JP3858262B2 - Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus - Google Patents

Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus Download PDF

Info

Publication number
JP3858262B2
JP3858262B2 JP2001288597A JP2001288597A JP3858262B2 JP 3858262 B2 JP3858262 B2 JP 3858262B2 JP 2001288597 A JP2001288597 A JP 2001288597A JP 2001288597 A JP2001288597 A JP 2001288597A JP 3858262 B2 JP3858262 B2 JP 3858262B2
Authority
JP
Japan
Prior art keywords
vibration
maximum
value
minimum
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001288597A
Other languages
Japanese (ja)
Other versions
JP2003098042A (en
Inventor
勝年 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001288597A priority Critical patent/JP3858262B2/en
Priority to US10/003,414 priority patent/US6694816B2/en
Publication of JP2003098042A publication Critical patent/JP2003098042A/en
Application granted granted Critical
Publication of JP3858262B2 publication Critical patent/JP3858262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、軸受および軸受を組み込んだスピンドル等回転体の回転に非同期な径方向の振動を周波数分析に基づいて評価する技術に関するものであり、特には、径方向の方位に依存して振幅が変化する特定の周波数成分の最大(最小)振幅値と最大(最小)方位を評価する技術に関する。
【0002】
【従来の技術】
転がり軸受あるいはこれらを組み込んだスピンドル等の回転体は、真円度形状誤差等に起因する振動を発生するので、これらを構成要素とする工作機械等の構造物の重大な振動源となることがある。一方、ハードディスク装置などの精密部品では、ディスクの回転軸に使用している玉軸受の径方向の振動が、主として磁気へッドの位置決め誤差の原因となるため、玉軸受には厳しい回転精度が求められている。
【0003】
ところで、回転体が定速回転するときに発生する振動のうち回転に非同期な振動成分は回転非同期(NRRO:Non Repeatable Run Out)振動成分と言われている。ハードディスク装置用に回転精度の優れた玉軸受あるいは工作機械用のスピンドルを製作し、供給するためには、径方向のNRRO振動成分を定量的に評価して、許容範囲外の製品を排除する必要がある。さらには、ハードディスク装置の共振周波数の近傍にある特定の周波数のNRRO振動成分を選択的に評価することも必要である。
【0004】
ここで、転がり軸受あるいはこれらを組み込んだスピンドル等の回転体の径方向のNRRO振動成分は、転がり軸受の外・内輪、転動体など部品の幾何学的寸法および形状精度と定速回転周波数で一意に定まる種々の周波数の振動からなる。転がり軸受の径方向の振動を固定輪上の1点で観測する場合、回転輪および転動体の形状誤差に起因する振動は、固定輪上のどの位置でも等しく観測されるが、固定輪の形状誤差に起因する振動は、測定位置により異なる大きさで観測されることが知られている。このような振動については、固定輪の全周にわたって最大の振幅を見つけない限り、正しい評価を行うことは出来ない。そのために、振動測定のためのセンサと軸受あるいはスピンドルとを相対的に周方向に変位させながら、周波数分析を繰り返して特定の周波数成分の最大値を見つける方法も考えられるが、そのための機構は容易ではない上、測定に時間もかかる。
【0005】
次に、例えば内輪回転時には、固定輪である外輪の軌道が微小にうねっていた場合、かかるうねりの一対の山数によってひとつの特定の周波数の振動が発生するが、外輪回転時には軌道のうねりの一対の山数に対応する一対の周波数の振動が発生する。同時に固定輪である内輪の軌道のうねりの一対の山数によるひとつの特定の周波数の振動が発生する。すなわち、転がり軸受の使用状況により、ひとつの特定の周波数の振動あるいは一対の周波数の振動の両方または一方を有害な振動成分として厳しく選別しなければならない場合がある。そのために内輪回転と外輪回転の両方の状態を観測するできる機構を設けることは、試験装置の煩雑化と高価格化に繋がる。
【0006】
本発明の目的の一つは、固定輪の軌道のうねりの一対の山数に起因するひとつの特定の周波数の振動から、各山数に対応する各々の振動値を求める方法を提供することである。かかる目的達成のため、対向しない(つまり180°でない)二つの径方向から軸受の振動を同時に観測し、それらの周波数分析結果に基づいて求められる固定輪に起因する特定の周波数の振動値を係数とする連立方程式の解から計算する手法を与える。
【0007】
本発明の別な目的は、前記のように求めた固定輪による一対の振動値を基に固定輪の一対の山数に起因する特定の周波数の振動の最大(最小)値とそれを呈する最大(最小)方位を算定する方法を提供することである。
【0008】
本発明の更に別な目的は、逆に、回転輪が呈する一対の山数による一対の周波数の振動成分の測定を基に、固定輪として使用される場合のひとつに合成された振動の最大(最小)値を推定し評価する方法を提供することである。
【0009】
さらには、固定輪は剛体ではないから、その周上の測定点は転動体の通過による固定輪の弾性変形を伴う振動を観測することになるが、転動体の通過の周波数は上記固定輪の形状誤差に起因する特定の周波数と等しいため、固定輪の形状誤差による振動成分を正確に評価できない怖れがある。このような状況でも、さらに異なる第三の方向の振動の観測を加えることによって転動体の通過成分の影響を除いて、固定輪の振動成分を正確に評価する方法を提供することが、本発明の更に別な目的である。
【0010】
このようにして、特定方向に最も振動が少ないスピンドルやモータを製作することができるように、振動が最大になる位置あるいはそれより90°離れた最小になる位置に印をつけた軸受を提供することが、本発明の更に別な目的である。
【0011】
【課題を解決するための手段】
本発明の転がり軸受の回転精度評価方法は、回転する転がり軸受の固定輪の径方向振動を周方向に位相αで設置された2個の振動測定用センサを用いて測定し、測定によって得られたセンサ信号をA/D変換器を介して離散化することで同期した2つのデジタルデータを求め、前記デジタルデータをフーリエ変換し、フーリエ変換で得られた角速度Zωcの次数mの振動値F(m)、Fα(m)を用いて、次式に基づいて、
mZ-1-j θ={ej αF(m)−Fα(m)}/2jsinα (1)
mZ+1j θ={Fα(m)−e-j αF(m)}/2jsinα (2)
(ただし、mは振動の次数、Zは転動体の数、ωcは転動体の公転の角速度、θは前記固定輪上の未知の基準位置と前記振動測定用センサの一方との間の中心角、F(m)は一方の前記振動測定用センサの次数mの振動値、F α (m)は前記一方の振動測定用センサに対して位相αで配置された他方の前記振動測定用センサの次数mの振動値
未知数AmZ-1-j θ、AmZ+1j θを求め、この未知数より、それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を次式より求め、
mZ−1山成分のRMS値=√2|AmZ-1|=√2│AmZ-1-j θ│ (3)
mZ+1山成分のRMS値=√2|AmZ+1|=√2│AmZ+1j θ│ (4)
これらのRMS値より回転精度の評価を行うことを特徴とする。
【0012】
【作用】
転がり軸受の固定輪上の2点に径方向の振動を観測するために配置した二つの振動測定用センサーからの信号を、A/D変換器を介して同期した二つのにサンプル値系列としてコンピュータに取り込み、それぞれのフーリェ変換から選択された所望の周波数成分の複素数値と、振動測定用センサーの配置位置間の角度の関数を係数をする複素2元1次連立方程式の解を固定輪の形状の一対の山数に対応する振動値(RMS値)とする。これら両振動値の絶対値の和(差)を固定輪の形状に依存する振動の最大(最小)値とし、また、前記それぞれのフーリェ変換から選択された所望の周波数成分の複素数値と、振動測定用センサーの配置位置間の角度から振動の最大(最小)となる方位を振動測定用センサーとの相対角度として算出することで、最大振動値及びその方位が判るため、それを閾値と比較することで、転がり軸受の回転精度の評価を行うことが出来る。
【0013】
尚、角速度mZωの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|AmZ−1|+|AmZ+1|) (5)
最小RMS値=√2||AmZ−1|−|AmZ+1|| (6)
で表すことができる。
【0014】
更に、角速度mZωcの最大振幅値と最小振幅値の位相は、それぞれ
|F(m)|2cos2α+|Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα≦0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最大且つγ0±π/2で最小となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで且つγ0±π/2で最大となり

