JPH0540019A - Shape measuring instrument - Google Patents

Shape measuring instrument

Info

Publication number
JPH0540019A
JPH0540019A JP22335791A JP22335791A JPH0540019A JP H0540019 A JPH0540019 A JP H0540019A JP 22335791 A JP22335791 A JP 22335791A JP 22335791 A JP22335791 A JP 22335791A JP H0540019 A JPH0540019 A JP H0540019A
Authority
JP
Japan
Prior art keywords
measured
shape
relative movement
endoscope
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22335791A
Other languages
Japanese (ja)
Other versions
JP2977336B2 (en
Inventor
Yukihiro Sakata
幸寛 坂田
Atsushi Tsuruta
篤 鶴田
Yoshiyuki Omori
義幸 大森
Makoto Suzuki
鈴木  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP3223357A priority Critical patent/JP2977336B2/en
Publication of JPH0540019A publication Critical patent/JPH0540019A/en
Application granted granted Critical
Publication of JP2977336B2 publication Critical patent/JP2977336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To easily and accurately measure the shapes of a recessed and projecting sections formed on the circumferential surface of an object to be measured by measuring the amount of relative movement between a detecting means which detects a specific part of the object placed on a table and the table. CONSTITUTION:A detecting means 5 is constituted of a detecting section, namely, an endoscope 12, CCD camera 13 which converts light from the endoscope 12 into electric signals, and CRT 14 which visualizes the electric signals upon receiving the signals from the camera 13. A sliding means 7 is equipped with a column 15 planted on a pedestal 2, slider 16 which slides on the column 15, and a holder 20 which slides the means 5 in the radial direction of the table 3, namely, in the directions in which the means 5 is brought nearer and separated from the axis of the table 3. Then the amount of relative movement between an object to be measured placed on the table 3 and the means 5 is measured and the shape of a specific part of the object is computed by a computing/ displaying means on the basis of the measured results. The computed shape is displayed on the CRT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、円柱や丸棒等の外測
円周面、若しくは内周が円形状である筒体等の内側円周
面上に形成された凹部及び凸部の形状等、例えば凹部及
び凸部の輪郭の形状、輪郭の大きさ、輪郭を形成する線
の真直度、輪郭が円周方向に占める角度である円周角等
を測定する形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the shape of a concave portion and a convex portion formed on the outer circumferential surface of a cylinder or a round bar, or on the inner circumferential surface of a cylindrical body having a circular inner circumference. Etc. For example, the present invention relates to a shape measuring device for measuring the contour shape of a concave portion and a convex portion, the size of the contour, the straightness of a line forming the contour, the circumferential angle which is the angle occupied by the contour in the circumferential direction, and the like.

【0002】[0002]

【従来の技術】例えばパワ−ステアリングでは、ステア
シャフト及びこれを受けるシャフト受けにはそれぞれ対
向して凹部が形成され、そのステアシャフト側の凹部と
シャフト受け側の凹部によって形成される空間に加圧用
オイルが充填される。従って、ステアシャフト側及びシ
ャフト受け側の凹部の形状が所定通りのものであること
が必要であり、その形状の検査が重要になって来る。さ
て、従来、例えばステアシャフトといった丸棒の円周面
上に形成された凹部や凸部の形状は、検出手段である顕
微鏡を固定し、この顕微鏡に対して被測定物を手作業で
移動させながら、前記凹部や凸部の輪郭を特定すること
で測定していた。
2. Description of the Related Art In power steering, for example, a steering shaft and a shaft receiver for receiving the steering shaft are formed with recesses facing each other, and a space for pressing is provided in a space formed by the recess on the steering shaft side and the recess on the shaft receiving side. Filled with oil. Therefore, it is necessary that the recesses on the steer shaft side and the shaft receiving side have a predetermined shape, and the inspection of the shape becomes important. Conventionally, for example, the shape of the concave portion and the convex portion formed on the circumferential surface of a round bar such as a steer shaft is fixed to a microscope as a detection means, and the measured object is manually moved with respect to this microscope. However, it has been measured by specifying the contours of the concave portions and the convex portions.

【0003】他方、従来、例えばシャフト受けといった
筒体の円周面上に形成された凹部や凸部の形状は、被測
定物の軸線に対して傾いた角度で観察することによって
測定をおこなっていた。
On the other hand, conventionally, the shape of a recess or a protrusion formed on the circumferential surface of a cylindrical body such as a shaft receiver is measured by observing it at an angle inclined with respect to the axis of the object to be measured. It was

【0004】[0004]

【発明が解決しようとする課題】丸棒の円周面上に形成
された凹部や凸部の形状を測定する従来の方法では、前
記円周面の軸線方向、軸線周り及び半径方向への検出手
段と被測定物の相対移動を手作業でおこなうため、正確
な測定をおこなうには熟練を必要とし、又多くの時間や
取扱い上の手間を要するという問題があった。筒体の円
周面上に形成された凹部や凸部の形状を測定する従来の
方法では、被測定物の軸線に対して傾いた角度で観察す
るために、正確な形状検出はしにくく、又ものによって
は見えない部分が生じて検出ができないという問題があ
った。この発明は、上記の事情に鑑みてなされたもので
あり、円周面に形成された凹部及び凸部の形成を、熟練
を必要とせず簡便に、しかも正確に測定できる形状測定
装置を提供するものである。
According to the conventional method for measuring the shape of the concave portion or the convex portion formed on the circumferential surface of the round bar, the detection of the circumferential surface in the axial direction, around the axial line, and in the radial direction is performed. Since the relative movement of the means and the object to be measured is performed by hand, there is a problem that skill is required to perform accurate measurement, and much time and labor for handling are required. In the conventional method of measuring the shape of the concave portion or the convex portion formed on the circumferential surface of the cylindrical body, in order to observe at an angle inclined with respect to the axis of the measured object, it is difficult to accurately detect the shape, In addition, there was a problem that some parts could not be detected and could not be detected. The present invention has been made in view of the above circumstances, and provides a shape measuring device that can easily and accurately measure the formation of concave portions and convex portions formed on a circumferential surface without requiring skill. It is a thing.

【0005】[0005]

【課題を解決するための手段】この発明は、被測定物の
軸線を中心に移動可能な検出手段で被測定部を検出する
ように構成した形状測定装置である。その詳細な構成
は、円柱や丸棒等の外側円周面、若しくは内周が円形状
である筒体等の内側円周面上の特定部分の形状を測定す
るものであって、被測定物を載置するテ−ブルと、その
テ−ブルの近傍に配設され、テ−ブルに対し、テーブル
の軸線方向、テ−ブルの軸線周り及びテ−ブルの半径方
向に相対移動可能で、テ−ブル上に載置される被測定物
の特定部位を検出する検出手段と、それらテ−ブルと検
出手段との相対移動の量を測定し、その測定結果に基づ
きテ−ブル上に載置された被測定物の特定部分の形状を
演算表示する演算表示手段が備えられてなる形状測定装
置である。
SUMMARY OF THE INVENTION The present invention is a shape measuring device configured to detect a portion to be measured by a detecting means movable about an axis of the object to be measured. The detailed configuration is to measure the shape of a specific portion on the outer circumferential surface such as a cylinder or a round bar, or on the inner circumferential surface such as a cylindrical body whose inner circumference is circular. Is placed in the vicinity of the table on which the table is placed, and is relatively movable with respect to the table in the axial direction of the table, around the axial line of the table and in the radial direction of the table. The detection means for detecting a specific portion of the object to be measured placed on the table and the amount of relative movement between the table and the detection means are measured, and the detection means is mounted on the table based on the measurement result. The shape measuring apparatus is provided with calculation display means for calculating and displaying the shape of a specific portion of the placed object to be measured.

【0006】テーブルと検出手段との相対移動を可能に
する手段は具体的に、テーブルを回動する手段、検出手
段をテーブルの軸線に対し平行にスライドさせる手段及
び検出手段をテーブルの軸線に対し半径方向にスライド
させる手段の組合せからなるものが挙げられる。検出手
段は具体的なものとして、被測定部位を観察することに
よって光学的に検出するCCDカメラと、CCDカメラ
の検出結果を映像表示する映像手段を備えてなるものが
挙げられる。
The means for enabling the relative movement of the table and the detecting means are, specifically, means for rotating the table, means for sliding the detecting means in parallel with the axis of the table, and the detecting means for the axis of the table. An example is a combination of means for sliding in the radial direction. Specific examples of the detecting means include one that includes a CCD camera that optically detects by observing the measurement site and an image means that displays the detection result of the CCD camera as an image.

【0007】[0007]

【作用】被測定物の形状は、検出手段とテ−ブルに載置
された被測定物の被測定部位との相対移動に基づいて得
られる。
The shape of the object to be measured is obtained based on the relative movement between the detecting means and the object to be measured placed on the table.

【0008】[0008]

【実施例】この発明を、図1〜図2に示す実施例に基づ
き詳述する。しかし、この実施例によって、この発明が
限定されるものではない。形状測定装置1は図1〜図2
に示すように、基台2と、テ−ブル3と、テ−ブル3を
回動させるテ−ブル回動手段4と、検出手段5と、テ−
ブル3に載置される被測定物と検出手段5の相対移動の
量を測定し、その測定結果に基づき前記被測定物の特定
部位の形状を演算表示する演算表示手段6と、検出手段
5をテ−ブル3の軸線方向(矢印A方向)に移動させ得
るスライド手段7が備えられている。テーブル3は、被
測定物を載置させるもので、被測定物を固定保持するた
めのチャック8が備えられている。テーブル回動手段4
は基台2の上部に配設固定され、出力モータ9を含み、
テーブル3を基台2に対して水平面内で回動させるもの
である。テーブル回動手段4には、テーブル3に載置し
た際の被測定物の軸線をテーブル3の軸線に合致させる
ための芯出し手段10が備えられている。尚、出力モ−
タ9は、ドライバ27からの信号に基づき出力してテ−
ブル3を回転する。又、芯出し手段10は、テ−ブル3
の軸線をスライド手段7のスライド方向に平行にさせる
ための傾斜補正させる機能をも有している。テ−ブル回
動手段4は更に、テ−ブル3を回動した際に、その移動
の角を5秒の分解能で検出するロ−タリエンコ−ダ11
が備えられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the embodiments shown in FIGS. However, the present invention is not limited to this embodiment. The shape measuring device 1 is shown in FIGS.
As shown in FIG. 2, a base 2, a table 3, a table rotating means 4 for rotating the table 3, a detecting means 5, and a table.
Calculation display means 6 for measuring the amount of relative movement between the object to be measured placed on the bull 3 and the detecting means 5, and calculating and displaying the shape of the specific portion of the object to be measured based on the measurement result, and the detecting means 5. The slide means 7 is provided for moving the table 3 in the axial direction of the table 3 (direction of arrow A). The table 3 is for placing an object to be measured, and is provided with a chuck 8 for fixing and holding the object to be measured. Table rotating means 4
Is fixed to the upper portion of the base 2 and includes an output motor 9,
The table 3 is rotated with respect to the base 2 in a horizontal plane. The table rotating means 4 is provided with centering means 10 for aligning the axis line of the object to be measured when it is placed on the table 3 with the axis line of the table 3. The output mode
The data output from the driver 9 based on the signal from the driver 27.
Rotate Bull 3. Further, the centering means 10 is provided in the table 3
It also has a function of correcting the inclination for making the axis line of (1) parallel to the sliding direction of the sliding means 7. The table rotation means 4 further detects the angle of movement of the table 3 when the table 3 is rotated, with a rotary encoder 11 having a resolution of 5 seconds.
Is provided.

【0009】検出手段5は、検出部である内視鏡12
と、内視鏡12からの光を電気信号に変換するCCDカ
メラ13と、CCDカメラ13からの信号を受けて映像
化するCRT14から主に構成されている。内視鏡12
は、ほぼ円柱形状であって、その円柱の軸線に対し直交
する方向に光照射用の窓及び検出用の窓が備えられてい
る、いわゆる直交視型のものである内視鏡12は、被測
定物と軸線を平行に位置させることにより観察が可能と
なる。33は、被測定物を照明する光源手段である。検
出手段5は、特定形状の輪郭を自動的に検出するエッジ
センシング機能を有し、システムコントロ−ラ32にエ
ッジを検出しているか否かのデ−タ信号を送るものであ
る。
The detecting means 5 is an endoscope 12 which is a detecting portion.
A CCD camera 13 that converts light from the endoscope 12 into an electric signal, and a CRT 14 that receives a signal from the CCD camera 13 and visualizes the signal. Endoscope 12
Is a so-called orthogonal view type endoscope 12 having a substantially cylindrical shape and having a window for light irradiation and a window for detection in a direction orthogonal to the axis of the cylinder. Observation is possible by arranging the measurement object and the axis in parallel. 33 is a light source means for illuminating the object to be measured. The detecting means 5 has an edge sensing function for automatically detecting the contour of a specific shape, and sends a data signal to the system controller 32 indicating whether or not an edge is detected.

【0010】スライド手段7は、基台2に立設されたコ
ラム15と、コラム15に沿って上下方向(矢印A方
向)にスライドするスライダ16と、モ−タ17、ポ−
ルねじ18等を含み、スライダ16を上下方向にスライ
ドさせるための出力手段19と、スライダ16に保持さ
れると共に、検出手段5をテーブル3の半径方向、つま
りテ−ブル3の軸線に対して近接・離隔の方向(矢印B
方向)にスライド可能に保持するホルダ−20から主に
構成されている。モ−タ17はドライバ21からの信号
に基づいて出力して、スライダ16はコラム15に沿っ
てスライドする。コラム15とスライダ16の間には、
スライダ6が上下方向にスライドした際にその移動量を
1μmの分解能で検出するための測長手段22が配設さ
れている。23は、測長手段22が検出して得た移動量
を表示する表示部である。
The slide means 7 includes a column 15 provided upright on the base 2, a slider 16 which slides along the column 15 in the vertical direction (direction of arrow A), a motor 17, and a port.
And an output means 19 for sliding the slider 16 in the vertical direction, including a screw 18 and the like, and a detection means 5 held by the slider 16 and the detection means 5 in the radial direction of the table 3, that is, with respect to the axis of the table 3. Direction of proximity / separation (arrow B
It is mainly composed of a holder -20 which holds slidably in (direction). The motor 17 outputs based on the signal from the driver 21, and the slider 16 slides along the column 15. Between the column 15 and the slider 16,
A length measuring unit 22 is provided for detecting the amount of movement of the slider 6 when it slides in the vertical direction with a resolution of 1 μm. Reference numeral 23 is a display unit that displays the movement amount detected by the length measuring unit 22.

【0011】他方、ホルダ−20は、送りツマミ24を
手動操作することによって、スライダ16に対してスラ
イドされる。25は、スライダ16に対してホルダ−2
0の位置を固定するためのクランプのツマミである。ス
ライダ16とホルダ−20の間には、スライダ16に対
してホルダ−20がテ−ブル3の軸線に向ってスライド
した際にその移動量を1μmの分解能で検出するための
測長手段26が配設されている。測長手段26が検出し
て得た移動量は、測長手段22の場合と同様に、表示部
23に表示される。
On the other hand, the holder 20 is slid with respect to the slider 16 by manually operating the feed knob 24. 25 is a holder-2 for the slider 16
It is a knob of a clamp for fixing the 0 position. Between the slider 16 and the holder 20, there is a length measuring means 26 for detecting the amount of movement of the holder 20 with respect to the slider 16 when the holder 20 slides toward the axis of the table 3 with a resolution of 1 μm. It is arranged. The movement amount detected by the length measuring unit 26 is displayed on the display unit 23 as in the case of the length measuring unit 22.

【0012】演算表示手段6は、デ−タメモリ28と、
演算部29と、CRT14と、操作部30と、表示部3
1と、システムコントロ−ラ32を備えて構成されてい
る。デ−タメモリ28は、ロ−タリエンコ−ダ11、測
長手段22及び測長手段26からのデ−タ信号を受け
て、それらに関わるデ−タを記憶するものである。演算
部29は、デ−タメモリ28のデ−タをシステムコント
ロ−ラ32の指令(制御)に基づいて、所定の演算をお
こなうものである。
The calculation display means 6 includes a data memory 28 and
Arithmetic unit 29, CRT 14, operation unit 30, and display unit 3
1 and a system controller 32. The data memory 28 receives data signals from the rotary encoder 11, the length measuring means 22 and the length measuring means 26 and stores the data related thereto. The arithmetic unit 29 performs a predetermined arithmetic operation on the data of the data memory 28 based on the command (control) of the system controller 32.

【0013】CRT14及び表示部31は、演算部29
のおこなった演算の結果を表示するものである。CRT
14は、システムコントロ−ラ32からの制御信号に基
づき、検出手段5の表示手段又は/及び演算表示手段6
として作動する。表示部31は、液晶表示部及びプリン
タ部を備えて構成されている。操作部30は、システム
コントロ−ラ32が各手段、各部を所望通りに作動させ
るように、システムコントロ−ラ32に制御信号を送る
ためのものである。システムコントロ−ラ32の作動
は、形状測定装置1の作動の中で詳しく後述する。
The CRT 14 and the display unit 31 include a calculation unit 29.
The result of the calculation performed by is displayed. CRT
Reference numeral 14 is a display means of the detection means 5 and / or a calculation display means 6 based on a control signal from the system controller 32.
Works as. The display unit 31 includes a liquid crystal display unit and a printer unit. The operation unit 30 is for sending a control signal to the system controller 32 so that the system controller 32 operates each unit and each unit as desired. The operation of the system controller 32 will be described later in detail in the operation of the shape measuring apparatus 1.

【0014】形状測定装置1は、上記のように構成され
ている。以下において、形状測定装置1を用いて、筒状
体であるパワ−ステアリングのシャフト受けの内側円周
面に形成された凹部の形状測定を述べる。尚、形状測定
する凹部の輪郭は、方形となるように加工されたもので
ある。操作部30を操作してシステムコントロ−ラ32
からスライド手段7に制御信号、つまりモ−タ17を出
力させるための制御信号をドライバ21に送り、スライ
ダ16側に保持されている内視鏡12を最も高く位置さ
せる。この状態が得られた後、被測定物であるシャフト
受け(図示省略)を、テ−ブル3に載置してチャック8
で締付け固定する。ここで、芯出し手段10を用いて、
前記シャフト受けの軸線をテ−ブル3の軸線に合致させ
ると共に、テ−ブル3の軸線をスライド手段7のスライ
ド方向に平行になるように傾斜補正する。
The shape measuring device 1 is constructed as described above. The shape measurement of the concave portion formed on the inner circumferential surface of the shaft receiver of the power steering which is a cylindrical body will be described below using the shape measuring device 1. The contour of the concave portion whose shape is to be measured is processed to have a rectangular shape. The operation unit 30 is operated to operate the system controller 32.
Sends a control signal from the slide means 7 to the driver 21, that is, a control signal for outputting the motor 17, to position the endoscope 12 held on the slider 16 side to the highest position. After this state is obtained, the shaft receiver (not shown), which is the object to be measured, is placed on the table 3 and the chuck 8 is attached.
Tighten and fix with. Here, using the centering means 10,
The axis of the shaft receiver is matched with the axis of the table 3, and the inclination of the axis of the table 3 is corrected so as to be parallel to the sliding direction of the slide means 7.

【0015】送りツマミ24を操作してホルダ−20を
矢印B方向にスライドさせ、CRT14を観察しながら
内視鏡12をシャフト受けの内周面の観察可能な位置に
位置合わせする。位置合わせを終えると、ツマミ25を
操作してスライダ16に対するホルダ−20の位置を保
持するようにクランプする。ここで、再び操作部30を
操作してシステムコントロ−ラ32からスライド手段7
に制御信号を送り、シャフト受けの被測定部である凹部
の輪郭を観察できる位置まで内視鏡12を矢印A方向に
下降スライドさせる。
By operating the feed knob 24, the holder 20 is slid in the direction of arrow B, and the endoscope 12 is aligned with the observable position on the inner peripheral surface of the shaft receiver while observing the CRT 14. When the alignment is completed, the knob 25 is operated to clamp the holder 20 so as to hold the position of the holder 20 with respect to the slider 16. Here, the operating section 30 is operated again to move the slide means 7 from the system controller 32.
A control signal is sent to the endoscope 12 and the endoscope 12 is slid down in the direction of arrow A to a position where the contour of the concave portion, which is the measured portion of the shaft receiver, can be observed.

【0016】操作部30を操作してシステムコントロー
ラ32からCRT14に、縦軸と横軸からなる基準線を
映像させる制御信号を送る。更に、操作部30を操作し
てシステムコントローラ32からテーブル回動手段4を
作動させるための制御信号、つまりドライバ27に出力
モータ9を出力させる制御信号を送ってテーブル3を回
転させ、被測定部である凹部の輪郭線のうちシャフト受
けの軸線と平行な軸線とCRT14に映されている基準
線の縦軸を一致させる。ここで、内視鏡12が被測定凹
部の輪郭に沿って自動的に相対移動するように、内視鏡
12がおこなう被測定凹部の輪郭のエッジセンシングの
データ信号に基づき、ドライバ21及び27がそれぞれ
モータ17及び出力モータ9を出力させるための制御信
号を、測定者は、操作部30を操作してシステムコント
ローラ32に送る。これと共に、前記相対移動の終了後
に被測定凹部の輪郭の形状と各寸法、被測定凹部の円周
角、及び被測定凹部の輪郭線の真直度を算出しCRT1
4及び表示部31に表示させるための制御信号を、シス
テムコントローラ32から演算部29に送る。
By operating the operation unit 30, the system controller 32 sends a control signal to the CRT 14 to image a reference line consisting of a vertical axis and a horizontal axis. Further, by operating the operation unit 30, a control signal for operating the table rotating means 4 from the system controller 32, that is, a control signal for outputting the output motor 9 to the driver 27 is sent to rotate the table 3 and the measured portion. Among the contour lines of the concave portion, the axis line parallel to the axis line of the shaft receiver is aligned with the vertical axis of the reference line shown on the CRT 14. Here, based on the data signal of the edge sensing data of the contour of the measured concave portion performed by the endoscope 12, the drivers 21 and 27 are configured so that the endoscope 12 automatically moves relative to the contour of the measured concave portion. The measurer operates the operation unit 30 to send control signals for respectively outputting the motor 17 and the output motor 9 to the system controller 32. At the same time, after the completion of the relative movement, the contour shape and dimensions of the measured concave portion, the circumferential angle of the measured concave portion, and the straightness of the contour line of the measured concave portion are calculated to calculate CRT1.
4 and a control signal for displaying on the display unit 31 is sent from the system controller 32 to the calculation unit 29.

【0017】被測定凹部の輪郭に沿って内視鏡12が自
動的に被測定物に対し相対移動をおこなうと、ロータリ
エンコーダ11及び測長手段22がその相対移動の量を
検出してデータメモリ28にデータ信号として送る。演
算部29は、ロータリエンコーダ11、測長手段22、
及び測長手段26の検出信号をデータメモリ28から得
て所定の演算をおこない、その演算の結果をCRT14
及び表示部31に送る。CRT14及び表示部31は、
演算部29の演算結果の表示及びプリントをおこなう。
When the endoscope 12 automatically moves relative to the object to be measured along the contour of the concave portion to be measured, the rotary encoder 11 and the length measuring means 22 detect the amount of relative movement and the data memory. 28 as a data signal. The calculation unit 29 includes a rotary encoder 11, a length measuring unit 22,
Also, the detection signal of the length measuring means 26 is obtained from the data memory 28, a predetermined calculation is performed, and the result of the calculation is displayed on the CRT 14
And send to the display unit 31. The CRT 14 and the display unit 31 are
The calculation result of the calculation unit 29 is displayed and printed.

【0018】形状測定装置1は上述したように、検出手
段5と被測定物の凹部の輪郭との相対移動に基づきその
輪郭の形状を求める構成であることより、円周面上に形
成された凹部の輪郭は、熟練を必要とせず、簡便で、し
かも正確に測定することができる。又、通常では肉眼の
届かない内側円周部に形成された凹部の輪郭までもその
形状を測定することができる。
As described above, the shape measuring device 1 is formed on the circumferential surface because it is configured to obtain the shape of the contour based on the relative movement of the detecting means 5 and the contour of the concave portion of the object to be measured. The contour of the concave portion does not require skill and can be measured easily and accurately. Further, the shape of a concave portion formed in the inner circumferential portion, which cannot be normally seen by the naked eye, can be measured.

【0019】形状測定装置1の上記の使用では、輪郭の
形状と各寸法、被測定凹部の円周角、及び被測定凹部の
輪郭線の真直度を一緒に求めたが、所望により得たい結
果だけを適宜選択して得ることができる。その際、測長
手段22が検出した結果、つまり被測定凹部の輪郭の、
軸線方向の距離は表示部23に、ロータリエンコーダ1
1が検出した結果、つまり被測定凹部の円周角はそれぞ
れ表示部31に表示される。形状測定装置1ではホルダ
ー20は手動送りとなっているが、自動送りとさせるこ
とにより、検出手段5と被測定物との相対移動を完全な
自動化にすることができる。
In the above-mentioned use of the shape measuring apparatus 1, the shape and each dimension of the contour, the circumferential angle of the measured concave portion, and the straightness of the contour line of the measured concave portion were obtained together. Can be appropriately selected and obtained. At that time, the result detected by the length measuring means 22, that is, the contour of the measured concave portion,
The distance in the axial direction is indicated on the display unit 23 by the rotary encoder 1
The detection result of 1, that is, the circumferential angle of the measured concave portion is displayed on the display unit 31, respectively. Although the holder 20 is manually fed in the shape measuring apparatus 1, the relative movement between the detection means 5 and the object to be measured can be completely automated by automatically feeding the holder 20.

【0020】形状測定装置1では、被測定凹部の輪郭を
CRT14の所定位置に映した後には、出力モータ9及
びモータ17が自動的に出力してエッジセンシングをお
こない、検出手段5と被測定物が自動的に相対移動をお
こなう構成になっているが、CRT14を見ながら出力
モータ9及びモータ17を適宜出力させて相対移動をお
こなわせる構成であってもよい。形状測定装置1のこの
使用では、被測定物が筒状体であってその内周面側を測
定しているが、この他に被測定物が丸棒状であってその
円周面に形成された凹部及び凸部の形状を測定すること
ができる。
In the shape measuring apparatus 1, after the contour of the concave portion to be measured is projected at a predetermined position of the CRT 14, the output motor 9 and the motor 17 automatically output to perform edge sensing, and the detecting means 5 and the object to be measured. Is configured to automatically perform relative movement, but it may be configured to appropriately output the output motor 9 and the motor 17 while observing the CRT 14 to perform relative movement. In this use of the shape measuring apparatus 1, the object to be measured is a cylindrical body and its inner peripheral surface side is measured, but in addition to this, the object to be measured is a round bar and is formed on the circumferential surface thereof. The shape of the concave and convex portions can be measured.

【0021】[0021]

【発明の効果】この発明は、被測定物に対して、被測定
物の軸線方向、軸線周り、及び被測定物の半径方向に相
対移動可能な検出手段を備え、且つその検出手段と被測
定物の相対移動に基づいて形状を測定するように構成し
たことにより、測定対象である、円周面上の凹部、凸部
といった特定部分の形状を、熟練を必要とせず簡便にし
かも正確に測定し得る形状測定装置である。又、通常で
は肉眼の届かない内側円周部に形成された凹部の輪郭ま
でもその形状を測定することができるという効果が得ら
れている。
According to the present invention, there is provided detection means capable of moving relative to the object to be measured in the axial direction of the object to be measured, around the axis, and in the radial direction of the object to be measured, and the detecting means and the object to be measured. Since it is configured to measure the shape based on the relative movement of an object, the shape of a specific portion such as a concave portion or a convex portion on the circumferential surface, which is a measurement target, can be easily and accurately measured without requiring skill. It is a possible shape measuring device. Further, the effect is obtained that even the contour of the concave portion formed in the inner circumferential portion, which is not normally visible to the naked eye, can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】図1に示す実施例の作動を示すための構成説明
図である。
FIG. 2 is a structural explanatory view showing an operation of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 形状測定装置 3 テーブル 4 テーブル回動手段 5 検出手段 6 演算表示手段 7 スライド手段 11 ロータリエンコーダ 12 内視鏡(検出手段) 13 CCDカメラ(検出手段) 22,26 測長手段 1 Shape Measuring Device 3 Table 4 Table Rotating Means 5 Detecting Means 6 Calculation Display Means 7 Slide Means 11 Rotary Encoder 12 Endoscope (Detecting Means) 13 CCD Camera (Detecting Means) 22, 26 Length Measuring Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 誠 愛知県安城市住吉町唐池56−4 株式会社 ミツトヨ安城営業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Suzuki 56-4 Karaike, Sumiyoshi-cho, Anjo City, Aichi Prefecture Mitutoyo Anjo Sales Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円柱や丸棒等の外側円周面、若しくは内
周が円形状である筒体等の内側円周面上の特定部分の形
状を測定するものであって、 被測定物を載置するテ−ブルと、そのテ−ブルの近傍に
配設され、テ−ブルに対し、テーブルの軸線方向、テ−
ブルの軸線周り及びテ−ブルの半径方向に相対移動可能
で、テ−ブル上に載置される被測定物の特定部位を検出
する検出手段と、それらテ−ブルと検出手段との相対移
動の量を測定し、その測定結果に基づきテ−ブル上に載
置された被測定物の特定部分の形状を演算表示する演算
表示手段が備えられてなる形状測定装置。
1. A method for measuring a shape of a specific portion on an outer circumferential surface such as a cylinder or a round bar, or an inner circumferential surface such as a cylindrical body having an inner circumference of a circular shape. The table to be placed is arranged in the vicinity of the table, and with respect to the table, the axial direction of the table, the table
Detection means for detecting a specific portion of the object to be measured placed on the table and relative movement between the table and the detection means. The shape measuring device is provided with calculation display means for calculating and displaying the shape of the specific portion of the object to be measured placed on the table based on the measurement result.
JP3223357A 1991-08-08 1991-08-08 Shape measuring device Expired - Lifetime JP2977336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223357A JP2977336B2 (en) 1991-08-08 1991-08-08 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223357A JP2977336B2 (en) 1991-08-08 1991-08-08 Shape measuring device

Publications (2)

Publication Number Publication Date
JPH0540019A true JPH0540019A (en) 1993-02-19
JP2977336B2 JP2977336B2 (en) 1999-11-15

Family

ID=16796891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223357A Expired - Lifetime JP2977336B2 (en) 1991-08-08 1991-08-08 Shape measuring device

Country Status (1)

Country Link
JP (1) JP2977336B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310642A (en) * 2001-02-08 2002-10-23 Mitsutoyo Corp Surface property measuring instrument
JP2005113929A (en) * 2003-08-11 2005-04-28 Fukoku Co Ltd Method of measuring inner diameter size of large diameter side end portion of boot for constant velocity joint and its device
US7320199B2 (en) 2003-09-08 2008-01-22 Nissan Motor Co., Ltd. Seal structure for a vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310642A (en) * 2001-02-08 2002-10-23 Mitsutoyo Corp Surface property measuring instrument
JP4689890B2 (en) * 2001-02-08 2011-05-25 株式会社ミツトヨ Surface texture measuring device
JP2005113929A (en) * 2003-08-11 2005-04-28 Fukoku Co Ltd Method of measuring inner diameter size of large diameter side end portion of boot for constant velocity joint and its device
US7320199B2 (en) 2003-09-08 2008-01-22 Nissan Motor Co., Ltd. Seal structure for a vehicle

Also Published As

Publication number Publication date
JP2977336B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP4926180B2 (en) How to determine the virtual tool center point
JP4163545B2 (en) Reference jig for roundness measuring machine
US8953034B1 (en) Video imaging device with an integrated battery
US20050117024A1 (en) Gradient displaying method of mobile terminal
US20180058882A1 (en) Calibration device and calibration method
US10890443B2 (en) Roundness measuring device, measurement guide system, and measurement guide method
JP5297906B2 (en) Image probe calibration method and shape measuring machine
JPH05281090A (en) Lens meter
JP5270138B2 (en) Calibration jig and calibration method
JP2000266534A (en) Surface profile measuring apparatus, inclination adjuster therefor and method for adjusting attitude of object
JP2786070B2 (en) Inspection method and apparatus for transparent plate
JP2977336B2 (en) Shape measuring device
JP4778855B2 (en) Optical measuring device
JP4284765B2 (en) Robot hand position measuring device
JP2000292161A (en) Circularity measuring instrument
CN112468802A (en) Camera homogeneity test auxiliary device
JPH06201303A (en) Three dimensional measuring device
JPH08136224A (en) Dimension measuring instrument
JP6726566B2 (en) Drive unit tilt adjusting method and drive unit tilt adjusting program
JP3226241B2 (en) Lens meter
CN113295075B (en) Measuring system and method
JP2506730Y2 (en) Distance between press dies
KR20200001197U (en) Device for inspecting inner surface of bore
JP5363196B2 (en) Dimension measuring device
JP3207822B2 (en) Lens meter