JP2011033534A - Method for inspecting film formed on base material - Google Patents

Method for inspecting film formed on base material Download PDF

Info

Publication number
JP2011033534A
JP2011033534A JP2009181681A JP2009181681A JP2011033534A JP 2011033534 A JP2011033534 A JP 2011033534A JP 2009181681 A JP2009181681 A JP 2009181681A JP 2009181681 A JP2009181681 A JP 2009181681A JP 2011033534 A JP2011033534 A JP 2011033534A
Authority
JP
Japan
Prior art keywords
liquid
contact angle
film
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009181681A
Other languages
Japanese (ja)
Other versions
JP5418941B2 (en
Inventor
Kenji Kato
健司 加藤
Tatsuo Wakimoto
辰郎 脇本
Norifumi Nakamoto
憲史 中本
Haruo Saso
春男 佐宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Osaka University NUC
Osaka City University
Original Assignee
Nippon Soda Co Ltd
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd, Osaka University NUC, Osaka City University filed Critical Nippon Soda Co Ltd
Priority to JP2009181681A priority Critical patent/JP5418941B2/en
Publication of JP2011033534A publication Critical patent/JP2011033534A/en
Application granted granted Critical
Publication of JP5418941B2 publication Critical patent/JP5418941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method that facilitates inspecting a condition of a film formed on a base material, and also capable of quickly inspecting the film with a large area. <P>SOLUTION: The method for inspecting the film formed on the base material includes: (1) a step of measuring a retreat contact angle or an advance contact angle of a liquid as to the base material (A) having a standard film formed thereon; (2) a step of irradiating an interface between the base material and the liquid with a laser beam to be emitted from a laser measuring instrument provided with a laser beam irradiating means and a reflected light detecting screen, and detecting reflected light by receiving the reflected light on the screen, when pulling up the base material (B) having an inspection object film formed thereon at the same angle as the retreat contact angle of the base material (A) or sinking at the same angle as the advance contact angle of the base material (A) with respect to the same liquid as the one to be used for measurement of the retreat contact angle or the advance contact angle in (1), and (3) a step of measuring a difference between an on-screen position where the reflected light of the laser beam emitted to a liquid surface has been detected, and an on-screen position where the reflected light has been detected in (2). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基材上に形成された膜の検査法に関するものであり、特に、薄膜、好ましくは単分子膜を形成した基材と液体の界面に生じるメニスカスにレーザー光を照射して反射光を測定することにより膜の状態を検査する方法に関する。   The present invention relates to a method for inspecting a film formed on a substrate, and in particular, reflects a reflected light by irradiating a meniscus formed at an interface between a thin film, preferably a substrate on which a monomolecular film is formed, and a liquid. The present invention relates to a method for inspecting the state of a film by measuring.

基材上に形成された薄膜の状態を測定する方法として、接触角法、X線光電子分光法、走査型プローブ顕微鏡での観察などの方法が知られている。これらのうち、接触角法とは、膜と液体との界面において生じるメニスカスの角度を測定する方法であり、接触角法には、平衡状態で測定する静的接触角測定法と非平衡状態で測定する動的接触角測定法とがある。   Known methods for measuring the state of a thin film formed on a substrate include a contact angle method, X-ray photoelectron spectroscopy, and observation with a scanning probe microscope. Among these, the contact angle method is a method for measuring the angle of the meniscus generated at the interface between the film and the liquid. The contact angle method includes a static contact angle measurement method in an equilibrium state and a non-equilibrium state. There is a dynamic contact angle measurement method to measure.

静的接触角測定法とは、水平に置いた薄膜基板上の液滴の接触角を測定する方法である(図1参照)。
動的接触角測定法とは、薄膜基板上の液滴に物理的運動エネルギーを与えて液滴が変形する際の接触角を測定する方法であり、動的接触角には前進接触角と後退接触角がある(図1参照)。この動的接触角測定法として、特許文献1及び特許文献2に記載の方法が知られている。
The static contact angle measurement method is a method for measuring the contact angle of a droplet on a thin film substrate placed horizontally (see FIG. 1).
The dynamic contact angle measurement method is a method for measuring the contact angle when a droplet on a thin film substrate is deformed by applying physical kinetic energy to the droplet. There is a contact angle (see FIG. 1). As this dynamic contact angle measurement method, methods described in Patent Document 1 and Patent Document 2 are known.

特許文献1には、薄膜を形成した基板上に付与した液滴の少なくとも後退接触角をハイスピードカメラを用いて測定する方法が記載されている。
また、特許文献2には、容器に入れた液体中に薄膜を形成した基板を垂直に浸漬し、基板と液体の界面において形成されるメニスカスの角度を直接測定するか、又は基板に垂直に働く力Fをミクロ天秤で測定し、この力Fと液体の表面張力γLV及び基板の幅Lの関係式(F=2L・γLV・cosθ)から接触角θを算出する方法(ウィルへルミ・プレート法)が記載されている。
Patent Document 1 describes a method of measuring at least a receding contact angle of a droplet applied on a substrate on which a thin film is formed using a high speed camera.
Further, in Patent Document 2, a substrate on which a thin film is formed is immersed vertically in a liquid placed in a container, and the angle of the meniscus formed at the interface between the substrate and the liquid is directly measured, or the substrate works perpendicularly to the substrate. A method of measuring the force F with a microbalance and calculating the contact angle θ from the relational expression (F = 2L · γLV · cos θ) of the force F, the surface tension γLV of the liquid and the substrate width L (Wilhelmi plate method) ) Is described.

しかしながら、特許文献1及び特許文献2に記載の方法は、いずれも動的接触角自体を測定する方法であった。そのため、目視による読み取り誤差や、ミクロ天秤で測定するための時間を要するなど、簡便な方法ではなく、しかも、薄膜全体を迅速に評価するには適していないなどの問題があった。   However, the methods described in Patent Document 1 and Patent Document 2 are both methods for measuring the dynamic contact angle itself. For this reason, there are problems such as a visual reading error and a time required for measurement with a microbalance, which is not a simple method and is not suitable for quickly evaluating the entire thin film.

なお、液体の表面張力の測定のために、容器壁面と液体との界面に生じるメニスカスに光線を照射して反射光を検知することにより行う方法が特許文献3に記載されているが、これは液体の表面張力の測定方法に関するものであり、基体上に形成された膜の状態を検査するための方法ではない。   In addition, for the measurement of the surface tension of the liquid, Patent Document 3 describes a method in which reflected light is detected by irradiating a meniscus generated at the interface between the container wall surface and the liquid. The present invention relates to a method for measuring the surface tension of a liquid, and is not a method for inspecting the state of a film formed on a substrate.

特開2007−322181号公報JP 2007-322181 A 特開平10−267824号公報Japanese Patent Laid-Open No. 10-267824 英国特許第1447262号明細書British Patent No. 1447262

本発明の課題は、基材上に形成された膜の状態を簡便に、かつ大面積の膜を迅速に検査することのできる方法を提供することにある。   The subject of this invention is providing the method which can test | inspect the state of the film | membrane formed on the base material simply and rapidly of the film | membrane of a large area.

本発明者らは、膜の状態の差が後退接触角における差となって顕著に現れることに着目し、膜を形成した基材を液体から引き上げるときに基材と液体の界面に生じるメニスカスの角度が後退接触角を反映していることから、このメニスカスにレーザー光を照射してその反射光を測定する方法を検討した。   The present inventors pay attention to the fact that the difference in the state of the film appears as a difference in the receding contact angle, and the meniscus generated at the interface between the substrate and the liquid when the substrate on which the film is formed is pulled up from the liquid. Since the angle reflects the receding contact angle, a method of measuring the reflected light by irradiating the meniscus with laser light was examined.

その場合、基材の液面に対する傾斜角度φを、標準膜の後退接触角θに等しく設定すると、標準膜では、液面は図2の(a)のようにちょうど水平になるが、欠陥膜の場合、φ>θとなるため、図2の(b)のような曲面(メニスカス)が現れる。 In that case, if the inclination angle φ with respect to the liquid surface of the base material is set equal to the receding contact angle θ R of the standard film, the liquid surface in the standard film is just horizontal as shown in FIG. for film, since the phi> theta R, appear curved (meniscus) as shown in FIG. 2 (b).

このメニスカス発生部にレーザー光を照射し、反射した光をレーザー測定装置のスクリーン上に受けるようにして測定することにより、標準膜と欠陥膜との差が顕著に出ることを見出し、本発明を完成した(以後、「後退接触角法」ということがある)。   By irradiating the meniscus generating portion with laser light and measuring the reflected light so as to be received on the screen of the laser measuring device, it was found that the difference between the standard film and the defective film appears significantly. Completed (hereinafter, sometimes referred to as “backward contact angle method”).