|F(m)|2cos2α+|Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα>0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最小且つγ0±π/2で最大となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで最大、γ0±π/2で最小となる(ただし、2γ0は式(28)で与えられる)。尚、本明細書中(特許請求の範囲を含む)で用いるF*(m)は、F(m)の複素共役とし、 * α (m)は、F α (m)の複素共役とする。
【0015】
又、前記回転輪の振動値を用いて、式(31)により回転輪と固定輪が逆に使われる場合の、それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を
mZ−1山成分のRMS値=√2|BmZ−1| (7)
mZ+1山成分のRMS値=√2|BmZ+1| (8)
角速度mZωの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|BmZ−1|+|BmZ+1|) (9)
最小RMS値=√2||BmZ−1|−|BmZ+1|| (10)
とするものである。
【0016】
すなわち、前記の少なくとも一方のフーリェ変換から選択された回転輪の一対の山数に対応する一対の振動値の絶対値の和(差)により、固定輪となった時の前記ひとつの特定周波数の振動の最大値(最小値)を与える。
【0017】
更に、位相βにもう1つの振動センサを設け、式(32)〜式(36)により、それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を
mZ−1山成分のRMS値=√2|AmZ−1| (11)
mZ+1山成分のRMS値=√2|AmZ+1| (12)
角速度mZωの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|AmZ−1|+|AmZ+1|) (13)
最小RMS値=√2||AmZ−1|−|AmZ+1|| (14)
とする。
【0018】
すなわち、第三の振動測定用センサーを配置して前記二つの振動測定用センサーからの信号と同様にかつ同時にA/D変換器を介して同期した三つのサンプル値系列としてコンピュ一タに取り込み、それぞれのフーリェ変換から選択された所望の周波数成分の複素数値と、三つの振動測定用センサー間の角度の関数を係数をする複素3元1次連立方程式の解を固定輪の形状の一対の山数と転動体の通過に伴う固定輪の弾性変形に対応する振動値とし、同様に固定輪を評価する。
【0019】
同様にして、角速度mZωの最大振幅値と最小振幅値の位相は、それぞれ
F(m)=F’(m)−Dmz−jmZθおよびFα(m)=F’α(m)−Dmz−jmZ(θ+α)と置くとき、│F(m)│cos2α+│Fα(m)│−{F(m)F α(m)+F(m)Fα(m)}cosα≦0のとき、|γ|≦π/4ならばγおよびγ+πで最大且つγ±π/2で最小となり、π/4<|γ|≦π/2ならばγおよびγ+πで最小且つγ±π/2で最大となり、│F(m)│cos2α+│Fα(m)│−{F(m)F α(m)+F(m)Fα(m)}cosα>0のとき、|γ|≦π/4ならばγおよびγ+πで最小且つγ±π/2で最大となり、π/4<|γ|≦π/2ならばγおよびγ+πで最大、γ±π/2で最小となる(ただし、2γは式(28)で与えられる)。
【0020】
上述したような回転精度評価方法による評価に基づいて、転がり軸受において、振動成分の最大位置あるいは最小位置の固定輪上に印を付けることで、かかる転がり軸受を設置する場合に、加工機ではバイトや砥石の切り込み方向と軸受の振動の最小方向を合わせるとか、ハードディスクではヘッドの運動方向と軸受振動の最小方向を合わせるなどの工夫を行えば、転がり軸受に起因した振動の影響を減少させることが出来る。
【0021】
【発明の実施の形態】
以下、本発明にかかる実施の形態である転がり軸受の回転精度試験装置を、図面を参照して詳細に説明する。図1は、本実施の形態にかかる試験装置のブロック図であり、図2は、試験装置の正面図である。
【0022】
図において、試験装置100は、非接触光学式である2つの変位プローブ21,22と、2つの変位測定装置31,32と、コンピュータ41と、モータ51と、モータ回転軸に接続されたカップリング52と、カップリング52に接続された回転軸54を回転自在に支持するスピンドル53と、から構成されている。
【0023】
回転軸54は、スピンドル53に対し水平に支持されており、スピンドル53の端面より突出した回転軸54の端部には、転がり軸受10が嵌合しており、予圧機構55によって、スピンドル53方向に押圧されている。2つの変位プローブ21,22は、それぞれ転がり軸受10の固定輪(外輪)11の外周上において、センサ軸線を、転がり軸受軸線と直交させ且つ垂直方向(図1でy方向)及び水平方向(図1でx方向)に延在するように配置されている。
【0024】
測定は、モータ51によりカップリング52を介して回転軸54を一定速度で回転させることによって行う。このとき、変位プローブ22は、固定輪11の径方向であって垂直方向の振動成分を検出し、検出した振動成分を電気信号として変位測定装置32に送信し、変位測定装置32は、受信した電気信号を固定輪11の垂直方向の変位量に対応した電圧信号に変換し、コンピュータ41に送信する。一方、変位プローブ21は、固定輪11の径方向であって水平方向の振動成分を検出し、検出した振動成分を電気信号として変位測定装置31に送信し、変位測定装置31は、受信した電気信号を固定輪11の水平方向の変位量に対応した電圧信号に変換し、コンピュータ41に送信する。
【0025】
コンピュータ41は、内蔵したA/D変換器により、電圧信号を同期的なデジタル値に変換し、これを記憶する。更に、コンピュータ41は、記憶されたデジタル値をフーリエ変換し、所定の周波数成分を抽出し、所望の振動値を算出して以下のごとき評価を行う。
【0026】
さて、以下に説明する本発明の評価方法は、実際にはA/D変換器(不図示)により離散化されたデジタル値の系列からの、コンピュータ41上での離散的フーリエ変換に基づくものであるが、理解の容易さから連続的アナログの周期信号のフーリエ級数展開に基づいて説明する。
【0027】
ここで、玉軸受10の回転輪(内輪)12の回転に伴ってZ個のボ―ル13が、固定輪である外輪11の軌道をトレースしながら角速度ωで周回(公転)しているとする。外輪11の軌道一周にわたるうねりに伴って各ボールとの間に周期的な弾性変位が生じて径方向の振動が発生する。軌道上のある基準点を仮定したときのこの周期的な弾性変位の時系列のフーリエ展開係数をC(n=−∞〜∞)とし、この基準点から角度θだけ離れた方位に変位プローブ21が設置されているとすると、観測される弾性変位の時系列f(t)(すなわち、固定輪11の周波数成分)は、次式のように表される。
【数1】

Figure 0003858262
ω:ボールの公転周波数
【0028】
式(15)は少々の計算を経てZωの整数倍の周波数成分のみで表される式(16)に変換できる。
【数2】
Figure 0003858262
m=1,2,3・・(次数成分)
ただし、A=ZC/2と置き換えた。すなわち、ボール数Zの整数倍±1のうねりの山数の成分のみが振動となって現れることとなる。同様に変位プローブ21より角度α(図1では90度)だけ離れた方位に、変位プロ―ブ22が設置されているとするとき、それで観測される弾性変位の時系列fα(t)は、式(17)のようになる。
【数3】
Figure 0003858262
【0029】
観測される弾性変位の時系列f(t)およびfα(t)の次数mのフーリエ展開係数をそれぞれF(m)およびFα(m)とおけば、式(16)および式(17)より次数mの成分の係数との間に、式(18)および式(19)の関係が成り立つ。
mZ−1−jθ+AmZ+1jθ=F(m) (18)
mZ−1−j(θ+α)+AmZ+1j(θ+α)=Fα(m) (19)
【0030】
ここで式(18)と(19)を、未知数AmZ−1−jθとAmZ+1jθの複素2元連立方程式とみなして解けば、以下の解が得られる。
【数4】
Figure 0003858262
ただし、α≠nπ(n:整数)でなければならない。以上を要約すれば、互いに180°でない角度をなす二つの方位の振動を測定して得られる時系列の各フーリエ展開係数を用いて、式(20)に示す解にしたがって、固定輪の軌道のmZ−1山に起因する成分およびmZ+1山に起因する成分の係数をそれぞれ求めることができ、さらにRMS値を次のように算出することができる。
mZ−1山成分のRMS値=√2│AmZ−1│=√2│AmZ−1−jθ│(21)
mZ+1山成分のRMS値=√2│AmZ+1│=√2│AmZ+1jθ│ (22)
【0031】
(実施例2)
次に、角速度mZωの振動の最大振幅値と最大方位を求める。式(16)を参照して、次数mと−mの成分和の振動を式(23)のように表す。
(t)=(AmZ−1−jθ+AmZ+1jθ)ejmZω +(A−(mZ−1)jθ+A−(mZ+1)−jθ)e−jmZω (23)
【0032】
ここで、θを式(23)が最大方位、すなわち最大振幅値を呈する前記固定輪軌道上のある基準点を仮定したときの方位角であるとする。An(n=−∞〜∞)は実数関数のフーリエ展開係数であるからA-n=An *(An複素共役)が成り立ち、また、絶対値と位相によりAmZ-1=|AmZ-1|ej ψ,AmZ+1=|AmZ+1|ej φ
と表せるから、式(23)は、式(24)のように変形できる。
m(t)=2{|AmZ-l|cos(mZωct−θ+ψ)+|AmZ+1|cos(mZωct+θ+φ)} (24)
【0033】
式(24)は、θ、ψ、φ間の条件により式(25)のような最大振幅あるいは最小振幅の振動となる。
【数5】
Figure 0003858262
ただし、nは整数である。
【0034】
以上より、角速度mZωの振動の最大RMS値が√2(│AmZ−1│+│AmZ+1│)であり、最小RMS値が√2││AmZ−1│−│AmZ+1││となることがわかる。
【0035】
振動の最大の方位を求めるには、2方位の次数mの係数の式(18)と(19)を用いる。変位プローブ21より、角度γだけ離れた方位の振動の次数mの係数Fγ(m)は式(26)のように表せる。
γ(m)={F(m)sin(α−γ)+Fα(m)sinγ}/sinα(26)
【0036】
ここで振幅の2乗を求め、微分して0とおいて、これを満たすγを算出する。式(26)より
【数4】
Figure 0003858262
【0037】
これより次式を得る。
【数5】
Figure 0003858262
γ=γ0のとき|Fγ(m)│2は、式(29)のように最大(復号が+)または最小(復号が−)になる。
【数6】
Figure 0003858262
【0038】
式(25)の説明で与えた最大RMS値√2(|AmZ−1|+|AmZ+1|)と、最小RMS値√2||AmZ−1|+|AmZ+1||は、√2|Fγ(m)│等しい。ただし、最大値を呈する方位および最小値を呈する方位は以下の方法による。
【0039】
[方位の決定方法]
|F(m)│cos2α+│Fα(m)|−{F(m)F α(m)+F(m)Fα(m)}cosα≦0のとき|γ|≦π/4ならば方位γおよびγ+πで最大、γ±π/2で最小となり、π/4<|γ|≦π/2ならば方位γおよびγ+πで最小、γ±π/2で最大となる。また、|F(m)|cos2α+|Fα(m)|−{F(m)F α(m)+F(m)Fα(m)}cosα>0のとき|γ|≦π/4ならば方位γおよびγ+πで最小、γ±π/2で最大となり、π/4<|γ|≦π/2ならば方位γおよびγ+πで最大、γ±π/2で最小となる。
【0040】
例えば、変位プローブ21と22の間の角度が90°、すなわちα=π/2の場合を考えれば直感的に理解できる。最初の条件は|F(m)|≧|Fα(m)|のことである。|γ|≦π/4ならば変位プローブ21から角度γおよびγ+πが最大方位であり、π/4<|γ|≦π/2ならば変位プローブ21から角度γ±π/2が最大方位である。そして、最大方位と直交する方向が最小方位である。また、もう一方の条件は|F(m)|<|Fα(m)|のことである。|γ|≦π/4ならば変位プローブ21から角度γ±π/2が最大方位であり、π/4<|γ|≦π/2ならば変位プローブ21から角度γおよびγ+πが最大方位である。そして、同じく最大方位と直交する方向が最小方位である。
【0041】
このようにして決定された軸受の固定輪の最大方位または最小方位の位置に印をつける。印のつけ方については本発明には直接関係しないが、ケガキ、ペイント、打刻などが考えられる。
【0042】
(実施例3)
回転輪の振動は、前記振動測定用センサーである測定プローブのひとつによって次式のように得られる。
【数9】
Figure 0003858262
【0043】
ただし、回転角速度をωγとし、転動体の公転角速度をωとするとき、ω=ωγ−ωで表せる。式(30)は、少々の計算を経てボール数の整数倍±1の山数成分のみからなる式(31)に変換できる。ただし、B=ZC/2と置く。
【数10】
Figure 0003858262
【0044】
フーリエ変換から得られるmZ−1次とmZ+1次のフーリエ展開係数BmZ−1−jθおよびBmZ+1jθの絶対値│BmZ−1│および|BmZ+1|は容易に計算できる。このときの回転輪と固定輪が逆に使用される時、mZ−1次とmZ+1次の成分は前記のようにmZωなるひとつの周波数成分に合成され、しかもその大きさは方位に依存する。この合成された振動の振幅の最大RMS値および最小RMS値はそれぞれ√2(│BmZ−1|+|BmZ+1|)および√2││BmZ−1|+|BmZ+1||となる。
【0045】
(実施例4)
実施例1、2、3では、転がり軸受は回転するとき固定輪と回転輪の軌道が転動体との間で弾性変形を生じ、軌道のうねりがあるとき転がり軸受全体を剛体運動的に振動すると考えられる場合を説明した。転がり軸受単品での回転時には、この剛体運動的振動に加えて、転動体の通過に伴う外輪の外径面や内輪の内径面に微少の弾性変形による変位が観測される。特に、転動体通過の角周波数は前記Zωに一致しており、従来の測定ではこの複合的振動から前記固定輪の軌道うねりによる振動成分を区別して評価できない。
【0046】
本実施例では、前記実施例と同様の測定結果F’(m)とF’α(m)に加えて、図1で点線で示すような第3の変位プローブ23を、第1の変位プローブ21に対して角度βをなす位置に設置して、測定値fβ(t)の次数mのフーリエ展開係数F’β(m)を得る。このとき式(18)、(19)に対応してAmZ−1−jθ、AmZ+1jθ、および弾性変形成分に関するDmZ−jmZθを未知数とする次の複素3元連立方程式が成り立つ。
mZ−1−jθ+AmZ+1jθ+DmZ−jmZθ=F’(m)
(32)
mZ−1−j(θ+α)+AmZ+1j(θ+α)+DmZ−jmZ(θ+α)=F’α(m)(33)
mZ−1−j(θ+β)+AmZ+1j(θ+β)+DmZ−jmZ(θ+β)=F’β(m)(34)
Δ=ej(α−mZβ)+e−j(β+mZα)−e−j(α+mZβ)−ej(β−mZα)+e−j(α−β)−ej(α−β)≠0と仮定すると、解から次のように各成分の振幅を計算することができる。
【0047】
│AmZ−1│=│AmZ−1−jθ│=│{(ej(α−mZβ)−ej(β−mZα))F’(m)+(ejβ−e−jmZβ)F’α(m)+(e−jmZα−ejα)F’β(m)}/Δ│ (35)
│AmZ+1│=│AmZ+1−jθ│=│{(e−j(β+mZα)−e−j(α+mZβ))F’(m)+(e−jmZβ−e−jβ)F’α(m)+(e−jα−e−jmZα)F’β(m)}/Δ│ (36)
したがって、前記実施例と同様に最大RMS値は√2(│AmZ−1|+|AmZ+1|)、最小RMS値は√2││AmZ−1|−|AmZ+1||として求められる。
【0048】
次に最大(最小)の振動の方位を求める方法を説明する。複素3元連立方程式の第3の解は次の式(37)のように得られる。
mZ-jmZ θ={(e-j( α - β )−ej( α - β ) F’(m)+(e-j β−ej β)F’α(m)+(ej α−e-j α)F’β(m)}/Δ (37)
【0049】
前記測定結果F’(m)とF’α=(m)および式(37)の結果を用いて、式(38)と(39)
F(m)=F’(m)−DmZ−jmZθ (38)
α(m)=F’α(m)−DmZ−jmZ(θ+α) (39)
を計算し、式(38)と(39)の結果に対して実施例2の諸式と方法を用いれば、固定輪の角周波数mZω成分の最大(または最小)方位を求めることができる。
【0050】
以上の本実施例の説明では触れていないが、二つの異なる方位は必ずしも直角である必要はない。また、異なる二方位の振動を測定できるひとつのセンサーを用いることもできる。さらにはセンサは変位プローブに限らず、微分・積分関係にある他のセンサを用いてもよいし、変位のみならず速度や加速度での評価もありうる。振動の信号の微分あるいは積分とフーリエ展開係数に対する計算の関係は当該関係者には明らかであるから、これらに関する説明は省略する。
【0051】
【発明の効果】
本発明によれば、定速度で回転する転がり軸受の固定輪の二つの異なる方位のラジアル方向振動のフーリエ展開係数を用いて、固定輪軌道形状に起因する振動成分の振幅の最大(または最小)値を計算して評価でき、その方位を算定して固定輪上に印をつけた転がり軸受を提供できる。
【0052】
また、本発明により、転がり軸受の評価時の回転輪が固定輪として使用される場合の固定輪軌道形状に起因する振動成分の振幅の最大(または最小)値を計算する方法を提供できる。これにより、本発明に基づく転がり軸受の評価を実施する装置は、外輪または内輪の一方のみ回転できればよく、安価に実現できる。
【0053】
さらに、転動体の通過に伴う固定輪の弾性変形振動の重畳が無視できない測定状況に対して、前記二つの異なる方位のラジアル方向振動のフーリエ展開係数と第3の方位のラジアル方向振動のフーリエ展開係数を用いることにより、固定輪軌道形状に起因する振動成分の振幅の最大(または最小)値を前記弾性変形振動の影響を除くように計算して評価でき、その方位を算定して固定輪上に印をつけた転がり軸受を提供できる。
【図面の簡単な説明】
【図1】本実施の形態にかかる試験装置のブロック図である。
【図2】試験装置の正面図である。
【符号の説明】
10 軸受
21,22,23 変位プローブ
31,32,32 変位測定装置
41 コンピュータ
51 モータ
52 カップリング52
53 スピンドル
54 回転軸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for evaluating radial vibrations asynchronous to the rotation of a rotating body such as a bearing and a spindle incorporating the bearing based on frequency analysis, and in particular, the amplitude depends on the radial direction. The present invention relates to a technique for evaluating a maximum (minimum) amplitude value and a maximum (minimum) direction of a specific frequency component that changes.
[0002]
[Prior art]
Rolling bearings or rotating bodies such as spindles incorporating them generate vibrations due to roundness shape errors and the like, which can be a significant vibration source for structures such as machine tools that use them as components. is there. On the other hand, in precision parts such as hard disk devices, the radial vibration of the ball bearing used for the rotating shaft of the disk mainly causes positioning errors of the magnetic head. It has been demanded.
[0003]
By the way, the vibration component asynchronous to the rotation among the vibrations generated when the rotating body rotates at a constant speed is said to be a rotation asynchronous (NRRO: Non Repeatable Run Out) vibration component. In order to manufacture and supply ball bearings or spindles for machine tools with excellent rotational accuracy for hard disk drives, it is necessary to quantitatively evaluate the radial NRRO vibration component and eliminate products outside the allowable range. There is. Furthermore, it is also necessary to selectively evaluate an NRRO vibration component having a specific frequency in the vicinity of the resonance frequency of the hard disk device.
[0004]
Here, the radial NRRO vibration component of a rolling bearing or a rotating body such as a spindle incorporating these is unique in terms of geometrical dimensions and shape accuracy of parts such as outer and inner rings and rolling elements of the rolling bearing and a constant speed rotation frequency. It consists of vibrations of various frequencies determined by When observing the radial vibration of a rolling bearing at one point on the fixed ring, the vibration caused by the shape error of the rotating wheel and rolling element is equally observed at any position on the fixed ring. It is known that the vibration caused by the error is observed with a different magnitude depending on the measurement position. Such vibration cannot be evaluated correctly unless the maximum amplitude is found over the entire circumference of the fixed ring. To this end, it is possible to find a maximum value of a specific frequency component by repeating frequency analysis while relatively displacing the vibration measurement sensor and the bearing or spindle in the circumferential direction. Not only that, but it takes time to measure.
[0005]
Next, for example, when the inner ring rotates, if the outer ring orbit, which is a fixed ring, has a slight undulation, vibration of one specific frequency is generated by a pair of undulations. A pair of vibrations corresponding to the number of peaks is generated. At the same time, vibration of one specific frequency is generated due to the pair of undulations of the track of the inner ring which is a fixed ring. That is, depending on how the rolling bearing is used, it may be necessary to strictly select one or both of a specific frequency vibration and a pair of frequency vibrations as harmful vibration components. For this purpose, providing a mechanism capable of observing both the inner ring rotation and the outer ring rotation leads to the complexity and cost of the test apparatus.
[0006]
One of the objects of the present invention is to provide a method for obtaining each vibration value corresponding to each mountain number from the vibration of one specific frequency caused by the pair of mountain waves of the undulation of the track of the fixed ring. is there. In order to achieve this purpose, the vibration of the bearing is observed simultaneously from two radial directions that are not opposite (that is, not 180 °), and the vibration value at a specific frequency caused by the fixed ring obtained based on the frequency analysis result is a coefficient. Gives a method to calculate from the solution of simultaneous equations.
[0007]
Another object of the present invention is to provide a maximum (minimum) value of vibration at a specific frequency caused by a pair of peaks of a fixed ring based on a pair of vibration values of the fixed ring obtained as described above, and a maximum value representing the maximum value. It is to provide a method for calculating the (minimum) orientation.
[0008]
On the contrary, another object of the present invention is based on the measurement of a vibration component of a pair of frequencies based on a pair of peaks exhibited by a rotating wheel. It is to provide a way to estimate and evaluate (minimum) values.
[0009]
Furthermore, since the fixed ring is not a rigid body, the measurement point on the circumference thereof observes vibration accompanied by the elastic deformation of the fixed ring due to the passage of the rolling element. Since it is equal to a specific frequency due to the shape error, there is a fear that the vibration component due to the shape error of the fixed ring cannot be accurately evaluated. Even in such a situation, it is possible to provide a method for accurately evaluating the vibration component of the fixed ring by removing the influence of the passing component of the rolling element by adding observation of vibration in a different third direction. Is another purpose.
[0010]
In this way, a bearing is provided in which the vibration is marked at the maximum position or at the minimum position 90 ° away from it so that the spindle or motor with the least vibration in a specific direction can be manufactured. This is yet another object of the present invention.
[0011]
[Means for Solving the Problems]
  The method for evaluating the rotational accuracy of a rolling bearing according to the present invention is obtained by measuring the radial vibration of a fixed ring of a rotating rolling bearing using two vibration measuring sensors installed at a phase α in the circumferential direction. The obtained sensor signal is discretized via an A / D converter to obtain two synchronized digital data, the digital data is Fourier transformed, and the angular velocity Zω obtained by Fourier transformation is obtained.cVibration value F (m), F of order mαUsing (m), based on
  AmZ-1e-j θ= {Ej αF (m) -Fα(M)} / 2jsin α (1)
  AmZ + 1ej θ= {Fα(M) -e-j αF (m)} / 2jsinα (2)
(Where m is the vibration order, Z is the number of rolling elements, ωcIs the angular velocity of revolution of the rolling element, θ is the central angle between the unknown reference position on the fixed ring and one of the vibration measuring sensors,F (m) is a vibration value of order m of one of the vibration measurement sensors, F α (M) is the vibration value of the order m of the other vibration measurement sensor arranged at the phase α with respect to the one vibration measurement sensor.)
Unknown AmZ-1e-j θ, AmZ + 1ej θFrom this unknown, the RMS value of the vibration component due to mZ-1 peak and mZ + 1 peak is obtained from the following equation,
  RMS value of mZ-1 peak component = √2 | AmZ-1| = √2 | AmZ-1e-j θ│ (3)
  RMS value of mZ + 1 peak component = √2 | AmZ + 1| = √2 | AmZ + 1ej θ│ (4)
The rotational accuracy is evaluated from these RMS values.
[0012]
[Action]
Computers as two sample value series synchronized with two vibration measurement sensors arranged via two A / D converters to observe radial vibrations at two points on the fixed ring of a rolling bearing The solution of the complex binary linear equation that takes the complex function value of the desired frequency component selected from each Fourier transform and the function of the angle between the positions of the sensors for vibration measurement as the fixed ring shape It is set as the vibration value (RMS value) corresponding to the number of pairs of peaks. The sum (difference) of the absolute values of these two vibration values is set as the maximum (minimum) value of vibration depending on the shape of the fixed ring, and the complex value of the desired frequency component selected from the respective Fourier transform and vibration By calculating the maximum (minimum) direction of vibration as an angle relative to the vibration measurement sensor from the angle between the measurement sensor arrangement positions, the maximum vibration value and its direction can be determined, and compared with the threshold value. Thus, the rotational accuracy of the rolling bearing can be evaluated.
[0013]
Angular velocity mZωcMaximum amplitude value and minimum amplitude value of
Maximum RMS value = √2 (| AmZ-1| + | AmZ + 1|) (5)
Minimum RMS value = √2 || AmZ-1|-| AmZ + 1|| (6)
Can be expressed as
[0014]
  Furthermore, angular velocity mZωcThe phase of the maximum amplitude value and the minimum amplitude value of
  | F (m) |2cos2α + | Fα(M) │2-{F (m) F* α(M) + F*(M) Fα(M)} When cos α ≦ 0, | γ0If ≦≦ π / 4, γ0And γ0+ Π is maximum and γ0± π / 2 is minimum, and π / 4 <| γ0If ≦≦ π / 2, γ0And γ0+ Π and γ0Maximum at ± π / 2
,
  | F (m) |2cos2α + | Fα(M) │2-{F (m) F* α(M) + F*(M) Fα(M)} cos α> 0, | γ0If ≦≦ π / 4, γ0And γ0+ Π minimum and γ0± π / 2 is the maximum, and π / 4 <| γ0If ≦≦ π / 2, γ0And γ0+ Π maximum, γ0± π / 2 is minimum (however, 2γ0Is given by equation (28)). It should be noted that F used in this specification (including claims)*(M) is for F (m)ComplexBe conjugate,F * α (M) is F α The complex conjugate of (m)To do.
[0015]
Further, using the vibration value of the rotating wheel, the RMS value of the vibration component caused by the mZ-1 peak and the mZ + 1 peak when the rotating wheel and the fixed wheel are used oppositely according to the equation (31) is obtained.
RMS value of mZ-1 peak component = √2 | BmZ-1| (7)
RMS value of mZ + 1 peak component = √2 | BmZ + 1| (8)
Angular velocity mZωcMaximum amplitude value and minimum amplitude value of
Maximum RMS value = √2 (| BmZ-1| + | BmZ + 1|) (9)
Minimum RMS value = √2 || BmZ-1|-| BmZ + 1|| (10)
It is what.
[0016]
That is, the sum of the absolute values of a pair of vibration values corresponding to the number of crests of the rotating wheel selected from the at least one Fourier transform of the one specific frequency when it becomes a fixed wheel. Gives the maximum (minimum) value of vibration.
[0017]
Furthermore, another vibration sensor is provided at the phase β, and the RMS value of the vibration component caused by the mZ−1 peak and the mZ + 1 peak is calculated by the equations (32) to (36), respectively.
RMS value of mZ-1 peak component = √2 | AmZ-1| (11)
RMS value of mZ + 1 peak component = √2 | AmZ + 1| (12)
Angular velocity mZωcMaximum amplitude value and minimum amplitude value of
Maximum RMS value = √2 (| AmZ-1| + | AmZ + 1|) (13)
Minimum RMS value = √2 || AmZ-1|-| AmZ + 1|| (14)
And
[0018]
That is, a third vibration measurement sensor is arranged, and the same as the signals from the two vibration measurement sensors and simultaneously taken into the computer as three sample value series synchronized via the A / D converter, The complex value of the desired frequency component selected from each Fourier transform and the solution of the complex ternary linear equation which is a function of the angle between the three sensors for vibration measurement are a pair of peaks in the shape of a fixed ring. The vibration value corresponding to the number and the elastic deformation of the fixed ring accompanying the passage of the rolling elements is used, and the fixed ring is similarly evaluated.
[0019]
Similarly, angular velocity mZωcThe phase of the maximum amplitude value and the minimum amplitude value of
F (m) = F ′ (m) −Dmze−jmZθAnd Fα(M) = F ′α(M) -Dmze−jmZ (θ + α)│F (m) │2cos2α + │Fα(M) │2-{F (m) F* α(M) + F*(M) Fα(M)} When cos α ≦ 0, | γ0If ≦≦ π / 4, γ0And γ0+ Π is maximum and γ0± π / 2 is minimum, and π / 4 <| γ0If ≦≦ π / 2, γ0And γ0+ Π minimum and γ0± π / 2 is the maximum, | F (m) |2cos2α + │Fα(M) │2-{F (m) F* α(M) + F*(M) Fα(M)} cos α> 0, | γ0If ≦≦ π / 4, γ0And γ0+ Π minimum and γ0± π / 2 is the maximum, and π / 4 <| γ0If ≦≦ π / 2, γ0And γ0+ Π maximum, γ0± π / 2 is minimum (however, 2γ0Is given by equation (28)).
[0020]
Based on the evaluation by the method for evaluating rotational accuracy as described above, in a rolling bearing, when the rolling bearing is installed by marking on the fixed ring of the maximum position or the minimum position of the vibration component, the processing machine By adjusting the cutting direction of the grinding wheel and the minimum direction of vibration of the bearing, or by adjusting the head movement direction and the minimum direction of bearing vibration in hard disks, the influence of vibration caused by rolling bearings can be reduced. I can do it.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a rolling bearing rotational accuracy test apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a test apparatus according to the present embodiment, and FIG. 2 is a front view of the test apparatus.
[0022]
In the figure, a test apparatus 100 includes two displacement probes 21 and 22 that are non-contact optical, two displacement measuring apparatuses 31 and 32, a computer 41, a motor 51, and a coupling connected to a motor rotation shaft. 52 and a spindle 53 that rotatably supports a rotating shaft 54 connected to the coupling 52.
[0023]
The rotating shaft 54 is supported horizontally with respect to the spindle 53, and the rolling bearing 10 is fitted to the end of the rotating shaft 54 protruding from the end face of the spindle 53. Is pressed. The two displacement probes 21 and 22 are respectively arranged on the outer periphery of the fixed ring (outer ring) 11 of the rolling bearing 10 so that the sensor axis is orthogonal to the rolling bearing axis and in the vertical direction (y direction in FIG. 1) and the horizontal direction (see FIG. 1 in the x direction).
[0024]
The measurement is performed by rotating the rotating shaft 54 at a constant speed via the coupling 52 by the motor 51. At this time, the displacement probe 22 detects the vibration component in the radial direction of the fixed ring 11 and in the vertical direction, and transmits the detected vibration component to the displacement measurement device 32 as an electrical signal. The displacement measurement device 32 receives the vibration component. The electrical signal is converted into a voltage signal corresponding to the amount of displacement of the fixed wheel 11 in the vertical direction and transmitted to the computer 41. On the other hand, the displacement probe 21 detects a vibration component in the radial direction of the fixed wheel 11 and in the horizontal direction, and transmits the detected vibration component to the displacement measurement device 31 as an electric signal. The signal is converted into a voltage signal corresponding to the horizontal displacement of the fixed wheel 11 and transmitted to the computer 41.
[0025]
The computer 41 converts the voltage signal into a synchronous digital value by the built-in A / D converter and stores it. Further, the computer 41 performs Fourier transform on the stored digital value, extracts a predetermined frequency component, calculates a desired vibration value, and performs the following evaluation.
[0026]
The evaluation method of the present invention described below is actually based on a discrete Fourier transform on the computer 41 from a sequence of digital values discretized by an A / D converter (not shown). However, for ease of understanding, description will be made based on the Fourier series expansion of a continuous analog periodic signal.
[0027]
Here, as the rotating ring (inner ring) 12 of the ball bearing 10 rotates, the Z balls 13 trace an angular velocity ω while tracing the track of the outer ring 11 which is a fixed ring.cSuppose you are orbiting (revolution). As the outer ring 11 swells around the track, periodic elastic displacement occurs between the balls and radial vibrations are generated. The time series Fourier expansion coefficient of this periodic elastic displacement when a certain reference point on the orbit is assumed is expressed as CnAssuming that (n = −∞ to ∞) and the displacement probe 21 is installed in a direction away from the reference point by an angle θ, the time series f (t) of the observed elastic displacement (that is, the fixed ring 11) Frequency component) is expressed by the following equation.
[Expression 1]
Figure 0003858262
ωc: Revolution frequency of the ball
[0028]
Equation (15) goes through a little calculation and ZωcCan be converted into Expression (16) represented only by a frequency component that is an integral multiple of.
[Expression 2]
Figure 0003858262
m = 1, 2, 3, (order component)
However, An= ZCnReplaced with / 2. That is, only the component of the number of undulations of the integral multiple ± 1 of the number of balls Z appears as vibration. Similarly, when the displacement probe 22 is installed in the direction away from the displacement probe 21 by an angle α (90 degrees in FIG. 1), the time series f of the elastic displacement observed therewithα(T) is as shown in Expression (17).
[Equation 3]
Figure 0003858262
[0029]
Time series f (t) and f of the observed elastic displacementαThe Fourier expansion coefficients of order m of (t) are respectively expressed as F (m) and FαIf (m) is entered, the relationship of the equations (18) and (19) is established between the coefficients of the components of the order m from the equations (16) and (17).
AmZ-1e−jθ+ AmZ + 1e= F (m) (18)
AmZ-1e−j (θ + α)+ AmZ + 1ej (θ + α)= Fα(M) (19)
[0030]
Here, equations (18) and (19) are converted into the unknown AmZ-1e−jθAnd AmZ + 1eThe following solution can be obtained by solving as a complex binary simultaneous equation.
[Expression 4]
Figure 0003858262
However, α ≠ nπ (n: integer) must be satisfied. In summary, using the time series Fourier expansion coefficients obtained by measuring vibrations in two directions that are not at an angle of 180 ° with each other, according to the solution shown in Equation (20), The coefficients of the component due to mZ-1 peak and the component due to mZ + 1 peak can be respectively obtained, and the RMS value can be calculated as follows.
RMS value of mZ-1 peak component = √2 | AmZ-1│ = √2│AmZ-1e−jθ│ (21)
RMS value of mZ + 1 peak component = √2 | AmZ + 1│ = √2│AmZ + 1e│ (22)
[0031]
(Example 2)
Next, angular velocity mZωcThe maximum amplitude value and maximum direction of vibration are obtained. With reference to Expression (16), the vibration of the sum of the components of the order m and −m is expressed as Expression (23).
fm(T) = (AmZ-1e−jθ+ AmZ + 1e) EjmZω c t+ (A-(MZ-1)e+ A− (MZ + 1)e−jθ) E-JmZω c t                                        (23)
[0032]
  Here, θ is assumed to be the azimuth when Equation (23) assumes a maximum azimuth, that is, a certain reference point on the fixed ring track exhibiting the maximum amplitude value. AnSince (n = −∞ to ∞) is a Fourier expansion coefficient of a real function, A-n= An *(AnofComplexConjugate), and the absolute value and the phasemZ-1= | AmZ-1| ej ψ, AmZ + 1= | AmZ + 1| ej φ
Therefore, Expression (23) can be transformed as Expression (24).
      fm(T) = 2 {| AmZ-l| cos (mZωct−θ + ψ) + | AmZ + 1| cos (mZωct + θ + φ)} (24)
[0033]
Expression (24) becomes a vibration with the maximum amplitude or the minimum amplitude as shown in Expression (25) depending on the conditions among θ, ψ, and φ.
[Equation 5]
Figure 0003858262
However, n is an integer.
[0034]
From the above, angular velocity mZωcThe maximum RMS value of vibration is √2 (│AmZ-1│ + │AmZ + 1│) and minimum RMS value is √2││AmZ-1│-│AmZ + 1It can be seen that ││.
[0035]
In order to obtain the maximum direction of vibration, equations (18) and (19) of the coefficient of the degree m in two directions are used. The coefficient Fγ (m) of the order m of vibration in the direction away from the displacement probe 21 by the angle γ can be expressed as shown in Expression (26).
Fγ(M) = {F (m) sin (α−γ) + Fα(M) sin γ} / sin α (26)
[0036]
  Here, the square of the amplitude is obtained, differentiated to 0, and γ satisfying this is calculated. From equation (26)
[Expression 4]
Figure 0003858262
[0037]
  From this, the following equation is obtained.
[Equation 5]
Figure 0003858262
  γ = γ0When | Fγ(M) │2Becomes maximum (decoding is +) or minimum (decoding is-) as shown in Equation (29).
[Formula 6]
Figure 0003858262
[0038]
Maximum RMS value √2 (| A given in the description of equation (25)mZ-1| + | AmZ + 1|) And minimum RMS value √2 || AmZ-1| + | AmZ + 1|| is √2 | Fγ(M) | However, the orientation that exhibits the maximum value and the orientation that exhibits the minimum value are determined by the following method.
[0039]
[Direction determination method]
| F (m) |2cos2α + │Fα(M) |2-{F (m) F* α(M) + F*(M) Fα(M)} cos α ≦ 0 | γ0If ≦≦ π / 4, orientation γ0And γ0+ Π maximum, γ0± π / 2 is minimum, and π / 4 <| γ0If ≦≦ π / 2, orientation γ0And γ0+ Π minimum, γ0Maximum at ± π / 2. Also, | F (m) |2cos2α + | Fα(M) |2-{F (m) F* α(M) + F*(M) Fα(M)} cos α> 0 | γ0If ≦≦ π / 4, orientation γ0And γ0+ Π minimum, γ0± π / 2 is the maximum, and π / 4 <| γ0If ≦≦ π / 2, orientation γ0And γ0+ Π maximum, γ0± π / 2 is the minimum.
[0040]
For example, if the angle between the displacement probes 21 and 22 is 90 °, that is, α = π / 2, it can be understood intuitively. The first condition is | F (m) |2≧ | Fα(M) |2That is. | γ0If | ≦ π / 4, the angle γ from the displacement probe 210And γ0+ Π is the maximum orientation, and π / 4 <| γ0If | ≦ π / 2, the angle γ from the displacement probe 210± π / 2 is the maximum orientation. The direction orthogonal to the maximum azimuth is the minimum azimuth. The other condition is | F (m) |2<| Fα(M) |2That is. | γ0If | ≦ π / 4, the angle γ from the displacement probe 210± π / 2 is the maximum orientation, and π / 4 <| γ0If | ≦ π / 2, the angle γ from the displacement probe 210And γ0+ Π is the maximum orientation. Similarly, the direction orthogonal to the maximum direction is the minimum direction.
[0041]
The position of the maximum azimuth or minimum azimuth of the fixed ring of the bearing thus determined is marked. Although the method of marking is not directly related to the present invention, scribing, painting, or engraving can be considered.
[0042]
(Example 3)
The vibration of the rotating wheel is obtained by the following equation by one of the measurement probes which are the vibration measurement sensors.
[Equation 9]
Figure 0003858262
[0043]
However, the rotational angular speed is ωγAnd the revolution angular velocity of the rolling element is ωcWhere ωi= Ωγ−ωcIt can be expressed as Expression (30) can be converted into Expression (31) consisting of only the peak number component of an integer multiple ± 1 of the number of balls through a little calculation. However, Bn= ZCnPut / 2.
[Expression 10]
Figure 0003858262
[0044]
MZ-1 order and mZ + 1 order Fourier expansion coefficients B obtained from Fourier transformmZ-1e−jθAnd BmZ + 1eAbsolute value of │BmZ-1│ and | BmZ + 1| Can be easily calculated. When the rotating wheel and the fixed wheel at this time are used in reverse, the mZ-1 order and mZ + 1 order components are mZω as described above.cIs synthesized into one frequency component, and its size depends on the direction. The maximum RMS value and the minimum RMS value of the amplitude of the synthesized vibration are respectively √2 (| BmZ-1| + | BmZ + 1│) and √2││BmZ-1| + | BmZ + 1||
[0045]
(Example 4)
In Examples 1, 2, and 3, when the rolling bearing rotates, the raceway of the fixed ring and the rotating ring causes elastic deformation between the rolling elements, and when there is swell of the raceway, the entire rolling bearing vibrates in a rigid body motion. Explained the possible cases. During rotation of a single rolling bearing, in addition to this rigid body vibration, displacement due to minute elastic deformation is observed on the outer diameter surface of the outer ring and the inner diameter surface of the inner ring as the rolling element passes. In particular, the angular frequency of passing through the rolling element is Zω.cIn the conventional measurement, the vibration component due to the track waviness of the fixed ring cannot be distinguished and evaluated from this complex vibration.
[0046]
In the present embodiment, the measurement results F ′ (m) and F ′ similar to those in the previous embodiment.αIn addition to (m), a third displacement probe 23 as shown by a dotted line in FIG. 1 is installed at a position that forms an angle β with respect to the first displacement probe 21, and the measured value fβFourier expansion coefficient F ′ of order m of (t)β(M) is obtained. At this time, A corresponding to equations (18) and (19)mZ-1e−jθ, AmZ + 1e, And D for elastic deformation componentsmZe−jmZθThe following complex ternary simultaneous equations are established, where is an unknown.
AmZ-1e−jθ+ AmZ + 1e+ DmZe−jmZθ= F '(m)
(32)
AmZ-1e−j (θ + α)+ AmZ + 1ej (θ + α)+ DmZe−jmZ (θ + α)= F ’α(M) (33)
AmZ-1e−j (θ + β)+ AmZ + 1ej (θ + β)+ DmZe−jmZ (θ + β)= F ’β(M) (34)
Δ = ej (α-mZβ)+ E−j (β + mZα)-E−j (α + mZβ)-Ej (β-mZα)+ E−j (α−β)-Ej (α-β)Assuming ≠ 0, the amplitude of each component can be calculated from the solution as follows.
[0047]
│AmZ-1│ = │AmZ-1e−jθ│ = │ {(ej (α-mZβ)-Ej (β-mZα)) F ′ (m) + (e-E−jmZβ) F ’α(M) + (e-JmZα-E) F ’β(M)} / Δ | (35)
│AmZ + 1│ = │AmZ + 1e−jθ│ = │ {(e−j (β + mZα)-E−j (α + mZβ)) F ′ (m) + (e−jmZβ-E−jβ) F ’α(M) + (e−jα-E-JmZα) F ’β(M)} / Δ | (36)
Accordingly, the maximum RMS value is √2 (| AmZ-1| + | AmZ + 1)), Minimum RMS value is √2││AmZ-1|-| AmZ + 1It is calculated | required as ||.
[0048]
  Next, a method for obtaining the maximum (minimum) vibration direction will be described. The third solution of the complex ternary simultaneous equations is obtained as the following equation (37).
  DmZe-jmZ θ= {(E-j ( α - β )-Ej ( α - β ) )F ′ (m) + (e-j β-Ej β) F ’α(M) + (ej α-E-j α) F ’β(M)} / Δ (37)
[0049]
The measurement results F ′ (m) and F ′α= (M) and the result of Equation (37) are used to obtain Equations (38) and (39)
F (m) = F ′ (m) −DmZe−jmZθ                            (38)
Fα(M) = F ′α(M) -DmZe−jmZ (θ + α)                  (39)
And using the equations and methods of Example 2 for the results of equations (38) and (39), the angular frequency mZω of the fixed ringcThe maximum (or minimum) orientation of the component can be determined.
[0050]
Although not mentioned in the above description of the present embodiment, the two different orientations do not necessarily have to be perpendicular. One sensor that can measure vibrations in two different directions can also be used. Furthermore, the sensor is not limited to the displacement probe, and other sensors having a differential / integral relationship may be used, and evaluation may be performed not only by displacement but also by speed and acceleration. Since the relationship between the differentiation or integration of the vibration signal and the calculation with respect to the Fourier expansion coefficient is obvious to the concerned parties, explanations thereof will be omitted.
[0051]
【The invention's effect】
According to the present invention, the maximum (or minimum) amplitude of the vibration component due to the fixed ring raceway shape is obtained using the Fourier expansion coefficient of the radial vibration in two different directions of the fixed ring of the rolling bearing rotating at a constant speed. It is possible to provide a rolling bearing in which values can be calculated and evaluated, and the bearings can be calculated and marked on a fixed ring.
[0052]
Further, according to the present invention, it is possible to provide a method for calculating the maximum (or minimum) value of the amplitude of the vibration component caused by the shape of the fixed ring raceway when the rotating wheel at the time of evaluation of the rolling bearing is used as a fixed ring. Thereby, the apparatus for performing the evaluation of the rolling bearing according to the present invention only needs to be able to rotate only one of the outer ring or the inner ring, and can be realized at low cost.
[0053]
Furthermore, for the measurement situation in which the superposition of elastic deformation vibration of the fixed ring accompanying the passing of the rolling element cannot be ignored, the Fourier expansion coefficient of the radial vibration in the two different directions and the Fourier expansion of the radial vibration in the third direction By using the coefficient, the maximum (or minimum) value of the amplitude of the vibration component due to the shape of the fixed ring track can be calculated and evaluated so as to exclude the influence of the elastic deformation vibration. Rolling bearings marked with can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram of a test apparatus according to an embodiment.
FIG. 2 is a front view of the test apparatus.
[Explanation of symbols]
10 Bearing
21, 22, 23 Displacement probe
31, 32, 32 Displacement measuring device
41 computer
51 motor
52 Coupling 52
53 spindle
54 Rotating shaft

Claims (7)

回転する転がり軸受の固定輪の径方向振動を周方向に位相αで設置された2個の振動測定用センサを用いて測定し、測定によって得られたセンサ信号をA/D変換器を介して離散化することで同期した2つのデジタルデータを求め、前記デジタルデータをフーリエ変換し、フーリエ変換で得られた角速度Zωcの次数mの振動値F(m)、Fα(m)を用いて、次式に基づいて、
mZ-1-j θ={ej αF(m)−Fα(m)}/2jsinα
mZ+1j θ={Fα(m)−e-j αF(m)}/2jsinα
(ただし、mは振動の次数、Zは転動体の数、ωcは転動体の公転の角速度、θは前記固定輪上の未知の基準位置と前記振動測定用センサの一方との間の中心角、F(m)は一方の前記振動測定用センサの次数mの振動値、F α (m)は前記一方の振動測定用センサに対して位相αで配置された他方の前記振動測定用センサの次数mの振動値
未知数AmZ-1-j θ、AmZ+1j θを求め、この未知数より、それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を次式より求め、
mZ−1山成分のRMS値=√2|AmZ-1-j θ
mZ+1山成分のRMS値=√2|AmZ+1j θ
これらのRMS値より回転精度の評価を行うことを特徴とする転がり軸受の回転精度評価方法。
The radial vibration of the fixed ring of the rotating rolling bearing is measured by using two vibration measuring sensors installed in the circumferential direction with a phase α, and the sensor signal obtained by the measurement is passed through the A / D converter. Two digital data synchronized by discretization are obtained, the digital data is subjected to Fourier transform, and vibration values F (m) and F α (m) of order m of angular velocity Zω c obtained by Fourier transform are used. Based on the following formula:
A mZ-1 e −j θ = {e j α F (m) −F α (m)} / 2 j sin α
A mZ + 1 e j θ = {F α (m) −e −j α F (m)} / 2 j sin α
(Where m is the order of vibration, Z is the number of rolling elements, ω c is the angular velocity of revolution of the rolling elements, and θ is the center between an unknown reference position on the fixed wheel and one of the vibration measuring sensors. Angle, F (m) is vibration value of order m of one of the vibration measurement sensors , and F α (m) is the other vibration measurement sensor arranged at a phase α with respect to the one vibration measurement sensor. Vibration value of order m )
The unknowns A mZ-1 e −j θ and A mZ + 1 e j θ are obtained, and the RMS values of the vibration components caused by the mZ-1 mountain and the mZ + 1 mountain are obtained from the unknowns by the following equations, respectively.
RMS value of mZ-1 peak component = √2 | A mZ-1 e −j θ |
RMS value of mZ + 1 peak component = √2 | A mZ + 1 e j θ |
A method for evaluating the rotational accuracy of a rolling bearing, wherein the rotational accuracy is evaluated from these RMS values.
角速度mZωcの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|AmZ-1|+|AmZ+1|)
最小RMS値=√2||AmZ-1|−|AmZ+1||
で表すことを特徴とする請求項1に記載の転がり軸受の回転精度評価方法。
The maximum amplitude value and the minimum amplitude value of the respective maximum RMS value of the angular velocity mZω c = √2 (| A mZ -1 | + | A mZ + 1 |)
Minimum RMS value = √2 || A mZ-1 | − | A mZ + 1 ||
The rotational accuracy evaluation method for a rolling bearing according to claim 1, wherein
角速度mZωcの最大振幅値と最小振幅値の位相は、それぞれ
|F(m)|2cos2α+|Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα≦0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最大且つγ0±π/2で最小となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで最小且つγ0±π/2で最大となり、
|F(m)|2cos2α+|Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα>0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最小且つγ0±π/2で最大となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで最大、γ0±π/2で最小となる(ただし、2γ0以下の式(28)で与えられ、F * (m)は、F(m)の複素共役であり、F * α (m)は、F α (m)の複素共役である)ことを特徴とする請求項2に記載の転がり軸受の回転精度の評価方法。
Figure 0003858262
The phase of the maximum amplitude value and the minimum amplitude value of the angular velocity mZω c is | F (m) | 2 cos 2α + | F α (m) | 2 − {F (m) F * α (m) + F * (m) F When α (m)} cos α ≦ 0, if | γ 0 | ≦ π / 4, the maximum is γ 0 and γ 0 + π and the minimum is γ 0 ± π / 2, and π / 4 <| γ 0 | ≦ π / 2 is minimum at γ 0 and γ 0 + π and maximum at γ 0 ± π / 2,
| F (m) | 2 cos 2α + | F α (m) | 2 − {F (m) F * α (m) + F * (m) F α (m)} cos α> 0, | γ 0 | ≦ If π / 4, the minimum is γ 0 and γ 0 + π and the maximum is γ 0 ± π / 2. If π / 4 <| γ 0 | ≦ π / 2, the maximum is γ 0 and γ 0 + π, and γ 0 ± smallest at [pi / 2 (provided that, 2 [gamma 0 is given et is the following equation (28), F * (m ) is the complex conjugate of F (m), F * α (m) is F The method according to claim 2, wherein α is a complex conjugate of (m) .
Figure 0003858262
前記固定輪の振動値を用いて、
Figure 0003858262
上記式(31)により回転輪と固定輪が逆に使われる場合の、それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を
mZ−1山成分のRMS値=√2|BmZ-1
mZ+1山成分のRMS値=√2|BmZ+1
角速度mZωcの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|BmZ-1|+|BmZ+1|)
最小RMS値=√2||BmZ-1|−|BmZ+1||
とする(ただし、フーリエ変換から得られるmZ−1次とmZ+1次のフーリエ展開係数B mZ-1 -j θ およびB mZ+1 j θ の絶対値を、それぞれ│B mZ-1 │および|B mZ+1 |とする)ことを特徴とする請求項1に記載の転がり軸受の回転精度の評価方法。
Using the vibration value of the fixed ring,
Figure 0003858262
The RMS value of the vibration component caused by the mZ-1 peak and the mZ + 1 peak when the rotating wheel and the fixed wheel are used reversely according to the above equation (31) is the RMS value of the mZ-1 peak component = √2 | B mZ -1 |
RMS value of mZ + 1 peak component = √2 | B mZ + 1 |
The maximum amplitude value and the minimum amplitude value of the angular velocity mZω c are set to the maximum RMS value = √2 (| B mZ-1 | + | B mZ + 1 |)
Minimum RMS value = √2 || BmZ-1 |-| BmZ + 1 ||
Where the absolute values of mZ-1 and mZ + 1 order Fourier expansion coefficients B mZ-1 e -j θ and B mZ + 1 e j θ obtained from the Fourier transform are expressed as | B mZ-1 | and | B mZ + 1 |) . The method for evaluating the rotational accuracy of the rolling bearing according to claim 1.
位相βにもう1つの振動センサを設けたとき、以下の式(32)〜(34)が成立し、
mZ-1 -j θ +A mZ+1 j θ +D mZ -jmZ θ =F’(m) (32)
mZ-1 -j( θ + α ) +A mZ+1 j( θ + α ) +D mZ -jmZ( θ + α ) =F’ α (m) (33)
mZ-1 -j( θ + β ) +A mZ+1 j( θ + β ) +D mZ -jmZ( θ + β ) =F’ β (m) (34)
ここで、Δ=e j( α -mZ β ) +e -j( β +mZ α ) −e -j( α +mZ β ) −e j( β -mZ α ) +e -j( α - β ) −e j( α - β ) ≠0と仮定すると、解から以下の式(35),(36)より、各成分の振幅を計算することができるので、
|A mZ-1 |=|A mZ-1 -j θ |=|{(e j( α -mZ β ) −e j( β -mZ α ) )F’(m)+(e j β −e -jmZ β )F’ α (m)+(e -jmZ α −e j α )F’ β (m)}/Δ| (35)
|A mZ+1 |=|A mZ+1 -j θ |=|{(e -j( β +mZ α ) −e -j( α +mZ β ) )F’(m)+(e -jmZ β −e -j β )F’ α (m)+(e -j α −e -jmZ α )F’ β (m)}/Δ| (36)
それぞれmZ−1山およびmZ+1山に起因する振動成分のRMS値を
mZ−1山成分のRMS値=√2|AmZ-1
mZ+1山成分のRMS値=√2|AmZ+1
角速度mZωcの最大振幅値と最小振幅値をそれぞれ
最大RMS値=√2(|AmZ-1|+|AmZ+1|)
最小RMS値=√2||AmZ-1|−|AmZ+1||
とすることを特徴とする請求項1に記載の転がり軸受の回転精度の評価方法。
When another vibration sensor is provided in the phase β, the following equations (32) to (34) are established,
A mZ-1 e −j θ + A mZ + 1 e j θ + D mZ e −jmZ θ = F ′ (m) (32)
A mZ-1 e −j ( θ + α ) + A mZ + 1 e j ( θ + α ) + D mZ e −jmZ ( θ + α ) = F ′ α (m) (33)
A mZ-1 e −j ( θ + β ) + A mZ + 1 e j ( θ + β ) + D mZ e −jmZ ( θ + β ) = F ′ β (m) (34)
Here, Δ = e j (α -mZ β) + e -j (β + mZ α) -e -j (α + mZ β) -e j (β -mZ α) + e -j (α - β) - Assuming that ej ( α β ) ≠ 0, the amplitude of each component can be calculated from the following equations (35) and (36).
| A mZ-1 | = | A mZ-1 e −j θ | = | {(e j ( α -mZ β ) −e j ( β −mZ α ) ) F ′ (m) + (e j β − e −jmZ β ) F ′ α (m) + (e −jmZ α −e j α ) F ′ β (m)} / Δ | (35)
| A mZ + 1 | = | A mZ + 1 e −j θ | = | {(e −j ( β + mZ α ) −e −j ( α + mZ β ) ) F ′ (m) + (e − jmZ β −e −j β ) F ′ α (m) + (e −j α −e −jmZ α ) F ′ β (m)} / Δ | (36)
RMS value of vibration component caused by mZ-1 peak and mZ + 1 peak respectively, RMS value of mZ-1 peak component = √2 | A mZ-1 |
RMS value of mZ + 1 peak component = √2 | A mZ + 1 |
The maximum amplitude value and the minimum amplitude value of the respective maximum RMS value of the angular velocity mZω c = √2 (| A mZ -1 | + | A mZ + 1 |)
Minimum RMS value = √2 || A mZ-1 | − | A mZ + 1 ||
The method for evaluating the rotational accuracy of a rolling bearing according to claim 1.
角速度mZωcの最大振幅値と最小振幅値の位相は、それぞれ以下の式(37)により
mz -jmZ θ ={(e -j( α - β ) −e j( α - β ) )F’(m)+(e -j β −e j β )F’ α (m)+(e j α −e -j α )F’ β (m)}/Δ (37)
F(m)=F’(m)−Dmz-jmZ θおよびFα(m)=F’α(m)−Dmz-jmZ( θ + α )と置くとき、│F(m)│2cos2α+│Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα≦0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最大且つγ0±π/2で最小となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで最小且つγ0±π/2で最大となり、
│F(m)│2cos2α+│Fα(m)│2−{F(m)F* α(m)+F*(m)Fα(m)}cosα>0のとき、|γ0|≦π/4ならばγ0およびγ0+πで最小且つγ0±π/2で最大となり、π/4<|γ0|≦π/2ならばγ0およびγ0+πで最大、γ0±π/2で最小となる(ただし、2γ0以下の式(28)で与えられ、F * (m)は、F(m)の複素共役であり、F * α (m)は、F α (m)の複素共役である)ことを特徴とする請求項5に記載の転がり軸受の回転精度の評価方法。
Figure 0003858262
The maximum amplitude value and the minimum amplitude value of the phase of the angular velocity MZomega c is the respective following formula (37)
D mz e −jmZ θ = {(e −j ( α β ) −e j ( α β ) ) F ′ (m) + (e −j β− e j β ) F ′ α (m) + ( e j α −e −j α ) F ′ β (m)} / Δ (37)
When F (m) = F ′ (m) −D mz e −jmZ θ and F α (m) = F ′ α (m) −D mz e −jmZ ( θ + α ) , | F (m) | 2 cos2α + | F α (m) | 2 − {F (m) F * α (m) + F * (m) F α (m)} cos α ≦ 0, if | γ 0 | ≦ π / 4 up to ≦ [pi / 2 if minimum gamma 0 and gamma 0 + [pi and γ 0 ± π / 2 | γ 0 and a maximum and at a minimum at γ 0 ± π / 2 at γ 0 + π, π / 4 <| γ 0 And
| F (m) | 2 cos 2α + | F α (m) | 2 − {F (m) F * α (m) + F * (m) F α (m)} cos α> 0, then | γ 0 | ≦ If π / 4, the minimum is γ 0 and γ 0 + π and the maximum is γ 0 ± π / 2. If π / 4 <| γ 0 | ≦ π / 2, the maximum is γ 0 and γ 0 + π, and γ 0 ± (2γ 0 is given by the following equation (28) , F * (m) is a complex conjugate of F (m), and F * α (m) is F α 6. The method for evaluating the rotational accuracy of a rolling bearing according to claim 5, wherein (m) is a complex conjugate .
Figure 0003858262
請求項1〜6に記載の回転精度評価方法を用いて転がり軸受の回転精度を測定することを特徴とする転がり軸受の回転精度測定装置。  A rotational accuracy measuring device for a rolling bearing, wherein the rotational accuracy of the rolling bearing is measured using the rotational accuracy evaluation method according to claim 1.
JP2001288597A 2000-12-06 2001-09-21 Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus Expired - Fee Related JP3858262B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001288597A JP3858262B2 (en) 2001-09-21 2001-09-21 Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus
US10/003,414 US6694816B2 (en) 2000-12-06 2001-12-06 Apparatus and method for evaluating rotational accuracy of rolling bearing and rolling bearing evaluated by the rotational accuracy evaluation method, and apparatus and method for radial vibration of rotating body and rotation unit with rotating body evaluated by the radial vibration evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288597A JP3858262B2 (en) 2001-09-21 2001-09-21 Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2003098042A JP2003098042A (en) 2003-04-03
JP3858262B2 true JP3858262B2 (en) 2006-12-13

Family

ID=19111219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288597A Expired - Fee Related JP3858262B2 (en) 2000-12-06 2001-09-21 Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus

Country Status (1)

Country Link
JP (1) JP3858262B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0101984D0 (en) 2001-05-31 2001-05-31 Skf Ab A device, computer program product and method for indicating a function deviation of one or more details of manufacturing equipment using frequency component analyzes
CN102900534B (en) * 2012-10-26 2014-12-10 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Gas turbine vibration prevention monitoring and protecting method
JP6430234B2 (en) * 2014-12-19 2018-11-28 公立大学法人県立広島大学 Vibration analysis apparatus and program for rotating machine
CN105806621A (en) * 2016-05-10 2016-07-27 中国科学院长春光学精密机械与物理研究所 Intelligent bearing based on Hall displacement sensor
CN114001815A (en) * 2021-10-29 2022-02-01 湖南道依茨动力有限公司 Amplitude measuring device and method, readable storage medium and vehicle

Also Published As

Publication number Publication date
JP2003098042A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
JP2553854B2 (en) Device for measuring surface profile of work piece
Grejda et al. Techniques for calibrating spindles with nanometer error motion
US7926362B2 (en) Method and a system for determining a plurality of load components on a wheel
Shi et al. A hybrid three-probe method for measuring the roundness error and the spindle error
US6694816B2 (en) Apparatus and method for evaluating rotational accuracy of rolling bearing and rolling bearing evaluated by the rotational accuracy evaluation method, and apparatus and method for radial vibration of rotating body and rotation unit with rotating body evaluated by the radial vibration evaluation method
Zhong et al. Vision-based measurement system for instantaneous rotational speed monitoring using linearly varying-density fringe pattern
Zhong et al. Vision-based system for simultaneous monitoring of shaft rotational speed and axial vibration using non-projection composite fringe pattern
JP2009236571A (en) Apparatus and method for measuring rotational accuracy for bearings
Horikawa et al. A low cost, high accuracy roundness measuring system
JP2007086034A (en) Method for measuring rotational accuracy
CN110470242A (en) A kind of heavy parts inner hole circularity on-position measure device and method
CN112666892A (en) Shafting measuring device based on mixed four-point method and shafting profile online reconstruction method
Marsh et al. Experiences with the master axis method for measuring spindle error motions
JP3858262B2 (en) Rolling bearing rotation accuracy evaluation method and rolling bearing rotation accuracy evaluation apparatus
CN108317989B (en) Mechanical angular position sampling-based dynamic radius measuring method for precision centrifuge
Ma et al. Rotation error measurement technology and experimentation research of high-precision hydrostatic spindle
Noguchi et al. Evaluation method to determine radial accuracy of high-precision rotating spindle units
JP3823635B2 (en) Method and apparatus for evaluating surface shape of ball bearing ball
Hii et al. Error motion of a kinematic spindle
JP3379170B2 (en) Non-repetitive rotation accuracy measuring device
CN114812468B (en) H-shaped six-point method-based precise rotation shafting rotation error in-situ separation method
Kong et al. Sparsity adaptive matching pursuit and spectrum line interpolation method for measuring radial and axial error motions of spindle rotation
Okuyama et al. Radial motion measurement of a high-revolution spindle motor
US6715351B1 (en) Wheel balancer data acquisition arm
JP3788231B2 (en) Evaluation method for radial vibration of rotating body and evaluation apparatus for radial vibration of rotating body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees