JP2005113929A - Method of measuring inner diameter size of large diameter side end portion of boot for constant velocity joint and its device - Google Patents

Method of measuring inner diameter size of large diameter side end portion of boot for constant velocity joint and its device Download PDF

Info

Publication number
JP2005113929A
JP2005113929A JP2003207891A JP2003207891A JP2005113929A JP 2005113929 A JP2005113929 A JP 2005113929A JP 2003207891 A JP2003207891 A JP 2003207891A JP 2003207891 A JP2003207891 A JP 2003207891A JP 2005113929 A JP2005113929 A JP 2005113929A
Authority
JP
Japan
Prior art keywords
gauge
velocity joint
side end
measuring
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003207891A
Other languages
Japanese (ja)
Other versions
JP4281904B2 (en
Inventor
Kazuhiko Sueoka
一彦 末岡
Koji Takada
康二 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukoku Co Ltd
Fukoku KK
Original Assignee
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Co Ltd, Fukoku KK filed Critical Fukoku Co Ltd
Priority to JP2003207891A priority Critical patent/JP4281904B2/en
Publication of JP2005113929A publication Critical patent/JP2005113929A/en
Application granted granted Critical
Publication of JP4281904B2 publication Critical patent/JP4281904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately and non-destructively measure the size of the inner diameter of a large diameter side end portion of a tripod type boot for a constant velocity joint. <P>SOLUTION: An annular gauge 21 is mounted on the outer face of the large diameter side end portion 3 of the boot 1 for the constant velocity joint, and the gauge mounted on the boot is fixed and held onto a rotation supporting portion 60 so as to be intermittently rotatable around the axis of the gauge. A probe 49 of a shape measuring machine 45 movable in the directions of lateral and vertical axes is put in contact with the inner face of the large diameter side end portion of the boot which is rotatably arranged and held by fixing the gauge onto the rotation supporting portion, and the probe is moved a preset range in the direction of the lateral axis along the inner face of the large diameter side end portion for measuring the displacement thereof in the preset range in the direction of the lateral axis. Then, the phase of the gauge is shifted in preset ranges in sequence to give one turn to the gauge so that the displacement of the inner face of the large diameter side end portion is measured in preset ranges in the direction of vertical axis and a plurality of measurement data obtained by a plurality of measuring processes are combined. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のディファレンシャル(デフ)ギアから車軸ハブへ動力を伝達するドライブシャフト等に備えられる等速ジョイント(Constant Velocity Universal Joint)を保護するための等速ジョイント用ブーツの大径側端部内面の寸法測定方法および寸法測定装置に関する。
【0002】
【従来の技術】
例えば自動車用のドライブシャフトの両端部には等速ジョイントが用いられる。そして、等速ジョイントを潤滑するためのグリースを封入するとともに、外部からの埃や水等の異物の浸入を防ぐため、等速ジョイントの屈曲部をカバーする可撓性の等速ジョイント用ブーツが装着される。この等速ジョイント用ブーツは、樹脂又はゴムなどにより形成されると共に、その大径側端部および小径側端部をそれぞれ等速ジョイントの外筐の外周面と、ドライブシャフト軸部の外周面とにそれぞれバンドによって締結することによって固定される。
【0003】
ところで、例えば上述した等速ジョイント用のブーツは、これが装着される等速ジョイントの外筐との間のシール性能を確保する必要があるため、等速ジョイント用ブーツの端部内面の製品寸法を正確かつ非破壊的に測定することが要望されている。特に、薄肉・軽量化等の種々の目的から、その外面を凹凸状に形成しているトリポッドジョイント(Tripod Joint)用のブーツにあっては、トリポッドジョイントの外面凹凸形状に嵌合するように、大径側端部の内面に肉厚の異なる部分を備えているため、シール性能を高めるためには正確な内面寸法が求められるのが好ましい。
しかし、現在のところ、この等速ジョイント用ブーツの大径側端部内面の寸法を正確かつ非破壊的に測定する手段は特にない。
【0004】
例えば、スタイラスをワークに接触させ、ワーク表面に沿って移動させてワークの輪郭形状や表面粗さを測定する形状測定機が周知であり、機械加工部品などの測定に用いられている。
この形状測定機においては、スタイラスをワークの表面に沿ってモータにより一方向(X方向)に移動させると、ワーク表面の凹凸によりスタイラスは上下方向(Z方向)に変位する。X方向の変位量を測定すると共に、Z方向の変位量を検出することでワークの輪郭形状や表面粗さを測定することができる(例えば、特許文献1を参照。)。
また、内周が円形状である筒体等の内周形状を非接触状態で測定する先行技術もある(例えば、特許文献2を参照)。
【0005】
【特許文献1】
特開2001−280947号公報(段落番号0002等)
【特許文献2】
特開平5−40019号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1の従来技術に開示された測定手段では、等速ジョイント用ブーツの内周全周を非破壊的に測定することは、その構造上不可能であった。
また、特許文献2に開示された測定手段の場合、CCDカメラを筒体内に挿入して測定するものであるため、カメラが入れられる内径の大きなものが測定対象とされ、かつカメラで距離が測定できるものに限定される。
等速ジョイント用ブーツは小さくかつ黒色であり、光を反射しないため、この測定手段では測定困難である。
本発明は従来技術の有するこのような問題点に鑑みなされたもので、その課題とするところは、等速ジョイント用ブーツの大径側端部内面の寸法を正確かつ非破壊的に測定することにある。
【0007】
【課題を解決するための手段】
上記課題を達成するために本発明がなした技術的手段は、大径側端部の内面に肉厚の異なる部分を備えてなる等速ジョイント用ブーツにおける大径側端部の内径寸法を測定する方法であって、等速ジョイント用ブーツの大径側端部外面に、該外面に適合して形成された内面を備えてなる環状のゲージを装着する工程と、該等速ジョイント用ブーツに装着したゲージを、該ゲージの軸心を中心に断続回転可能に回転支持部に固定保持する工程と、前記回転支持部にゲージを固定することで回転可能に配設保持された等速ジョイント用ブーツの大径側端部内面に、横軸方向及び縦軸方向に移動可能な形状測定機の測定子を接触させる工程と、前記大径側端部内面に接触させた測定子を、該内面に沿って横軸方向に所定範囲移動させることにより、該所定範囲の縦軸方向の変位量を測定し、次いで順次ゲージの位相を検出しながら所定範囲ずつずらすことによりゲージを一回転させて、その所定範囲毎の大径側端部内面の夫々の縦軸方向の変位量を測定する工程と、前記複数回の測定工程により得られた複数の測定データを合成する工程とを有することを特徴とする等速ジョイント用ブーツの大径側端部における内径寸法測定方法とした。
【0008】
本発明によれば、ゲージによって等速ジョイント用ブーツの大径側端部が型くずれしないように保持した状態でその内径寸法を測定しているから、大径側端部の内径寸法を正確かつ非破壊的に測定することができる。この場合、接触力が4g以下の測定方法によって寸法を測定すると、大径側端部内径の変形を防止できるから好ましい。
なお、接触力が4g(0.039N)以下の測定方法とは、測定時にプローブ(測定子)が等速ジョイント用ブーツの大径側端部内径を押圧する力が4g以下であることを意味し、例えば、市販のコントレーサ(輪郭測定機)による測定方法が該当する。
【0009】
上述した場合において、内面の寸法をわずかに異ならせた複数のゲージを準備し、等速ジョイント用ブーツの大径側端部外径が最もよく適合するゲージを選択して測定するようにするとよい。
【0010】
なお、測定に先立ち、ゲージの外面と略同じ形状に形成された外面と、等速ジョイント用ブーツの内面と略同じ形状に形成された寸法が既知の内面とを備えてなる校正用ゲージを用いて校正するようにすると、測定の精度がより向上し好ましい。
【0011】
また、上記測定方法には、測定対象となる等速ジョイント用ブーツの大径側端部外面に適合して形成された内面を有する環状のゲージと、該ゲージの軸心を中心に断続回転可能にゲージを保持固定し、該ゲージの位相を検出する位相検出手段を有する回転支持部と、前記ゲージの位相データを出力する位相データ出力部と、横軸方向及び縦軸方向に移動可能な測定子を有し、該測定子が、前記ゲージに装着される等速ジョイント用ブーツの大径側端部の内面に接触して、該内面の所望範囲を寸法測定する形状測定機と、該形状測定機により得られた複数の測定データを出力する測定データ出力部と、前記測定データ出力部から得られた複数の測定データを、位相データ出力部から得られた各データ測定時の位相データに基づいて合成するデータ合成部とを少なくとも有して構成されていることを特徴とする等速ジョイント用ブーツの大径側端部における内径寸法測定装置を使用するのが好ましい。
この場合においても、形状測定機は、接触力が4g以下の測定方法によって等速ジョイント用ブーツの大径側端部内面を測定する。
【0012】
【発明の実施の形態】
以下、本発明を適用してなる等速ジョイント用ブーツの寸法測定方法ならびに寸法測定装置の一実施形態について説明する。なお、本実施形態は本発明の一実施形態にすぎず何等これに限定して解釈されるものではなく本発明の範囲内で設計変更可能である。
まず、本実施形態における測定対象である等速ジョイント用ブーツの一例について概説する。図1に示すように、等速ジョイント用ブーツ(以下、単にブーツともいう)1は全体を筒状に形成され、等速ジョイントの一種であるトリポッドジョイントの外筐に固定される大径側端部3と、このトリポッドジョイントに接続されたドライブシャフトの軸部側に固定される小径側端部5とを有する。そして、大径側端部3と小径側端部5との間には、可撓性を有し屈曲可能に構成された蛇腹状のベローズ7が形成されている。ブーツ1は、例えば熱可塑性のポリエステル系エラストマ等の弾性を有する樹脂から形成されている。
【0013】
大径側端部3の内面11は、トリポッドジョイントの外筐の外周面と接し、内面11の周方向にわたって連続して形成された2本の平行する突条であるシールリップ13が設けられている。一方、ブーツ1の筒軸方向から見た形状については、図2を参照して説明する。図2は、図1のII-II線概略断面図である。図2に示すように、大径側端部3の外面15は、略円形に形成されている。そして、大径側端部3の内面11側には、外面に沿った円形に形成された部分と、内面側に円弧状に張り出して形成された部分とが設けられている。以下、前者を薄肉部17、後者を厚肉部19と称して説明する。なお、上述したシールリップ13は、薄肉部17、厚肉部19両方の表面にわたって、連続して形成されている。
【0014】
図2に示すように、厚肉部19は、ブーツ1が装着されるトリポッドジョイントの表面の溝部に対応して、本実施形態の場合、周上例えば3箇所に、略等間隔に設けられている。つまり、厚肉部19は、周上で120°ずつ位相をずらして配置されている。上述したように、厚肉部19の表面はブーツ1の筒軸方向から見たときに円弧状に形成され、また、ブーツ1の筒軸方向に対しては、シールリップ13を除いて略一定の断面形状である。また、大端部3の端面部から、外周側に突き出して形成された段部14が形成されている。この段部14は、周上略等間隔に3箇所設けられ、それぞれの段部14は、隣接する厚肉部19と、例えば約60°ずつ周方向の位相をずらして設けられている。
また、本実施形態では薄肉部17と厚肉部19とが大径側端部3の内面側に一体に設けられているが、薄肉部17と厚肉部19を備えたグロメット部を、大径側端部内面に一体若しくは別体として固定するものであってもよい。
【0015】
図3は、本実施形態の測定方法および測定装置において用いられる、等速ジョイント用ブーツの大径側端部内径の寸法測定用ゲージの軸方向視外観図である。図3に示すように、ゲージ21は、全体を略円環状に形成され、その内周部に、ブーツ1の大径側端部3の外面15に適合する形状の面部23が形成されている。すなわち、この面部23は、大径側端部3の外面15に適合する円筒内面状の内周面部25と、大径側端部3の外面15から突き出して形成された段部14に適合し、内周面部25から凹ませて形成された溝部27とを有して構成されている。一方、ゲージ21の外周面29には、その全周にわたって、セレーション31が形成されている。
【0016】
図4は、図3のIV-IV線断面図である。図4に示すように、上述した面部23は、ゲージ21の軸方向のうち一方側に形成され、他方側においては、段状に内径を大きく形成された面部33が形成されている。そして、ゲージ21の外周の縁部35には面取りが施されている。また、ゲージ21の内周面部25の、面部33側の縁部37にも、面取りが施されている。
なお、ゲージ21は、測定対象である等速ジョイントの寸法公差を考慮して、少しずつ寸法を異ならせて形成された複数のものが準備される。例えば、寸法公差中の略最大値に形成されたものと、寸法公差中の略最小値に形成されたものとを準備し、さらにその中間の寸法において、寸法を複数段階異ならせたものを準備しておいてもよい。
【0017】
図5及び図6は、本実施形態の等速ジョイント用ブーツの寸法測定装置の構成を示す図である。
図5及び図6に示すように、寸法測定装置41は、上述したゲージ21の他に回転支持部60を備え、回転支持部60は、例えばゲージ21が取り付けられるチャック42と、チャック42が回動自由に装着され、この回動する角度を検出可能なNCロータリインデックス(RI)43とを備えてなる。RI43には、チャック42を駆動するNCモータ44が備えられている。
また、寸法測定装置41はさらに、等速ジョイント用ブーツ1の大径側端部3をゲージ21に取り付けて、ゲージ21をチャック42に装着したときに、この大径側端部3の内面の形状測定が可能な形状測定機(例えば市販のコントレーサなど)45と、前記回転支持装置60と形状測定機45が接続され、集中処理装置(CPU)、例えばハードディスクドライブ等の記憶部、例えばディスプレイ装置等の表示部および、例えばキーボードやマウス等の入力部を備えてなるコンピュータ(データ合成部)47とを有して構成されている。
なお、ここで、チャック42、RI43、NCモータ44、形状測定機45は、防振台62に載置された定盤46上に固定されている。
また、形状測定機45とコンピュータ47との間には、形状測定機45の出力信号に所定の利得を与える測定データ出力部(アンプ)48が接続されている。
形状測定機45は、コンピュータ47からの制御命令に応じて動作するとともに、形状・寸法の測定結果を前記測定データ出力部(アンプ)48を介してコンピュータ47に送る。
回転支持部60は、コンピュータ47からの制御命令に応じてゲージの位相を所定角度ずらした後、所望時間停止させる動作を繰り返し行うよう制御され、また、回転支持部60とコンピュータ47との間には、ゲージ21の位相角度を検出した位相データをコンピュータ47に送る位相データ出力部(アンプ)61が接続されている。
なお、本実施形態では、測定データ出力部48から得られた測定データと、位相データ出力部61から得られた位相データを、一連に備えたデータ合成部47たるコンピュータにより合成するものとしているが、これに限定解釈されるものではなく、例えば各出力部から得られた各データを、所望な媒体に保存し、別途備えた所望なデータ合成部により合成するものとすることもでき、本発明の範囲内で適宜設計変更可能である。
【0018】
そして、形状測定機45の測定用プローブ(測定子)49は、等速ジョイント用ブーツ1の大径側端部3の内面に沿った、例えば中心角にして略120°の領域の形状を測定できるように構成されている。
そして、大径側端部3の内面に沿う測定用プローブ49の接触力は、なぞる程度、例えば4g以下が好ましい。
本実施形態の場合には2g(0.020N)以下である。この接触力は、被測定物であるブーツ1が、接触力によって所望の測定精度を損なうような型崩れをしないことを考慮して設定するとよい。
また、本実施形態では、略円形状の大径側端部3を一回の測定で測定できる領域を、該端部3の内面を3分割した略120°ずつの測定領域としたが、これに限定されるものではなく、上述した周知の形状測定機45を用いて一回の測定で測定可能な領域を本発明の範囲内で適宜設計変更可能である。
【0019】
次に、本実施形態において、寸法測定装置41の校正をするために用いられるマスターゲージについて説明する。図7は、本実施形態におけるマスターゲージの軸方向視外観図である。図7に示すように、マスターゲージ51は、円環状に形成されている。そして、マスターゲージ51の外周部は、上述した測定用のゲージ21と同様に形成されている。すなわち、外周面53には、その全周にわたってセレーション55が形成されている。
【0020】
一方、マスターゲージ51の内周側には、測定対象である等速ジョイント用ブーツ1の大径側端部3の内面における、薄肉部17および厚肉部19の表面と同じ曲率および配列にそれぞれ形成された面部57および面部59が形成されている。なお、ここで、面部57および面部59の配列や曲率は、ブーツ1の薄肉部17および厚肉部19が、それぞれ製品の寸法公差ゼロである場合の数値とすることが好ましいが、他の寸法であってもよい。
【0021】
図8は、図7のVIII-VIII線断面図である。図8に示すように、上述した面部57および面部59は、マスターゲージ51の軸方向一方側に寄せて形成され、その他端側は、段状に径を拡大されてなる円筒内面状の面部61が形成されている。
【0022】
次に、本実施形態による等速ジョイント用ブーツの測定方法、つまり上述した等速ジョイント用ブーツの寸法測定装置41の使用方法について説明する。
【0023】
はじめに、寸法測定装置41の校正(キャリブレーション)を行うことが好ましい。この校正には、上述したマスターゲージ51を用いる。
先ず、マスターゲージ51をチャック42に固定する。
このとき、チャック42のマスターゲージ51との接触面に形成された図視しないセレーションを、マスターゲージ51の外周面53のセレーションに嵌合させて、マスターゲージ51とチャック42の位相がずれないように固定する。
そして、測定用プローブ49をマスターゲージ51の内面に接触させると共に、形状測定機45を動作させ、測定用プローブ49をマスターゲージ51の内周側の面部57および面部59に沿って横軸方向に所定範囲(例えばマスターゲージ51の中心角にして120°)移動させることによって、該所定範囲の縦軸方向の変位量を測定する(測定データ1)。
そして、前記一回目の120°測定が終了したら、NCモータ44を駆動し、RI43によって角度をモニターしながら、一回目の測定終了位置からマスターゲージを120°自転させ、同様に該所定範囲の縦軸方向の変位量を測定する(測定データ2)。
そして、最後に、前記第二回目の測定終了位置から同様にマスターゲージを120°回転させて、同様に該所定範囲の縦軸方向の変位量を測定する(測定データ3)。
以上の一連の動作は、形状測定器45が、コンピュータ47からの制御命令に応じて動作するとともに、形状・寸法の測定結果を前記測定データ出力部(アンプ)48を介してコンピュータ47に送る。
回転支持部60は、コンピュータ47からの制御命令に応じてゲージの位相を所定角度ずらした後、所望時間停止させる動作を繰り返し行うよう制御される。これにより、マスターゲージ51の内周360°にわたっての測定が完了する。
次に、前記測定データ出力部48から得られた3回の測定データ(測定データ1乃至3)を、位相データ出力部61から得られた3回のデータ測定時の位相データに基づいてコンピュータ47で合成(マージ)し、該コンピュータ47のディスプレイ上に、デジタル化された図形と求める寸法を表示させる。なお、コンピュータ47は、このようなデータを合成表示し、さらに複数のポイントを指定して距離や径を演算してその結果を表示するプログラムを格納している。
そして、求められた寸法と予め分かっている正しい寸法とを比較して異常がなければ、実際の等速ジョイント用ブーツの測定に移行し、異常がある場合には装置の調整を行ったうえで再度校正を行う。
【0024】
次に、測定対象となる等速ジョイント用ブーツ1を準備し、予め用意した複数のゲージ21の中から、最もよくその大径側端部3の外周面がゲージ21の内周面に適合するものを選択する。すなわち、大径側端部3がゲージ21にきつくて挿入できない場合や、挿入はできるが、大径側端部3の周長が長く、波状になってしまう場合には、より内周面の寸法が大きいゲージ21を選択する。一方、大径側端部3がゲージ21に挿入された状態で、両者間に過度に大きい隙間がある場合には、より内周面の寸法が小さいゲージ21を選択する。
【0025】
そして、適合するゲージ21が選択されると、そのゲージ21を等速ジョイント用ブーツ1の大径側端部3の外面に嵌合装着させ(ゲージ装着工程)、その装着状態で、ゲージ21をチャック42に固定する(ゲージ・ブーツの固定保持工程)。
このとき、上述したマスターゲージ51の場合と同様に、ゲージ21の外周部のセレーション31を、チャック42のセレーションと嵌合させる。
【0026】
そして、測定用プローブ49を大径側端部3の内面に接触させる(測定子接触工程)と共に、形状測定機45を動作させ、測定用プローブ49を大径側端部3の内面に沿って横軸方向に所定範囲(例えば図9においてゲージ21の中心角にして位置P1から位置P2置までの120°範囲)移動させることによって、該所定範囲の縦軸方向の変位量を測定する(測定工程・測定データ1)。
そして、前記一回目の120°測定が終了したら、NCモータ44を駆動し、RI43によって角度をモニターしながら、一回目の測定終了位置P2を一回目の測定開始位置P1までゲージ21を120°自転させ、同様に該所定範囲の縦軸方向の変位量を測定する(測定工程・測定データ2)。
そして、最後に、前記第二回目の測定終了位置P3を二回目の測定開始位置P2までゲージ21を120°回転させて、同様に該所定範囲の縦軸方向の変位量を測定する(測定工程・測定データ3)。
以上の一連の動作は、形状測定器45が、コンピュータ47からの制御命令に応じて動作するとともに、形状・寸法の測定結果を前記測定データ出力部(アンプ)48を介してコンピュータ47に送る。
回転支持部60は、コンピュータ47からの制御命令に応じてゲージの位相を所定角度ずらした後、所望時間停止させる動作を繰り返し行うよう制御される。そして、前記測定データ出力部48から得られた3回の測定データ(測定データ1乃至3)を、位相データ出力部61から得られた3回のデータ測定時の位相データに基づいてコンピュータ47で合成(マージ)し、該コンピュータ47のディスプレイ上に、デジタル化された図形と求める寸法を表示させることにより、大径側端部3の内周360°にわたっての測定が完了する。
図9において、薄肉部17および厚肉部19の表面形状に該当する線のうち、1回目の測定範囲(θ1にて示す位置P1から位置P2までの範囲)を破線、そして、2回目つまり前記一回面の測定終了位置からゲージ21を120°自転させて測定したときの二回目の測定範囲(θ2にて示す位置P2から位置P3までの範囲)を一点鎖線、そして、3回目つまり前記二回目の測定終了位置から一回目の測定開始位置までゲージ21をさらに120°自転させて測定したときの三回目の測定範囲(θ3にて示す位置P3から位置P1までの範囲)を二点鎖線にてそれぞれ示している。
図10は、ディスプレイ上に測定結果として表示された図形と寸法の例である。図中、θa・θb・θcは厚肉部中心間の角度、ra・rb・rcは厚肉部の径、Ra・Rb・Rcは薄肉部の径を示す。これにより、ブーツ1の大径側端部3の内周側の形状と寸法がよく把握でき、また、十分な測定精度をもって、非破壊的に等速ジョイント用ブーツの内面寸法を測定することができる。さらに、形状を含む全情報がデジタルデータで保存されるので、品質管理等に利用することもできる。また、選択したゲージ21の寸法から、ブーツ1の大径側端部3の外周面の寸法を把握することができる。
【0027】
以上のように、本実施形態によれば、ゲージ21によってブーツ1の大径側端部3が型崩れしないように保持した状態で、ブーツ1が変形しない程度の微小な接触力による寸法測定を行っているから、ブーツ1の寸法を正確かつ非破壊的に測定することができる。
【0028】
また、内周面の寸法をわずかに異ならせた複数のゲージ21を準備し、ブーツ1の大径側端部3が最もよく適合するゲージ21を選択して測定しているから、選択されたゲージ21の種類によって大径側端部3の外面の寸法を把握でき、また、大径側端部3をより真円に近く保てるから、内面側の寸法測定の精度を担保することができる。
【0029】
さらに、校正用のマスターゲージ51を用いて形状測定機45の校正をしているから、これによっても寸法精度が担保される。
【0030】
なお、本発明は、上述した実施形態に限定されるものではなく、発明の範囲内で適宜変更することができる。例えば、コントレーサなどの形状測定機を用いる代わりに、接触力が例えば4g以下となるような他の接触式測定手段を用いてもよい。また、ゲージの形状も変更してよい。
【0031】
また、測定用ゲージおよびマスターゲージをチャックに対し位置決めする手段も、上述したようなセレーションに限らず、例えば各ゲージにピンまたはピン孔を形成し、これと係合するピン孔またはピンをチャックに形成してもよい。
【0032】
【発明の効果】
本発明によれば、筒状弾性体の寸法を正確かつ非破壊的に測定することができる。
【図面の簡単な説明】
【図1】本発明を適用してなる寸法測定方法および装置の一実施形態における測定対象の等速ジョイント用ブーツの縦断面図。
【図2】図1の等速ジョイント用ブーツのII-II線断面図。
【図3】本発明を適用してなる寸法測定方法および装置の一実施形態において用いるゲージの軸方向視外観図。
【図4】図3のIV-IV線断面図。
【図5】本発明を適用してなる寸法測定装置の一実施形態の構成を示す概略斜視図。
【図6】本発明を適用してなる寸法測定装置の一実施形態の構成を示す概略平面図。
【図7】寸法測定装置の校正に用いるマスターゲージの一実施形態を示す軸方向視外観図。
【図8】図7のマスターゲージのVIII-VIII線断面図。
【図9】寸法測定装置による等速ジョイント用ブーツの大径側端部の内周側の寸法測定を示す図。
【図10】ディスプレイ上に測定結果として表示された図形と寸法の径を示す図。
【符号の説明】
1 等速ジョイント用ブーツ
3 大径側端部
5 小径側端部
7 ベローズ
17 薄肉部
19 厚肉部
21 ゲージ
41 寸法測定装置
42 チャック
43 NCロータリインデックス
44 NCモータ
45 形状測定機
47 コンピュータ(データ合成部)
48 測定データ出力部
49 測定子
51 マスターゲージ
60 回転支持部
61 位相データ出力部
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a large-diameter side end of a constant velocity joint boot for protecting a constant velocity universal joint provided in a drive shaft that transmits power from a differential gear of an automobile to an axle hub. The present invention relates to a dimension measuring method and a dimension measuring apparatus for a part inner surface.
[0002]
[Prior art]
For example, constant velocity joints are used at both ends of an automobile drive shaft. A grease for lubricating the constant velocity joint is enclosed, and a flexible constant velocity joint boot that covers the bent portion of the constant velocity joint is provided to prevent intrusion of foreign matter such as dust and water from the outside. Installed. The constant velocity joint boot is formed of resin or rubber, and the large diameter side end and the small diameter side end thereof are respectively an outer peripheral surface of the outer casing of the constant velocity joint and an outer peripheral surface of the drive shaft shaft portion. Each is fixed by fastening with a band.
[0003]
By the way, for example, the above-mentioned boot for the constant velocity joint needs to secure a sealing performance with the outer casing of the constant velocity joint to which the boot is mounted. There is a need for accurate and non-destructive measurements. In particular, for various purposes such as thinning and weight reduction, in the boot for the tripod joint (Tripod Joint) whose outer surface is formed in an uneven shape, so as to fit into the outer surface uneven shape of the tripod joint, Since the inner surface of the end portion on the large diameter side is provided with a portion having a different thickness, it is preferable that an accurate inner surface dimension is required in order to improve the sealing performance.
However, at present, there is no particular means for accurately and nondestructively measuring the size of the inner surface of the large-diameter end of the constant velocity joint boot.
[0004]
For example, a shape measuring machine that measures a contour shape and surface roughness of a workpiece by bringing a stylus into contact with the workpiece and moving the workpiece along the surface of the workpiece is well known and used for measuring machined parts.
In this shape measuring machine, when the stylus is moved in one direction (X direction) by the motor along the surface of the workpiece, the stylus is displaced in the vertical direction (Z direction) due to the unevenness of the workpiece surface. The contour shape and surface roughness of the workpiece can be measured by measuring the displacement amount in the X direction and detecting the displacement amount in the Z direction (see, for example, Patent Document 1).
There is also prior art that measures the inner peripheral shape of a cylindrical body or the like having a circular inner periphery in a non-contact state (see, for example, Patent Document 2).
[0005]
[Patent Document 1]
JP 2001-280947 A (paragraph number 0002, etc.)
[Patent Document 2]
Japanese Patent Laid-Open No. 5-40019
[0006]
[Problems to be solved by the invention]
However, with the measuring means disclosed in the prior art of Patent Document 1, it is impossible to measure the entire inner circumference of the constant velocity joint boot in a non-destructive manner.
In the case of the measuring means disclosed in Patent Document 2, since a CCD camera is inserted into the cylinder and measured, the one having a large inner diameter into which the camera can be inserted is measured, and the distance is measured by the camera. Limited to what can be done.
Since the constant velocity joint boot is small and black and does not reflect light, it is difficult to measure with this measuring means.
The present invention has been made in view of such problems of the prior art, and the problem is to accurately and non-destructively measure the size of the inner surface of the large-diameter end of the constant velocity joint boot. It is in.
[0007]
[Means for Solving the Problems]
The technical means made by the present invention in order to achieve the above object is to measure the inner diameter of the large-diameter side end of a constant velocity joint boot having a portion with a different thickness on the inner surface of the large-diameter side end. A method of attaching an annular gauge comprising an inner surface formed in conformity with the outer surface to the outer surface of the large-diameter end of the constant velocity joint boot, and the constant velocity joint boot. A process for fixing and holding the mounted gauge on the rotation support part so as to be able to rotate intermittently about the axis of the gauge, and for a constant velocity joint that is rotatably arranged by fixing the gauge to the rotation support part. A step of bringing a measuring element of a shape measuring machine movable in the horizontal axis direction and the vertical axis direction into contact with a large diameter side end inner surface of the boot; and a measuring element brought into contact with the large diameter side end inner surface, By moving a predetermined range along the horizontal axis along Measure the amount of displacement in the vertical direction of the predetermined range, then rotate the gauge one turn by sequentially shifting the predetermined range while detecting the phase of the gauge, and each vertical inner surface of the large-diameter side end portion for each predetermined range. An inner diameter at a large-diameter side end portion of a constant velocity joint boot, characterized by having a step of measuring an axial displacement amount and a step of synthesizing a plurality of measurement data obtained by the plurality of measurement steps. A dimension measuring method was adopted.
[0008]
According to the present invention, the inner diameter dimension of the constant velocity joint boot is measured with the gauge held in such a manner that it does not lose its shape. It can be measured destructively. In this case, it is preferable to measure the dimensions by a measuring method with a contact force of 4 g or less because deformation of the inner diameter of the large diameter side end can be prevented.
Note that the measurement method with a contact force of 4 g (0.039 N) or less means that the force with which the probe (measuring element) presses the large-diameter side end inner diameter of the constant velocity joint boot during measurement is 4 g or less. For example, a measurement method using a commercially available tracer (contour measuring machine) is applicable.
[0009]
In the case described above, it is recommended to prepare a plurality of gauges with slightly different inner surface dimensions, and to select and measure the gauge that best matches the outer diameter of the large-diameter end of the constant velocity joint boot. .
[0010]
Prior to measurement, a calibration gauge comprising an outer surface formed in substantially the same shape as the outer surface of the gauge and an inner surface formed in substantially the same shape as the inner surface of the constant velocity joint boot is used. It is preferable to calibrate to improve the measurement accuracy.
[0011]
In addition, the above measuring method includes an annular gauge having an inner surface adapted to the outer surface of the large-diameter end of the constant velocity joint boot to be measured, and can rotate intermittently about the axis of the gauge. A rotation support unit having phase detection means for detecting and detecting the phase of the gauge, a phase data output unit for outputting the phase data of the gauge, and a measurement movable in the horizontal and vertical directions A shape measuring machine for measuring a desired range of the inner surface by contacting the inner surface of the large-diameter side end of the constant velocity joint boot to be mounted on the gauge; A measurement data output unit that outputs a plurality of measurement data obtained by a measuring instrument, and a plurality of measurement data obtained from the measurement data output unit are converted into phase data at the time of each data measurement obtained from the phase data output unit. Data to be synthesized based on It preferred to use an inner diameter dimension measuring apparatus in the larger diameter end of the boot for a constant velocity joint, characterized in that it is constituted and a combining portion at least.
Even in this case, the shape measuring machine measures the inner surface of the large-diameter end of the constant velocity joint boot by a measuring method with a contact force of 4 g or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a dimension measuring method and a dimension measuring apparatus of a constant velocity joint boot to which the present invention is applied will be described. Note that this embodiment is merely an embodiment of the present invention, and is not construed as being limited to this, and can be modified within the scope of the present invention.
First, an example of a constant velocity joint boot that is a measurement target in the present embodiment will be outlined. As shown in FIG. 1, a constant velocity joint boot (hereinafter also simply referred to as a boot) 1 is formed in a cylindrical shape and is fixed to the outer casing of a tripod joint, which is a type of constant velocity joint. And a small-diameter side end portion 5 fixed to the shaft portion side of the drive shaft connected to the tripod joint. A bellows-like bellows 7 is formed between the large-diameter side end 3 and the small-diameter side end 5 so as to be flexible and bendable. The boot 1 is made of an elastic resin such as a thermoplastic polyester elastomer.
[0013]
The inner surface 11 of the large-diameter end 3 is in contact with the outer peripheral surface of the outer casing of the tripod joint, and is provided with a seal lip 13 that is two parallel protrusions formed continuously along the circumferential direction of the inner surface 11. Yes. On the other hand, the shape of the boot 1 viewed from the cylinder axis direction will be described with reference to FIG. 2 is a schematic sectional view taken along line II-II in FIG. As shown in FIG. 2, the outer surface 15 of the large-diameter end 3 is formed in a substantially circular shape. Then, on the inner surface 11 side of the large-diameter side end portion 3, there are provided a portion formed in a circular shape along the outer surface and a portion formed so as to project in an arc shape on the inner surface side. Hereinafter, the former will be referred to as the thin portion 17 and the latter as the thick portion 19. The above-described seal lip 13 is continuously formed over the surfaces of both the thin portion 17 and the thick portion 19.
[0014]
As shown in FIG. 2, the thick wall portions 19 are provided at substantially equal intervals, for example, at three locations on the circumference, in the case of the present embodiment, corresponding to the groove portions on the surface of the tripod joint to which the boot 1 is mounted. Yes. That is, the thick portion 19 is arranged with a phase shift of 120 ° on the circumference. As described above, the surface of the thick portion 19 is formed in an arc shape when viewed from the cylinder axis direction of the boot 1, and is substantially constant with respect to the cylinder axis direction of the boot 1 except for the seal lip 13. It is the cross-sectional shape. Further, a step portion 14 is formed so as to protrude from the end surface portion of the large end portion 3 to the outer peripheral side. The step portions 14 are provided at three locations at substantially equal intervals on the circumference, and each step portion 14 is provided with a phase difference in the circumferential direction from the adjacent thick portion 19 by, for example, about 60 °.
In the present embodiment, the thin portion 17 and the thick portion 19 are integrally provided on the inner surface side of the large-diameter side end 3, but the grommet portion including the thin portion 17 and the thick portion 19 is a large portion. It may be fixed integrally or separately on the inner surface of the radial side end portion.
[0015]
FIG. 3 is an external view in the axial direction of a gauge for measuring the size of the large-diameter side end portion of the constant velocity joint boot used in the measuring method and measuring apparatus of the present embodiment. As shown in FIG. 3, the gauge 21 is formed in a substantially annular shape as a whole, and a surface portion 23 having a shape that fits the outer surface 15 of the large-diameter end portion 3 of the boot 1 is formed on the inner peripheral portion thereof. . That is, the surface portion 23 is adapted to a cylindrical inner peripheral surface portion 25 adapted to the outer surface 15 of the large-diameter side end portion 3 and a step portion 14 formed by protruding from the outer surface 15 of the large-diameter side end portion 3. The groove portion 27 is formed to be recessed from the inner peripheral surface portion 25. On the other hand, a serration 31 is formed on the outer peripheral surface 29 of the gauge 21 over the entire circumference.
[0016]
4 is a cross-sectional view taken along line IV-IV in FIG. As shown in FIG. 4, the surface portion 23 described above is formed on one side in the axial direction of the gauge 21, and on the other side, a surface portion 33 having a stepwise large inner diameter is formed. The edge portion 35 on the outer periphery of the gauge 21 is chamfered. Further, the edge portion 37 on the surface portion 33 side of the inner peripheral surface portion 25 of the gauge 21 is also chamfered.
A plurality of gauges 21 are prepared in which the dimensions are gradually changed in consideration of the dimensional tolerance of the constant velocity joint to be measured. For example, prepare what is formed to be the approximately maximum value in the dimensional tolerance and what is formed to be the approximately minimum value in the dimensional tolerance, and further prepare the one in which the dimension is different in multiple stages in the middle dimension You may keep it.
[0017]
5 and 6 are diagrams showing the configuration of the constant velocity joint boot size measuring apparatus of the present embodiment.
As shown in FIGS. 5 and 6, the dimension measuring device 41 includes a rotation support unit 60 in addition to the gauge 21 described above. The rotation support unit 60 includes, for example, a chuck 42 to which the gauge 21 is attached, and the chuck 42 is rotated. An NC rotary index (RI) 43 that is mounted freely and can detect the rotation angle is provided. The RI 43 is provided with an NC motor 44 that drives the chuck 42.
In addition, the dimension measuring device 41 further attaches the large-diameter side end 3 of the constant velocity joint boot 1 to the gauge 21, and when the gauge 21 is attached to the chuck 42, A shape measuring machine (for example, a commercially available tracer) 45 capable of measuring the shape, the rotation support device 60 and the shape measuring machine 45 are connected, and a central processing unit (CPU), for example, a storage unit such as a hard disk drive, for example a display The apparatus includes a display unit such as a device and a computer (data synthesis unit) 47 including an input unit such as a keyboard and a mouse.
Here, the chuck 42, the RI 43, the NC motor 44, and the shape measuring machine 45 are fixed on a surface plate 46 placed on a vibration isolation table 62.
Further, a measurement data output unit (amplifier) 48 that gives a predetermined gain to the output signal of the shape measuring machine 45 is connected between the shape measuring machine 45 and the computer 47.
The shape measuring machine 45 operates in accordance with a control command from the computer 47 and sends the shape / dimension measurement result to the computer 47 via the measurement data output unit (amplifier) 48.
The rotation support unit 60 is controlled to repeatedly perform an operation of stopping for a desired time after shifting the phase of the gauge by a predetermined angle in accordance with a control command from the computer 47, and between the rotation support unit 60 and the computer 47. Is connected to a phase data output unit (amplifier) 61 for sending phase data obtained by detecting the phase angle of the gauge 21 to the computer 47.
In the present embodiment, the measurement data obtained from the measurement data output unit 48 and the phase data obtained from the phase data output unit 61 are synthesized by a computer which is a series of data synthesis unit 47. However, the present invention is not limited to this, for example, each data obtained from each output unit can be stored in a desired medium and synthesized by a separately provided desired data synthesis unit. The design can be changed as appropriate within the range.
[0018]
Then, the measurement probe (measuring element) 49 of the shape measuring machine 45 measures the shape of a region of, for example, a central angle of approximately 120 ° along the inner surface of the large-diameter end 3 of the constant velocity joint boot 1. It is configured to be able to.
The contact force of the measurement probe 49 along the inner surface of the large-diameter end 3 is preferably about 4 g or less.
In the case of this embodiment, it is 2 g (0.020 N) or less. This contact force may be set in consideration of the fact that the boot 1 as the object to be measured does not lose its shape that impairs the desired measurement accuracy due to the contact force.
In this embodiment, the region where the substantially circular large-diameter side end 3 can be measured by a single measurement is defined as a measurement region of approximately 120 ° by dividing the inner surface of the end 3 into three. The region that can be measured by one measurement using the above-described well-known shape measuring machine 45 can be appropriately changed within the scope of the present invention.
[0019]
Next, a master gauge used for calibrating the dimension measuring device 41 in this embodiment will be described. FIG. 7 is an external view of the master gauge in this embodiment as viewed in the axial direction. As shown in FIG. 7, the master gauge 51 is formed in an annular shape. And the outer peripheral part of the master gauge 51 is formed similarly to the gauge 21 for a measurement mentioned above. That is, serrations 55 are formed on the outer peripheral surface 53 over the entire periphery.
[0020]
On the other hand, on the inner peripheral side of the master gauge 51, the same curvature and arrangement as the surfaces of the thin portion 17 and the thick portion 19 on the inner surface of the large diameter end portion 3 of the constant velocity joint boot 1 to be measured are respectively provided. The formed surface portion 57 and the surface portion 59 are formed. Here, the arrangement and curvature of the surface portion 57 and the surface portion 59 are preferably set to values in the case where the thin portion 17 and the thick portion 19 of the boot 1 each have zero dimensional tolerance of the product, but other dimensions It may be.
[0021]
8 is a cross-sectional view taken along line VIII-VIII in FIG. As shown in FIG. 8, the surface portion 57 and the surface portion 59 described above are formed close to one side in the axial direction of the master gauge 51, and the other end side is a surface portion 61 having a cylindrical inner surface whose diameter is increased stepwise. Is formed.
[0022]
Next, a method for measuring the constant velocity joint boot according to the present embodiment, that is, a method for using the constant velocity joint boot dimension measuring device 41 described above will be described.
[0023]
First, it is preferable to perform calibration of the dimension measuring device 41. The master gauge 51 described above is used for this calibration.
First, the master gauge 51 is fixed to the chuck 42.
At this time, a serration (not shown) formed on the contact surface of the chuck 42 with the master gauge 51 is fitted to the serration of the outer peripheral surface 53 of the master gauge 51 so that the phases of the master gauge 51 and the chuck 42 do not shift. Secure to.
Then, the measurement probe 49 is brought into contact with the inner surface of the master gauge 51 and the shape measuring machine 45 is operated so that the measurement probe 49 is moved along the inner peripheral surface 57 and the surface 59 of the master gauge 51 in the horizontal axis direction. By moving a predetermined range (for example, 120 ° as the central angle of the master gauge 51), the amount of displacement in the vertical axis direction of the predetermined range is measured (measurement data 1).
Then, when the first 120 ° measurement is completed, the NC motor 44 is driven and the master gauge rotates 120 ° from the first measurement end position while monitoring the angle by the RI 43. The amount of displacement in the axial direction is measured (measurement data 2).
Finally, the master gauge is similarly rotated by 120 ° from the second measurement end position, and the amount of displacement in the vertical direction within the predetermined range is measured similarly (measurement data 3).
In the series of operations described above, the shape measuring instrument 45 operates in response to a control command from the computer 47 and sends the shape / dimension measurement results to the computer 47 via the measurement data output unit (amplifier) 48.
The rotation support unit 60 is controlled to repeatedly perform an operation of stopping for a desired time after shifting the phase of the gauge by a predetermined angle in accordance with a control command from the computer 47. Thereby, the measurement over the inner circumference 360 ° of the master gauge 51 is completed.
Next, the computer 47 calculates the three measurement data (measurement data 1 to 3) obtained from the measurement data output unit 48 based on the phase data at the time of three data measurements obtained from the phase data output unit 61. Are combined (merged), and a digitized figure and a desired dimension are displayed on the display of the computer 47. The computer 47 stores a program that synthesizes and displays such data, calculates a distance and a diameter by specifying a plurality of points, and displays the result.
If there is no abnormality by comparing the obtained dimensions with the correct dimensions known in advance, the process proceeds to actual constant velocity joint boot measurement, and if there is an abnormality, the device is adjusted. Perform calibration again.
[0024]
Next, the constant velocity joint boot 1 to be measured is prepared, and the outer peripheral surface of the large-diameter side end 3 best fits the inner peripheral surface of the gauge 21 from among a plurality of gauges 21 prepared in advance. Choose one. That is, when the large-diameter side end portion 3 is tightly inserted into the gauge 21 or can be inserted, but when the large-diameter side end portion 3 has a long circumference and becomes wavy, the inner peripheral surface is more A gauge 21 having a large size is selected. On the other hand, when the large-diameter end 3 is inserted into the gauge 21 and there is an excessively large gap between them, the gauge 21 having a smaller inner peripheral surface is selected.
[0025]
When a suitable gauge 21 is selected, the gauge 21 is fitted and mounted on the outer surface of the large-diameter side end 3 of the constant velocity joint boot 1 (gauge mounting process). It fixes to the chuck | zipper 42 (fixing and holding process of a gauge boot).
At this time, as in the case of the master gauge 51 described above, the serration 31 on the outer periphery of the gauge 21 is fitted with the serration of the chuck 42.
[0026]
Then, the measurement probe 49 is brought into contact with the inner surface of the large-diameter side end 3 (measuring element contact step), and the shape measuring machine 45 is operated to move the measurement probe 49 along the inner surface of the large-diameter side end 3. By moving a predetermined range in the horizontal axis direction (for example, a 120 ° range from the position P1 to the position P2 with the central angle of the gauge 21 in FIG. 9), the amount of displacement in the vertical axis direction of the predetermined range is measured (measurement). Process / measurement data 1).
When the first 120 ° measurement is completed, the NC motor 44 is driven and the angle is monitored by the RI 43, and the gauge 21 is rotated by 120 ° from the first measurement end position P2 to the first measurement start position P1. Similarly, the amount of displacement in the vertical direction of the predetermined range is measured (measurement process / measurement data 2).
Finally, the gauge 21 is rotated by 120 ° from the second measurement end position P3 to the second measurement start position P2, and similarly, the amount of displacement in the vertical direction of the predetermined range is measured (measurement step). -Measurement data 3).
In the series of operations described above, the shape measuring instrument 45 operates in response to a control command from the computer 47 and sends the shape / dimension measurement results to the computer 47 via the measurement data output unit (amplifier) 48.
The rotation support unit 60 is controlled to repeatedly perform an operation of stopping for a desired time after shifting the phase of the gauge by a predetermined angle in accordance with a control command from the computer 47. Then, the three measurement data (measurement data 1 to 3) obtained from the measurement data output unit 48 are converted by the computer 47 based on the phase data at the time of three data measurements obtained from the phase data output unit 61. By combining (merging) and displaying the digitized figure and the required dimension on the display of the computer 47, the measurement over the inner circumference 360 ° of the large-diameter side end 3 is completed.
In FIG. 9, among the lines corresponding to the surface shapes of the thin portion 17 and the thick portion 19, the first measurement range (the range from the position P1 to the position P2 indicated by θ1) is a broken line, and the second time, that is, the aforementioned A second measurement range (a range from position P2 to position P3 indicated by θ2) when the gauge 21 is rotated 120 ° from the measurement end position on the first surface is indicated by a one-dot chain line, and the third time, that is, the second time. A third measurement range (range from position P3 indicated by θ3 to position P1) when the gauge 21 is further rotated by 120 ° from the first measurement end position to the first measurement start position is a two-dot chain line. Respectively.
FIG. 10 shows examples of figures and dimensions displayed as measurement results on the display. In the figure, θa · θb · θc represents the angle between the centers of the thick portions, ra · rb · rc represents the diameter of the thick portion, and Ra · Rb · Rc represents the diameter of the thin portion. Thereby, the shape and dimension of the inner peripheral side of the large-diameter side end 3 of the boot 1 can be grasped well, and the inner surface dimension of the constant velocity joint boot can be measured nondestructively with sufficient measurement accuracy. it can. Further, since all information including the shape is stored as digital data, it can be used for quality control and the like. Further, the size of the outer peripheral surface of the large-diameter side end 3 of the boot 1 can be grasped from the selected size of the gauge 21.
[0027]
As described above, according to the present embodiment, in the state where the large-diameter side end portion 3 of the boot 1 is held so as not to lose its shape by the gauge 21, the dimension measurement is performed with a minute contact force that does not cause the boot 1 to be deformed. Since this is done, the dimensions of the boot 1 can be measured accurately and non-destructively.
[0028]
In addition, a plurality of gauges 21 with slightly different dimensions on the inner peripheral surface are prepared, and the gauge 21 that best fits the large-diameter side end 3 of the boot 1 is selected and measured. The dimension of the outer surface of the large-diameter side end 3 can be grasped by the type of the gauge 21, and the large-diameter side end 3 can be kept closer to a perfect circle, so that the accuracy of the dimension measurement on the inner surface side can be ensured.
[0029]
Furthermore, since the shape measuring machine 45 is calibrated using the calibration master gauge 51, the dimensional accuracy is also secured by this.
[0030]
In addition, this invention is not limited to embodiment mentioned above, It can change suitably within the scope of the invention. For example, instead of using a shape measuring machine such as a tracer, other contact-type measuring means whose contact force is, for example, 4 g or less may be used. Also, the shape of the gauge may be changed.
[0031]
Further, the means for positioning the measurement gauge and the master gauge with respect to the chuck is not limited to the serration as described above. For example, a pin or a pin hole is formed in each gauge, and the pin hole or the pin engaged with the gauge is formed in the chuck. It may be formed.
[0032]
【The invention's effect】
According to the present invention, the dimensions of the cylindrical elastic body can be measured accurately and nondestructively.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a constant velocity joint boot to be measured in an embodiment of a dimension measuring method and apparatus to which the present invention is applied.
2 is a cross-sectional view taken along the line II-II of the constant velocity joint boot of FIG. 1;
FIG. 3 is an external view in the axial direction of a gauge used in an embodiment of a dimension measuring method and apparatus to which the present invention is applied.
4 is a cross-sectional view taken along line IV-IV in FIG.
FIG. 5 is a schematic perspective view showing the configuration of an embodiment of a dimension measuring apparatus to which the present invention is applied.
FIG. 6 is a schematic plan view showing the configuration of an embodiment of a dimension measuring apparatus to which the present invention is applied.
FIG. 7 is an external view in an axial direction showing an embodiment of a master gauge used for calibration of a dimension measuring device.
8 is a cross-sectional view of the master gauge of FIG. 7 taken along line VIII-VIII.
FIG. 9 is a diagram showing dimension measurement on the inner peripheral side of the large-diameter end of the constant velocity joint boot by the dimension measuring apparatus.
FIG. 10 is a diagram showing a figure and a diameter of a dimension displayed as a measurement result on a display.
[Explanation of symbols]
1 Boots for constant velocity joints
3 Large diameter end
5 Small diameter end
7 Bellows
17 Thin part
19 Thick part
21 gauge
41 Dimensional measuring device
42 Chuck
43 NC Rotary Index
44 NC motor
45 Shape measuring machine
47 Computer (Data synthesis unit)
48 Measurement data output section
49 Measuring element
51 Master gauge
60 Rotation support
61 Phase data output section

Claims (5)

大径側端部の内面に肉厚の異なる部分を備えてなる等速ジョイント用ブーツにおける大径側端部の内径寸法を測定する方法であって、
等速ジョイント用ブーツの大径側端部外面に、該外面に適合して形成された内面を備えてなる環状のゲージを装着する工程と、
該等速ジョイント用ブーツに装着したゲージを、該ゲージの軸心を中心に断続回転可能に回転支持部に固定保持する工程と、
前記回転支持部にゲージを固定することで回転可能に配設保持された等速ジョイント用ブーツの大径側端部内面に、横軸方向及び縦軸方向に移動可能な形状測定機の測定子を接触させる工程と、
前記大径側端部内面に接触させた測定子を、該内面に沿って横軸方向に所定範囲移動させることにより、該所定範囲の縦軸方向の変位量を測定し、次いで順次ゲージの位相を検出しながら所定範囲ずつずらすことによりゲージを一回転させて、その所定範囲毎の大径側端部内面の夫々の縦軸方向の変位量を測定する工程と、
前記複数回の測定工程により得られた複数の測定データを合成する工程とを有することを特徴とする等速ジョイント用ブーツの大径側端部における内径寸法測定方法。
A method for measuring an inner diameter dimension of a large-diameter side end portion in a constant velocity joint boot comprising a portion having a different thickness on an inner surface of a large-diameter end portion,
Attaching an annular gauge having an inner surface formed in conformity with the outer surface to the outer surface of the large-diameter end of the constant velocity joint boot;
A step of fixing and holding the gauge attached to the constant velocity joint boot to the rotation support portion so as to be intermittently rotatable about the axis of the gauge;
A measuring element of a shape measuring machine movable in the horizontal axis direction and the vertical axis direction on the inner surface of the large diameter side end portion of the constant velocity joint boot rotatably arranged and held by fixing a gauge to the rotation support portion. A step of contacting
The displacement of the predetermined range in the vertical axis direction is measured by moving the measuring element in contact with the inner surface of the large diameter side end portion in the horizontal axis direction along the inner surface, and then sequentially measuring the phase of the gauge. Measuring the amount of displacement in the longitudinal direction of the inner surface of the large-diameter side end portion for each predetermined range by rotating the gauge once by shifting by a predetermined range while detecting
And a step of synthesizing a plurality of measurement data obtained by the plurality of measurement steps. A method for measuring an inner diameter of a large-diameter side end of a constant velocity joint boot.
等速ジョイント用ブーツの内面を、接触力が4g以下で測定することを特徴とする請求項1に記載の等速ジョイント用ブーツの大径側端部における内径寸法測定方法。The method for measuring the inner diameter of the constant-velocity joint boot according to claim 1, wherein the inner surface of the constant-velocity joint boot is measured with a contact force of 4 g or less. 測定に先立ち、ゲージの外面と略同じ形状に形成された外面と、等速ジョイント用ブーツの内面と略同じ形状に形成された寸法が既知の内面とを備えてなる校正用ゲージを用いて校正することを特徴とする請求項1又は2のいずれかに記載の等速ジョイント用ブーツの大径側端部における内径寸法測定方法。Prior to measurement, calibrate using a calibration gauge that has an outer surface that is approximately the same shape as the outer surface of the gauge and an inner surface that is approximately the same shape as the inner surface of the constant velocity joint boot. The method for measuring an inner diameter at a large-diameter end of the constant velocity joint boot according to claim 1. 測定対象となる等速ジョイント用ブーツの大径側端部外面に適合して形成された内面を有する環状のゲージと、
該ゲージの軸心を中心に断続回転可能にゲージを保持固定し、該ゲージの位相を検出する位相検出手段を有する回転支持部と、
前記ゲージの位相データを出力する位相データ出力部と、
横軸方向及び縦軸方向に移動可能な測定子を有し、該測定子が、前記ゲージに装着される等速ジョイント用ブーツの大径側端部の内面に接触して、該内面の所望範囲を寸法測定する形状測定機と、
該形状測定機により得られた複数の測定データを出力する測定データ出力部と、前記測定データ出力部から得られた複数の測定データを、位相データ出力部から得られた各データ測定時の位相データに基づいて合成するデータ合成部と
を少なくとも有して構成されていることを特徴とする等速ジョイント用ブーツの大径側端部における内径寸法測定装置。
An annular gauge having an inner surface formed in conformity with the outer surface of the large-diameter end of the constant velocity joint boot to be measured;
A rotation support unit having phase detection means for holding and fixing the gauge so as to be intermittently rotatable about the axis of the gauge, and detecting the phase of the gauge;
A phase data output unit for outputting phase data of the gauge;
A measuring element movable in the horizontal axis direction and the vertical axis direction, the measuring element is in contact with the inner surface of the large-diameter side end of the constant velocity joint boot attached to the gauge, and the desired inner surface A shape measuring machine to measure the range;
A measurement data output unit that outputs a plurality of measurement data obtained by the shape measuring machine, and a plurality of measurement data obtained from the measurement data output unit, a phase at the time of each data measurement obtained from the phase data output unit An apparatus for measuring an inner diameter at a large-diameter side end of a constant velocity joint boot, characterized by comprising at least a data synthesizing unit for synthesizing based on data.
形状測定機は、接触力が4g以下の測定方法によって等速ジョイント用ブーツの大径側端部内面を測定することを特徴とする請求項4に記載の等速ジョイント用ブーツの大径側端部における内径寸法測定装置。The shape measuring machine measures the inner surface of the large-diameter side end of the constant-velocity joint boot by a measuring method with a contact force of 4 g or less, and the large-diameter side end of the constant-velocity joint boot according to claim 4 Device for measuring the inner diameter of a part.
JP2003207891A 2003-08-11 2003-08-19 Method and apparatus for measuring inner diameter at large diameter end of constant velocity joint boot Expired - Lifetime JP4281904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207891A JP4281904B2 (en) 2003-08-11 2003-08-19 Method and apparatus for measuring inner diameter at large diameter end of constant velocity joint boot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003207217 2003-08-11
JP2003207891A JP4281904B2 (en) 2003-08-11 2003-08-19 Method and apparatus for measuring inner diameter at large diameter end of constant velocity joint boot

Publications (2)

Publication Number Publication Date
JP2005113929A true JP2005113929A (en) 2005-04-28
JP4281904B2 JP4281904B2 (en) 2009-06-17

Family

ID=34554133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207891A Expired - Lifetime JP4281904B2 (en) 2003-08-11 2003-08-19 Method and apparatus for measuring inner diameter at large diameter end of constant velocity joint boot

Country Status (1)

Country Link
JP (1) JP4281904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179037A (en) * 2017-06-02 2017-09-19 宁波珈多利机械有限公司 A kind of universal joint centre of gyration is away from contrast measuring instrument

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606818A (en) * 1983-06-24 1985-01-14 Mitsutoyo Mfg Co Ltd Measuring machine of inside and outside
JPH0235002U (en) * 1988-08-30 1990-03-06
JPH0540019A (en) * 1991-08-08 1993-02-19 Mitsutoyo Corp Shape measuring instrument
JPH0569615U (en) * 1992-02-24 1993-09-21 キーパー株式会社 Bellows product thickness measuring device
JPH0763546A (en) * 1993-08-30 1995-03-10 Murata Mach Ltd Method for measuring work with inside groove
JP2000146506A (en) * 1998-11-04 2000-05-26 Kubota Corp Contacting measuring apparatus for inside diameter of pipe
JP2001280947A (en) * 2000-03-29 2001-10-10 Mitsutoyo Corp Shape measuring instrument and shape measuring method
JP2005502876A (en) * 2001-09-07 2005-01-27 オリンパス株式会社 Surface shape measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606818A (en) * 1983-06-24 1985-01-14 Mitsutoyo Mfg Co Ltd Measuring machine of inside and outside
JPH0235002U (en) * 1988-08-30 1990-03-06
JPH0540019A (en) * 1991-08-08 1993-02-19 Mitsutoyo Corp Shape measuring instrument
JPH0569615U (en) * 1992-02-24 1993-09-21 キーパー株式会社 Bellows product thickness measuring device
JPH0763546A (en) * 1993-08-30 1995-03-10 Murata Mach Ltd Method for measuring work with inside groove
JP2000146506A (en) * 1998-11-04 2000-05-26 Kubota Corp Contacting measuring apparatus for inside diameter of pipe
JP2001280947A (en) * 2000-03-29 2001-10-10 Mitsutoyo Corp Shape measuring instrument and shape measuring method
JP2005502876A (en) * 2001-09-07 2005-01-27 オリンパス株式会社 Surface shape measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179037A (en) * 2017-06-02 2017-09-19 宁波珈多利机械有限公司 A kind of universal joint centre of gyration is away from contrast measuring instrument
CN107179037B (en) * 2017-06-02 2023-02-28 宁波珈多利机械有限公司 Universal joint centre of gyration apart from contrast formula measuring apparatu

Also Published As

Publication number Publication date
JP4281904B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP6447997B2 (en) Test indicator
EP3289314B1 (en) Method of determining sub-divisional error
CN112747689B (en) Roundness and straightness error measuring system for deep hole parts
JPH11108602A (en) Out-of-roundness measuring instrument
WO2017014189A1 (en) Encoder device, drive device, stage device, robot device, rotation information acquisition method, and rotation information acquisition program
US6964102B2 (en) Device and method for detecting the rotational movement of an element rotatably mounted about an axis
JP6822994B2 (en) Bearing adjustment support device and bearing adjustment support method
JP2006242950A (en) Device, method, computer program product and carrier for indicating at least one of orbit of round-shape surface on nominal dimensions and deviation from the round shape surface on nominal dimensions
US6175813B1 (en) Circumferential diameter measuring apparatus and method
JP4281904B2 (en) Method and apparatus for measuring inner diameter at large diameter end of constant velocity joint boot
JP2000205854A (en) Method for measuring size of machine part
JP4690276B2 (en) Calibration method for roundness measuring apparatus
JP6765710B2 (en) All angle measuring instrument
JP7260095B2 (en) load transducer
KR101508594B1 (en) Run-out measuring device for rotating system
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
US11045950B2 (en) Driving device and detecting device
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
US4266346A (en) Method and apparatus for gaging
JP3858262B2 (en) Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus
JP2504561B2 (en) Shape measuring device
TWI692625B (en) Method for measuring backlash, sensing device, and indexing device including the sensing device
JPH076786B2 (en) Non-contact rotation accuracy measurement method
JP3396733B2 (en) Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20030909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250