また、本発明の手法は、前進接触角についても同様に適用できることを見出した(以後、「前進接触角法」ということがある)。すなわち、基材の液面に対する傾斜角度φを、標準膜の前進接触角θaに等しく設定すると、標準膜では、液面はちょうど水平になるが、欠陥膜の場合、逆に液側に落ち込んだ曲面が現れる。   Further, it has been found that the method of the present invention can be similarly applied to the advancing contact angle (hereinafter, referred to as “advancing contact angle method”). That is, when the inclination angle φ with respect to the liquid level of the base material is set equal to the forward contact angle θa of the standard film, the liquid level is just horizontal in the standard film, but in the case of a defective film, the liquid level drops to the liquid side. A curved surface appears.

すなわち本発明は、
(1)
1)標準となる膜を形成した基材(A)について、液体の後退接触角又は前進接触角を測定する工程、
2)上記1)における後退接触角又は前進接触角の測定に使用する液体と同じ液体に対して、検査する膜を形成した基材(B)を、上記基材(A)の後退接触角と同じ角度で引き上げる又は前進接触角と同じ角度で沈める際に、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定装置から照射されるレーザー光を基材と液体との界面に照射し、反射した光をスクリーン上に受けることにより反射光を検知する工程、及び、
3)液体面にレーザー光を照射して反射した光を検知したスクリーン上の位置と、上記2)において反射した光を検知したスクリーン上の位置の差異を測定する工程
を有することを特徴とする基材上に形成された膜の検査方法、
(2)
2)の工程において、液体に対して基材(B)を引き上げる又は沈める方法として、角度を保ったまま基材(B)自体を液体から引き上げる又は液体に沈めることを特徴とする上記(1)記載の基材上に形成された膜の検査方法、
(3)
2)の工程において、液体に対して基材(B)を引き上げる又は沈める方法として、基材は固定し、液体面を低下又は上昇させることを特徴とする上記(1)記載の基材上に形成された膜の検査方法、
(4)
レーザー光を照射させる位置を、基材と液体との界面に沿ってスキャンさせることを特徴とする上記(1)〜(3)のいずれかに記載の基材上に形成された膜の検査方法、及び、
(5)
レーザー測定装置を基材と液体との界面に沿って複数設けることを特徴とする上記(1)〜(4)のいずれかに記載の基材上に形成された膜の検査方法に関する。
That is, the present invention
(1)
1) A step of measuring a receding contact angle or advancing contact angle of a liquid on a base material (A) on which a standard film is formed,
2) The base material (B) on which the film to be inspected is formed with the receding contact angle of the base material (A) with respect to the same liquid as that used for the measurement of the receding contact angle or the advancing contact angle in 1) above. When raising at the same angle or sinking at the same angle as the advancing contact angle, irradiate the laser beam emitted from the laser measuring device having a screen for detecting the reflected light and the reflected light to the interface between the substrate and the liquid, Detecting reflected light by receiving reflected light on a screen; and
3) A step of measuring a difference between a position on the screen where the reflected light is detected by irradiating the liquid surface with laser light and a position on the screen where the reflected light is detected in 2) above. A method for inspecting a film formed on a substrate;
(2)
In the step 2), as a method of pulling up or sinking the base material (B) with respect to the liquid, the base material (B) itself is pulled up from the liquid or submerged in the liquid while maintaining the angle (1) A method for inspecting a film formed on the substrate,
(3)
In the step 2), as a method of pulling up or sinking the base material (B) with respect to the liquid, the base material is fixed, and the liquid surface is lowered or raised. Inspection method of the formed film,
(4)
The method for inspecting a film formed on a substrate according to any one of the above (1) to (3), wherein a position to be irradiated with laser light is scanned along the interface between the substrate and the liquid ,as well as,
(5)
The present invention relates to a method for inspecting a film formed on a substrate according to any one of (1) to (4), wherein a plurality of laser measuring devices are provided along the interface between the substrate and the liquid.

さらに、
(6)
液体収納容器;膜の形成された基材を液体収納容器中の液体に浸すことができる位置に配置され、膜の形成された基材を任意の角度に保持し移動させる手段;及び、液体収納容器の上方に設けられ、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定手段;とを有する膜検査装置に関する。
further,
(6)
Liquid storage container; means for holding and moving the film-formed base material at an arbitrary angle, arranged at a position where the base material on which the film is formed can be immersed in the liquid in the liquid storage container; and liquid storage The present invention relates to a film inspection apparatus provided with a laser beam irradiation unit and a laser measurement unit having a screen for detecting reflected light.

本発明の方法により、基材上に形成された膜の状態を簡便に、かつ大面積の膜を迅速に検査することができる。   By the method of the present invention, the state of the film formed on the substrate can be easily inspected and a large-area film can be inspected quickly.

静的接触角及び動的接触角を示す図であるIt is a figure which shows a static contact angle and a dynamic contact angle. 基材近傍の液面形状を示す図である。It is a figure which shows the liquid level shape of a base-material vicinity. 本発明による、膜を形成した基材をレーザー光を用いて検査する方法を示す概念図である。It is a conceptual diagram which shows the method to test | inspect the base material in which the film | membrane was formed by laser beam using this invention. 基材(図中では試料平板)付近におけるレーザー光の反射角度を示す拡大図である。It is an enlarged view which shows the reflection angle of the laser beam in the base material (sample flat plate in the figure) vicinity. 本発明の膜検査装置の概念図である。It is a conceptual diagram of the film | membrane inspection apparatus of this invention.

(膜)
本発明において、膜とは、ディップ法(浸漬法)、スプレーコート、スピンコート、ローラーコート、刷毛塗り、スクリーン印刷などの周知の方法を用いて基材上に作製できる無機又は有機の膜であれば特に制限されないが、1μm以下の膜厚を有する無機又は有機の薄膜が好適である。
(film)
In the present invention, the film may be an inorganic or organic film that can be formed on a substrate using a known method such as dipping (dipping), spray coating, spin coating, roller coating, brush coating, screen printing, or the like. Although not particularly limited, an inorganic or organic thin film having a film thickness of 1 μm or less is suitable.

また、本発明において使用できる基材として、上記公知の方法により膜を形成できる基材であれば特に制限されないが、具体的には、アルミニウム、銅、ステンレス、ニッケル等の金属;ガラス;シリコンウェハー;セラミックス;プラスチック;ダイヤモンド等の鉱物;紙;天然繊維、合成繊維等の繊維;皮革;その他親水性の物質等が挙げられる。   In addition, the base material that can be used in the present invention is not particularly limited as long as it can form a film by the above-mentioned known methods. Specifically, metals such as aluminum, copper, stainless steel, nickel, etc .; glass; silicon wafer Ceramics, plastics, minerals such as diamond, paper, fibers such as natural fibers and synthetic fibers, leather, and other hydrophilic substances.

無機薄膜は、金属酸化物などの膜を意味し、例えば、金属酸化物としては酸化ジルコニウム、酸化チタニウム、酸化アルミニウム、酸化錫、酸化インジウム、酸化インジウム錫、酸化タンタル、酸化亜鉛、酸化ハフニウム、酸化セリウム、酸化ニオブ、酸化イットリウムなどが挙げられる。   An inorganic thin film means a film such as a metal oxide. Examples of the metal oxide include zirconium oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, indium tin oxide, tantalum oxide, zinc oxide, hafnium oxide, and oxide. Examples include cerium, niobium oxide, and yttrium oxide.

有機薄膜は、例えば、金属系界面活性剤など有機化合物を原料として、それを加水分解縮重合させて得られる膜である。
金属系界面活性剤としては、少なくとも1以上の加水分解性基を有する金属系界面活性剤が好ましく、このような金属系界面活性剤としては、式(I)
MXm−n (I)
〔式中、Rは、置換基を有していてもよい炭素数1〜30の炭化水素基、置換基を有していてもよい炭素数1〜30のハロゲン化炭化水素基、連結基を含む炭素数1〜30の炭化水素基、又は連結基を含む炭素数1〜30のハロゲン化炭化水素基を表し、Mは、ケイ素原子、ゲルマニウム原子、スズ原子、チタン原子、及びジルコニウム原子からなる群から選ばれる少なくとも1種の金属原子を表し、Xは、水酸基又は加水分解性基を表し、mはMの原子価を表す。nは、1から(m−1)のいずれかの正整数を表し、nが2以上の場合、Rは、同一でも相異なっていてもよい。(m−n)が2以上の場合、Xは同一であっても、相異なっていてもよいが、Xのうち、少なくとも一個は加水分解性基である。〕で表される化合が好ましい。
The organic thin film is a film obtained by hydrolyzing and polymerizing an organic compound such as a metal surfactant as a raw material.
As the metal-based surfactant, a metal-based surfactant having at least one hydrolyzable group is preferable. As such a metal-based surfactant, the formula (I)
R 1 n MX mn (I)
[Wherein, R 1 represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, a halogenated hydrocarbon group having 1 to 30 carbon atoms which may have a substituent, or a linking group. Represents a hydrocarbon group having 1 to 30 carbon atoms or a halogenated hydrocarbon group having 1 to 30 carbon atoms including a linking group, and M represents a silicon atom, a germanium atom, a tin atom, a titanium atom, and a zirconium atom. Represents at least one metal atom selected from the group consisting of X, X represents a hydroxyl group or a hydrolyzable group, and m represents the valence of M. n represents any positive integer from 1 to (m−1), and when n is 2 or more, R 1 may be the same or different. When (mn) is 2 or more, X may be the same or different, but at least one of X is a hydrolyzable group. ] The compound represented by this is preferable.

式(I)で表される化合物の具体例としては、下記に示すものが挙げられる。なお、以下においては、金属原子Mがケイ素原子である化合物を代表例として示しているが、本発明はこれらに限定されるものではない。また、加水分解性基についても、例示した官能基に限定されず他の加水分解性基が結合したものであってもよい。   Specific examples of the compound represented by the formula (I) include those shown below. In the following, compounds in which the metal atom M is a silicon atom are shown as representative examples, but the present invention is not limited to these. Also, the hydrolyzable group is not limited to the exemplified functional groups, and may be one in which another hydrolyzable group is bonded.

CH(CHSi(OCH、CH(CHSi(OCH、CH(CHSi(OCH、CH(CH11Si(OCH、CH(CH13Si(OCH、CH(CH15Si(OCH、CH(CH17Si(OCH、CH(CH19Si(OCH、CH(CH21Si(OCH、CH(CH17Si(OCHCH、CH(CH17SiCl、CH(CHSi(OCHCH、CH(CHSiCl、CH(CHSi(CH)(OCHCH、CH(CHSi(CH)(OCH、CH(CHSi(CH(OCHCH)、CH(CHSi(CH(OCH)、CHCHO(CH15Si(OCH、CFCHO(CH15Si(OCH、CH(CHSi(CH(CH15Si(OCH、CH(CHSi(CH(CHSi(OCH、CHCOO(CH15Si(OCH、CF(CF(CHSi(OCH、CF(CF−(CH=CH)−Si(OCH、CHCHO(CH15Si(OC、CH(CHSi(CH(CH15Si(OC、CH(CHSi(CH(CHSi(OC、CF(CHSi(CH(CHSi(OC、CHCOO(CH15Si(OC、CFCOO(CH15Si(OC、CFCOO(CH15Si(OCH、CF(CF(CHSi(OC、CF(CF(CHSi(OC、CF(CF(CHSi(OC、CF(CF(CH=CH)Si(OC、CF(CF(CHSi(OCH、CF(CF(CHSi(OCH、CF(CF(CHSi(CH)(OC、CF(CF(CHSi(CH)(OCH、CF(CF(CHSi(CH(OC)、CF(CF(CHSi(CH(OCH)、CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CF(CHSiCl、CF(CFO(CF(CHSiCl、CF(CFO(CF(CHSiCl、CF(CF(CHO(CHSiCl、CF(CFCONH(CHSiCl、CF(CFCONH(CHSiCl、CF(CFO[CF(CF)CF(CF)O]CF(CF)CONH(CHSiCl、CF(CF(CHSi(CH)Cl、CF(CF(CHSi(CH)Cl、CF(CHSi(CH)Cl、CF(CF(CHSi(CH)Cl、CF(CF(CHSi(CH)Cl、CF(CF(CHSi(CH)Cl、CF(CF(CF(CHSi(CH)Cl、CF(CF(CF(CHSi(CH)Cl、CF(CF(CHO(CHSi(CH)Cl、CF(CFCONH(CHSi(CH)Cl、CF(CFCONH(CHSi(CH)Cl、CF(CFO[CF(CF)CF(CF)O]CF(CF)CONH(CHSi(CH)Cl、CH(CHSiCl、CH(CF(CHSiCl、CH(CF(CHSi(CH)Cl、CH(CF(CHSi(OCH等が挙げられるが、これらに限定されるものではない。
また、これらの化合物は1種単独で、あるいは2種以上を組み合わせて用いることができる。
CH 3 (CH 2 ) 5 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 7 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 9 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 11 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 13 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 15 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 17 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 19 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 21 Si (OCH 3 ) 3 , CH 3 (CH 2 ) 17 Si (OCH 2 CH 3 ) 3 , CH 3 (CH 2 ) 17 SiCl 3 , CH 3 (CH 2 ) 9 Si (OCH 2 CH 3 ) 3 , CH 3 (CH 2 ) 9 SiCl 3 , CH 3 (CH 2 ) 9 Si (CH 3 ) (OCH 2 CH 3 ) 2 , CH 3 ( H 2) 9 Si (CH 3 ) (OCH 3) 2, CH 3 (CH 2) 9 Si (CH 3) 2 (OCH 2 CH 3), CH 3 (CH 2) 9 Si (CH 3) 2 (OCH 3), CH 3 CH 2 O (CH 2) 15 Si (OCH 3) 3, CF 3 CH 2 O (CH 2) 15 Si (OCH 3) 3, CH 3 (CH 2) 2 Si (CH 3) 2 (CH 2) 15 Si (OCH 3) 3, CH 3 (CH 2) 6 Si (CH 3) 2 (CH 2) 9 Si (OCH 3) 3, CH 3 COO (CH 2) 15 Si (OCH 3) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 — (CH═CH) 3 —Si (OCH 3 ) 3 , CH 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3 , CH 3 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3 , CH 3 (CH 2 ) 6 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5) 3, CF 3 (CH 2) 6 Si (CH 3) 2 (CH 2) 9 Si (OC 2 H 5) 3, CH 3 COO (CH 2) 15 Si (OC 2 H 5) 3, CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3 , CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 9 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 7 (CH═CH) 3 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 9 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OC 2 H 5 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) (OCH 3 ) 2 , CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (OC 2 H 5 ), CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (OCH 3 ), CF 3 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 3 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 3 (CH 2 ) ) 3 SiCl 3, CF 3 ( CF 2) (CH 2) 3 SiCl 3, CF 3 (CF 2) 7 (CH 2) 3 SiCl 3, CF 3 (CF 2) 4 O (CF 2) 2 (CH 2) 2 SiCl 3, CF 3 (CF 2) 4 O (CF 2 ) 2 (CH 2 ) 3 SiCl 3 , CF 3 (CF 2 ) 7 (CH 2 ) 2 O (CH 2 ) 3 SiCl 3 , CF 3 (CF 2 ) 7 CONH (CH 2 ) 2 SiCl 3 , CF 3 (CF 2 ) 7 CONH (CH 2 ) 3 SiCl 3 , CF 3 (CF 2 ) 3 O [CF (CF 3 ) CF (CF 3 ) O] 2 CF (CF 3 ) CONH (CH 2 ) 3 SiCl 3 , CF 3 (CF 2 ) 3 (CH 2 ) 2 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) Cl 2 , CF 3 (CH 2 ) 2 Si (CH ) Cl 2, CF 3 (CF 2) 3 (CH 2) 3 Si (CH 3) Cl 2, CF 3 (CF 2) 5 (CH 2) 3 Si (CH 3) Cl 2, CF 3 (CF 2) 7 (CH 2 ) 3 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 4 (CF 2 ) 2 (CH 2 ) 2 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 4 (CF 2 ) 2 (CH 2 ) 3 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 4 (CH 2 ) 2 O (CH 2 ) 3 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 7 CONH (CH 2 ) 2 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 7 CONH (CH 2 ) 3 Si (CH 3 ) Cl 2 , CF 3 (CF 2 ) 3 O [CF (CF 3 ) CF (CF 3 ) O] 2 CF (CF 3 ) CONH (CH 2) Si (CH 3) Cl 2, CH 3 (CH 2) 7 SiCl 3, CH 3 (CF 2) 7 (CH 2) 2 SiCl 3, CH 3 (CF 2) 7 (CH 2) 2 Si (CH 3) Examples include, but are not limited to, Cl 2 , CH 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3, and the like.
Moreover, these compounds can be used individually by 1 type or in combination of 2 or more types.

有機金属系界面活性剤から有機薄膜を作製するには、上記金属系界面活性剤及び該金属系界面活性剤と相互作用し得る化合物、例えば、金属酸化物、金属アルコキシド類、金属アルコキシド類の部分加水分解生成物、シラノール縮合触媒、酸触媒等が挙げられ、金属アルコキシド類、金属アルコキシド類の部分加水分解生成物等、及び水を含有する有機薄膜形成用溶液に、ディップ法等公知の方法を用いて前記基材を接触させる。   In order to prepare an organic thin film from an organometallic surfactant, the metal surfactant and a compound capable of interacting with the metal surfactant, for example, a metal oxide, a metal alkoxide, a metal alkoxide moiety Hydrolysis products, silanol condensation catalysts, acid catalysts, and the like, and metal alkoxides, partial hydrolysis products of metal alkoxides, etc., and water-containing organic thin film forming solutions, using a known method such as a dip method. Used to contact the substrate.

金属系界面活性剤と相互作用し得る化合物は、金属系界面活性剤の金属部分又は加水分解性基部分と配位結合や水素結合等を介して相互作用をすることにより、加水分解性基又は水酸基を活性化させ、加水分解を促進させると共に、縮合を促進させる作用を有する触媒である。
こうして得られる有機薄膜は、単分子膜であっても2層以上の多層膜であってもよい。
The compound capable of interacting with the metal-based surfactant can be converted into a hydrolyzable group or a hydrolyzable group by interacting with a metal part or hydrolyzable group part of the metal-based surfactant via a coordinate bond or hydrogen bond. The catalyst activates a hydroxyl group, promotes hydrolysis, and promotes condensation.
The organic thin film thus obtained may be a monomolecular film or a multilayer film having two or more layers.

(膜の検査方法)
本発明は、標準となる膜と検査する膜との動的接触角(後退接触角又は前進接触角)、好ましくは、後退接触角の差異をレーザー光を用いて測定することにより、膜の状態の検査をする方法である。
(Membrane inspection method)
The present invention relates to the state of the film by measuring the dynamic contact angle (retracting contact angle or advancing contact angle) between the standard film and the film to be inspected, preferably by using a laser beam to measure the difference in the receding contact angle. It is a method of inspecting.

本発明において、後退接触角とは、拡張収縮法、すなわち、薄膜上に液体を付与して液体を徐々に吐出して液滴を拡張した後、その液滴を吸引して液滴を収縮させる方法においては、液滴が収縮する過程で生じる液滴の接触角をいい、傾斜法、すなわち、薄膜を形成した基板を所定角度傾斜させる方法においては、傾斜した液滴の上側の接触角をいう。
また、本発明において、前進接触角とは、拡張収縮法においては液滴が拡張する過程で生じる液滴の接触角をいい、傾斜法においては傾斜した液滴の下側の接触角をいう(図1参照)。
In the present invention, the receding contact angle is an expansion / contraction method, that is, a liquid is applied onto a thin film, the liquid is gradually ejected to expand the liquid droplet, and then the liquid droplet is sucked to contract the liquid droplet. In the method, the contact angle of the droplet generated in the process of contracting the droplet is referred to. In the tilt method, that is, in the method of tilting the substrate on which the thin film is formed, the contact angle on the upper side of the tilted droplet is referred to. .
In the present invention, the advancing contact angle refers to a contact angle of a droplet generated in the process of expanding a droplet in the expansion / contraction method, and refers to a contact angle on the lower side of the inclined droplet in the tilt method ( (See FIG. 1).

各工程について、以下に説明する。   Each step will be described below.

工程1)標準となる膜をコーティングした基材(A)について、液体の後退接触角又は前進接触角を測定する工程
本発明において、「標準となる膜」とは、実用的に使用可能な膜であればよいが、通常、最も良い状態の膜、即ち、最密充填膜が使用される。
1)の工程は、2)の工程の前にあらかじめ行っておけばよいが、2)の工程と連続して行っても良い。また、1)の工程は、標準となる膜の後退接触角又は前進接触角を一度測定しておけば、膜の検査を行う都度測定しなくてもよい。
Step 1) A step of measuring the receding contact angle or the advancing contact angle of a liquid on a base material (A) coated with a standard film. In the present invention, the “standard film” is a film that can be used practically. However, a film in the best condition, that is, a close-packed film is usually used.
The step 1) may be performed in advance before the step 2), but may be performed continuously with the step 2). Further, in the step 1), once the receding contact angle or the advancing contact angle of the standard film is measured, it is not necessary to measure each time the film is inspected.

標準となる膜をコーティングした基材(A)の後退接触角又は前進接触角は、例えば、特開2007−322181号公報に記載された方法により測定することができ、具体的には以下のとおりである。
即ち、膜をコーティングした基材上に液滴を付与して、拡張収縮法又は傾斜法により後退接触角又は前進接触角を測定する。
The receding contact angle or the advancing contact angle of the base material (A) coated with a standard film can be measured, for example, by the method described in JP-A-2007-322181, specifically as follows. It is.
That is, a droplet is applied on a substrate coated with a film, and the receding contact angle or the advancing contact angle is measured by the expansion / contraction method or the tilt method.

以下に、後退接触角を測定する場合について説明するが、前進接触角についても同様に行うことができる。
拡張収縮法を用いる場合、後退接触角の値は、例えば、薄膜上に液体を付与して液体を徐々に吐出して液滴を拡張した後、その液滴を吸引し液滴が収縮する過程で、液滴の接触角を複数回測定したときの平均値で表される。液滴の収縮時の所定の一点の液滴の接触角を測定した値とすることができるが、より正確な判別ができる点から、平均値を用いることが好ましい。具体的に、例えば、0〜10μLの間で液体を吐出吸引(液滴を拡張収縮)させる場合において、液滴収縮時の0.5μLから8μLまでの間、0.05μLの間隔で測定した液滴の接触角の平均値を求めることにより決定することができる。拡張収縮法における接触角の測定は、例えば、Drop Master 700(協和界面科学株式会社製)を用いて測定することができる。
Although the case where a backward contact angle is measured is demonstrated below, it can carry out similarly about an advance contact angle.
When using the expansion / contraction method, the receding contact angle value is, for example, a process in which a liquid is applied onto a thin film, the liquid is gradually ejected to expand the liquid droplet, and then the liquid droplet is sucked to contract the liquid droplet. Thus, it is represented by an average value when the contact angle of the droplet is measured a plurality of times. A value obtained by measuring a contact angle of a predetermined point at the time of contraction of the droplet can be used as a measured value, but it is preferable to use an average value from the viewpoint of more accurate discrimination. Specifically, for example, when the liquid is discharged and sucked between 0 to 10 μL (droplet expansion and contraction), the liquid measured at intervals of 0.05 μL from 0.5 μL to 8 μL at the time of droplet contraction It can be determined by determining the average value of the contact angle of the droplets. The contact angle in the expansion shrinkage method can be measured using, for example, Drop Master 700 (manufactured by Kyowa Interface Science Co., Ltd.).

また、傾斜法を用いる場合、後退接触角の値は、薄膜を所定角度傾斜させた場合の後退接触角の値を用いることができる。かかる薄膜の傾斜角度としては、薄膜の形成状態の相違に対応して動的接触角に差が現れるような角度であれば特に制限されるものではなく、具体的には、0°を超えて、液滴が転落する角度(転落角)を挙げることができるが、動的接触角により顕著な差が現れるような角度であることが好ましく、例えば、液滴の転落角の値の80〜100%の角度であることが好ましく、90〜100%の角度であることがより好ましい。例えば、液滴の転落角が50°の場合には、薄膜の傾斜角度としては、40〜50°であることが好ましく、45〜50°であることがより好ましい。なお、液滴の転落角は、下記式より求めることができる。   When the tilt method is used, the value of the receding contact angle when the thin film is tilted by a predetermined angle can be used as the receding contact angle. The inclination angle of the thin film is not particularly limited as long as it is an angle that causes a difference in the dynamic contact angle corresponding to the difference in the formation state of the thin film. Specifically, it exceeds 0 °. The angle at which the droplet falls (falling angle) can be mentioned, but it is preferably an angle at which a significant difference appears depending on the dynamic contact angle, for example, 80 to 100 of the value of the falling angle of the droplet. % Angle is preferable, and an angle of 90 to 100% is more preferable. For example, when the drop angle of the droplet is 50 °, the inclination angle of the thin film is preferably 40 to 50 °, and more preferably 45 to 50 °. The drop angle of the droplet can be obtained from the following formula.

mg sinα/W = γ(cosθ−cosθ
m:液滴の質量
g:重力加速度
α:液滴の転落角
γ:液の表面エネルギー
θ:前進接触角
θ:後退接触角
傾斜法における接触角の測定は、例えば、Drop Master 700(協和界面科学株式会社製)を用いて測定することができる。
mg sin α / W = γ L (cos θ R −cos θ A )
m: Mass of the droplet g: Gravity acceleration α: Drop angle γ L of the droplet: Surface energy θ A of the liquid: Advancing contact angle θ R : Receding contact angle The contact angle in the tilt method is measured by, for example, Drop Master 700 (Measured by Kyowa Interface Science Co., Ltd.)

液体の種類は、検査する薄膜の種類によって適宜決定することができ、薄膜の形成状態の相違に対応して動的接触角に顕著な差が現れるものが好ましく、例えば、薄膜に対する静的接触角が30〜80°である液体を用いることが好ましく、薄膜に対する静的接触角が35〜75°である液体を用いることがより好ましく、薄膜に対する静的接触角が40〜70°である液体を用いることがさらに好ましい。上記静的接触角は、JIS R 3257(基板ガラス表面のぬれ性試験方法)に基づいて測定した値をいう。   The type of liquid can be appropriately determined depending on the type of thin film to be inspected, and it is preferable that a significant difference appears in the dynamic contact angle corresponding to the difference in the formation state of the thin film. For example, the static contact angle with respect to the thin film Is preferably 30 to 80 °, more preferably a liquid having a static contact angle of 35 to 75 ° with respect to the thin film, and a liquid having a static contact angle of 40 to 70 ° with respect to the thin film. More preferably, it is used. The static contact angle refers to a value measured based on JIS R 3257 (method for testing wettability of substrate glass surface).

液体としては、具体的に、水、有機液体を挙げることができ、有機液体としては、ブチルカルビトールアセテート、テトラヒドロフラン、ドデカン、アセトン、トルエン、エチルベンゼン、ブチルベンゼン、o−キシレン、m−キシレン、p−キシレン、1−ペンタノール、オクタノール、テトラデカン、ヘキサデカン、オクタデカン、α−テルピネオール、ブチルセロソルブ、オクチルベンゼン、シクロペンタノン、ドデシルベンゼン、オレイン酸、ステアリン酸、ラウリン酸、リノール酸、リノレン酸、イソアミノール、ジオクチルエーテル、ジメチルホルムアミド、N−メチルピロリドン、テトラエチレングリコール、トリエチレングリコール、四塩化炭素等を挙げることができる。   Specific examples of the liquid include water and organic liquids. Examples of the organic liquid include butyl carbitol acetate, tetrahydrofuran, dodecane, acetone, toluene, ethylbenzene, butylbenzene, o-xylene, m-xylene, p -Xylene, 1-pentanol, octanol, tetradecane, hexadecane, octadecane, α-terpineol, butyl cellosolve, octylbenzene, cyclopentanone, dodecylbenzene, oleic acid, stearic acid, lauric acid, linoleic acid, linolenic acid, isoaminol, dioctyl Examples include ether, dimethylformamide, N-methylpyrrolidone, tetraethylene glycol, triethylene glycol, and carbon tetrachloride.

式(I)で示される金属系界面活性剤、特に、シラン系界面活性剤を使用して得た単分子膜の評価においては、ブチルカルビトールアセテートを好ましく用いることができる。   In the evaluation of a monomolecular film obtained using a metal surfactant represented by the formula (I), particularly a silane surfactant, butyl carbitol acetate can be preferably used.

また、後退接触角は、特開平10−267824号公報に記載されているように、液体中に膜をコーティングした基材を吊り下げて、基板と液体の界面において形成されるメニスカスの角度を直接測定するか、又は基板に垂直に働く力Fをミクロ天秤で測定し、この力Fと液体の表面張力γLV及び基板の幅Lの関係式(F=2L・γLV・cosθ)から接触角θを算出することにより求めることもできる。   The receding contact angle is determined by directly hanging the meniscus angle formed at the interface between the substrate and the liquid by suspending a substrate coated with a film in the liquid as described in JP-A-10-267824. The force F acting perpendicularly to the substrate is measured with a microbalance, and the contact angle θ is calculated from the relational expression (F = 2L · γLV · cos θ) of the force F, the surface tension γLV of the liquid and the width L of the substrate. It can also be obtained by calculation.

工程2)上記1)における後退接触角又は前進接触角の測定に使用する液体と同じ液体に対して、検査する膜を形成した基材(B)を、上記基材(A)の後退接触角と同じ角度で引き上げる、又は前進接触角と同じ角度で沈める際に、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定装置から照射されるレーザー光を基材と液体との界面に照射し、反射した光をスクリーン上に受けることにより反射光を検知する工程 Step 2) With respect to the same liquid as the liquid used for the measurement of the receding contact angle or the advancing contact angle in 1) above, the base material (B) on which a film to be inspected is formed, and the receding contact angle of the base material (A) When the laser beam is pulled up at the same angle as that of the advancing contact angle or submerged at the same angle as the advancing contact angle, the laser beam emitted from the laser measuring device having a screen for detecting the reflected light and the reflected light is applied to the interface between the substrate and the liquid. And detecting the reflected light by receiving the reflected light on the screen

工程2)では、工程1)において使用する液体と同じ液体を収納した槽と、それに付随して設けられたレーザー光照射手段とその反射光を検知するスクリーンを有するレーザー測定装置を有する膜検査装置を使用する。レーザー光照射部とスクリーンは一体で液面と平行にスライドする機構を有している。レーザー光は常に一定の角度で液面に照射され、液面で反射したレーザー光は、スクリーン上に投影される。レーザー測定装置は一台で行うことができるが、基材と液体との界面に沿って複数設けることもできる。   In step 2), a film inspection apparatus having a laser measuring device having a tank containing the same liquid as that used in step 1), a laser light irradiation means provided in association therewith, and a screen for detecting the reflected light. Is used. The laser beam irradiation unit and the screen are integrated and have a mechanism that slides parallel to the liquid surface. Laser light is always applied to the liquid surface at a constant angle, and the laser light reflected from the liquid surface is projected onto the screen. A single laser measuring device can be used, but a plurality of laser measuring devices can be provided along the interface between the substrate and the liquid.

検査する膜を形成した基材を槽中の液体に浸し、液面に対して、標準となる膜を形成した基材(A)の後退接触角又は前進接触角と同じ角度で、基材(B)を液から静かに引き上げるか、又は沈める。引き上げる方法としては、基材自体を角度を維持したまま液中から引き上げるか、又は逆に、基材は固定して液面を下げる方法がある。沈める方法としては、基材自体を角度を維持したまま液中に沈めるか、又は逆に、基材は固定して液面を上昇させる方法がある。   The substrate on which the film to be inspected is immersed in the liquid in the tank, and the substrate (A) is the same as the receding contact angle or the advancing contact angle of the substrate (A) on which the standard film is formed with respect to the liquid surface. Gently lift or submerge B) from the liquid. As a method of pulling up, there is a method of pulling up the substrate itself from the liquid while maintaining the angle, or conversely, fixing the substrate and lowering the liquid level. As a method of sinking, there is a method of sinking the substrate itself in the liquid while maintaining the angle, or conversely, a method of fixing the substrate and raising the liquid level.

基材の液面からの引き上げ又は沈める操作は、基材を挟持手段により固定してモーター駆動により行うなどの方法がある。また、液面を低下させたり上昇させるには、槽に開閉自在の給排液口を設けるなどして液を排出させたり供給させることなどにより行うことができる。   The operation of pulling up or sinking the base material from the liquid level includes a method in which the base material is fixed by clamping means and is driven by a motor. Further, the liquid level can be lowered or raised by discharging or supplying the liquid by providing an openable / closable liquid supply / discharge port in the tank.

基材と液面との界面へのレーザー光の照射方法としては、基材を液中で上方又は下方に移動させた後、又は液面を低下又は上昇させた後、測定したい位置で一旦止めて照射する方法、あるいは、基材を上方又は下方に移動させながら、又は液面を低下又は上昇させながら照射する方法などがある。基材又は液面を動かす操作は液面が揺れない速度で行う。液面が揺れた場合は液面の波立ちが収まるのを待って照射する。   As a method of irradiating the interface between the base material and the liquid surface, laser light is temporarily stopped at the position to be measured after the base material is moved upward or downward in the liquid, or after the liquid surface is lowered or raised. Or a method of irradiating while moving the substrate upward or downward, or lowering or raising the liquid level. The operation of moving the substrate or the liquid level is performed at a speed at which the liquid level does not shake. If the liquid surface shakes, wait until the liquid surface wave stops and irradiate.

また、レーザー光を基材と液面との界面に向けて照射する場合、レーザー光を照射させる位置を、基材と液体との界面に沿ってスキャンさせることもできる。スキャンさせることにより、基材の横軸方向全体の膜の状態を測定することができる。
基材を液から引き上げる際、又は、基材を液に沈める際に、レーザー測定装置を液面に沿って基材に向けて移動させてレーザー光を基材に近づけ、反射光を検知装置のスクリーン上に受けることにより、反射光を検知する。また、基材をレーザー測定装置に向けて移動させてレーザー光を基材に近づけることもできる。
Moreover, when irradiating a laser beam toward the interface of a base material and a liquid level, the position which irradiates a laser beam can also be scanned along the interface of a base material and a liquid. By scanning, the state of the film in the entire horizontal axis direction of the substrate can be measured.
When pulling up the substrate from the liquid or sinking the substrate into the liquid, the laser measuring device is moved toward the substrate along the liquid surface to bring the laser light closer to the substrate, and the reflected light is Reflected light is detected by receiving on the screen. Further, the base material can be moved toward the laser measuring device to bring the laser light closer to the base material.

