、試料41上の液滴42は球の一部と見なすことはできないため、これらの面を含む試料のぬれ性を評価するためには、上記のように液滴付与前後での形状の差から液滴自体の形状を得る方法が良い。
When the sample is smooth, the shape of the droplet is regarded as a part of a sphere, and the contact angle θ between the
傾斜面或は球面上での液滴のぬれ性は、図4のθ1で示した前進接触角或はθ2で示した後退接触角により評価する。或るぬれ性を持つ平面上の液滴が、試料の傾斜によりどのような前進接触角θ1及び後退接触角θ2を示すかについては、固体と液滴によって異なる。従って、予め図4に示した試料の傾斜角αと接触角θ1及びθ2との相関を求めておくことが望ましい。 The wettability of the droplet on the inclined surface or spherical surface is evaluated by the advancing contact angle indicated by θ1 or the receding contact angle indicated by θ2 in FIG. The advancing contact angle θ1 and the receding contact angle θ2 that the droplet on the flat surface having a certain wettability shows due to the inclination of the sample differs depending on the solid and the droplet. Therefore, it is desirable to obtain the correlation between the inclination angle α of the sample shown in FIG. 4 and the contact angles θ1 and θ2 in advance.
一例として、シランカップリング処理したガラス基板に対する水の接触角θ1,θ2と試料傾斜との相関を求めたものを図5に示した。球面のように水平方向に対する試料面内の傾斜角が不均一な場合にも、傾斜角αと接触角θ1,θ2の相関を得ておき、平面での接触角の値に換算することにより、試料形状によらず面内でのぬれ性を比較することが可能となる。 As an example, FIG. 5 shows the correlation between the water contact angles θ1 and θ2 with respect to the glass substrate subjected to the silane coupling treatment and the sample inclination. Even when the inclination angle in the sample surface with respect to the horizontal direction is not uniform as in the case of a spherical surface, the correlation between the inclination angle α and the contact angles θ1 and θ2 is obtained and converted to the value of the contact angle on the plane, In-plane wettability can be compared regardless of the sample shape.
尚、試料の傾斜が大きく干渉縞の現れ方に不都合がある場合や液滴の転落角以上である場合には、ステージのチルト機構により試料自体を適宜傾斜させることも可能である。 Note that when the inclination of the sample is large and there is an inconvenience in the appearance of interference fringes, or when the drop angle is greater than or equal to the drop falling angle, the sample itself can be appropriately inclined by the stage tilt mechanism.
本発明の測定装置を用いた測定方法の一態様について図1を用いて以下に説明する。 One mode of a measurement method using the measurement apparatus of the present invention will be described below with reference to FIG.
先ず、ステージ1上の試料2の任意の領域を干渉計4を用いて形状計測する。試料2に対する干渉計4の位置座標(X1,Y1)と試料表面の三次元形状データをコンピュータ13に取り込む。次に位置制御手段12を用いて試料2上方まで液滴付与手段10を移動させた後、液滴付与手段10を操作し、試料2の形状測定領域に複数の微小液滴3を形成する。次いで、再度位置制御手段12を用いて座標(X1,Y1)まで干渉計4を移動させてから干渉計4を駆動し、液滴3を含む試料表面の三次元形状を計測する。コンピュータ13に取り込まれた液滴付与前後の干渉縞のデータから試料表面の形状を算出し、それに基づいて液滴3の3D形状及び接触角θを計算する。
First, the shape of an arbitrary region of the
上記の操作においては、試料が計測領域全域で平面と見なされる場合は、液滴付与前の試料表面の形状計測は省略し、液滴3を含む試料表面の三次元形状から液滴3のみの3D形状を求めても構わない。何れにおいても以上一度の操作により、試料2の測定領域に付与された全ての液滴の接触角、液滴の位置、その場所での試料表面形状を得ることができる。これにより試料面内での液体に対するぬれ性のばらつきや分布データを得ることが可能である。本発明に用いた干渉計を用いると、数10mmφの領域を一度に計測することが可能であるが、測定が必要な領域がそれを上回る場合には、上記の操作を複数回繰り返して行えば良い。
In the above operation, when the sample is regarded as a flat surface in the entire measurement region, measurement of the shape of the sample surface before applying the droplet is omitted, and only the droplet 3 is obtained from the three-dimensional shape of the sample surface including the droplet 3. A 3D shape may be obtained. In any case, the contact angle of all droplets applied to the measurement region of the
試料の一部に傾斜面やある場合や、球面である場合には、前進或は後退接触角を求め、接触角値と試料の傾斜角から試料が平板である場合の接触角値を算出する。これにより試料形状によらず試料のぬれ性及びその面内分布を評価することができる。 When a part of the sample has an inclined surface or a spherical surface, the advancing or receding contact angle is obtained, and the contact angle value when the sample is a flat plate is calculated from the contact angle value and the sample inclination angle. . Thereby, the wettability of the sample and its in-plane distribution can be evaluated regardless of the sample shape.
以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
本実施例においては、形状計測手段として白色干渉計を装備した装置、液滴付与手段として液を霧吹き状に噴霧する手段を用い、5mm×5mmのガラス平板試料にシランカップリング剤をスプレー塗布した試料のぬれ性評価を行った。図1を用いて説明する。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[Example 1]
In this example, using a device equipped with a white interferometer as a shape measuring means and a means for spraying a liquid in a spray form as a droplet applying means, a silane coupling agent was spray-coated on a glass plate sample of 5 mm × 5 mm. The wettability of the sample was evaluated. This will be described with reference to FIG.
先ず、試料2上部に白色干渉計4を移動させ、干渉計4の位置座標(X1,Y1)をコンピュータ13に取り込んだ。次に、干渉計4により試料全面における表面の三次元形状を計測した結果、表面は粗さRMS(Root Mean Square)0.01μm以下で試料面内でのうねりは検出されなかった。この値を表コンピュータ13に取り込んだ。
First, the white interferometer 4 was moved above the
次に、位置制御手段12を用いて試料2上方まで液滴付与手段10を移動させた後、これを操作し、試料2の形状測定領域に純水を霧状に噴霧し、複数の微小液滴3を形成した。次いで、再度座標(X1,Y1)まで干渉計4を移動させてからこれを駆動し、液滴3を含む試料表面の三次元形状を計測した。コンピュータ13に取り込まれた干渉縞のデータから測定領域上の各液滴3の位置座標と3D形状を算出した。測定領域上に形成された液滴は30個、平均の接触角θ=20. 5°、標準偏差は1.0°であり、面内でのばらつきは見られず、シランカップリング剤が表面に均一に形成されていることが分かった。
[実施例2]
本実施例においては、形状計測手段として斜入射方式のレーザー干渉計を装備した装置、液滴付与手段として液滴を霧吹き状に噴霧する手段を用い、30mm×30mmのSiウエハ上にシランカップリング剤をコーティングし、親水化処理した試料のぬれ性評価を行った。
Next, after the
[Example 2]
In this embodiment, an apparatus equipped with a grazing incidence laser interferometer is used as the shape measuring means, and a means for spraying droplets in the form of a spray is used as the droplet applying means, and silane coupling is performed on a 30 mm × 30 mm Si wafer. The wettability of the sample coated with the agent and hydrophilized was evaluated.
先ず、液滴付与前の試料2前面の形状計測を実施例1と同様の方法で行った。次に、干渉計4により試料全面の三次元形状を計測した結果、試料は中央部が若干凸状に高くなっており、端部との高さの差が約1μmある様子が観測された。この形状データをコンピュータ13に取り込んだ。試料2上方まで液滴付与手段10を移動させた後、試料2全面に純水を噴霧し、複数の微小液滴3を形成した。
First, the shape measurement of the front surface of the
次いで、干渉計4を上記形状計測を行った位置に移動させてからこれを駆動し、液滴3を含む試料表面全面の三次元形状を計測した。コンピュータ13に取り込まれた干渉縞のデータから測定領域上の各液滴3の位置座標と3D形状を算出した。測定領域上に形成された液滴は約100個、平均の接触角θ=20. 0°、標準偏差は10. 0°であり、試料端部での平均の接触角値中央部での平均に比べて相対的に低く、ばらつきも大きかった。試料端部では処理膜が均一に形成されていないことが示された。
[実施例3]
本実施例においては、形状計測手段として白色干渉計を装備した装置、液滴付与手段として液を霧吹き状に噴霧する手段を用いた。又、試料に付与する液体としてノルマルヘキサンを用いた。本実施例における試料は、図6に示したような径15mm、曲率半径75mmの光学レンズ成型用金型であり、表面にシリコーン系の離型剤を塗布したものである。
Next, the interferometer 4 was moved to the position where the shape measurement was performed and then driven to measure the three-dimensional shape of the entire sample surface including the droplet 3. The position coordinates and 3D shape of each droplet 3 on the measurement region were calculated from the interference fringe data captured by the
[Example 3]
In the present embodiment, a device equipped with a white interferometer was used as the shape measuring means, and a means for spraying the liquid in the form of a spray was used as the droplet applying means. In addition, normal hexane was used as a liquid to be applied to the sample. The sample in this example is an optical lens molding die having a diameter of 15 mm and a curvature radius of 75 mm as shown in FIG. 6, and a silicone-based release agent is applied to the surface.
試料形状の計測、液滴の付与及び液滴が付着した状態での形状計測は、実施例1と同様の方法で行い、液滴のみの形状計測から液滴の接触角を求めた。ここでは、液滴中心と金型の底面中心を含む断面で切った場合の、液滴と試料がなす角(図4の前進接触角θ1及び後退接触角θ2)を求めた。本試料においては、図5に示したように、予め離型膜を成膜直後に試料の傾斜角αと接触角θ1,θ2との相関を求めており、それに基づいて各測定位置でのぬれ性を平面での接触角の値に換算することにより評価した。 Sample shape measurement, droplet application, and shape measurement with a droplet attached were performed in the same manner as in Example 1, and the contact angle of the droplet was determined from the shape measurement of only the droplet. Here, angles formed by the droplet and the sample (advancing contact angle θ1 and receding contact angle θ2 in FIG. 4) in a case of cutting along a cross section including the center of the droplet and the bottom center of the mold were obtained. In this sample, as shown in FIG. 5, the correlation between the inclination angle α of the sample and the contact angles θ1, θ2 is obtained in advance immediately after forming the release film, and the wetting at each measurement position is based on the correlation. The property was evaluated by converting it into the value of the contact angle on a plane.
その結果、試料各位置での接触角値を平面での接触角の値に換算したところ、その平均の換算値は30.0°、標準偏差2.0°であり、試料面内でのぬれ性のばらつきは小さく、離型膜が均一に形成されていることが分かった。
[実施例4]
本実施例においては、実施例3で用いた金型と同じもので、表面にフッ素系の離型剤を塗布し、且つ、レンズの成型を繰り返し行った後のものを試料として用いた。
As a result, when the contact angle value at each position of the sample was converted into the value of the contact angle on the plane, the average conversion value was 30.0 ° and the standard deviation was 2.0 °. It was found that the release variation was small and the release film was uniformly formed.
[Example 4]
In this example, the same mold as used in Example 3 was used as a sample after applying a fluorine-based mold release agent on the surface and repeatedly molding the lens.
実施例3と同様の方法で測定を行い、金型表面のぬれ性変化及び面内でのばらつきを評価した。その結果、試料面内のどの箇所においてもぬれ性に変化は見られず、レンズ成型後も離型膜の機能は維持されてことが確認できた。
[実施例5]
本実施例においては、形状計測手段としてレーザー干渉計を装備した装置、液滴付与手段としてインクジェット方式の液滴付与手段を用いた。又、試料に付与する液体としてノルマルヘキサンを用いた。本実施例における試料としては表面にフッ素樹脂から成る表面処理剤を塗布した30mm×30mmの平板試料を用いた。
Measurement was performed in the same manner as in Example 3 to evaluate the change in wettability of the mold surface and in-plane variation. As a result, no change was seen in the wettability at any location in the sample surface, and it was confirmed that the function of the release film was maintained after the lens molding.
[Example 5]
In the present embodiment, an apparatus equipped with a laser interferometer as the shape measuring means and an ink jet type droplet applying means as the droplet applying means were used. In addition, normal hexane was used as a liquid to be applied to the sample. As a sample in this example, a 30 mm × 30 mm flat plate sample having a surface treatment agent made of a fluororesin applied on its surface was used.
本測定においてはステージ傾斜を掛けないで試料を置いた場合、フッ素樹脂と液滴の接触角が大きく干渉縞が良好に現れないという問題が生じた。そこで、ステージ傾斜を30°掛け、試料と液滴の後退接触角を観測することにより、試料表面のぬれ性を評価した。測定手順は実施例1と同様の方法を用い、コンピュータ13に取り込まれた干渉縞のデータから測定領域上の各液滴3の位置座標と液滴形状及び後退接触角を算出した。測定領域上に形成された液滴は約100個、平均の後退接触角θ=20. 0°、標準偏差は1. 0°であり、試料面内でフッ素樹脂膜が均一に形成されていることが示された。
In this measurement, when the sample was placed without tilting the stage, there was a problem that the contact angle between the fluororesin and the droplet was large and interference fringes did not appear well. Therefore, the wettability of the sample surface was evaluated by applying a stage inclination of 30 ° and observing the receding contact angle between the sample and the droplet. The measurement procedure was the same as in Example 1, and the position coordinates, droplet shape, and receding contact angle of each droplet 3 on the measurement region were calculated from the interference fringe data captured by the
本発明の測定方法及び測定装置を用いることにより、大面積試料、特に曲面や傾斜面を含む試料においても、試料面内の任意の個所のぬれ性を効率良く評価し、これらの分布を容易に得ることが可能である。 By using the measuring method and measuring apparatus of the present invention, even in a large area sample, particularly a sample including a curved surface or an inclined surface, the wettability of an arbitrary portion in the sample surface can be efficiently evaluated, and these distributions can be easily performed. It is possible to obtain.
1 試料台
2 試料
3 液滴
4 白色干渉計
5 対物レンズ
6 垂直走査駆動部(ピエゾ素子)
7 光学系
8 白色光源
9 CCDカメラ
10 液滴付与手段
11 位置制御手段
12 位置制御手段
13 コンピュータ
31 液滴
32 試料
41 試料
42 液滴
71 平板状固体
72 固体表面
73 液滴
θ 接触角
DESCRIPTION OF SYMBOLS 1 Sample stand 2 Sample 3 Droplet 4
7
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003350865A JP2005114615A (en) | 2003-10-09 | 2003-10-09 | Method and apparatus for measuring wetting properties on solid surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003350865A JP2005114615A (en) | 2003-10-09 | 2003-10-09 | Method and apparatus for measuring wetting properties on solid surface |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005114615A true JP2005114615A (en) | 2005-04-28 |
Family
ID=34542301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003350865A Withdrawn JP2005114615A (en) | 2003-10-09 | 2003-10-09 | Method and apparatus for measuring wetting properties on solid surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005114615A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011033534A (en) * | 2009-08-04 | 2011-02-17 | Nippon Soda Co Ltd | Method for inspecting film formed on base material |
RU2515117C1 (en) * | 2012-09-10 | 2014-05-10 | Российская академия наук Федеральное государственное бюджетное учреждение науки Институт систем обработки изображений Российской академии наук (ИСОИ РАН) | Method to measure purity of substrate surfaces |
CN104122229A (en) * | 2013-04-23 | 2014-10-29 | 株式会社迪思科 | Protective film detection device |
JP2015014522A (en) * | 2013-07-05 | 2015-01-22 | パナソニック株式会社 | Substrate inspection method |
JP2015148603A (en) * | 2014-01-16 | 2015-08-20 | ザ・ボーイング・カンパニーTheBoeing Company | Methods and apparatus to determine integrity of composite structures |
CN106092832A (en) * | 2016-06-08 | 2016-11-09 | 清华大学 | Based on the contact angle measuring method interfered |
RU2616356C1 (en) * | 2016-04-22 | 2017-04-14 | Закрытое Акционерное Общество "Аэрокосмический Мониторинг И Технологии" | Device for controlling object surface purity |
RU2617891C1 (en) * | 2016-02-20 | 2017-04-28 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СПЕЦИАЛЬНОЕ КОНСТРУКТОРСКОЕ ТЕХНИЧЕСКОЕ БЮРО ЭЛЕКТРОНИКИ, ПРИБОРОСТРОЕНИЯ И АВТОМАТИЗАЦИИ" (ООО "СКТБ ЭлПА") | Plate surface purity sensor |
RU176330U1 (en) * | 2017-03-17 | 2018-01-17 | Владимир Александрович Орлов | Test bench for the study of turbulence and the transporting ability of a liquid flow by optical means in open trays with different reliefs of their inner surface |
RU2672788C1 (en) * | 2017-08-24 | 2018-11-19 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" | Hydrophobic surface roughness contactless fractal control method |
RU189523U1 (en) * | 2018-11-20 | 2019-05-24 | Владимир Александрович Орлов | Test stand for the study of the transport capacity of open trays with different textures of the inner surface |
JP2019101318A (en) * | 2017-12-06 | 2019-06-24 | パスイメージング株式会社 | Inverted microscope |
RU2702925C2 (en) * | 2016-03-24 | 2019-10-14 | Федеральное государственное бюджетное учреждение науки Институт систем обработки изображений Российской академии наук (ИСОИ РАН) | Method for fractal monitoring of surface roughness |
RU2710483C2 (en) * | 2016-03-25 | 2019-12-26 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук | Method for fractal monitoring of surface roughness |
CN112540081A (en) * | 2020-11-24 | 2021-03-23 | 江苏大学 | Surfactant identification method and equipment based on solid surface wetting characteristics |
CN113063702A (en) * | 2021-03-29 | 2021-07-02 | 中国石油大学(华东) | Novel evaluation method suitable for formation silt solid particle surface wettability |
CN113340763A (en) * | 2021-06-11 | 2021-09-03 | 中国石油大学(华东) | Textured surface oil retention performance characterization method |
-
2003
- 2003-10-09 JP JP2003350865A patent/JP2005114615A/en not_active Withdrawn
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011033534A (en) * | 2009-08-04 | 2011-02-17 | Nippon Soda Co Ltd | Method for inspecting film formed on base material |
RU2515117C1 (en) * | 2012-09-10 | 2014-05-10 | Российская академия наук Федеральное государственное бюджетное учреждение науки Институт систем обработки изображений Российской академии наук (ИСОИ РАН) | Method to measure purity of substrate surfaces |
CN104122229A (en) * | 2013-04-23 | 2014-10-29 | 株式会社迪思科 | Protective film detection device |
JP2014215068A (en) * | 2013-04-23 | 2014-11-17 | 株式会社ディスコ | Protective film detection apparatus |
JP2015014522A (en) * | 2013-07-05 | 2015-01-22 | パナソニック株式会社 | Substrate inspection method |
JP2015148603A (en) * | 2014-01-16 | 2015-08-20 | ザ・ボーイング・カンパニーTheBoeing Company | Methods and apparatus to determine integrity of composite structures |
RU2617891C1 (en) * | 2016-02-20 | 2017-04-28 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СПЕЦИАЛЬНОЕ КОНСТРУКТОРСКОЕ ТЕХНИЧЕСКОЕ БЮРО ЭЛЕКТРОНИКИ, ПРИБОРОСТРОЕНИЯ И АВТОМАТИЗАЦИИ" (ООО "СКТБ ЭлПА") | Plate surface purity sensor |
RU2702925C2 (en) * | 2016-03-24 | 2019-10-14 | Федеральное государственное бюджетное учреждение науки Институт систем обработки изображений Российской академии наук (ИСОИ РАН) | Method for fractal monitoring of surface roughness |
RU2710483C2 (en) * | 2016-03-25 | 2019-12-26 | Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук | Method for fractal monitoring of surface roughness |
RU2616356C1 (en) * | 2016-04-22 | 2017-04-14 | Закрытое Акционерное Общество "Аэрокосмический Мониторинг И Технологии" | Device for controlling object surface purity |
CN106092832B (en) * | 2016-06-08 | 2018-10-02 | 清华大学 | Contact angle measuring method based on interference |
CN106092832A (en) * | 2016-06-08 | 2016-11-09 | 清华大学 | Based on the contact angle measuring method interfered |
RU176330U1 (en) * | 2017-03-17 | 2018-01-17 | Владимир Александрович Орлов | Test bench for the study of turbulence and the transporting ability of a liquid flow by optical means in open trays with different reliefs of their inner surface |
RU2672788C1 (en) * | 2017-08-24 | 2018-11-19 | федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" | Hydrophobic surface roughness contactless fractal control method |
JP2019101318A (en) * | 2017-12-06 | 2019-06-24 | パスイメージング株式会社 | Inverted microscope |
RU189523U1 (en) * | 2018-11-20 | 2019-05-24 | Владимир Александрович Орлов | Test stand for the study of the transport capacity of open trays with different textures of the inner surface |
CN112540081A (en) * | 2020-11-24 | 2021-03-23 | 江苏大学 | Surfactant identification method and equipment based on solid surface wetting characteristics |
CN113063702A (en) * | 2021-03-29 | 2021-07-02 | 中国石油大学(华东) | Novel evaluation method suitable for formation silt solid particle surface wettability |
CN113063702B (en) * | 2021-03-29 | 2022-11-01 | 中国石油大学(华东) | Novel evaluation method suitable for formation silt solid particle surface wettability |
CN113340763A (en) * | 2021-06-11 | 2021-09-03 | 中国石油大学(华东) | Textured surface oil retention performance characterization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005114615A (en) | Method and apparatus for measuring wetting properties on solid surface | |
TWI576563B (en) | Method and device for non-contact measuring surfaces | |
US20190381736A1 (en) | Additive manufacturing having optical process monitoring | |
JP2009501939A (en) | Method and system for ultra-precise measurement and control of object motion with 6 degrees of freedom by projection and measurement of interference fringes | |
CN1945204A (en) | Three dimension outline measuring device and method for mirror article surface | |
JP2011513973A (en) | Real-time imprint process defect diagnosis | |
CN106017356A (en) | Three-dimensional microscopic surface profile measuring device based on Greenough-type stereomicroscope and a method of device | |
TW493205B (en) | Method and apparatus for wafer metrology | |
JP2003232712A (en) | Contact angle/surface shape compound measuring apparatus and method | |
JP2007047131A (en) | Method, device and program for measuring aspheric lens, manufacturing method of aspheric lens, and aspheric lens | |
KR20210147905A (en) | System for detecting accumulated material on a faceplate of a dispenser and method of inspecting the faceplate | |
JP2007085914A (en) | Method, device, and program of measuring aspheric lens, method of manufacturing aspheric lens, and aspheric lens | |
JP2020080404A (en) | System and method for assessing surface quality by optically analyzing ejected droplets | |
JP6888633B2 (en) | Base material evaluation method and bent glass evaluation device | |
TWI845864B (en) | Planarization apparatus, planarization process, and method of manufacturing an article | |
US11933597B2 (en) | System and method for optical object coordinate determination | |
TWI685639B (en) | Shape measuring device and coating device equipped with the device | |
TW200827660A (en) | Profile measurement method and devices therefor | |
JP2006308503A (en) | Method for measuring cleanliness of object to be measured | |
WO2017122633A1 (en) | Method for measuring volume of minute protrusion, and method of applying liquid material | |
Lalehpour | Modelling, inspection, and post-processing of layer-based additive manufacturing surfaces to maintain product quality | |
RU2770133C1 (en) | Method for measuring parameters of material surface undulation and device for measuring parameters of part surface undulation | |
JP4177188B2 (en) | Method, apparatus and optical element for simultaneous measurement of dynamic shape and dynamic position | |
Hiersemenzel | Development towards a focus variation based micro-co-ordinate measuring machine | |
Bennett | Dos and don'ts in characterizing and cleaning optical surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060201 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070109 |