JP2005109021A - Solid state imaging device - Google Patents

Solid state imaging device Download PDF

Info

Publication number
JP2005109021A
JP2005109021A JP2003338169A JP2003338169A JP2005109021A JP 2005109021 A JP2005109021 A JP 2005109021A JP 2003338169 A JP2003338169 A JP 2003338169A JP 2003338169 A JP2003338169 A JP 2003338169A JP 2005109021 A JP2005109021 A JP 2005109021A
Authority
JP
Japan
Prior art keywords
shielding film
voltage
imaging device
receiving sensor
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003338169A
Other languages
Japanese (ja)
Other versions
JP2005109021A5 (en
Inventor
Keiji Sasano
啓二 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003338169A priority Critical patent/JP2005109021A/en
Publication of JP2005109021A publication Critical patent/JP2005109021A/en
Publication of JP2005109021A5 publication Critical patent/JP2005109021A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid state imaging device which features excellent antiblooming characteristics and can reduce readout voltage, and which has low smear even if it is shrunk in size. <P>SOLUTION: The solid state imaging device 1 has such a structure that an optical sensor 2 and a vertical transfer register 3 are formed, and a readout gate 18 is formed between the optical sensor 2 and the vertical transfer register 3 to form an imaging region. In the imaging region, the other region than the optical sensor 2 is covered by a lightproof film 22. The lightproof film 22 also serves as a readout electrode for reading out signal charges accumulated in the optical sensor 2 to the vertical transfer register 3. Except when reading out the signal charges, such voltage as to form an inverse layer 28 on the surface of the readout gate is applied to the lightproof film 22. When reading out the signal charges, such voltage as to remove the inverse layer 28 is applied to the lightproof film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体撮像素子に関する。   The present invention relates to a solid-state imaging device.

従来の固体撮像素子、例えばインターライントランスファ(IT)型の固体撮像素子(例えばCCD型の固体撮像素子)の構成を図6に示す。
この固体撮像素子41は、画素を構成する例えばフォトダイオードからなる受光センサ部42が多数マトリクス状に配列され、受光センサ部42の各列の一方の側に垂直方向に延びる垂直転送レジスタ43が形成されて、撮像領域44が構成されている。さらに、撮像領域44の垂直方向の端部に水平転送レジスタ45が配置され、この水平転送レジスタ45に電荷電圧変換手段(図示せず)を介して出力部46が接続されて構成される。
FIG. 6 shows a configuration of a conventional solid-state imaging device, for example, an interline transfer (IT) type solid-state imaging device (for example, a CCD type solid-state imaging device).
In this solid-state imaging device 41, a large number of light receiving sensor portions 42 made of, for example, photodiodes constituting pixels are arranged in a matrix, and a vertical transfer register 43 extending in the vertical direction is formed on one side of each column of the light receiving sensor portions 42. Thus, the imaging region 44 is configured. Further, a horizontal transfer register 45 is disposed at the vertical end of the imaging region 44, and an output unit 46 is connected to the horizontal transfer register 45 via charge-voltage conversion means (not shown).

このような構成の固体撮像素子41では、例えば、各受光センサ部42において受光量に応じて光電変換された信号電荷が、垂直転送レジスタ43に読み出され、垂直転送レジスタ43に読み出された信号電荷は、1水平ライン毎に水平転送レジスタ45に転送され、水平転送部レジスタ45内を順次転送されて出力部46を通じて出力される。   In the solid-state imaging device 41 having such a configuration, for example, the signal charges photoelectrically converted according to the amount of received light in each light receiving sensor unit 42 are read to the vertical transfer register 43 and read to the vertical transfer register 43. The signal charges are transferred to the horizontal transfer register 45 for each horizontal line, sequentially transferred through the horizontal transfer unit register 45, and output through the output unit 46.

次に、図6の撮像領域44のA―A線上における断面図を図7に示す。
撮像領域44では、第1導電型、例えばN型のシリコン半導体基板50内に、第2導電型、例えばP型の第1の半導体ウェル領域51が形成され、半導体基板50の表面側には、受光センサ部42を構成するNの半導体領域(所謂電荷蓄積領域)52と、その上の表面のP++の半導体領域(正電荷蓄積領域)53からなるフォトダイオードが形成される。受光センサ部42列の一方の側には、垂直転送レジスタ43を構成するNの転送チャネル領域55が形成され、Nの転送チャネル領域55の下には、Pの第2の半導体ウェル領域56が形成されている。受光センサ部42列の他方の側には、水平方向に隣り合う画素間を分離するための画素分離領域、即ち、高濃度のP型のチャネルストップ領域57が形成されている。受光センサ部42と垂直転送レジスタ43との間には、受光センサ部42に蓄積された信号電荷を垂直転送レジスタ43に読み出すための、読み出しゲート部58が形成されている。
Next, FIG. 7 shows a cross-sectional view of the imaging region 44 in FIG. 6 on the line AA.
In the imaging region 44, a first semiconductor well region 51 of a second conductivity type, for example, P type, is formed in a first conductivity type, for example, an N type silicon semiconductor substrate 50, and on the surface side of the semiconductor substrate 50, A photodiode including an N + semiconductor region (so-called charge storage region) 52 constituting the light receiving sensor unit 42 and a P ++ semiconductor region (positive charge storage region) 53 on the surface thereof is formed. An N + transfer channel region 55 constituting the vertical transfer register 43 is formed on one side of the light receiving sensor section 42 row, and a P + second semiconductor well is formed below the N + transfer channel region 55. Region 56 is formed. On the other side of the light receiving sensor section 42 row, a pixel separation region for separating pixels adjacent in the horizontal direction, that is, a high-concentration P-type channel stop region 57 is formed. Between the light receiving sensor unit 42 and the vertical transfer register 43, a read gate unit 58 for reading the signal charges accumulated in the light receiving sensor unit 42 to the vertical transfer register 43 is formed.

半導体基板50の表面上には、絶縁膜59が形成され、読み出しゲート部58、Nの転送チャネル領域55及びチャネルストップ領域57上に、例えば多結晶シリコン層よりなる転送電極60が形成されている。そして、転送チャネル領域55、転送電極60とにより垂直転送レジスタ43が構成される。この転送電極60上には、層間絶縁膜61を介して例えばAlからなる遮光膜62が形成される。 An insulating film 59 is formed on the surface of the semiconductor substrate 50, and a transfer electrode 60 made of, for example, a polycrystalline silicon layer is formed on the read gate portion 58, the N + transfer channel region 55 and the channel stop region 57. Yes. The transfer channel region 55 and the transfer electrode 60 constitute a vertical transfer register 43. A light shielding film 62 made of, for example, Al is formed on the transfer electrode 60 with an interlayer insulating film 61 interposed therebetween.

遮光膜62上には、全面を覆ってプラズマSiN膜63が形成され、プラズマSiN膜63上には、全面を覆って平坦化膜64が形成され、この平坦化膜64上にはカラーフィルタ65が形成される。そして、このカラーフィルタ65上の受光センサ部42と対応する位置には、オンチップレンズ66が形成されている。   A plasma SiN film 63 is formed on the light shielding film 62 so as to cover the entire surface, and a planarizing film 64 is formed on the plasma SiN film 63 so as to cover the entire surface. A color filter 65 is formed on the planarizing film 64. Is formed. An on-chip lens 66 is formed at a position corresponding to the light receiving sensor portion 42 on the color filter 65.

ここで、このような構成の固体撮像素子41においては、例えばブルーミングの発生を抑制するために、読み出しゲート部58の表面部に、例えばP型の不純物よりなる不純物領域(ポテンシャルバリア)67を設けるようにしている(特許文献1参照)。   Here, in the solid-state imaging device 41 having such a configuration, an impurity region (potential barrier) 67 made of, for example, a P-type impurity is provided on the surface portion of the read gate portion 58 in order to suppress, for example, blooming. (See Patent Document 1).

この不純物領域(図7の場合では、高濃度のP型不純物領域)67は、読み出し時以外、即ち受光センサ部42に信号電荷が蓄積されている間は、受光センサ部42から垂直転送レジスタ43への信号電荷の流出を抑えており、読み出し時、即ち受光センサ部42に蓄積された信号電荷を垂直転送レジスタ43へ読み出す際は、転送電極60に不純物領域67が潰されるような電圧(読み出し電圧)が印加されることで、受光センサ部42から垂直転送レジスタ43への信号電荷の流れを許容している。   This impurity region (in the case of FIG. 7, a high-concentration P-type impurity region) 67 is from the light receiving sensor unit 42 to the vertical transfer register 43 except during reading, that is, while signal charges are accumulated in the light receiving sensor unit 42. When reading, that is, when reading the signal charge accumulated in the light receiving sensor unit 42 to the vertical transfer register 43, a voltage (reading) that causes the impurity region 67 to be crushed in the transfer electrode 60 is read. Voltage) is applied, the flow of signal charges from the light receiving sensor unit 42 to the vertical transfer register 43 is allowed.

また、このような構成の固体撮像素子41においては、例えば遮光膜62の端から入射する光によって、垂直転送レジスタ43にスミアが発生することを防止するために、遮光膜62に、受光センサ部42上に一部跨るような張り出し部621を設けている(特許文献2参照)。   Further, in the solid-state imaging device 41 having such a configuration, for example, in order to prevent smear from occurring in the vertical transfer register 43 due to light incident from the end of the light shielding film 62, the light receiving sensor unit is included in the light shielding film 62. An overhanging portion 621 that partially spans 42 is provided (see Patent Document 2).

即ち、例えば受光センサ部42に斜めに入射した光が半導体基板50表面と遮光膜62との間の絶縁膜59中に入り込んだ場合、光を半導体基板50表面と張り出し部621との間で多重反射させるようにして、例えば垂直転送レジスタ43に到達する前に光が減衰されるようにすることで、スミアの発生要因となる垂直転送レジスタ43に入射する光を低減するようにしている。
特開平11−54739号公報 特開平2002−164522号公報
That is, for example, when light incident obliquely on the light receiving sensor portion 42 enters the insulating film 59 between the surface of the semiconductor substrate 50 and the light shielding film 62, the light is multiplexed between the surface of the semiconductor substrate 50 and the overhang portion 621. For example, light is attenuated before it reaches the vertical transfer register 43 by reflection, so that light incident on the vertical transfer register 43 that causes smear is reduced.
JP-A-11-54739 Japanese Patent Laid-Open No. 2002-164522

ところで、このような構成の固体撮像素子41においては、P型の不純物の注入量により、ブルーミング特性と読み出し電圧が影響を受ける。
即ち、例えば、P型の不純物の注入量を多くした場合には、不純物濃度が高くなり、ポテンシャルバリア67が深くなるので、読み出し時以外では、受光センサ部42から垂直転送レジスタ43への信号電荷の流出を抑える効果を増大させて、ブルーミング特性を有利にできるが、読み出し時では、深いポテンシャルバリア67を潰せるような高い読み出し電圧を転送電極60に印加する必要があり、読み出し電圧が高くなってしまう。
By the way, in the solid-state imaging device 41 having such a configuration, the blooming characteristic and the readout voltage are affected by the amount of P-type impurity implanted.
That is, for example, when the injection amount of the P-type impurity is increased, the impurity concentration is increased and the potential barrier 67 is deepened. Therefore, the signal charge from the light receiving sensor unit 42 to the vertical transfer register 43 is not used during reading. The blooming characteristic can be advantageously improved by increasing the effect of suppressing the outflow of light, but at the time of reading, it is necessary to apply a high read voltage that can collapse the deep potential barrier 67 to the transfer electrode 60, and the read voltage becomes high. End up.

一方、例えばP型の不純物の注入量を少なくした場合には、不純物濃度が低くなり、ポテンシャルバリア67が浅くなるので、読み出し時では、低い電圧でポテンシャルバリア67を潰すことができ、読み出し電圧を低く下げられるが、読み出し時以外では、受光センサ部42から垂直転送レジスタ43への信号電荷の流出を抑える効果が低減されて、ブルーミング特性が悪くなってしまう。   On the other hand, for example, when the implantation amount of the P-type impurity is reduced, the impurity concentration becomes low and the potential barrier 67 becomes shallow. Therefore, at the time of reading, the potential barrier 67 can be crushed with a low voltage, and the reading voltage is reduced. Although it can be lowered, the effect of suppressing the outflow of signal charges from the light receiving sensor unit 42 to the vertical transfer register 43 is reduced except at the time of reading, and the blooming characteristic is deteriorated.

つまり、上述した従来の固体撮像素子41においては、ブルーミング特性と、読み出し電圧との関係が、所謂トレードオフの関係となっている。   That is, in the conventional solid-state imaging device 41 described above, the relationship between the blooming characteristic and the readout voltage is a so-called trade-off relationship.

また、固体撮像素子41を製造する際に、不純物領域67の不純物濃度にばらつきがあると、ブルーミング特性にもばらつきを生じる。
そして、不純物領域67の不純物濃度にばらつきがあっても、充分なブルーミング特性を得るようにするためには、不純物濃度を高めに設定することになる。
このため、生産マージンを考慮すると共に、充分なブルーミング特性を確保しようとすると、不純物領域67の不純物濃度が高くなって、高い読み出し電圧が必要となってしまう。
Further, when the solid-state imaging device 41 is manufactured, if the impurity concentration of the impurity region 67 varies, the blooming characteristics also vary.
In order to obtain sufficient blooming characteristics even if the impurity concentration of the impurity region 67 varies, the impurity concentration is set higher.
For this reason, in consideration of the production margin and securing sufficient blooming characteristics, the impurity concentration of the impurity region 67 increases and a high read voltage is required.

また、近年、固体撮像素子に対する微細化の要求が強くなってきている。しかしながら、上述した固体撮像素子41において、さらに微細化を図ろうとすると、スミア特性が悪化してしまう。   In recent years, demands for miniaturization of solid-state imaging devices have increased. However, in the above-described solid-state imaging device 41, if further miniaturization is attempted, smear characteristics are deteriorated.

即ち、例えばある程度の感度を維持して微細化しようとする場合、受光センサ部42の開口面積をあまり小さくすることができないため、例えば受光センサ部42上に跨る、遮光膜62の張り出し部621の長さDを短くせざるを得ない。   That is, for example, when trying to miniaturize while maintaining a certain degree of sensitivity, the opening area of the light receiving sensor unit 42 cannot be reduced so much, for example, the overhanging portion 621 of the light shielding film 62 straddling the light receiving sensor unit 42, for example. The length D must be shortened.

しかし、張り出し部621の長さDを短くした場合、半導体基板50表面と遮光膜62との間の絶縁膜59中に入り込んだ光は、張り出し部621の長さDが長い場合に比べて多重反射が少なく、例えば光を垂直転送レジスタ43に到達する前に減衰させることが困難となる。   However, when the length D of the overhang portion 621 is shortened, the light entering the insulating film 59 between the surface of the semiconductor substrate 50 and the light shielding film 62 is multiplexed as compared with the case where the length D of the overhang portion 621 is long. There is little reflection, for example, it becomes difficult to attenuate light before reaching the vertical transfer register 43.

これにより、スミアの発生要因となる垂直転送レジスタ43に入射する光を低減できず、
スミア特性が悪化する。
As a result, the light incident on the vertical transfer register 43 that causes smear cannot be reduced,
Smear characteristics deteriorate.

上述した点に鑑み、本発明は、ブルーミング特性を確保すると共に読み出し電圧も低くすることができ、且つ微細化されても、スミア特性を確保することができる構成の固体撮像素子を提供するものである。   In view of the above points, the present invention provides a solid-state imaging device having a configuration capable of ensuring blooming characteristics, reducing read voltage, and ensuring smear characteristics even when miniaturized. is there.

本発明に係る固体撮像素子は、受光センサ部と垂直転送レジスタとが形成され、受光センサ部と垂直転送レジスタとの間に、読み出しゲート部が形成されて撮像領域が構成され、撮像領域において、受光センサ部を除く領域が遮光膜で覆われ、遮光膜が、受光センサ部に蓄積された信号電荷を、垂直転送レジスタに読み出すための読み出し電極を兼ね、信号電荷の読み出し時以外は、遮光膜に、読み出しゲート部の表面に反転層が形成されるような電圧が印加され、信号電荷の読み出し時は、遮光膜に、反転層が消去されるような電圧が印加される構成とする。   In the solid-state imaging device according to the present invention, a light receiving sensor unit and a vertical transfer register are formed, and a reading gate unit is formed between the light receiving sensor unit and the vertical transfer register to form an imaging region. The area excluding the light receiving sensor part is covered with a light shielding film, and the light shielding film also serves as a readout electrode for reading the signal charges accumulated in the light receiving sensor part to the vertical transfer register. In addition, a voltage is applied so that an inversion layer is formed on the surface of the read gate portion, and a voltage that erases the inversion layer is applied to the light-shielding film when reading signal charges.

本発明の固体撮像素子によれば、撮像領域において、受光センサ部を除く領域が遮光膜で覆われ、遮光膜が、受光センサ部に蓄積された信号電荷を、垂直転送レジスタに読み出すための読み出し電極を兼ね、信号電荷の読み出し時以外は、遮光膜に、読み出しゲート部の表面に反転層が形成されるような電圧が印加され、信号電荷の読み出し時は、遮光膜に、反転層が消去されるような電圧が印加される構成とするので、信号電荷の読み出し時以外では、反転層により、受光センサ部から垂直転送レジスタへの信号電荷の流出を抑えることができ、信号電荷の読み出し時では、反転層が消去されて、低い電圧で信号電荷を読み出すことができる。これにより、読み出し電圧を低減することが可能になる。   According to the solid-state imaging device of the present invention, in the imaging region, the region excluding the light receiving sensor unit is covered with the light shielding film, and the light shielding film reads out the signal charges accumulated in the light receiving sensor unit to read out to the vertical transfer register. Also serves as an electrode, except when reading out signal charges, a voltage is applied to the light shielding film so that an inversion layer is formed on the surface of the readout gate. When reading out signal charges, the inversion layer is erased from the light shielding film. Therefore, when the signal charge is read, the inversion layer can suppress the outflow of the signal charge from the light receiving sensor unit to the vertical transfer register except when reading the signal charge. Then, the inversion layer is erased, and the signal charge can be read out with a low voltage. As a result, the read voltage can be reduced.

また、本発明の固体撮像素子によれば、遮光膜が読み出し電極を兼ねているので、読み出しゲート部上に遮光膜が形成されることになる。従って、受光センサ部上の一部に跨るように遮光膜が形成された固体撮像素子に比べて、受光センサ部上の開口面積を大きくして、高い感度の固体撮像素子を得ることができる。   Further, according to the solid-state imaging device of the present invention, since the light shielding film also serves as the readout electrode, the light shielding film is formed on the readout gate portion. Therefore, compared with the solid-state image sensor in which the light-shielding film is formed so as to straddle a part on the light-receiving sensor unit, it is possible to obtain a highly sensitive solid-state image sensor by increasing the opening area on the light-receiving sensor unit.

本発明によれば、ブルーミング特性が確保できると共に読み出し電圧が低い構成の固体撮像素子を提供することが可能になる。
これにより、生産マージンを考慮すると共に、ブルーミング特性を確保しようとする場合でも、読み出し電圧を高くする必要がなくなる。この場合は、歩留まりを向上させることが可能になる。
According to the present invention, it is possible to provide a solid-state imaging device that can ensure blooming characteristics and has a low readout voltage.
This eliminates the need to increase the read voltage even when considering the production margin and securing blooming characteristics. In this case, the yield can be improved.

また、本発明によれば、受光センサ部上の開口面積が大きく、高い感度の固体撮像素子が得られるので、微細化してもスミア特性を確保することができる固体撮像素子を提供することができる。
また、受光センサ部上の開口面積が大きく、感度の高い構成の固体撮像素子が得られるので、さらなる微細化に対応することが可能な固体撮像素子を提供することもできる。
In addition, according to the present invention, a solid-state imaging device having a large opening area on the light-receiving sensor portion and a high sensitivity can be obtained. Therefore, it is possible to provide a solid-state imaging device that can ensure smear characteristics even when miniaturized. .
In addition, since a solid-state imaging device having a large opening area on the light-receiving sensor portion and a high sensitivity can be obtained, a solid-state imaging device capable of coping with further miniaturization can be provided.

以下、図面を参照して、本発明の実施の形態を説明する。
先ず、本発明に係る固体撮像素子を、例えばインターライントランスファ(IT)型の固体撮像素子(例えばCCD型の固体撮像素子)に適用した場合を、図1に示す。
本実施の形態の固体撮像素子1は、画素を構成する例えばフォトダイオードからなる受光センサ部2が多数マトリクス状に配列され、受光センサ部2の各列の一方の側に垂直方向に延びる垂直転送レジスタ3が形成されて、撮像領域4が構成されている。さらに、撮像領域4の垂直方向の端部に水平転送レジスタ5が配置され、この水平転送レジスタ5に電荷電圧変換手段(図示せず)を介して出力部6が接続されて構成される。
Embodiments of the present invention will be described below with reference to the drawings.
First, FIG. 1 shows a case where the solid-state imaging device according to the present invention is applied to, for example, an interline transfer (IT) type solid-state imaging device (for example, a CCD type solid-state imaging device).
In the solid-state imaging device 1 according to the present embodiment, a plurality of light receiving sensor units 2 made of, for example, photodiodes constituting pixels are arranged in a matrix, and vertical transfer extends in the vertical direction to one side of each column of the light receiving sensor units 2 The register 3 is formed, and the imaging region 4 is configured. Further, a horizontal transfer register 5 is disposed at the vertical end of the imaging region 4, and an output unit 6 is connected to the horizontal transfer register 5 via charge voltage conversion means (not shown).

このような構成の固体撮像素子1では、例えば、各受光センサ部2において受光量に応じて光電変換された信号電荷が、垂直転送レジスタ3に読み出され、垂直転送レジスタ3に読み出された信号電荷は、1水平ライン毎に水平転送でレジスタ5に転送され、この水平転送部レジスタ5内を順次転送されて出力部6を通じて出力される。   In the solid-state imaging device 1 having such a configuration, for example, the signal charges photoelectrically converted according to the amount of received light in each light receiving sensor unit 2 are read to the vertical transfer register 3 and read to the vertical transfer register 3. The signal charges are transferred to the register 5 by horizontal transfer for each horizontal line, sequentially transferred through the horizontal transfer unit register 5 and output through the output unit 6.

次に、図1の撮像領域4の、A―A線上における拡大断面図を図2に示す。
撮像領域4では、第1導電型、例えばN型のシリコン半導体基板10内に、第2導電型、例えばP型の第1の半導体ウェル領域11が形成され、シリコン半導体基板10の表面側には、受光センサ部2を構成するNの半導体領域(所謂電荷蓄積領域)12とその上の表面のP++の半導体領域(正電荷蓄積領域)13からなるフォトダイオードが形成される。受光センサ部12列の一方の側には、垂直転送レジスタ3を構成するNの転送チャネル領域15が形成され、Nの転送チャネル領域15の下には、Pの第2の半導体ウェル領域16が形成されている。受光センサ部12列の他方の側には、水平方向に隣り合う画素間を分離するための画素分離領域、即ち、高濃度のP型のチャネルストップ領域17が形成されている。受光センサ部12と垂直転送レジスタ13との間のN型の半導体基板10には、受光センサ部12に蓄積された信号電荷を、垂直転送レジスタ13に読み出すための、読み出しゲート部18が形成されている。
尚、P型の第1の半導体ウェル領域11は、例えばN型のシリコン基板10の所定の領域に、後からP型の不純物が注入されることで形成される。
Next, FIG. 2 shows an enlarged cross-sectional view of the imaging region 4 in FIG. 1 on the line AA.
In the imaging region 4, a first semiconductor well region 11 of a second conductivity type, eg, P type, is formed in a first conductivity type, eg, N type silicon semiconductor substrate 10, and is formed on the surface side of the silicon semiconductor substrate 10. A photodiode comprising an N + semiconductor region (so-called charge storage region) 12 constituting the light receiving sensor section 2 and a P ++ semiconductor region (positive charge storage region) 13 on the surface thereof is formed. An N + transfer channel region 15 constituting the vertical transfer register 3 is formed on one side of the light receiving sensor section 12 row, and a P + second semiconductor well is formed below the N + transfer channel region 15. Region 16 is formed. On the other side of the 12 rows of light receiving sensor sections, a pixel separation region for separating pixels adjacent in the horizontal direction, that is, a high-concentration P-type channel stop region 17 is formed. On the N-type semiconductor substrate 10 between the light receiving sensor unit 12 and the vertical transfer register 13, a read gate unit 18 for reading the signal charges accumulated in the light receiving sensor unit 12 to the vertical transfer register 13 is formed. ing.
The P-type first semiconductor well region 11 is formed, for example, by implanting a P-type impurity into a predetermined region of the N-type silicon substrate 10 later.

半導体基板10の表面上には、絶縁膜19が形成され、読み出しゲート部18、Nの転送チャネル領域15及びチャネルストップ領域17上に、例えば多結晶シリコン層よりなる転送電極20が形成されている。尚、転送電極20は、3層構造で形成されている。
そして、Nの転送チャネル領域15、転送電極20とにより垂直転送レジスタ3が構成される。この転送電極20上には層間絶縁膜21を介して例えばAlからなる遮光膜22が形成される。
遮光膜22には、前述したように、例えば遮光膜22の端から入射する光によって、垂直転送レジスタ3にスミアが発生することを防止するために、張り出し部221が設けられている。
An insulating film 19 is formed on the surface of the semiconductor substrate 10, and a transfer electrode 20 made of, for example, a polycrystalline silicon layer is formed on the read gate portion 18, the N + transfer channel region 15 and the channel stop region 17. Yes. The transfer electrode 20 has a three-layer structure.
The N + transfer channel region 15 and the transfer electrode 20 constitute the vertical transfer register 3. A light shielding film 22 made of, for example, Al is formed on the transfer electrode 20 via an interlayer insulating film 21.
As described above, the light shielding film 22 is provided with the overhanging portion 221 in order to prevent smear from occurring in the vertical transfer register 3 due to, for example, light incident from the end of the light shielding film 22.

遮光膜22上には、全面を覆ってプラズマSiN膜23が形成され、プラズマSiN膜23上には、全面を覆って平坦化膜24が形成され、この平坦化膜24上には、カラーフィルタ25が形成される。そして、このカラーフィルタ25上の受光センサ部2と対応する位置には、オンチップレンズ26が形成されている。   A plasma SiN film 23 is formed on the light shielding film 22 so as to cover the entire surface, and a planarizing film 24 is formed on the plasma SiN film 23 so as to cover the entire surface. A color filter is formed on the planarizing film 24. 25 is formed. An on-chip lens 26 is formed at a position corresponding to the light receiving sensor unit 2 on the color filter 25.

そして、本実施の形態の固体撮像素子1では、特に、遮光膜22が読み出しゲート部18の上方に形成され、受光センサ部2に蓄積された信号電荷を垂直転送レジスタ3へ読み出す際の読み出し電極を兼ねるように構成されている。
即ち、従来の固体撮像素子では、読み出しゲート部では、基板上にゲート絶縁膜を介して、転送電極が形成された構成であるが(図7参照)、本実施の形態の固体撮像素子1では、読み出しゲート部18では、基板上にゲート絶縁膜19を介して、遮光膜22の張り出し部221が形成された構成であり、遮光膜22が読み出し電極を兼ねる構成となっている。この遮光膜22には、読み出し電圧を印加するための配線27が接続されている。
In the solid-state imaging device 1 according to the present embodiment, in particular, the light shielding film 22 is formed above the readout gate unit 18, and the readout electrode for reading out the signal charges accumulated in the light receiving sensor unit 2 to the vertical transfer register 3. It is comprised so that it may serve as.
That is, in the conventional solid-state imaging device, the readout gate portion has a configuration in which the transfer electrode is formed on the substrate via the gate insulating film (see FIG. 7), but in the solid-state imaging device 1 of the present embodiment, The readout gate portion 18 has a configuration in which an overhang portion 221 of the light shielding film 22 is formed on the substrate via the gate insulating film 19, and the light shielding film 22 also serves as a readout electrode. A wiring 27 for applying a read voltage is connected to the light shielding film 22.

そして、さらに、本実施の形態の固体撮像素子1では、信号電荷の読み出し時以外は、遮光膜22に、読み出しゲート部に反転層(障壁)が形成されるような電圧が印加され、信号電荷の読み出し時は、遮光膜22に、反転層が消去されるような電圧が印加される。   Further, in the solid-state imaging device 1 of the present embodiment, a voltage that causes an inversion layer (barrier) to be formed in the readout gate portion is applied to the light shielding film 22 except when signal charges are read out. During reading, a voltage is applied to the light shielding film 22 so that the inversion layer is erased.

以下、本実施の形態の固体撮像素子1における、読み出し動作を、図2〜図5を用いて具体的に説明する。
尚、図2及び図3は信号電荷の読み出し時以外を、図4及び図5は信号電荷の読み出し時を示している。
Hereinafter, the reading operation in the solid-state imaging device 1 of the present embodiment will be specifically described with reference to FIGS.
FIGS. 2 and 3 show the signal charges other than when reading, and FIGS. 4 and 5 show the signal charges when read.

先ず、信号電荷の読み出し時以外では、図2に示すように、配線27を介して、遮光膜22に、反転層が形成されるような電圧φVが印加される。ここで、本実施の形態の固体撮像素子1では、読み出しゲート部18がN型の不純物より形成されているので、反転層が形成されるような電圧φVとしては、負電圧が印加される。   First, at a time other than reading signal charges, a voltage φV that forms an inversion layer is applied to the light shielding film 22 via the wiring 27 as shown in FIG. Here, in the solid-state imaging device 1 of the present embodiment, since the read gate portion 18 is formed of N-type impurities, a negative voltage is applied as the voltage φV at which the inversion layer is formed.

この際、読み出しゲート部18では、図3Aに示すように、負の電荷を持つ電子が半導体基板10の界面から半導体基板10の底部へと遠ざけられることにより、半導体基板10の界面近傍が正孔のみとなり、空乏化領域29が形成される。そして、さらに、伝導型が反転して、正の電荷をもつ正孔が読み出しゲート部18の表面部に誘起される。このようにして、図2及び図3Bに示すような反転層28が形成される。   At this time, in the read gate unit 18, as shown in FIG. 3A, electrons having negative charges are moved away from the interface of the semiconductor substrate 10 to the bottom of the semiconductor substrate 10, so that the vicinity of the interface of the semiconductor substrate 10 becomes a hole. Only the depleted region 29 is formed. Further, the conductivity type is inverted, and positively charged holes are induced on the surface portion of the read gate portion 18. In this way, the inversion layer 28 as shown in FIGS. 2 and 3B is formed.

一方、信号電荷の読み出し時では、図4に示すように、配線27を介して、遮光膜22に、上記反転層28が消去されるような読み出し電圧φVRが印加される。ここで、本実施の形態の固体撮像素子1では、反転層28は、負電圧φVが印加されることで形成されるので、反転層28が消去されるような読み出し電圧φVRとしては、正電圧が印加される。
尚、この正電圧としては、0V以上の電圧であれば、反転層28を消去することが可能である。これにより、高い読み出し電圧を印加する必要がなくなる。
On the other hand, at the time of reading the signal charge, as shown in FIG. 4, a read voltage φVR that erases the inversion layer 28 is applied to the light shielding film 22 via the wiring 27. Here, in the solid-state imaging device 1 of the present embodiment, since the inversion layer 28 is formed by applying the negative voltage φV, the read voltage φVR that erases the inversion layer 28 is a positive voltage. Is applied.
Note that the inversion layer 28 can be erased if the positive voltage is 0 V or higher. This eliminates the need to apply a high read voltage.

この際、読み出しゲート部18では、図5Aに示すように、正孔が半導体基板10の界面から半導体基板10の底部へと遠ざけられることにより、半導体基板10の界面近傍が負の電荷を持つ電子のみとなる。これにより、上述した空乏化領域29が消滅されて、図4及び図5Bに示すように、読み出しゲート部18の表面部から反転層28が消去された状態となる。   At this time, in the read gate unit 18, as shown in FIG. 5A, the holes are moved away from the interface of the semiconductor substrate 10 to the bottom of the semiconductor substrate 10, whereby electrons near the interface of the semiconductor substrate 10 have negative charges. It becomes only. As a result, the above-described depletion region 29 disappears, and the inversion layer 28 is erased from the surface portion of the read gate portion 18 as shown in FIGS. 4 and 5B.

このように、本実施の形態の固体撮像素子1によれば、遮光膜22が、読み出し電極を兼ねる構成として、読み出し時以外では、この遮光膜22に読み出しゲート部18に反転層28が形成されるような電圧φV(負電圧)が印加されることで、読み出しゲート部18の表面部に反転層28が形成され、読み出し時では、遮光膜22に上記反転層28が消去されるような電圧φVR(正電圧)が印加されることで、読み出しゲート部18の表面部からは反転層28が消去されるようにしたので、信号電荷の読み出し時以外では、反転層28により、受光センサ部2から垂直転送レジスタ3への信号電荷の流出を抑えることができ、信号電荷の読み出し時では、遮光膜22に印加される読み出し電圧φVRが高くなることを抑えることができる。   As described above, according to the solid-state imaging device 1 of the present embodiment, the light shielding film 22 also serves as the readout electrode, and the inversion layer 28 is formed in the readout gate portion 18 in the light shielding film 22 except during reading. By applying such a voltage φV (negative voltage), the inversion layer 28 is formed on the surface portion of the read gate portion 18, and the voltage at which the inversion layer 28 is erased from the light shielding film 22 at the time of reading. By applying φVR (positive voltage), the inversion layer 28 is erased from the surface portion of the read gate unit 18. Therefore, the light receiving sensor unit 2 is used by the inversion layer 28 except when reading the signal charge. Can be suppressed from flowing out to the vertical transfer register 3 and the reading voltage φVR applied to the light-shielding film 22 can be prevented from increasing during the reading of the signal charges.

また、本実施の形態の固体撮像素子1によれば、読み出しゲート部18では、基板10上に絶縁膜19を介して、遮光膜22の張り出し部221が設けられ、遮光膜22が読み出し電極を兼ねるように構成されているので、従来のように、遮光膜の張り出し部が受光センサ部上に跨るように形成されている構成に比べて、受光センサ部上に遮光膜の張り出し部がない分、開口面積が大きく、感度の高い構成にすることができる。
これにより、従来のように、受光センサ部22上の遮光膜221の張り出し部を短くしなくとも、スミア特性に影響を与えることなく、微細化することができる。
Further, according to the solid-state imaging device 1 of the present embodiment, the readout gate portion 18 is provided with the protruding portion 221 of the light shielding film 22 via the insulating film 19 on the substrate 10, and the light shielding film 22 serves as the readout electrode. Since it is configured so that it also serves as a conventional structure, the light-shielding film has no overhanging portion on the light-receiving sensor unit as compared to the conventional structure in which the light-shielding film overhangs the light-receiving sensor unit. In addition, it is possible to obtain a configuration with a large opening area and high sensitivity.
As a result, it is possible to reduce the size without affecting the smear characteristics without shortening the protruding portion of the light shielding film 221 on the light receiving sensor portion 22 as in the prior art.

上述した実施の形態の固体撮像素子1では、読み出しゲート部18が、N型の不純物より形成された場合において、読み出し時以外では、配線27を介して遮光膜22に負電圧が印加されることで読み出しゲート部18の表面に反転層28が形成され、読み出し時では、遮光膜22に正電圧が印加されることで反転層28が消去される構成を示したが、例えば、読み出しゲート部18が、P型の不純物より形成された場合は、読み出し時以外と読み出し時に遮光膜22に印加される電圧の極性が逆になる。   In the solid-state imaging device 1 according to the above-described embodiment, when the readout gate unit 18 is formed of an N-type impurity, a negative voltage is applied to the light shielding film 22 via the wiring 27 except during readout. In FIG. 1, the inversion layer 28 is formed on the surface of the read gate unit 18, and at the time of reading, the inversion layer 28 is erased by applying a positive voltage to the light shielding film 22. However, when formed from P-type impurities, the polarity of the voltage applied to the light shielding film 22 at the time of reading is opposite to that at the time of reading.

即ち、このような構成の固体撮像素子の場合、読み出しゲート部18がP型の不純物より形成されているので、読み出し時以外では、反転層が形成されるような電圧φVとしては、正電圧が印加される。
一方、読み出し時では、反転層28は、正電圧が印加されることで形成されているので、反転層28が消去されるような読み出し電圧φVRとしては、負電圧が印加される。
That is, in the case of the solid-state imaging device having such a configuration, since the readout gate portion 18 is formed of P-type impurities, a positive voltage is used as the voltage φV at which the inversion layer is formed except during readout. Applied.
On the other hand, at the time of reading, since the inversion layer 28 is formed by applying a positive voltage, a negative voltage is applied as the read voltage φVR at which the inversion layer 28 is erased.

このような構成とされた固体撮像素子においても、上述した実施の形態の場合と同様に、読み出し時以外では、反転層28により、受光センサ部2から垂直転送レジスタ3への信号電荷の流出を抑えることができ、読み出し時では、遮光膜22に印加される読み出し電圧φVRが高くなることを抑えることができる。
また、上述した実施の形態の場合と同様に、読み出しゲート部18では、基板10上に絶縁膜19を介して、遮光膜22の張り出し部221が設けられ、遮光膜22が読み出し電極を兼ねるように構成されているので、開口面積が広く感度の高い構成となる。これにより、受光センサ部2上の遮光膜22の張り出し部221を短くしなくとも、スミア特性に影響を与えることなく微細化することができる。
Also in the solid-state imaging device having such a configuration, as in the case of the above-described embodiment, the signal charge flows from the light receiving sensor unit 2 to the vertical transfer register 3 by the inversion layer 28 except during reading. It is possible to suppress the reading voltage φVR applied to the light shielding film 22 at the time of reading.
Further, as in the case of the above-described embodiment, in the read gate portion 18, an overhang portion 221 of the light shielding film 22 is provided on the substrate 10 via the insulating film 19, so that the light shielding film 22 also serves as a read electrode. Therefore, the aperture area is wide and the sensitivity is high. Thereby, even if it does not shorten the overhang | projection part 221 of the light shielding film 22 on the light-receiving sensor part 2, it can refine | miniaturize, without affecting a smear characteristic.

尚、本実施の形態の固体撮像素子1においては、遮光膜22が、撮像領域4において、受光センサ部2を除く領域を覆っているので、例えば、信号電荷の読み出し時に、遮光膜22に配線27を介して読み出し電圧が印加された場合、全ての受光センサ部2に蓄積された信号電荷が読み出されることになる。即ち、本実施の形態の固体撮像素子1では、全画素読み出しで信号電荷の読み出し動作が行われる。   In the solid-state imaging device 1 of the present embodiment, since the light shielding film 22 covers the area other than the light receiving sensor unit 2 in the imaging area 4, for example, wiring to the light shielding film 22 at the time of reading signal charges. When a read voltage is applied through the signal line 27, signal charges accumulated in all the light receiving sensor units 2 are read. That is, in the solid-state imaging device 1 of the present embodiment, a signal charge reading operation is performed by all-pixel reading.

しかしながら、例えば、遮光膜22の形状を変形させることで、本実施の形態の固体撮像素子1においても、フィールド読み出しやフレーム読み出しにより、信号電荷の読み出し動作を行うことができる。   However, for example, by changing the shape of the light-shielding film 22, the solid-state imaging device 1 according to the present embodiment can perform a signal charge reading operation by field reading or frame reading.

このような場合は、先ず、本実施の形態の固体撮像素子1において、例えば遮光膜22が受光センサ部2の各行毎で分断されるような構成として、読み出し電圧が受光センサ部の各行毎に印加される構成とする。そして、このような構成の固体撮像素子1において、転送電極の構成を変化させたり、読み出し電圧を印加するタイミングを、奇数行、偶数行でそれぞれ変化させたりすることで行うことができる。
尚、受光センサ部の各行毎に分断された遮光膜22は、例えば、遮光膜22の形成工程において、マスクパターンの形状を、受光センサ部の各行毎で分断された形状とすることで形成することができる。
In such a case, first, in the solid-state imaging device 1 of the present embodiment, for example, the light shielding film 22 is divided for each row of the light receiving sensor unit 2, and the readout voltage is set for each row of the light receiving sensor unit. It is set as the structure applied. In the solid-state imaging device 1 having such a configuration, the configuration of the transfer electrode can be changed, and the timing for applying the read voltage can be changed in each of the odd and even rows.
The light shielding film 22 divided for each row of the light receiving sensor unit is formed, for example, by making the shape of the mask pattern divided for each row of the light receiving sensor unit in the formation process of the light shielding film 22. be able to.

上述した実施の形態では、本発明を、IT型の固体撮像素子に適用して説明したが、IT型の固体撮像素子に限られず、例えばフレームインターライントランスファ(FIT)型の固体撮像素子にも適用することができる。   In the above-described embodiments, the present invention is applied to the IT solid-state image sensor. However, the present invention is not limited to the IT solid-state image sensor. For example, the present invention is applied to a frame interline transfer (FIT) solid-state image sensor. Can be applied.

尚、本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described embodiment, and various other configurations can be taken without departing from the gist of the present invention.

本発明に係る固体撮像素子の一実施の形態を示す概略平面図である。1 is a schematic plan view showing an embodiment of a solid-state imaging device according to the present invention. 図1に示す撮像領域のA−A線上の拡大断面図(読み出し時以外)である。It is an expanded sectional view on the AA line of the imaging region shown in FIG. A、B 図2の読み出しゲート部付近の拡大断面図である。A and B are enlarged cross-sectional views in the vicinity of the read gate portion in FIG. 図1に示す撮像領域のA−A線上の拡大断面図(読み出し時)である。FIG. 2 is an enlarged cross-sectional view (when reading) of the imaging region shown in FIG. A、B 図4の読み出しゲート部付近の拡大断面図である。FIGS. 5A and 5B are enlarged sectional views in the vicinity of a read gate portion in FIG. 従来の固体撮像素子の概略平面図である。It is a schematic plan view of the conventional solid-state image sensor. 図6に示す固体撮像素子の撮像領域のA−A線上の拡大断面図である。It is an expanded sectional view on the AA line of the imaging area | region of the solid-state image sensor shown in FIG.

符号の説明Explanation of symbols

1・・・固体撮像素子、2・・・受光センサ部、3・・・垂直転送レジスタ、4・・・撮像領域、5・・・水平転送レジスタ部、6・・・出力部、7・・・、8・・・、10・・・N型のシリコン半導体基板、11・・・P型の第1の半導体ウェル領域、12・・・Nの半導体領域、13・・・P++の読み出しゲート部、15・・・Nの転送チャネル領域、16・・・Pの第2の半導体ウェル領域、17・・・Pのチャネルストップ領域、18・・・読み出しゲート部、19・・・絶縁膜、20・・・転送電極、21・・・層間絶縁膜、22・・・遮光膜、221・・・張り出し部、23・・・プラズマSiN膜、24・・・平坦化膜、25・・・カラーフィルタ、26・・・オンチップレンズ、27・・・配線、28・・・反転層 DESCRIPTION OF SYMBOLS 1 ... Solid-state image sensor, 2 ... Light-receiving sensor part, 3 ... Vertical transfer register, 4 ... Imaging area, 5 ... Horizontal transfer register part, 6 ... Output part, 7 ... 8 ... 10 ... N-type silicon semiconductor substrate, 11 ... P-type first semiconductor well region, 12 ... N + semiconductor region, 13 ... P ++ readout Gate portion, 15... N + transfer channel region, 16... P + second semiconductor well region, 17... P + channel stop region, 18. Insulating film, 20 ... transfer electrode, 21 ... interlayer insulating film, 22 ... light shielding film, 221 ... overhang, 23 ... plasma SiN film, 24 ... flattening film, 25 ... Color filters, 26 ... On-chip lenses, 27 ... Wiring, 28 ... Rolling layer

Claims (3)

受光センサ部と垂直転送レジスタとが形成され、前記受光センサ部と前記垂直転送レジスタとの間に、読み出しゲート部が形成されて撮像領域が構成され、
前記撮像領域において、前記受光センサ部を除く領域が遮光膜で覆われ、
前記遮光膜が、前記受光センサ部に蓄積された信号電荷を、前記垂直転送レジスタに読み出すための読み出し電極を兼ね、
前記信号電荷の読み出し時以外は、前記遮光膜に、前記読み出しゲート部の表面に反転層が形成されるような電圧が印加され、
前記信号電荷の読み出し時は、前記遮光膜に、前記反転層が消去されるような電圧が印加される
ことを特徴とする固体撮像素子。
A light receiving sensor unit and a vertical transfer register are formed, and a reading gate unit is formed between the light receiving sensor unit and the vertical transfer register to form an imaging region,
In the imaging region, the region excluding the light receiving sensor portion is covered with a light shielding film,
The light shielding film also serves as a readout electrode for reading the signal charge accumulated in the light receiving sensor unit to the vertical transfer register,
Except at the time of reading out the signal charge, a voltage is applied to the light shielding film so that an inversion layer is formed on the surface of the readout gate portion.
At the time of reading out the signal charge, a voltage that erases the inversion layer is applied to the light shielding film.
前記読み出しゲート部がN型の半導体領域から形成され、前記信号電荷の読み出し時以外は、前記遮光膜に、前記読み出しゲート部の表面に反転層が形成されるような負電圧が印加され、前記信号電荷の読み出し時は、前記反転層が消去されるような正電圧が印加されることを特徴とする請求項1に記載の固体撮像素子。   The read gate portion is formed of an N-type semiconductor region, and a negative voltage is applied to the light shielding film so that an inversion layer is formed on the surface of the read gate portion, except when reading the signal charge, 2. The solid-state imaging device according to claim 1, wherein a positive voltage that erases the inversion layer is applied when signal charges are read. 前記読み出しゲート部がP型の半導体領域から形成され、前記信号電荷の読み出し時以外は、前記遮光膜に、読み出しゲート部の表面に反転層が形成されるような正電圧が印加され、前記信号電荷の読み出し時は、前記反転層が消去されるような負電圧が印加されることを特徴とする請求項1に記載の固体撮像素子。
The read gate portion is formed of a P-type semiconductor region, and a positive voltage is applied to the light shielding film so that an inversion layer is formed on the surface of the read gate portion except when the signal charge is read. The solid-state imaging device according to claim 1, wherein a negative voltage is applied so that the inversion layer is erased when reading out the electric charge.
JP2003338169A 2003-09-29 2003-09-29 Solid state imaging device Pending JP2005109021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338169A JP2005109021A (en) 2003-09-29 2003-09-29 Solid state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003338169A JP2005109021A (en) 2003-09-29 2003-09-29 Solid state imaging device

Publications (2)

Publication Number Publication Date
JP2005109021A true JP2005109021A (en) 2005-04-21
JP2005109021A5 JP2005109021A5 (en) 2006-06-22

Family

ID=34533763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338169A Pending JP2005109021A (en) 2003-09-29 2003-09-29 Solid state imaging device

Country Status (1)

Country Link
JP (1) JP2005109021A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714404B2 (en) 2007-09-06 2010-05-11 Fujifilm Corporation Solid-state imaging device
US7772616B2 (en) 2007-09-11 2010-08-10 Fujifilm Corporation Solid-state imaging device and imaging apparatus
CN102034844A (en) * 2009-09-28 2011-04-27 索尼公司 Solid-state image pickup device, method for manufacturing the same, and electronic apparatus
JP2011129723A (en) * 2009-12-17 2011-06-30 Sharp Corp Method of manufacturing solid-state imaging device
US7994461B2 (en) 2008-07-01 2011-08-09 Fujifilm Corporation Solid-state imaging device and imaging apparatus
US8085331B2 (en) 2007-12-21 2011-12-27 Panasonic Corporation Solid-state imaging device, driving method thereof, and camera
CN102800685A (en) * 2011-05-27 2012-11-28 佳能株式会社 Solid-state image pickup apparatus and image pickup system
US8593554B2 (en) 2008-10-17 2013-11-26 Sony Corporation Solid-state imaging apparatus, camera, and method of manufacturing solid-state imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245679A (en) * 1991-01-31 1992-09-02 Toshiba Corp Solid-state imaging device
JP2002289534A (en) * 2001-03-26 2002-10-04 Sony Corp Method for fabricating semiconductor device and method for sorting solid-state imaging device
JP2003234463A (en) * 2002-02-08 2003-08-22 Sony Corp Charge coupled device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245679A (en) * 1991-01-31 1992-09-02 Toshiba Corp Solid-state imaging device
JP2002289534A (en) * 2001-03-26 2002-10-04 Sony Corp Method for fabricating semiconductor device and method for sorting solid-state imaging device
JP2003234463A (en) * 2002-02-08 2003-08-22 Sony Corp Charge coupled device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714404B2 (en) 2007-09-06 2010-05-11 Fujifilm Corporation Solid-state imaging device
US7772616B2 (en) 2007-09-11 2010-08-10 Fujifilm Corporation Solid-state imaging device and imaging apparatus
US8085331B2 (en) 2007-12-21 2011-12-27 Panasonic Corporation Solid-state imaging device, driving method thereof, and camera
US7994461B2 (en) 2008-07-01 2011-08-09 Fujifilm Corporation Solid-state imaging device and imaging apparatus
US8593554B2 (en) 2008-10-17 2013-11-26 Sony Corporation Solid-state imaging apparatus, camera, and method of manufacturing solid-state imaging apparatus
CN102034844A (en) * 2009-09-28 2011-04-27 索尼公司 Solid-state image pickup device, method for manufacturing the same, and electronic apparatus
JP2011129723A (en) * 2009-12-17 2011-06-30 Sharp Corp Method of manufacturing solid-state imaging device
CN102800685A (en) * 2011-05-27 2012-11-28 佳能株式会社 Solid-state image pickup apparatus and image pickup system
US9224774B2 (en) 2011-05-27 2015-12-29 Canon Kabushiki Kaisha Solid-state image pickup apparatus, and image pickup system using solid-state image pickup apparatus
US9553117B2 (en) 2011-05-27 2017-01-24 Canon Kabushiki Kaisha Solid-state image pickup apparatus, and image pickup system using solid-state image pickup apparatus
US9893104B2 (en) 2011-05-27 2018-02-13 Canon Kabushiki Kaisha Solid-state image pickup apparatus, and image pickup system using solid-state image pickup apparatus
US10418398B2 (en) 2011-05-27 2019-09-17 Canon Kabushiki Kaisha Solid-state image pickup apparatus, and image pickup system using solid-state image pickup apparatus having metal film with first and second portions

Similar Documents

Publication Publication Date Title
TWI479647B (en) A solid-state imaging device, a manufacturing method of a solid-state imaging device, and an electronic device
JP4621719B2 (en) Back-illuminated image sensor
JP5537523B2 (en) Solid-state imaging device
JP4224036B2 (en) Image sensor with embedded photodiode region and method of manufacturing the same
KR101159032B1 (en) Solid-state imaging device
JP2006245499A (en) Solid state imaging apparatus
JP4371145B2 (en) Solid-state imaging device and imaging device
US20100214464A1 (en) Solid-state imaging apparatus
JP2007115787A (en) Solid-state imaging element
JP2005109021A (en) Solid state imaging device
JP2005217302A (en) Solid-state imaging device
JP2005268644A (en) Back irradiation type solid-state image pickup element, electronic equipment module, and camera module
JP2011054596A (en) Ccd image sensor
JP2001057421A (en) Solid state image sensor
JP4784655B2 (en) Solid-state imaging device and electronic apparatus
JP2007035950A (en) Solid-state image pickup device, manufacturing method thereof and camera
JP2008193050A (en) Solid-state imaging apparatus and imaging apparatus
JP4867309B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP2013145933A (en) Solid state imaging element, solid state imaging device and electronic apparatus
JP2006319184A (en) Solid-state imaging device and camera
JP2003347537A (en) Solid-state image pickup element
JP2007184467A (en) Solid-state imaging element
JP2005093915A (en) Solid state imaging device
JP2009272338A (en) Solid-state image sensor and imaging device
JP5002941B2 (en) Solid-state imaging device, manufacturing method thereof, and camera

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330