工程3)液体面にレーザー光を照射して反射した光を検知したスクリーン上の位置と、上記2)において反射した光を検知したスクリーン上の位置の差異を測定する工程 Step 3) Measuring the difference between the position on the screen where the reflected light is detected by irradiating the liquid surface with laser light and the position on the screen where the reflected light is detected in 2) above

後退接触角法の場合、基材を液から引き上げる際に、レーザー光を基材に近づけると、欠陥膜の場合は、図3及び図4の(b)に示すように、基材と液面との界面において液面の湾曲によりレーザー光の反射角度が変化し、スクリーン上のレーザー光の投影位置はレーザー光照射手段側に移動する。一方、標準膜と同等の膜の場合は、図3及び図4の(a)に示すように、基材と液面との界面において液面の湾曲が生じないためレーザー光の反射角度は液面と同じであり、スクリーン上のレーザー光の投影位置は変化しない。   In the case of the receding contact angle method, when the substrate is pulled up from the liquid, the laser beam is brought close to the substrate, and in the case of a defective film, as shown in FIG. 3 and FIG. The reflection angle of the laser light changes due to the curvature of the liquid level at the interface with the laser beam, and the projection position of the laser light on the screen moves to the laser light irradiation means side. On the other hand, in the case of a film equivalent to the standard film, as shown in FIG. 3 and FIG. 4 (a), the liquid surface does not bend at the interface between the substrate and the liquid surface. The projection position of the laser beam on the screen does not change.

一方、前進接触角法の場合、基材を液に沈める際に、レーザー光を基材に近づけると、標準膜と同等の膜の場合は、後退接触角法と同様であるが、欠陥膜の場合は、後退接触角法とは逆に、基材と液面との界面において液面の内側への湾曲によりレーザー光の反射角度が変化し、スクリーン上のレーザー光の投影位置はレーザー光照射手段側から遠ざかる方向に移動する。
このスクリーン上の反射光の受光位置を計測することにより、標準膜と同等の膜であるか、それとも欠陥膜であるかを評価することができる。
On the other hand, in the case of the advancing contact angle method, when the substrate is submerged in the liquid, if the laser light is brought close to the substrate, the film equivalent to the standard film is the same as the receding contact angle method. In this case, contrary to the receding contact angle method, the reflection angle of the laser light changes due to the inward bending of the liquid surface at the interface between the substrate and the liquid surface, and the projection position of the laser light on the screen is irradiated with the laser light. Move away from the means side.
By measuring the light receiving position of the reflected light on the screen, it is possible to evaluate whether the film is equivalent to the standard film or a defective film.

(膜検査装置)
本発明において使用する膜検査装置は、基本構造として、
液体収納容器と、
膜の形成された基材を液体収納容器中の液体に浸すことができる位置に配置され、膜の形成された基材を任意の角度に保持し移動させる手段と、
液体収納容器の上方に設けられ、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定手段とを有する。
(Membrane inspection equipment)
The film inspection apparatus used in the present invention has a basic structure as follows:
A liquid container;
Means for holding and moving the substrate on which the film is formed at an arbitrary angle, arranged at a position where the substrate on which the film is formed can be immersed in the liquid in the liquid storage container;
A laser measuring unit is provided above the liquid storage container and has a laser beam irradiation unit and a screen for detecting reflected light.

本発明の膜検査装置の一態様を図5の概念図に基づいて説明する。
図5に示される装置は、液体(図中では「試料液体」)が収納された液体容器、薄膜を形成した基材(図中では「試料平板」)を液体容器中の液体に浸すことができる位置に配置された傾斜台、及び、液体容器の上方に設けたレーザー測定装置(XYステージ、レーザー照射装置、レーザー受光面、ノギス等を有する)からなる。
One aspect of the film inspection apparatus of the present invention will be described based on the conceptual diagram of FIG.
The apparatus shown in FIG. 5 immerses a liquid container in which a liquid (“sample liquid” in the figure) is stored and a base material (“sample plate” in the figure) on which a thin film is formed in the liquid in the liquid container. It consists of a tilting table arranged at a position where it can be formed, and a laser measuring device (having an XY stage, a laser irradiation device, a laser receiving surface, a caliper, etc.) provided above the liquid container.

レーザー照射装置としては、たとえば、キコー技研製MLXG−A12−640−30(波長640nm、光出力15mW)などが使用できる。XYステージはレーザー測定装置を移動させるものであり、たとえば、中央精機製LD−7042−C1などが使用できる。
レーザー照射部から出た入射光は、液面で反射後、反射光が受光面に投影される。
As the laser irradiation apparatus, for example, MLXG-A12-640-30 (wavelength 640 nm, optical output 15 mW) manufactured by Kikko Giken can be used. The XY stage moves the laser measuring device, and for example, LD-7042-C1 manufactured by Chuo Seiki can be used.
The incident light emitted from the laser irradiation unit is reflected on the liquid surface, and then the reflected light is projected onto the light receiving surface.

操作方法は以下のとおりである。
図5に示されるとおり、膜を形成した基材(図中では「試料平板」)を傾斜台に取り付け、その一部を試料液体に沈める。傾斜台は回転機構により任意の角度に設定できる。液体容器の上方に、レーザー照射装置と受光面(スクリーン)で構成されるレーザー測定装置を水平に設置し、レーザー光を液面に向けて照射する。次いで、レーザー測定装置を液面と平行に移動させ、レーザー光の照射位置を基材と液面の境界に近づける。液面で反射した光は、受光面(スクリーン)上にビームスポットを形成する。ビームスポットの位置を受光面(スクリーン)に固定したデジタルノギスで測定する。
The operation method is as follows.
As shown in FIG. 5, a base material (“sample flat plate” in the figure) on which a film is formed is attached to an inclined table, and a part thereof is submerged in a sample liquid. The tilt table can be set at an arbitrary angle by a rotation mechanism. A laser measuring device composed of a laser irradiation device and a light receiving surface (screen) is installed horizontally above the liquid container, and laser light is irradiated toward the liquid surface. Next, the laser measuring device is moved in parallel with the liquid surface, and the irradiation position of the laser light is brought close to the boundary between the substrate and the liquid surface. The light reflected by the liquid surface forms a beam spot on the light receiving surface (screen). The position of the beam spot is measured with a digital caliper fixed to the light receiving surface (screen).

レーザー光照射手段と受光スクリーンは、一体で液面と平行にスライドする機構を有する。また、基材と液体との界面に沿ってスキャンさせる機構を有していても良い。さらに、レーザー測定手段は一台でも、基材と液体との界面に沿って複数台有していても良い。   The laser light irradiation means and the light receiving screen have a mechanism that slides in parallel with the liquid surface. Moreover, you may have a mechanism to scan along the interface of a base material and a liquid. Furthermore, one laser measuring means or a plurality of laser measuring means may be provided along the interface between the base material and the liquid.

スクリーンは、例えば、レーザー光の投影位置を示すスポットが肉眼で判別することができるものであればよい。また、スクリーンとして、反射光を受光して検知する光電素子が複数個配置された光電素子アレイを使用して検知するようにすることもできる。   The screen may be any screen as long as the spot indicating the laser light projection position can be discriminated with the naked eye. Moreover, it is also possible to detect using a photoelectric element array in which a plurality of photoelectric elements that receive and detect reflected light are arranged as a screen.

膜を形成した基材を液体に対して引き上げる又は沈める方法としては、基材を液面から引き上げる方法と、液面を低下又は上昇させる方法とがある。   As a method of pulling up or sinking the substrate on which the film is formed, there are a method of pulling up the substrate from the liquid level and a method of lowering or raising the liquid level.

前者の場合には、基材を上下、斜めに移動させる駆動機構を有し、後者の場合には、液体収納容器に開閉自在の給排液口を設け、液体の給排出装置と連結させることができる。   In the former case, it has a drive mechanism that moves the substrate up and down and diagonally. In the latter case, the liquid storage container is provided with an openable and closable supply / discharge liquid port and connected to a liquid supply / discharge device. Can do.

以下に、実施例を挙げて本発明を更に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to the examples.

I 標準膜を形成した基材の調製
式[1]で示されるシラン系界面活性剤、該シラン系界面活性剤と相互作用し得る触媒、及び水を含む薄膜形成用溶液中に、ガラス基板を浸漬し、基板上に単分子膜(I)を形成した(試料(A)〜(C))。具体的には以下のようにして単分子膜(I)を形成した。
I. Preparation of base material on which standard film is formed A glass substrate is placed in a solution for forming a thin film containing a silane-based surfactant represented by the formula [1], a catalyst capable of interacting with the silane-based surfactant, and water. Immersion was performed to form a monomolecular film (I) on the substrate (samples (A) to (C)). Specifically, the monomolecular film (I) was formed as follows.

(1)シラン系界面活性剤
式[1]で示されるシラン系界面活性剤として、n−オクタデシルトリメトキシシラン(ODS)(Gelest社製)を用いた。
(1) Silane-based surfactant As the silane-based surfactant represented by the formula [1], n-octadecyltrimethoxysilane (ODS) (manufactured by Gelest) was used.

(2)触媒の調製
4つ口フラスコに、チタンテトライソプロポキシド(商品名:A−1、日本曹達社製:純度99%、酸化チタン換算濃度28.2重量%)12.4gをトルエン45.0gに溶解し、窒素ガス置換した後に、変性アルコール/ドライアイスバス中で−40℃に冷却した。別に、イオン交換水1.26g(HO/Ti=1.6モル比)をイソプロパノール11.3gに混合後、−40℃に冷却した状態で、上記4つ口フラスコ中へ攪拌しながら滴下した。滴下中は、フラスコ内の液温を−40℃に維持した。滴下終了後、冷却しながら30分間攪拌後、その後室温に昇温して、無色透明な部分加水分解溶液を得た。溶液の固形分濃度は、酸化チタン換算で5重量%であった。
(2) Preparation of catalyst In a four-necked flask, 12.4 g of titanium tetraisopropoxide (trade name: A-1, manufactured by Nippon Soda Co., Ltd .: purity 99%, titanium oxide equivalent concentration 28.2 wt%) was added to toluene 45. After dissolving in 0.0 g and replacing with nitrogen gas, it was cooled to −40 ° C. in a denatured alcohol / dry ice bath. Separately, 1.26 g of ion-exchanged water (H 2 O / Ti = 1.6 molar ratio) was mixed with 11.3 g of isopropanol, and then cooled dropwise to −40 ° C. while stirring into the four-necked flask. did. During the dropping, the liquid temperature in the flask was maintained at -40 ° C. After completion of the dropwise addition, the mixture was stirred for 30 minutes while cooling, and then heated to room temperature to obtain a colorless and transparent partially hydrolyzed solution. The solid content concentration of the solution was 5% by weight in terms of titanium oxide.

この部分加水分解溶液20gに、式[1]で示されるシラン系界面活性剤を、TiO:ODS=1:1(モル比)に相当する量を加え、さらにTiO換算で1wt%に相当するトルエンで希釈した。次に、蒸留水5gを加えて、40℃、3日間攪拌した後、室温に冷却した。2層分離している過剰の水を取り除き、透明な離型層形成用の触媒溶液を得た。また、分離した水層からはTiもODSを検出されなかった。 To 20 g of this partially hydrolyzed solution, an amount corresponding to TiO 2 : ODS = 1: 1 (molar ratio) is added to the silane surfactant represented by the formula [1], and further corresponds to 1 wt% in terms of TiO 2. Diluted with toluene. Next, 5 g of distilled water was added and stirred at 40 ° C. for 3 days, and then cooled to room temperature. Excess water separated into two layers was removed to obtain a transparent catalyst solution for forming a release layer. Also, no ODS was detected in Ti from the separated aqueous layer.

(3)膜形成用溶液の調製
水分含量450ppmのトルエンに、最終濃度0.5重量%に相当する式[1]で示されるシラン系界面活性剤を加え室温で30分間攪拌した。次に、式[1]で示されるシラン系界面活性剤の1/10倍モル(TiO換算)相当の触媒溶液を滴下し、滴下終了後、室温で3時間攪拌した。この溶液中の水分含量を500ppmになるように水を加え膜形成用溶液を得た。
(3) Preparation of film-forming solution To toluene having a moisture content of 450 ppm, a silane-based surfactant represented by the formula [1] corresponding to a final concentration of 0.5% by weight was added and stirred at room temperature for 30 minutes. Next, a catalyst solution corresponding to 1/10 times mole (in terms of TiO 2 ) of the silane-based surfactant represented by the formula [1] was dropped, and after completion of the dropping, the mixture was stirred at room temperature for 3 hours. Water was added so that the water content in this solution was 500 ppm to obtain a film-forming solution.

(4)膜の形成
ガラス基板を、上記膜形成用溶液中に5分間浸漬後、引き上げ、炭化水素系洗浄剤(NSクリーン 株式会社ジャパンエナジー製)で超音波洗浄して取り除き、乾燥して試料を得た。原子間顕微鏡による観察の結果、当該試料は良好な単分子膜であり、これを標準膜とした。
(4) Film formation The glass substrate is dipped in the above film forming solution for 5 minutes, then pulled up, removed by ultrasonic cleaning with a hydrocarbon-based cleaning agent (NS Clean Japan Energy Co., Ltd.), dried and sampled Got. As a result of observation with an atomic microscope, the sample was a good monomolecular film, and this was used as a standard film.

II 標準膜の動的接触角の測定
Drop Master 700(協和界面科学株式会社製)を用い、液体としては、ブチルカルビトールアセテートを用いた。載置台に上記(4)で作製した基材を載せ、ブチルカルビトールアセテートの液滴を、0〜10μLの間で吐出吸引した。液滴の拡張時及び収縮時のそれぞれの過程において、0.5μL〜8μLの間、0.05μLの間隔で、液滴の動的接触角を複数回測定し、その平均値を求めた。その結果、後退接触角は49.4°であった。
II Measurement of dynamic contact angle of standard membrane
Drop Master 700 (manufactured by Kyowa Interface Science Co., Ltd.) was used, and butyl carbitol acetate was used as the liquid. The base material produced in the above (4) was placed on the mounting table, and butyl carbitol acetate droplets were discharged and sucked between 0 to 10 μL. In each process during expansion and contraction of the droplet, the dynamic contact angle of the droplet was measured several times at intervals of 0.05 μL between 0.5 μL and 8 μL, and the average value was obtained. As a result, the receding contact angle was 49.4 °.

III 膜の検査
上記Iにおいて調製した膜形成用溶液中に、ガラス基板を5分間浸漬後、引き上げ、炭化水素系洗浄剤(NSクリーン 株式会社ジャパンエナジー製)で超音波洗浄して取り除き、乾燥して試料を得た。
III Film inspection After immersing the glass substrate in the film-forming solution prepared in I above for 5 minutes, pull it up, remove it by ultrasonic cleaning with a hydrocarbon-based cleaning agent (NS Clean Japan Energy), and dry it. A sample was obtained.

基板を固定し、傾斜角度を変えることのできる傾斜台を備えた液体収納槽上に、レーザー光照射装置(キコー技研製MLXG−A12−640−30(波長640nm、光出力15mW))と反射光を検知するスクリーン(50mm×50mm)とを有し、それらを一体となって液面上をスライドさせることのできるXYステージ(中央精機製LD−7042−C1)を有するレーザー測定装置を設置し(全体の装置の形状は図5を参照)、以下の条件で測定した。
レーザー光の傾斜角度(図3又は4のφ):70°〜80°
液面からスクリーンまでの距離:約200〜250mm
気温及び液温:25±0.5°
Laser light irradiation device (MLXG-A12-640-30 (wavelength 640 nm, light output 15 mW) manufactured by Kiko Giken) and reflected light on a liquid storage tank equipped with a tilt table that can fix the substrate and change the tilt angle. And a laser measuring device having an XY stage (LD-7042-C1 manufactured by Chuo Seiki Co., Ltd.) capable of sliding them on the liquid surface together with a screen (50 mm × 50 mm) for detecting The shape of the entire apparatus was measured under the following conditions (see FIG. 5).
Laser light tilt angle (φ L in FIG. 3 or 4): 70 ° to 80 °
Distance from liquid level to screen: about 200-250mm
Air temperature and liquid temperature: 25 ± 0.5 °

液体収納槽にブチルカルビトールアセテートを入れ、ガラス基板を傾斜台に固定し、ブチルカルビトールアセテート中に浸漬した。液面に対するガラス基板の角度を標準膜の後退接触角である49.4°に調整し、その方向にゆっくりと引き上げた。引き上げを停止した後、レーザー光測定装置起動し、基材に向けて移動させた。レーザー光が基材と液面の界面の位置に照射されたとき、スクリーン上のレーザ光の投影位置は、レーザー光照射手段側に約30mmずれたことが観察された。なお、基材壁面の位置は、レーザ光が散乱することから確認が可能である。   Butyl carbitol acetate was placed in the liquid storage tank, the glass substrate was fixed to a tilting table, and immersed in butyl carbitol acetate. The angle of the glass substrate with respect to the liquid surface was adjusted to 49.4 °, which is the receding contact angle of the standard film, and the glass substrate was slowly pulled up in that direction. After stopping the pulling up, the laser beam measuring device was activated and moved toward the substrate. When the laser beam was irradiated to the position of the interface between the substrate and the liquid surface, it was observed that the projection position of the laser beam on the screen was shifted by about 30 mm toward the laser beam irradiation means side. The position of the substrate wall surface can be confirmed because the laser light is scattered.

同様にして、標準膜を測定すると、レーザー光が基材と液面の界面の位置に照射されたときでも、スクリーン上のレーザ光の投影位置は、液面に照射した場合の投影位置と変わらなかった。   Similarly, when the standard film is measured, even when the laser beam is irradiated to the position of the interface between the substrate and the liquid surface, the projected position of the laser beam on the screen is different from the projected position when the liquid surface is irradiated. There wasn't.

Claims (6)

1)標準となる膜を形成した基材(A)について、液体の後退接触角又は前進接触角を測定する工程、
2)上記1)における後退接触角又は前進接触角の測定に使用する液体と同じ液体に対して、検査する膜を形成した基材(B)を、上記基材(A)の後退接触角と同じ角度で引き上げる又は前進接触角と同じ角度で沈める際に、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定装置から照射されるレーザー光を基材と液体との界面に照射し、反射した光をスクリーン上に受けることにより反射光を検知する工程、及び、
3)液体面にレーザー光を照射して反射した光を検知したスクリーン上の位置と、上記2)において反射した光を検知したスクリーン上の位置の差異を測定する工程
を有することを特徴とする基材上に形成された膜の検査方法。
1) A step of measuring a receding contact angle or advancing contact angle of a liquid on a base material (A) on which a standard film is formed,
2) The base material (B) on which the film to be inspected is formed with the receding contact angle of the base material (A) with respect to the same liquid as that used for the measurement of the receding contact angle or the advancing contact angle in 1) above. When raising at the same angle or sinking at the same angle as the advancing contact angle, irradiate the laser beam emitted from the laser measuring device having a screen for detecting the reflected light and the reflected light to the interface between the substrate and the liquid, Detecting reflected light by receiving reflected light on a screen; and
3) A step of measuring a difference between a position on the screen where the reflected light is detected by irradiating the liquid surface with laser light and a position on the screen where the reflected light is detected in 2) above. A method for inspecting a film formed on a substrate.
2)の工程において、液体に対して基材(B)を引き上げる又は沈める方法として、角度を保ったまま基材(B)自体を液体から引き上げる又は液体に沈めることを特徴とする請求項1記載の基材上に形成された膜の検査方法。 2. In the step 2), as a method of pulling up or sinking the base material (B) with respect to the liquid, the base material (B) itself is pulled up from the liquid or submerged in the liquid while maintaining the angle. Method for inspecting a film formed on a base material. 2)の工程において、液体に対して基材(B)を引き上げる又は沈める方法として、基材は固定し、液体面を低下又は上昇させることを特徴とする請求項1記載の基材上に形成された膜の検査方法。 In the step (2), as a method of pulling up or sinking the base material (B) with respect to the liquid, the base material is fixed, and the liquid surface is lowered or raised. Method for inspection of the formed film. レーザー光を照射させる位置を、基材と液体との界面に沿ってスキャンさせることを特徴とする請求項1〜3のいずれかに記載の基材上に形成された膜の検査方法。 The method for inspecting a film formed on a substrate according to any one of claims 1 to 3, wherein a position where the laser beam is irradiated is scanned along the interface between the substrate and the liquid. レーザー測定装置を基材と液体との界面に沿って複数設けることを特徴とする請求項1〜4のいずれかに記載の基材上に形成された膜の検査方法。 A method for inspecting a film formed on a substrate according to any one of claims 1 to 4, wherein a plurality of laser measuring devices are provided along the interface between the substrate and the liquid. 液体収納容器;
膜の形成された基材を液体収納容器中の液体に浸すことができる位置に配置され、当該基材を任意の角度に保持し、移動させる手段;及び、
液体収納容器の上方に設けられ、レーザー光照射手段と反射光を検知するスクリーンを有するレーザー測定手段;
とを有する膜検査装置。
Liquid container;
Means disposed at a position where the substrate on which the film is formed can be immersed in the liquid in the liquid storage container, and holding and moving the substrate at an arbitrary angle; and
A laser measuring means provided above the liquid storage container and having a laser light irradiation means and a screen for detecting reflected light;
And a film inspection apparatus.
JP2009181681A 2009-08-04 2009-08-04 Method for inspecting a film formed on a substrate Expired - Fee Related JP5418941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181681A JP5418941B2 (en) 2009-08-04 2009-08-04 Method for inspecting a film formed on a substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181681A JP5418941B2 (en) 2009-08-04 2009-08-04 Method for inspecting a film formed on a substrate

Publications (2)

Publication Number Publication Date
JP2011033534A true JP2011033534A (en) 2011-02-17
JP5418941B2 JP5418941B2 (en) 2014-02-19

Family

ID=43762738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181681A Expired - Fee Related JP5418941B2 (en) 2009-08-04 2009-08-04 Method for inspecting a film formed on a substrate

Country Status (1)

Country Link
JP (1) JP5418941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507389A (en) * 2011-10-27 2012-06-20 西北工业大学 Method for establishing prediction model of static contact angles in cylindrical glass capillaries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018184B (en) * 2016-05-20 2018-08-21 大连理工大学 The experimental provision of dynamic contact angle is measured under a kind of high temperature and high pressure environment
US11709133B2 (en) 2018-09-28 2023-07-25 Industrial Technology Research Institute Solid surface wettability determination method
TWI758642B (en) * 2018-09-28 2022-03-21 財團法人工業技術研究院 Surface wettability detecting system and surface wettability detecting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776439A (en) * 1980-10-30 1982-05-13 Dainippon Printing Co Ltd Method for measurement of contact angle
JPS60192246A (en) * 1984-03-13 1985-09-30 Nec Corp Measuring instrument of contact angle
JPH10267824A (en) * 1997-03-27 1998-10-09 Agency Of Ind Science & Technol Method for measuring dynamic contact angle of self-organization film containing sulfur organic molecules
JP2005114615A (en) * 2003-10-09 2005-04-28 Canon Inc Method and apparatus for measuring wetting properties on solid surface
JP2007322181A (en) * 2006-05-30 2007-12-13 Nippon Soda Co Ltd Thin film inspection method and thin film inspection device
JP2008070268A (en) * 2006-09-14 2008-03-27 Nippon Soda Co Ltd Thin film verifying method and thin film verifying device
WO2009004839A1 (en) * 2007-06-29 2009-01-08 National University Corporation Shizuoka University Interface property measuring device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776439A (en) * 1980-10-30 1982-05-13 Dainippon Printing Co Ltd Method for measurement of contact angle
JPS60192246A (en) * 1984-03-13 1985-09-30 Nec Corp Measuring instrument of contact angle
JPH10267824A (en) * 1997-03-27 1998-10-09 Agency Of Ind Science & Technol Method for measuring dynamic contact angle of self-organization film containing sulfur organic molecules
JP2005114615A (en) * 2003-10-09 2005-04-28 Canon Inc Method and apparatus for measuring wetting properties on solid surface
JP2007322181A (en) * 2006-05-30 2007-12-13 Nippon Soda Co Ltd Thin film inspection method and thin film inspection device
JP2008070268A (en) * 2006-09-14 2008-03-27 Nippon Soda Co Ltd Thin film verifying method and thin film verifying device
WO2009004839A1 (en) * 2007-06-29 2009-01-08 National University Corporation Shizuoka University Interface property measuring device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013041614; 加藤健司, 東根光善, 東恒雄, 中本憲史: '傾斜平板上の液滴の転落機構(第2報,自己組織化単分子膜試料板の転落角度)' 日本機械学会論文集 B編 Vol.73, No.731, 20070725, Page.1548-1555 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507389A (en) * 2011-10-27 2012-06-20 西北工业大学 Method for establishing prediction model of static contact angles in cylindrical glass capillaries

Also Published As

Publication number Publication date
JP5418941B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5418941B2 (en) Method for inspecting a film formed on a substrate
KR100995450B1 (en) Devices and methods for inspecting optical elements with a view to contamination
US20180362875A1 (en) Slips surface based on metal-contaning compound
Gauthier et al. Study of grafted silane molecules on silica surface with an atomic force microscope
Marchand et al. Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor
Mirji Octadecyltrichlorosilane adsorption kinetics on Si (100)/SiO2 surface: contact angle, AFM, FTIR and XPS analysis
JP2009195910A (en) Organic thin film forming method
EP2484726A1 (en) Mechanical stable, transparent, superhydrophobic, and oleophobic surfaces made of hybrid raspberry-like particles
JP2011099795A (en) Liquid sample placement mechanism, apparatus and method for measuring refractive index using the same
JP2007078451A (en) Prism with metal membrane and spectral analyzer using the same
KR102301532B1 (en) Etching method
Jung et al. Characterization of octadecyltrichlorosilane self-assembled monolayers on silicon (100) surface
JP4748722B2 (en) Thin film inspection method and thin film inspection apparatus
JP4899123B2 (en) Thin film verification method and thin film verification apparatus
JP2012532342A (en) Photomask repair method
JP2008256373A (en) Method of evaluating vapor deposition film, and method of manufacturing optical member using the same
JP5326782B2 (en) Method for producing water-repellent article
Nador et al. Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: application to optical biochips
JP2018133486A (en) Etching method
JPH09119939A (en) Liquid-dipped scanning probe microscope device
JP2018098455A (en) Etching method
US20230399540A1 (en) Hydrophobic, Self-Healing Coating and Coated Substrate, and Fabrication Method
JP2001338959A (en) Method and equipment for evaluating semiconductor substrate
JP2004340895A (en) Inspection container and detection device of organism-related substance
JPH09273986A (en) Apparatus and method for measuring surface energy distribution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees