JP2005113173A - Electroplating device for flexible multilayer circuit board - Google Patents
Electroplating device for flexible multilayer circuit board Download PDFInfo
- Publication number
- JP2005113173A JP2005113173A JP2003345505A JP2003345505A JP2005113173A JP 2005113173 A JP2005113173 A JP 2005113173A JP 2003345505 A JP2003345505 A JP 2003345505A JP 2003345505 A JP2003345505 A JP 2003345505A JP 2005113173 A JP2005113173 A JP 2005113173A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- flexible multilayer
- wiring board
- multilayer wiring
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、ポリイミド等の樹脂からなる絶縁層と導体配線層が交互に積層してなる多層構造を有するフレキシブル多層配線基板の製造に関しするものであり、特に、半導体素子搭載用インターポーザに用いられ、微小径ブラインドビアホールをリールトゥリール連続電解めっきにて形成するフレキシブル多層配線基板のめっき装置に関する。 The present invention relates to the production of a flexible multilayer wiring board having a multilayer structure in which insulating layers made of resin such as polyimide and conductor wiring layers are alternately laminated, and particularly used for an interposer for mounting a semiconductor element. The present invention relates to a plating apparatus for a flexible multilayer wiring board for forming minute diameter blind via holes by reel-to-reel continuous electrolytic plating.
近年、半導体大規模集積回路(LSI)等の半導体素子ではトランジスターの集積度が高まり、その動作速度はクロック周波数で1GHzに達するものが、また、入出力端子数では1,000を越えるものが出現するに至っている。 In recent years, semiconductor elements such as semiconductor large-scale integrated circuits (LSIs) have increased in the degree of integration of transistors, and the operating speed has reached 1 GHz in terms of clock frequency, and the number of input / output terminals has exceeded 1,000. Has led to.
また、半導体素子をプリント配線基板に実装するために、BGAやCSP等のインターポーザが開発され実用化されている。 Moreover, in order to mount a semiconductor element on a printed wiring board, interposers such as BGA and CSP have been developed and put into practical use.
このような多層配線基板は、銅貼基板やセラミック基板上に絶縁樹脂層と導体配線層を交互に積み上げて形成される(例えば、特許文献1参照)。この工法にて作製された多層配線基板の絶縁層は、ポリイミド等の樹脂を塗布することにより形成し薄膜化することができる。また、導体配線層はめっきで形成でき、微細配線が可能となる。一方、上下の導体配線層を接続するビアホールはレーザ加工等にて孔を形成し、内部をめっきすることにより形成できる。 Such a multilayer wiring board is formed by alternately stacking insulating resin layers and conductor wiring layers on a copper-clad substrate or a ceramic substrate (see, for example, Patent Document 1). The insulating layer of the multilayer wiring board manufactured by this method can be formed and thinned by applying a resin such as polyimide. Further, the conductor wiring layer can be formed by plating, and fine wiring is possible. On the other hand, the via hole connecting the upper and lower conductor wiring layers can be formed by forming a hole by laser processing or the like and plating the inside.
また、これとは別に、従来の多層プリント配線基板に銅箔付ポリイミドフィルムを接着剤で貼り合わせた構成のものも提案されている(例えば、特許文献2参照)。この構成においても、銅箔の薄さから微細配線を形成することが可能となり、同様に高配線密度化、薄膜化、小型化を図ることができる。さらに、テープ状のフィルムのためリールトゥリールでの処理が可能となり従来の枚葉処理とは異なり生産効率の向上も可能となる。 Separately, a structure in which a polyimide film with copper foil is bonded to a conventional multilayer printed wiring board with an adhesive has also been proposed (see, for example, Patent Document 2). Also in this configuration, it is possible to form fine wiring from the thin copper foil, and similarly, high wiring density, thin film, and miniaturization can be achieved. Furthermore, since it is a tape-like film, reel-to-reel processing is possible, and production efficiency can be improved unlike conventional sheet processing.
一方、上下の導体配線層を接続するビアホールの形成には、エキシマーレーザやYAG第3高調波、第4高調波を用いたレーザ加工機の導入が盛んになり、微小径のビアホール形成が行われている。上下の導体配線層を接続するビアホールは、導体材料、有機絶縁材料の順にレーザで形成して、下部導体配線層表面を露出させた後、ビアホールの下部導体配線層に堆積した有機絶縁材料の残さを除去し、無電解めっき等で電気めっきのシード層を形成し、このシード層を電極にして孔内部の側面や底部に一定厚のめっきを析出させ形成する。 On the other hand, for the formation of via holes that connect the upper and lower conductor wiring layers, the introduction of excimer lasers and laser processing machines using third and fourth harmonics of YAG has become popular, and the formation of via holes with very small diameters has been carried out. ing. Via holes that connect the upper and lower conductor wiring layers are formed by laser in the order of conductor material and organic insulating material, exposing the surface of the lower conductor wiring layer, and then the residue of the organic insulating material deposited on the lower conductor wiring layer of the via hole Then, an electroplating seed layer is formed by electroless plating or the like, and this seed layer is used as an electrode to deposit a certain thickness of plating on the side and bottom of the hole.
この、孔内部の側面や底部に一定厚のめっき析出を行う電気めっき工程では、近年、高速信号を通すため、あるいは配線の自由度を上げる目的で孔内部をめっき金属で埋めてフィルドビアを形成し、ビア直上へビアホールを形成する方法が盛んに用いられている。 In this electroplating process, which deposits a certain thickness on the side and bottom of the hole, recently, filled vias are formed by filling the hole with plating metal in order to pass high-speed signals or increase the degree of freedom of wiring. A method of forming a via hole directly above a via is actively used.
このフィルドビアめっきは、種々のポリマー、ブライトナー、レベラ−と称する添加剤によって選択的に孔内部にめっき金属を析出させる手法をとっている(例えば、特許文献3参照)。このフィルドビアめっきを銅箔付ポリイミドフィルムなどのテープ状の基板で行う場合は、リールトゥリールで連続処理を行う電気めっき装置が必要となる。 This filled via plating employs a technique in which a plating metal is selectively deposited inside the hole by various additives called polymers, brighteners, and levelers (see, for example, Patent Document 3). When this filled via plating is performed on a tape-shaped substrate such as a polyimide film with copper foil, an electroplating apparatus that performs continuous processing on a reel-to-reel is required.
このリールトゥリールで連続処理を行う電気めっき装置は、通常電解めっき槽の中に陰極給電部分があると陰極給電部分にもめっきが析出してしまい、搬送部および基板に傷ができる等の支障が出る為、電解めっき槽の外のめっき液が無い部分に陰極給電部分を設置する。 In this electroplating apparatus that performs continuous processing on a reel-to-reel basis, if there is a cathode power feeding part in an ordinary electroplating bath, plating also deposits on the cathode power feeding part, which can cause problems such as damage to the transfer part and the substrate. Therefore, the cathode feeding part is installed outside the electrolytic plating tank in the part where there is no plating solution.
また、連続めっき装置の場合、めっき時間と搬送速度に応じて電解めっき槽の長さが決定されるが、一基の電解めっき槽でその両端に陰極給電部分を設けたものでは、めっき槽が長い場合は基材の抵抗にもよるが、めっき時の設定電流に対して電圧が非常に大きくなり、基材の発熱等の問題があるために、複数の電解めっき槽を設け、その間に陰極給電部分を配置する場合が多い。 In the case of a continuous plating apparatus, the length of the electrolytic plating tank is determined according to the plating time and the conveyance speed, but in the case where a cathode feeding portion is provided at both ends of one electrolytic plating tank, the plating tank is If it is long, depending on the resistance of the substrate, the voltage becomes very large with respect to the set current during plating, and there are problems such as heat generation of the substrate. In many cases, a power feeding portion is arranged.
この陰極給電部分は、電解めっき槽の両端に配置され、めっき液には浸漬されずに気中に存在し、基板と陰極給電部分の接触不良により充分な給電が出来なくなるのを防止する為に、水等の液体が供給されている。しかし、フィルドビアめっきを行う場合、この陰極給電部分の水供給、および陰極給電部分が気中であるために添加剤の消失、基板の酸化、ビア内の銅濃度低下等の問題により、フィルドビアめっきが通常のめっき時間よりも長くかかる。つまり、ビアフィリングが遅れるという問題があった。
本発明は、リールトゥリールで連続処理を行う電気めっき装置によって,多層配線基板の上下の導体配線層を接続するビアホールを穴埋めするビアフィリングを行う場合に、陰極給電部分をめっき液浴内に配置し、ビアフィリングの時間を短縮するとともに、めっき液浴内の陰極給電部分に析出しためっきを連続的に剥離することが可能なめっき装置を提供することを課題とする。 The present invention arranges a cathode power feeding portion in a plating solution bath when performing via filling that fills via holes connecting upper and lower conductor wiring layers of a multilayer wiring board by an electroplating apparatus that performs continuous processing on a reel-to-reel basis. It is another object of the present invention to provide a plating apparatus capable of shortening the via filling time and continuously peeling the plating deposited on the cathode power feeding portion in the plating solution bath.
本発明は、有機絶縁材料からなる絶縁層と導体材料からなる配線層が交互に積層され、上下の配線層を接続するブラインドビアホールを有するフレキシブル多層配線基板の該ブラインドビアホールをめっき金属で埋めることにより形成するリールトゥリール連続電解めっき装置において、陰極給電部分が電解めっき液中に設けられていることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 According to the present invention, an insulating layer made of an organic insulating material and a wiring layer made of a conductive material are alternately stacked, and the blind via hole of a flexible multilayer wiring board having a blind via hole connecting the upper and lower wiring layers is filled with a plating metal. In the reel-to-reel continuous electrolytic plating apparatus to be formed, the electroplating apparatus for a flexible multilayer wiring board is characterized in that a cathode feeding portion is provided in an electrolytic plating solution.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記陰極給電部分が、導電性を持つ帯体であることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 The present invention is also the electroplating apparatus for a flexible multilayer wiring board according to the above invention, characterized in that the cathode feeding portion is a conductive band.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記導電性を持つ帯体が、溶接接合及び全周圧延された金属ベルトもしくは導電性樹脂ベルトであることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 In the electroplating apparatus for a flexible multilayer wiring board according to the present invention, the conductive band is a metal belt or a conductive resin belt that has been welded and rolled all around. An electroplating apparatus for a flexible multilayer wiring board.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記導電性を持つ帯体が、該導電性を持つ帯体の搬送過程にて陰極給電ローラーに接触することによって陰極性をもつ帯体となることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 Further, the present invention provides the electroplating apparatus for a flexible multilayer wiring board according to the above invention, wherein the conductive band contacts the cathode feeding roller in the process of transporting the conductive band. An electroplating apparatus for a flexible multilayer wiring board, wherein the electroplating apparatus is characterized in that it has a band.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記導電性を持つ帯体に析出しためっきを剥離するために、めっき剥離処理槽を電解めっき槽に隣接して設け、該導電性を持つ帯体を連続的に電解めっき槽内とめっき剥離処理
槽内を通過させることを特徴とするフレキシブル多層配線基板の電解めっき装置である。
Further, the present invention provides an electroplating apparatus for a flexible multilayer wiring board according to the above invention, wherein a plating stripping treatment tank is provided adjacent to the electroplating tank in order to peel the plating deposited on the conductive belt. An electroplating apparatus for a flexible multilayer wiring board, wherein the conductive strip is continuously passed through an electroplating bath and a plating stripping bath.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記導電性を持つ帯体は、絶縁性駆動ローラーによって抱き角を持って搬送され、基板を支持する為に基板の表裏少なくとも1箇所ずつ該抱き角部分を基板に密着させることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 The present invention is also directed to the electroplating apparatus for a flexible multilayer wiring board according to the above invention, wherein the conductive band is transported with a holding angle by an insulative driving roller and supports the board in order to support the board. An electroplating apparatus for a flexible multilayer wiring board, wherein at least one of the corner portions is brought into close contact with the substrate.
また、本発明は、上記発明によるフレキシブル多層配線基板の電解めっき装置において、前記フレキシブル多層配線基板の搬送方式が、垂直搬送であることを特徴とするフレキシブル多層配線基板の電解めっき装置である。 The present invention is also the electroplating apparatus for a flexible multilayer wiring board according to the above invention, characterized in that the method for transporting the flexible multilayer wiring board is vertical transport.
本発明は、ブラインドビアホールをめっき金属で埋めることにより形成するリールトゥリール連続電解めっき装置において、陰極給電部分が電解めっき液中に設けられており、めっき剥離処理槽を電解めっき槽に隣接して設け、導電性を持つ帯体を連続的に電解めっき槽内とめっき剥離処理槽内を通過させるので、ビアフィリングの時間を短縮し、陰極給電部分に析出しためっきを連続的に剥離するフレキシブル多層配線基板の電解めっき装置となる。 The present invention relates to a reel-to-reel continuous electrolytic plating apparatus that is formed by filling blind via holes with plating metal, the cathode feeding portion is provided in the electrolytic plating solution, and the plating stripping treatment tank is adjacent to the electrolytic plating tank. A flexible multi-layer that continuously passes the conductive strip through the electrolytic plating bath and the plating stripping treatment tank, shortening the via filling time and continuously stripping the plating deposited on the cathode power feeding section It becomes an electrolytic plating apparatus for a wiring board.
以下に、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
一般的な電解めっき装置は、図1に示す通り,巻き出しリール(101)と巻取りリール(105)を備え、フレキシブル多層配線基板の巾方向を垂直にして搬送するリールトゥリール連続電解めっき装置である。 As shown in FIG. 1, a general electroplating apparatus includes a reel (101) and a take-up reel (105), and a reel-to-reel continuous electroplating apparatus that conveys the flexible multilayer wiring board in the vertical direction. It is.
図2は、図1に示すリールトゥリール連続電解めっき装置において、陰極給電部分(102)と電解めっき槽(103)で構成される1ユニットを示したものである。 FIG. 2 shows one unit composed of a cathode feeding portion (102) and an electrolytic plating tank (103) in the reel-to-reel continuous electrolytic plating apparatus shown in FIG.
リールトゥリールめっき装置は1つの電解めっき槽では槽の長さが長くなり、両端での給電では基材の抵抗により、設定電流に対し電圧が大きくなり基材の発熱等の問題が生じるため、図1に示すように、通常は、電解めっき槽(103)を複数設け、その間に陰極給電部分(102)を配置してある。 The reel-to-reel plating apparatus has a long electrolytic tank, and the power supply at both ends causes problems such as heat generation of the substrate due to the resistance of the substrate and the voltage to the set current increases. As shown in FIG. 1, normally, a plurality of electrolytic plating tanks (103) are provided, and a cathode power feeding portion (102) is disposed therebetween.
また、電解めっき槽には基板(106)が通る片側または両側に陽極(104)が配置してある。また、めっき槽には噴流を行うためのノズル(107)も設置する。 In the electrolytic plating tank, an anode (104) is arranged on one side or both sides through which the substrate (106) passes. A nozzle (107) for jetting is also installed in the plating tank.
また、リールトゥリール電解めっきでは、搬送方向の膜厚ばらつきは搬送により平均化されるが、巾方向については膜厚のばらつきが発生してしまう。特に、基板の両端に電流線の集中が見られるため、基板の上下端に遮蔽板(108)を設置し、基板の上下への電流線の集中を防止し、巾方向のばらつきを制御する。 In reel-to-reel electrolytic plating, the film thickness variation in the conveyance direction is averaged by conveyance, but the film thickness variation occurs in the width direction. In particular, since current lines are concentrated at both ends of the substrate, shielding plates (108) are provided at the upper and lower ends of the substrate to prevent current lines from concentrating on the top and bottom of the substrate and to control variations in the width direction.
また、搬送方式は水平搬送でもかまわないが、水平搬送で両面めっきの場合、下側にも陽極が存在しメンテナンスに問題があるため垂直搬送が好ましい。 Also, the horizontal transfer may be used as the transfer method. However, in the case of double-sided plating with horizontal transfer, the vertical transfer is preferable because an anode exists on the lower side and there is a problem in maintenance.
本発明のフレキシブル多層配線基板の電解めっき装置の一実施例の構成を図3を用いて説明する。めっきされる基板(201)は、リールトゥリールの垂直搬送により電解めっき槽(202)へ搬送される。電解めっき槽(202)には、基板(201)の両側に陽極(203)が配置され噴流を行う噴流ノズル(204)、及び膜厚制御用遮蔽板(205)が配置されている。 The configuration of an embodiment of the electrolytic plating apparatus for a flexible multilayer wiring board according to the present invention will be described with reference to FIG. The substrate (201) to be plated is transported to the electrolytic plating tank (202) by reel-to-reel vertical transport. In the electrolytic plating tank (202), an anode (203) is arranged on both sides of the substrate (201), and a jet nozzle (204) for jetting and a film thickness control shielding plate (205) are arranged.
本発明においては陰極給電部分として、導電性を持つ帯体(209)を用いる。導電性を持つ帯体(209)は、絶縁性駆動ローラー(208)に、ある抱き角を持って電解めっき槽(202)内に配置される。 In the present invention, a conductive belt (209) is used as the cathode feeding portion. The conductive band (209) is disposed in the electrolytic plating tank (202) with a certain holding angle on the insulating drive roller (208).
導電性を持つ帯体(209)は、絶縁性駆動ローラー(208)からめっき液サイドオーバーフロードレン槽(207)を抜け、洗浄ノズル1(211)にて表面のめっき液が落され、駆動付きの陰極給電ローラー(210)を介し、めっき剥離処理槽(212)、洗浄ノズル2(215)を経てエアーナイフ(216)を通過後、再び電解めっき槽へと投入されるループ状の動きを繰り返す。 The conductive band (209) passes through the plating solution side overflow drain tank (207) from the insulating drive roller (208), and the plating solution on the surface is dropped by the cleaning nozzle 1 (211). After passing through the negative electrode feeding roller (210), the plating peeling treatment tank (212), the cleaning nozzle 2 (215) and the air knife (216), the loop-like movement that is put into the electrolytic plating tank again is repeated.
なお、図3中、白太矢印は基板(201)の搬送方向を示している。 In FIG. 3, the white arrow indicates the transport direction of the substrate (201).
導電性を持つ帯体(209)は、整流器(217)の陰極端子ケーブル(219)が接続されたロータリーコネクター(220)を介した陰極給電ローラー(210)により、陰極の極性をもつこととなる。この導電性を持つ帯体(209)が基板(201)と電解めっき槽(202)内で接触することにより,めっき液中内への給電が可能となる。 The conductive band (209) has the polarity of the cathode by the cathode feeding roller (210) via the rotary connector (220) to which the cathode terminal cable (219) of the rectifier (217) is connected. . The conductive belt (209) comes into contact with the substrate (201) in the electrolytic plating tank (202), so that power can be supplied into the plating solution.
この陰極給電部分は、図3に示すように、絶縁性駆動ローラー(208)を対向に配置することにより基板(201)の表裏を支持し、搬送及び表裏への給電を安定した状態で行う。また、支持後の搬送ラインを再びパスラインのセンター位置に戻す必要があるので、例えば、支持ローラーを3本以上とするか、或いはバックアップロール(206)を用いパスラインをセンター位置に戻す。 As shown in FIG. 3, the cathode power feeding portion supports the front and back of the substrate (201) by disposing the insulating drive rollers (208) opposite to each other, and performs transport and power feeding to the front and back in a stable state. In addition, since it is necessary to return the transport line after support to the center position of the pass line again, for example, three or more support rollers are used, or the pass line is returned to the center position using a backup roll (206).
また、めっき剥離処理槽(212)については、剥離液への浸漬と噴流ノズル(213)による処理が行えるようにめっき剥離処理槽(212)の両端には剥離液オーバーフロードレン(214)を有する構造としている。 The plating stripping treatment tank (212) has a stripping solution overflow drain (214) at both ends of the plating stripping treatment bath (212) so that the plating stripping treatment bath (212) can be immersed in the stripping solution and treated by the jet nozzle (213). It is said.
また、めっき条件については、めっき槽の長さにおいて、フィリングに十分なめっき時間を確保できる搬送速度、陰極電流密度等をパラメーターとする。このようなめっき方法にて形成したフレキシブル多層配線基板は、ビアホールを適切なめっき時間でビアフィリングすることが可能である。 Moreover, about the plating conditions, in the length of a plating tank, the conveyance speed which can ensure sufficient plating time for filling, a cathode current density, etc. are used as parameters. A flexible multilayer wiring board formed by such a plating method can be via-filled via holes in an appropriate plating time.
以下に、具体的な実施例により本発明を説明する。尚、本発明はこの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described by way of specific examples. In addition, this invention is not limited to this Example at all.
基板には両面銅箔付ポリイミドテープ(三井化学製:ネオフレックス(商品名):Cu/PI/Cu=9μm/30μm/9μm)を使用した。この基板にビアホールを加工する為に、波長355nmの紫外線レーザを使用しビアホール加工を行った。加工したビアホール径は30μmであった。 A polyimide tape with double-sided copper foil (Neolex (trade name): Cu / PI / Cu = 9 μm / 30 μm / 9 μm) was used for the substrate. In order to process a via hole in this substrate, a via hole was processed using an ultraviolet laser having a wavelength of 355 nm. The processed via hole diameter was 30 μm.
加工したビアホールを光学顕微鏡にて観察したところ、ビアホール開口端部にビア加工によるドロスが発生していることを確認した。そこでドロス部分を除去する為に物理研磨を行った。 When the processed via hole was observed with an optical microscope, it was confirmed that dross due to via processing was generated at the opening end of the via hole. Therefore, physical polishing was performed to remove the dross portion.
その後、ビアホール底部に堆積した樹脂残さを除去する為に、過マンガン酸カリウムと水酸化ナトリウムを3対2の割合でイオン交換水に溶解させ、約50℃に加熱した。この混合液中に基板を浸漬させ樹脂残さを除去した。 Thereafter, in order to remove the resin residue deposited on the bottom of the via hole, potassium permanganate and sodium hydroxide were dissolved in ion exchange water at a ratio of 3 to 2, and heated to about 50 ° C. The substrate was immersed in this mixed solution to remove the resin residue.
次いで、電気めっきのシード層を形成する為に、通常の無電解銅めっき処理を行った。 Next, in order to form an electroplating seed layer, an ordinary electroless copper plating treatment was performed.
電解銅めっきは垂直搬送のリールトゥリール連続電解めっき装置で行った。めっき槽の長さは9mで、めっき槽の両端に給電ローラーが設置されている。なお、めっき槽内には基板表裏2対1組の導電性を持つ帯体による陰極給電部分を3m間隔にて計2組設置した。 Electrolytic copper plating was performed with a vertical-to-reel reel-to-reel continuous electrolytic plating apparatus. The length of the plating tank is 9 m, and power feeding rollers are installed at both ends of the plating tank. In the plating tank, a total of two sets of cathode power feeding portions made of a conductive belt body with 2 to 1 sets of substrate front and back surfaces were installed at intervals of 3 m.
導電性を持つ帯体は、全周圧延処理された厚さ0.3mmの無継目ステンレスベルトを使用した。めっき槽内の絶縁性駆動ローラーは塩化ビニル製のものを使用した。また、剥離液としては過硫酸ソーダー200g/lを使用し,剥離処理前後の導電性を持つ帯体の
洗浄には硫酸20g/lを使用した。
As the conductive belt, a seamless stainless steel belt having a thickness of 0.3 mm that has been rolled on the entire circumference was used. The insulating drive roller in the plating tank was made of vinyl chloride. Further, 200 g / l of persulfate soda was used as the stripping solution, and 20 g / l of sulfuric acid was used for cleaning the conductive band before and after the stripping process.
電解めっき槽には、陽極として基板の両側にチタンケースの中に含リン銅ボールを入れたものを設置した。また、陽極と陽極の間に噴流用のノズルを設置し、基板の上下部分に膜厚ばらつき制御用の遮蔽板を塩ビプレートにて設置した。 In the electrolytic plating tank, a positive electrode containing phosphorus-containing copper balls in a titanium case was installed on both sides of the substrate as an anode. In addition, a nozzle for jet flow was installed between the anodes, and a shielding plate for film thickness variation control was installed on the upper and lower parts of the substrate with a PVC plate.
めっき液の組成は、硫酸銅5水和物200g/l、硫酸50g/l、塩素50mg/l、めっき添加剤25ml/lとした。めっきの電流密度と、めっき時間は枚葉処理でビアフィリングが可能な1ASD、30分に設定するために搬送速度を0.3m/minに設定した。 The composition of the plating solution was 200 g / l copper sulfate pentahydrate, 50 g / l sulfuric acid, 50 mg / l chlorine, and 25 ml / l plating additive. In order to set the plating current density and plating time to 1 ASD capable of via filling by single wafer processing and 30 minutes, the conveyance speed was set to 0.3 m / min.
その後、基板の断面観察を行い銅の充填不良を調査したが、ビアフィリングが完了していない不良部分は1,000個調査した中0個であった。また,めっき処理中の無継目ステンレスベルトは基板に対し常にめっき未着の状態にて接することができ、基板への傷及び打痕などの発生はなかった。 Thereafter, the cross-section of the substrate was observed to investigate the copper filling failure, but 0 of the 1,000 defective portions that had not been via-filled were investigated. In addition, the seamless stainless steel belt during the plating treatment could always come into contact with the substrate in an unplated state, and there was no generation of scratches or dents on the substrate.
比較として、長さ3mのめっき槽の前後に気中露出した陰極給電部分が設けてあり,直列に3槽めっき槽が並んでいるめっき装置を用い、同様にめっきを行った.その後基板の断面観察を行ったが、すべてのビアにおいてフィリングが完了せずビア部分に凹みが残っていた。 As a comparison, plating was performed in the same manner using a plating apparatus in which cathode feeding portions exposed in the air were provided before and after a 3 m long plating tank, and three tank plating tanks were arranged in series. Thereafter, cross-sectional observation of the substrate was performed, but filling was not completed in all the vias, and dents remained in the via portions.
比較として、めっき装置のめっき槽を9mとし、その両端に陰極給電ローラーを設置し、めっき槽1つでめっきを行った。なお、陰極給電ローラーはめっき液には浸さず気中に設置した。搬送速度は0.3m/minで電流密度は1A/dm2 とした。 As a comparison, the plating tank of the plating apparatus was set to 9 m, the cathode power feeding roller was installed at both ends, and plating was performed with one plating tank. The cathode feeding roller was installed in the air without being immersed in the plating solution. The conveyance speed was 0.3 m / min and the current density was 1 A / dm 2 .
その結果、9mという長いめっき槽を給電しているため、基板の抵抗により設定電流に対し電圧が最大5V前後まで上昇し、基板の表面温度が70℃程度まで上昇していることが確認された。したがって9mという長いめっき層を両端のみで給電するのは無理と判断した。 As a result, since a long plating tank of 9 m was fed, it was confirmed that the voltage rose to a maximum of about 5 V with respect to the set current due to the resistance of the substrate, and the surface temperature of the substrate rose to about 70 ° C. . Therefore, it was determined that it was impossible to feed power to the long plating layer of 9 m only at both ends.
また、別な比較として、めっき装置のめっき槽を9mとし、3mおきに陰極給電ローラーをめっき液中に配置しめっきを行った。全てのビアにおいてフィリングが完了しビア部分の凹みも無かったが、めっき処理時間が長時間になるにつれ陰極給電ローラーにはめっきが析出し、基板表面には傷、ビア部以外の凹み等が発生した。 As another comparison, plating was performed by setting the plating tank of the plating apparatus to 9 m and placing a cathode feeding roller in the plating solution every 3 m. Filling was completed in all vias and there were no dents in the vias, but as the plating time increased, plating was deposited on the cathode feed roller, causing scratches and dents other than vias on the substrate surface. did.
以上の結果より、長いめっき層を両端のみで給電することは難しいため、途中に陰極給電ローラーを設置することが必要であり、途中に設置する陰極給電ローラーは気中に設置するのではなく、液中に設置しておくことによりフィリングが可能であり、且つ陰極給電部分に析出しためっきを連続剥離することにより基板の傷、打痕等を防ぐことが可能である。 From the above results, since it is difficult to feed a long plating layer only at both ends, it is necessary to install a cathode feeding roller in the middle, the cathode feeding roller installed in the middle is not installed in the air, Filling is possible by placing it in the liquid, and scratches and dents on the substrate can be prevented by continuously peeling the plating deposited on the cathode feeding portion.
101…巻き出しリール
102…陰極給電部分
103…電解めっき槽
104…アノード
105…巻取りリール
106…基板
107…噴流ノズル
108…膜厚制御用遮蔽板
201…基板
202…電解めっき槽
203…アノード
204…噴流ノズル
205…膜厚制御用遮蔽板
206…バックアップロール
207…めっき液サイドオーバーフロードレン
208…絶縁性駆動ローラー
209…導電性を持つ帯体
210…陰極給電ローラー
211…洗浄ノズル1
212…めっき剥離処理槽
213…噴流ノズル
214…剥離液オーバーフロードレン
215…洗浄ノズル2
216…エアナイフ
217…整流器
218…陽極端子ケーブル
219…陰極端子ケーブル
220…ロータリーコネクター
DESCRIPTION OF SYMBOLS 101 ... Unwinding reel 102 ... Cathode feeding part 103 ... Electrolytic plating tank 104 ... Anode 105 ... Winding reel 106 ... Substrate 107 ... Jet nozzle 108 ... Film thickness control shielding plate 201 ... Substrate 202 ... Electrolytic plating tank 203 ... Anode 204 ... jet nozzle 205 ... shielding plate for film thickness control 206 ... backup roll 207 ... plating solution side overflow drain 208 ... insulating drive roller 209 ... conductive belt 210 ... cathode feeding roller 211 ... cleaning nozzle 1
212 ... Plating peeling treatment tank 213 ... Jet nozzle 214 ... Stripping liquid overflow drain 215 ... Cleaning nozzle 2
216 ... Air knife 217 ... Rectifier 218 ... Anode terminal cable 219 ... Cathode terminal cable 220 ... Rotary connector
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345505A JP2005113173A (en) | 2003-10-03 | 2003-10-03 | Electroplating device for flexible multilayer circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003345505A JP2005113173A (en) | 2003-10-03 | 2003-10-03 | Electroplating device for flexible multilayer circuit board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005113173A true JP2005113173A (en) | 2005-04-28 |
Family
ID=34538761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003345505A Pending JP2005113173A (en) | 2003-10-03 | 2003-10-03 | Electroplating device for flexible multilayer circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005113173A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007086510A1 (en) * | 2006-01-30 | 2007-08-02 | Ibiden Co., Ltd. | Plating apparatus and plating method |
WO2007097335A1 (en) * | 2006-02-22 | 2007-08-30 | Ibiden Co., Ltd. | Plating apparatus and method of plating |
WO2008123211A1 (en) * | 2007-03-28 | 2008-10-16 | Toray Industries, Inc. | Web pressure welding, pressure welding method, power supply method, power supply device, continuous electrolyte plating device, and method for manufacturing plate film-equipped web |
US7481909B2 (en) | 2004-09-24 | 2009-01-27 | Ibiden Co., Ltd. | Plating apparatus, plating method and multilayer printed circuit board |
EP2001271A3 (en) * | 2007-05-02 | 2010-11-03 | Endicott Interconnect Technologies, Inc. | Method for making a multilayered circuitized substrate |
CN103834974A (en) * | 2012-11-20 | 2014-06-04 | 宝山钢铁股份有限公司 | Horizontal-type electroplating tank device for realization of homogeneous thickness distribution of coating of metal band |
JP2014240527A (en) * | 2005-12-13 | 2014-12-25 | メコ イクウィップメント エンジニアズ ベスローテン フェンノートシャップ | Method of connecting mutually tracks present on side surfaces of substrate opposite to each other |
CN106637371A (en) * | 2015-10-28 | 2017-05-10 | 东莞市希锐自动化科技股份有限公司 | Vertical continuous electroplating hole filling line |
-
2003
- 2003-10-03 JP JP2003345505A patent/JP2005113173A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8383956B2 (en) | 2004-09-24 | 2013-02-26 | Ibiden Co., Ltd. | Plating apparatus, plating method and multilayer printed circuit board |
US8197659B2 (en) | 2004-09-24 | 2012-06-12 | Ibiden Co., Ltd. | Plating apparatus, plating method and multilayer printed circuit board |
US7897027B2 (en) | 2004-09-24 | 2011-03-01 | Ibiden Co., Ltd. | Plating apparatus, plating method and multilayer printed circuit board |
US7481909B2 (en) | 2004-09-24 | 2009-01-27 | Ibiden Co., Ltd. | Plating apparatus, plating method and multilayer printed circuit board |
JP2014240527A (en) * | 2005-12-13 | 2014-12-25 | メコ イクウィップメント エンジニアズ ベスローテン フェンノートシャップ | Method of connecting mutually tracks present on side surfaces of substrate opposite to each other |
US8128790B2 (en) | 2006-01-30 | 2012-03-06 | Ibiden Co., Ltd. | Plating apparatus and plating method |
JP4781371B2 (en) * | 2006-01-30 | 2011-09-28 | イビデン株式会社 | Plating apparatus and plating method |
WO2007086510A1 (en) * | 2006-01-30 | 2007-08-02 | Ibiden Co., Ltd. | Plating apparatus and plating method |
US8721863B2 (en) | 2006-01-30 | 2014-05-13 | Ibiden Co., Ltd. | Plating apparatus and plating method |
JP2007224347A (en) * | 2006-02-22 | 2007-09-06 | Ibiden Co Ltd | Plating apparatus and plating method |
WO2007097335A1 (en) * | 2006-02-22 | 2007-08-30 | Ibiden Co., Ltd. | Plating apparatus and method of plating |
US8679576B2 (en) | 2006-02-22 | 2014-03-25 | Ibiden Co., Ltd. | Plating apparatus and method of plating |
WO2008123211A1 (en) * | 2007-03-28 | 2008-10-16 | Toray Industries, Inc. | Web pressure welding, pressure welding method, power supply method, power supply device, continuous electrolyte plating device, and method for manufacturing plate film-equipped web |
CN101678976B (en) * | 2007-03-28 | 2011-09-21 | 东丽株式会社 | Power supply method, power supply device, Electrolysis electroplating device and web with charged coating |
US8815073B2 (en) | 2007-03-28 | 2014-08-26 | Toray Industries, Inc. | Web pressure welding method, pressure welding device, power supply method, power supply device, continuous electrolytic plating apparatus and method for manufacturing web with plated coating film |
CN101299911B (en) * | 2007-05-02 | 2012-04-04 | 安迪克连接科技公司 | Method for making a multilayered circuitized substrate |
EP2001271A3 (en) * | 2007-05-02 | 2010-11-03 | Endicott Interconnect Technologies, Inc. | Method for making a multilayered circuitized substrate |
CN103834974A (en) * | 2012-11-20 | 2014-06-04 | 宝山钢铁股份有限公司 | Horizontal-type electroplating tank device for realization of homogeneous thickness distribution of coating of metal band |
CN103834974B (en) * | 2012-11-20 | 2016-10-05 | 宝山钢铁股份有限公司 | One realizes metal tape thickness of coating equally distributed horizontal electroplating bath device |
CN106637371A (en) * | 2015-10-28 | 2017-05-10 | 东莞市希锐自动化科技股份有限公司 | Vertical continuous electroplating hole filling line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10455704B2 (en) | Method for copper filling of a hole in a component carrier | |
JP4781371B2 (en) | Plating apparatus and plating method | |
JP5862917B2 (en) | Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus | |
US7425683B2 (en) | Flexible wiring base material and process for producing the same | |
JP2001089892A (en) | Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil | |
KR20220047373A (en) | Fabrication sequence of high-density interconnect printed circuit board and high-density interconnect printed circuit board | |
JP5652587B2 (en) | Method for producing copper-coated polyimide substrate and electroplating apparatus | |
JP2008231550A (en) | Electrolytic plating apparatus and method of manufacturing wiring board | |
JP2005113173A (en) | Electroplating device for flexible multilayer circuit board | |
JP4521147B2 (en) | Method and apparatus for electrolytic treatment of conductive surfaces of sheet or foil material pieces isolated from each other and method of applying said method | |
TWI280990B (en) | Etching device for electroplating substrate | |
JP4466063B2 (en) | Flexible multilayer wiring board and electrolytic plating method thereof | |
JP5440386B2 (en) | Method for producing metallized resin film substrate | |
JP5858286B2 (en) | Method for electrolytic plating long conductive substrate and method for producing copper clad laminate | |
JP5751530B2 (en) | Method for electrolytic plating long conductive substrate and method for producing copper clad laminate | |
CN110760922B (en) | Tin stripping liquid, method for removing tin-containing layer on substrate and method for recovering tin | |
KR101010700B1 (en) | Apparatus for manufacturing flexible copper clad laminates | |
JP2004059952A (en) | Method for electrolytically plating flexible multilayer interconnection substrate | |
JP5293664B2 (en) | Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same | |
JP2011149053A (en) | Continuous electrolytic plating apparatus, continuous electrolytic plating method and method of producing metalized resin film | |
JP2005089799A (en) | Plating device | |
CN110938861A (en) | Tin stripping equipment | |
JP5266934B2 (en) | Metal-coated resin substrate manufacturing method, plating apparatus, and plating method | |
JP2008075113A (en) | Plating apparatus | |
US20200006135A1 (en) | Method and Plater Arrangement for Failure-Free Copper Filling of a Hole in a Component Carrier |