JP2005104826A - Spray material and repairing process using the same - Google Patents

Spray material and repairing process using the same Download PDF

Info

Publication number
JP2005104826A
JP2005104826A JP2004249139A JP2004249139A JP2005104826A JP 2005104826 A JP2005104826 A JP 2005104826A JP 2004249139 A JP2004249139 A JP 2004249139A JP 2004249139 A JP2004249139 A JP 2004249139A JP 2005104826 A JP2005104826 A JP 2005104826A
Authority
JP
Japan
Prior art keywords
mass
parts
cement
group
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004249139A
Other languages
Japanese (ja)
Other versions
JP4785359B2 (en
Inventor
Akitoshi Araki
昭俊 荒木
Kazuyuki Mizushima
一行 水島
Katsuya Matsuo
勝弥 松尾
Masao Nagura
政雄 名倉
Yasuo Kawabata
康夫 川端
Akinobu Hirama
昭信 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Tobishima Corp
Original Assignee
Tobishima Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp, Denki Kagaku Kogyo KK filed Critical Tobishima Corp
Priority to JP2004249139A priority Critical patent/JP4785359B2/en
Publication of JP2005104826A publication Critical patent/JP2005104826A/en
Application granted granted Critical
Publication of JP4785359B2 publication Critical patent/JP4785359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/72Repairing or restoring existing buildings or building materials
    • C04B2111/723Repairing reinforced concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spray material containing no polymer emulsion, having excellent crack resistance with a low cost, capable of being applied thick by only one spray and exhibiting excellent pump pressure feeding property to carry out a repairing process in which the shrinkage by hardening is small even when a setting accelerator is mixed and the infiltration of carbon dioxide gas, chlorides and water is remarkably suppressed by the combination with a surface modifying material without the sharp increase of cost. <P>SOLUTION: The spray material contains the setting accelerator consisting essentially of aluminum sulfate in addition to cement mortar containing 2-10 pts.mass expansive admixture, 1-10 pts.mass polyoxyalkylene derivative expressed by general formula X[O(AO)<SB>n</SB>R]<SB>m</SB>, per 100 pts.mass cement and sand. In formula, X is a residual group of a compound having 2-8 hydroxy groups, AO is a 2-18C oxyalkylene group, R is a hydrogen atom, a 1-18C hydrocarbon group or a 2-18C acyl group, (n) is 30-1,000, (m) is 2-8 and ≥60 mol% of the oxyalkylene group is oxyethylene groups. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、土木及び建築分野におけるコンクリート構造物の補修・補強工事で使用する吹付け材料およびそれを用いた補修工法に関する。   TECHNICAL FIELD The present invention relates to a spray material used in repair and reinforcement work for concrete structures in the civil engineering and construction fields, and a repair method using the same.

コンクリート構造物は、塩害、中性化、凍結融解、及び化学的腐食等の作用により劣化が進行し、表面にひび割れや浮き等が発生する恐れがある。その対策として、劣化した部分を打音検査等で確認し、電動ピック、エアピック、ウォータージェット等により取り除き、新たに補修部材で充填し補修する工事が行われている。
このような補修工事では、吹付け工法が多く適用されており、一般的には、練り混ぜたモルタルをポンプで圧送し、圧縮空気と混合し、モルタルを吹き飛ばして施工する方法であり、システムが機械化されているので施工スピードが速く、補修断面への付着性に優れ、鉄筋裏側への密実な充填も可能という利点がある。
Concrete structures may deteriorate due to salt damage, neutralization, freezing and thawing, chemical corrosion, and the like, and the surface may be cracked or floated. As countermeasures, a construction is performed in which a deteriorated portion is confirmed by a hammering inspection or the like, removed by an electric pick, an air pick, a water jet, or the like, and newly repaired with a repair member.
In such repair work, the spraying method is often applied.Generally, the mortar mixed with the pump is pumped and mixed with compressed air, and the mortar is blown away. Since it is mechanized, the construction speed is fast, it has excellent adhesion to the repair cross section, and there is an advantage that it is possible to densely fill the back side of the reinforcing bar.

吹付け工法において、モルタルとしては、JIS A 6203に規定されたポリマーエマルジョンを含有するポリマーセメントモルタルが使われる場合が多い(特許文献1〜3参照)。   In the spraying method, a polymer cement mortar containing a polymer emulsion defined in JIS A 6203 is often used as the mortar (see Patent Documents 1 to 3).

特開2000−335953号公報JP 2000-335953 A 特開2001−322858号公報JP 2001-322858 A 特開平6−128007号公報Japanese Patent Laid-Open No. 6-128007

上記特許文献1〜3に記載された発明は、ポリマーエマルジョンの混和により耐久性を向上させたり、付着力を向上させたり、粉塵やリバウンドを低減させたりするものであり、また、特許文献1には、モルタルの乾燥ひび割れを低減させるために、膨張材を含有させること、吹き付け施工時のモルタルの跳ね返りや脱落を防止したり圧送時のモルタルの滑りをよくするために、粘調剤を含有させることが示されており、特許文献2には、ひび割れを防止するために、短繊維を混合することが示されているが、いずれの特許文献にも、収縮低減材を含有させること、凝結促進剤を含有させることについては示されていない。   The inventions described in Patent Documents 1 to 3 improve durability by admixing polymer emulsions, improve adhesion, and reduce dust and rebound. In order to reduce dry cracking of the mortar, an expansion material should be included, and to prevent the mortar from bouncing off and falling off during spraying, and to improve the slippage of the mortar during pumping, a viscosity agent should be included. In Patent Document 2, it is shown that short fibers are mixed in order to prevent cracking. However, in each Patent Document, a shrinkage reducing material is included, and a setting accelerator. The inclusion of is not shown.

一方、RO(AO)nH(Rは炭素数4〜6のアルキル基、Aは炭素数2〜3の1種又は2種のアルキレン基、nは1〜10の整数)で示される低級アルコールのアルキレンオキサイド付加物を主体とする収縮低減剤を含むベースコンクリートに、アルミニウム塩等を主成分とする急結剤を配合してなる湿式吹付けコンクリートの発明も公知である(特許文献4参照)。
また、セメントモルタル・コンクリート吹付け材料用の急結剤(凝結促進剤)として、皮膚に対する刺激性が少ない硫酸アルミニウムを主成分とする酸性のアルカリフリー急結剤も使用されている(特許文献5参照)。
On the other hand, a lower alcohol represented by RO (AO) nH (R is an alkyl group having 4 to 6 carbon atoms, A is one or two alkylene groups having 2 to 3 carbon atoms, and n is an integer of 1 to 10). An invention of wet sprayed concrete obtained by blending a base concrete containing a shrinkage reducing agent mainly composed of an alkylene oxide adduct with a rapid setting agent mainly composed of an aluminum salt or the like is also known (see Patent Document 4).
In addition, an acidic alkali-free quick setting agent mainly composed of aluminum sulfate, which is less irritating to the skin, is also used as a quick setting agent (setting accelerator) for cement mortar / concrete spray materials (Patent Document 5). reference).

特開2001−342051号公報JP 2001-342051 A 特開2001−213658号公報JP 2001-213658 A

特許文献4の発明によれば、施工性が良好で、初期の収縮量が小さくてひび割れが発生しない、40N/mm以上の圧縮強度を発現する湿式吹付けコンクリートが得られるというものであるが、収縮低減剤としては、低分子の液状のものが示されているだけで、また、この収縮低減剤を膨張材と併用することは示されていない。特許文献4や5に示されているような凝結促進剤を使用すると、早期開放や厚付けが可能となるが、いずれにしても、これらの文献には、凝結促進剤を重合度の高い粉体の収縮低減剤や膨張材と組み合わせることは示されていない。 According to the invention of Patent Document 4, wet sprayable concrete having good workability, small initial shrinkage and no cracking, and expressing a compressive strength of 40 N / mm 2 or more can be obtained. As the shrinkage reducing agent, only a low molecular weight liquid is shown, and it is not shown that this shrinkage reducing agent is used in combination with an expansion material. If a setting accelerator as shown in Patent Documents 4 and 5 is used, early opening and thickening are possible. In any case, these documents include a powder having a high polymerization degree. It is not shown to be combined with a body shrinkage reducing agent or an expansion material.

さらに、「一般式がX[O(AO)nR]mで示され、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子か炭素数1〜18の炭化水素基又は炭素数2〜18のアシル基、nは30〜1000、mは2〜8であり、オキシアルキレン基の60モル%以上はオキシエチレン基であるポリオキシアルキレン誘導体を含有してなる粉体の乾燥収縮低減剤の配合割合が、質量比でセメント:膨張材:乾燥収縮低減剤=80〜98:2〜20:0.2〜10であることを特徴とするセメント組成物。」の発明が公知である(特許文献6参照)。   Furthermore, “the general formula is represented by X [O (AO) nR] m, X is a residue of a compound having 2 to 8 hydroxyl groups, AO is an oxyalkylene group having 2 to 18 carbon atoms, and R is a hydrogen atom. Or a hydrocarbon group having 1 to 18 carbon atoms or an acyl group having 2 to 18 carbon atoms, n is 30 to 1000, m is 2 to 8, and 60 mol% or more of the oxyalkylene groups are oxyethylene groups. The blending ratio of the dry shrinkage reducing agent of the powder containing the alkylene derivative is cement: expansion material: dry shrinkage reducing agent = 80 to 98: 2 to 20: 0.2 to 10 by mass ratio. The invention of “a cement composition” is known (see Patent Document 6).

特開2002−68813号公報JP 2002-68813 A

特許文献6の発明においては、特定の配合比を有するセメント、膨張材及び粉体の乾燥収縮低減剤を含有してなるセメント組成物を使用することにより、セメント、モルタル、コンクリ−ト等の硬化体の収縮量は少なく、高い曲げひび割れ強度が得られ、また、セメント組成物のプレミックス化が可能であるというものであるが、このセメント組成物を吹付け材料として使用すること、このセメント組成物に凝結促進剤を含有させることは示されていない。   In the invention of Patent Document 6, the cement, mortar, concrete and the like are cured by using a cement composition containing a cement, an expanding material and a powder shrinkage reducing agent having a specific mixing ratio. The amount of shrinkage of the body is small, high bending cracking strength can be obtained, and the cement composition can be premixed, but this cement composition can be used as a spraying material. There is no indication that the product contains a setting accelerator.

また、飛来塩分等の外部から侵入する劣化要因に対しては、耐久性を向上させるために樹脂系の表面被覆材を塗布する方法もある(非特許文献1参照)。
「コンクリート混和剤の開発技術」、1998年9月30日、(株)シーエムシー発行、第265頁〜第279頁
Also, there is a method of applying a resin-based surface coating material to improve the durability against deterioration factors entering from the outside such as flying salt (see Non-Patent Document 1).
"Development technology of concrete admixture", September 30, 1998, issued by CMC Co., pp. 265-279

従来吹付け工法に補修モルタルとして通常使用されている前記のポリマーセメントモルタルでは、一回の吹付け厚さは天井面で20〜50mm程度であり、修復深さが例えば、100mm以上と厚い場合は2〜5回と最初に吹き付けたモルタルがある程度硬くなってから数回に分割して吹き付けて断面を修復しなければならなかった。無理に厚く付けようとすると、吹き付けた箇所が落下し穴が開いたりして、修復作業に手間がかかった。従って、修復が完了するまでの施工時間がかかるといった課題があった。また、ポリマーエマルジョンは高価な材料であり、補修モルタル自体のコストも高くなる等の課題があった。特に、樹脂系の表面被覆材をさらに組み合わせるとトータル的に材料コストが大幅にアップする。
さらに、ポリマーセメントモルタルは、そうでないモルタルにくらべ粘性がありポンプ圧送時の圧送抵抗がかかり長距離圧送が難しく、圧送できたとしてもモルタルの実吐出量が大幅に少なくなるといった課題もあった。
In the polymer cement mortar usually used as a repair mortar in the conventional spraying method, the spraying thickness at one time is about 20 to 50 mm on the ceiling surface, and the repair depth is as thick as 100 mm or more, for example. After the mortar that was sprayed first 2 to 5 times became hard to some extent, it was necessary to divide it into several times and spray it to repair the cross section. Attempting to attach it too thick dropped the sprayed part and opened a hole, which required time and effort for the repair work. Therefore, there is a problem that it takes a long time to complete the repair. In addition, the polymer emulsion is an expensive material, and there is a problem that the cost of the repair mortar itself is increased. In particular, when a resin-based surface coating material is further combined, the total material cost is greatly increased.
Furthermore, the polymer cement mortar is more viscous than other mortars and has a resistance to pumping at the time of pumping, making long-distance pumping difficult. Even if it can be pumped, the actual discharge amount of the mortar is greatly reduced.

既設トンネルの補修工事等では、厚付けおよび早期開放を目的に凝結促進剤を使用した吹付け材料も使用されている。しかし、凝結促進剤が混入すると硬化収縮が大きくなり、ひび割れが発生するという課題もあった。   In repair work for existing tunnels, spraying materials that use a setting accelerator are also used for the purpose of thickening and early opening. However, when the setting accelerator is mixed, there is a problem that the curing shrinkage increases and cracks occur.

本発明者は、前記の課題を解決するために鋭意検討を重ねた結果、ポリマーエマルジョンを含まず安価でひび割れ抵抗性に優れ、1回の吹き付けで厚付けが可能であり、ポンプ圧送性に優れた吹付け材料及び補修工法が可能となり、凝結促進剤を混合しても硬化収縮が小さく、さらに、表面改質材を組み合わせることで、大幅なコストアップにならずに、炭酸ガス、塩化物、及び水の浸入を大幅に抑制できる補修工法を完成するに至った。
特に、吹付け材料及び補修工法への適用が考えられていなかった特許文献6に記載されたセメント組成物に特定の凝結促進剤を組み合わせることにより、吹付け材料及び補修工法への適用を可能としたものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor does not include a polymer emulsion, is inexpensive and has excellent resistance to cracking, can be thickened by one spraying, and has excellent pumpability. The spraying material and repair method can be used, and even if a setting accelerator is mixed, the shrinkage of curing is small.In addition, by combining surface modifiers, carbon dioxide gas, chloride, And the repair method that can greatly suppress the infiltration of water has been completed.
In particular, by applying a specific setting accelerator to the cement composition described in Patent Document 6 that was not considered to be applied to the spray material and the repair method, it can be applied to the spray material and the repair method. It is a thing.

本発明は、前記課題を解決するために、次のような構成をとるものである。
(1)セメント100質量部に対して、膨張材2〜10質量部、一般式がX[O(AO)nR]mで示され、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1000、mは2〜8であり、オキシアルキレン基の60モル%以上はオキシエチレン基であるポリオキシアルキレン誘導体1〜10質量部、砂を含有するセメントモルタルに、さらに、硫酸アルミニウムを主成分とする凝結促進剤を含有することを特徴とする吹付け材料である。
(2)硫酸アルミニウムを主成分とする凝結促進剤をセメント100質量部に対して固形分で0.05〜3質量部含有することを特徴とする前記(1)の吹付け材料である。
(3)増粘剤及び/又は流動化剤を含有することを特徴とする前記(1)又は(2)の吹付け材料である。
(4)繊維類を含有することを特徴とする前記(1)〜(3)のいずれか一の吹付け材料である。
(5)前記(1)〜(4)のいずれか一の吹付け材料を用いて、劣化したコンクリートを取り除いた断面を修復することを特徴とするコンクリート構造物の補修工法である。
(6)前記(1)〜(4)のいずれか一の吹付け材料を用いて、劣化したコンクリートを取り除いた断面を修復し、さらにその断面修復部が硬化した後に、外部からの塩化物イオン、炭酸ガス、及び水の侵入を防止するために表面部分に表面改質材を塗布することを特徴とするコンクリート構造物の補修工法である。
In order to solve the above problems, the present invention has the following configuration.
(1) 2 to 10 parts by mass of an expansion material with respect to 100 parts by mass of cement, the general formula is represented by X [O (AO) nR] m, and X is a residue of a compound having 2 to 8 hydroxyl groups, AO is an oxyalkylene group having 2 to 18 carbon atoms, R is a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1000, and m is 2 to 8. In addition, 1 to 10 parts by mass of polyoxyalkylene derivatives in which 60 mol% or more of oxyalkylene groups are oxyethylene groups, cement mortar containing sand, and further containing a setting accelerator mainly composed of aluminum sulfate. It is a characteristic spray material.
(2) The spraying material according to (1) above, wherein a setting accelerator mainly composed of aluminum sulfate contains 0.05 to 3 parts by mass in solid content with respect to 100 parts by mass of cement.
(3) The spray material according to (1) or (2) above, which contains a thickener and / or a fluidizing agent.
(4) The spray material according to any one of (1) to (3), which contains fibers.
(5) A method for repairing a concrete structure, comprising repairing a cross-section from which deteriorated concrete has been removed using the spray material according to any one of (1) to (4).
(6) Using the spraying material according to any one of (1) to (4) above, repairing the cross section from which the deteriorated concrete is removed, and further curing the cross section repaired portion, then chloride ions from the outside A method for repairing a concrete structure, characterized in that a surface modifying material is applied to a surface portion in order to prevent invasion of carbon dioxide and water.

本発明の吹付け材料及び吹付け工法を用いることで、1回の吹付けによる厚付けが可能となるから、施工スピードを短縮化できる。膨張材と特定のポリオキシアルキレン誘導体を吹付け材料に含有させることで、凝結促進剤の使用による硬化収縮が防止され、大幅にひび割れ発生を低減することができる。また、ポリマーエマルジョンを使用しないので安価な補修モルタルとすることが可能となる。さらに、表面改質材を塗布することで、炭酸ガス、塩化物、及び水の浸入を大幅に抑制できるので、中性化、塩害、及び凍害等に対する抵抗性を大幅に向上し、本発明の吹付け材料と表面改質材との組み合わせにより耐久性の向上を図ることが可能となる。   By using the spraying material and the spraying method of the present invention, it is possible to thicken by one spraying, so that the construction speed can be shortened. By including an expanding material and a specific polyoxyalkylene derivative in the spray material, curing shrinkage due to the use of a setting accelerator can be prevented, and the occurrence of cracks can be greatly reduced. Further, since no polymer emulsion is used, an inexpensive repair mortar can be obtained. Furthermore, since the infiltration of carbon dioxide, chloride, and water can be significantly suppressed by applying the surface modifying material, the resistance to neutralization, salt damage, frost damage, etc. is greatly improved. The durability can be improved by the combination of the spray material and the surface modifying material.

以下、本発明を詳細に説明する。
本発明で使用するセメントとしては特に限定されるものではないが、JIS R 5210に規定されている各種ポルトランドセメント、JIS R 5211、 JIS R 5212、 およびJIS R 5213に規定された各種混合セメント、JISに規定された以上の混和材混入率で製造した高炉セメント、フライアッシュセメントおよびシリカセメント、石灰石粉末等を混合したフィラーセメント、アルミナセメントから選ばれる1種又は2種以上などが挙げられる。
Hereinafter, the present invention will be described in detail.
The cement used in the present invention is not particularly limited, but various portland cements defined in JIS R 5210, various mixed cements defined in JIS R 5211, JIS R 5212, and JIS R 5213, JIS Blast furnace cement, fly ash cement, silica cement, filler cement mixed with limestone powder and the like, alumina cement, or one or more selected from the above-mentioned admixture mixing ratio specified in the above.

本発明で使用する膨張材は、モルタルの乾燥ひび割れを低減するために使用されるもので特に限定されるものではないが、アウイン系、カルシウムアルミノフェライト系、石灰系等のものが挙げられる。
膨張材の使用量は、通常、セメント100質量部に対して、2〜10質量部が好ましく、4〜8質量部がより好ましい。2質量部未満ではモルタルのひび割れ防止が充分できない場合があり、10質量部を超えて配合してもその効果の向上が期待できない。
The expansion material used in the present invention is not particularly limited and is used for reducing dry cracking of mortar, but examples thereof include Auin, calcium aluminoferrite, and lime.
The amount of the expansion material used is usually preferably 2 to 10 parts by mass and more preferably 4 to 8 parts by mass with respect to 100 parts by mass of cement. If it is less than 2 parts by mass, cracking of the mortar may not be sufficiently prevented, and even if it exceeds 10 parts by mass, the effect cannot be expected.

本発明で使用するポリオキシアルキレン誘導体は、一般式がX[O(AO)nR]mで示され、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1000、mは2〜8であり、オキシアルキレン基の60モル%以上はオキシエチレン基であるポリオキシアルキレン誘導体からなるものである。
nの値が30未満であると融点が低くなり粉体で使用することが難しくなり、nの値が1000を超えると粘度が高くなり製造が難しくなる。
オキシエチレン基が60モル%未満であると融点が低くなり粉体で使用することが難しくなり、セメント溶液中での溶解性が悪くなる。
The polyoxyalkylene derivative used in the present invention has a general formula represented by X [O (AO) nR] m, X is a residue of a compound having 2 to 8 hydroxyl groups, and AO has 2 to 18 carbon atoms. An oxyalkylene group, R is a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1000, m is 2 to 8, and 60 mol% of the oxyalkylene group The above is composed of a polyoxyalkylene derivative which is an oxyethylene group.
When the value of n is less than 30, the melting point becomes low and it becomes difficult to use it in powder form. When the value of n exceeds 1000, the viscosity becomes high and the production becomes difficult.
If the oxyethylene group is less than 60 mol%, the melting point becomes low, making it difficult to use in powder form, resulting in poor solubility in the cement solution.

一般式X[O(AO)nR]mにおいて、Xは2〜8個の水酸基を有する化合物の残基であるが、水酸基を2〜8個有する化合物としては、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、スチレングリコール、炭素数8〜18のアルキレングリコール、ネオペンチルグリコール等のグリコール類、グリセリン、ジグリセリン、ポリグリセリン、トリメチロールエタン、トリメチロールプロパン、1,3,5−ペンタントリオール、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール、ソルビタン、ソルバイド、ソルビトールとグリセリンの縮合物、アドニトール、アラビトール、キシリトール、マンニトール等の多価アルコール類、あるいはそれらの部分エーテル化物、又はエステル化物、キシロース、アラビノース、リボース、ラムノース、グリコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュークロース、ラフィノース、ゲンチアノース、メレジトース等の糖類、あるいはそれらの部分エーテル化物又はエステル化物等が挙げられる。   In the general formula X [O (AO) nR] m, X is a residue of a compound having 2 to 8 hydroxyl groups. Examples of the compound having 2 to 8 hydroxyl groups include ethylene glycol, propylene glycol, butylene glycol. , Hexylene glycol, styrene glycol, alkylene glycols having 8 to 18 carbon atoms, glycols such as neopentyl glycol, glycerin, diglycerin, polyglycerin, trimethylolethane, trimethylolpropane, 1,3,5-pentanetriol, Erythritol, pentaerythritol, dipentaerythritol, sorbitol, sorbitan, sorbide, condensates of sorbitol and glycerin, polyhydric alcohols such as adonitol, arabitol, xylitol, mannitol, or partially etherified products thereof, or es Telluride, xylose, arabinose, ribose, rhamnose, frucose, fructose, galactose, mannose, sorbose, cellobiose, maltose, isomaltose, trehalose, sucrose, raffinose, gentianose, merezitose, etc., or a partial etherified product or ester thereof And the like.

一般式X[O(AO)nR]mにおいて、AOで示される炭素数2〜18のオキシアルキレン基は、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン、炭素数6〜18のα−オレフィンオキシド等に由来するもので、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシテトラメチレン基、炭素数6〜18のオキシアルキレン基等があり、2種以上が付加しているときは、ブロック状付加でもランダム状付加でもよい。   In the general formula X [O (AO) nR] m, the oxyalkylene group having 2 to 18 carbon atoms represented by AO is converted to ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, α-olefin oxide having 6 to 18 carbon atoms, or the like. It is derived from oxyethylene group, oxypropylene group, oxybutylene group, oxytetramethylene group, oxyalkylene group of 6 to 18 carbon atoms, etc. Random addition may be used.

上記一般式において、Rで示される炭素数1〜18の炭化水素基としては、メチル基、エチル基、アリル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第三ブチル基、アミル基、イソアミル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、イソセチル基、オクタデシル基、イソステアリル基、オレイル基、ベンジル基、クレジル基、ブチルフェニル基、ジブチルフェニル基、オクチルフェニル基、ノニルフェニル基、ドデシルフェニル基、スチレン化フェニル基等が挙げられる。   In the above general formula, the hydrocarbon group having 1 to 18 carbon atoms represented by R is methyl group, ethyl group, allyl group, propyl group, isopropyl group, butyl group, isobutyl group, tertiary butyl group, amyl group, Isoamyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl, dodecyl, isotridecyl, tetradecyl, hexadecyl, isocetyl, octadecyl, isostearyl, oleyl Benzyl group, cresyl group, butylphenyl group, dibutylphenyl group, octylphenyl group, nonylphenyl group, dodecylphenyl group, styrenated phenyl group and the like.

また、同じくRで示される炭素数2〜18のアシル基としては、酢酸、プロピオン酸、酪酸、イソ酪酸、カプロン酸、カプリル酸、2−エチルヘキサン酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸,パルミチン酸、イソパルミチン酸、マーガリン酸、ステアリン酸、イソステアリン酸、アクリル酸、メタクリル酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、安息香酸等に由来するアシル基が挙げられる。   Similarly, as the acyl group having 2 to 18 carbon atoms represented by R, acetic acid, propionic acid, butyric acid, isobutyric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, pelargonic acid, capric acid, lauric acid, myristic Examples include acyl groups derived from acids, palmitic acid, isopalmitic acid, margaric acid, stearic acid, isostearic acid, acrylic acid, methacrylic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid and the like.

ポリオキシアルキレン誘導体の使用量は、セメント100質量部に対して1〜10質量部が好ましく、3〜8質量部がより好ましい。1質量部未満では収縮低減効果が得られず、10質量部を超えると強度発現が阻害される場合がある。   1-10 mass parts is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of a polyoxyalkylene derivative, 3-8 mass parts is more preferable. If it is less than 1 part by mass, the effect of reducing shrinkage cannot be obtained, and if it exceeds 10 parts by mass, the strength expression may be inhibited.

本発明で使用する硫酸アルミニウムを主成分とする凝結促進剤とは、硫酸アルミニウム単独、あるいは硫酸アルミニウム単独に凝結促進効果を害さない範囲で各種添加物を併用したものである。これらは、粉末状あるいは水に溶解又は懸濁させた状態どちらでも使用可能である。
本発明の硫酸アルミニウム単独に凝結促進効果を害さない範囲で各種添加物を併用したものとは、トリエタノールアミン、ジエタノールアミン等に代表されるアミン類、硝酸カルシウム、硝酸ナトリウム、硝酸リチウム、硝酸カリウム等の硝酸塩、硫酸ナトリウム、硫酸カリウム等の硫酸塩、硫酸水素ナトリウム、硫酸水素カリウム等の硫酸水素塩、水酸化アルミニウム、炭酸アルミニウムを添加物とした硫酸アルミニウムを主成分とする凝結促進剤である。
本発明の硫酸アルミニウムを主成分とする凝結促進剤の使用量は、セメント100質量部に対して、固形分で0.05〜3質量部が好ましく、0.5〜2.5質量部がより好ましい。0.05質量部未満では、吹き付けてもダレるおそれがあり、3質量部を超えると長期強度発現性を阻害するおそれがある。
The setting accelerator mainly composed of aluminum sulfate used in the present invention is aluminum sulfate alone or a combination of various additives in a range that does not impair the setting acceleration effect on aluminum sulfate alone. These can be used either in powder form or dissolved or suspended in water.
What is used in combination with various additives in the aluminum sulfate alone of the present invention within the range not impairing the coagulation promoting effect is an amine typified by triethanolamine, diethanolamine, etc., calcium nitrate, sodium nitrate, lithium nitrate, potassium nitrate, etc. It is a setting accelerator mainly composed of aluminum sulfate containing nitrates, sulfates such as sodium sulfate and potassium sulfate, hydrogen sulfates such as sodium hydrogen sulfate and potassium hydrogen sulfate, aluminum hydroxide and aluminum carbonate as additives.
The amount of the setting accelerator containing aluminum sulfate as a main component of the present invention is preferably 0.05 to 3 parts by mass, more preferably 0.5 to 2.5 parts by mass with respect to 100 parts by mass of cement. preferable. If it is less than 0.05 parts by mass, there is a risk of dripping even if sprayed. If it exceeds 3 parts by mass, long-term strength development may be hindered.

本発明で使用する増粘剤は、モルタルの粘度を調整するものであり特に限定されるものではないが、一般に水溶性高分子物質と呼ばれているもので、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸やそのナトリウム塩やカリウム塩、及びポリエチレンオキサイドなどが挙げられ、モルタルが跳ね返ったり、脱落したりするのを防止したり、圧送時のモルタルの滑りを良くするために使用される。
増粘剤の使用量は、通常、セメント100質量部に対して、0.02〜0.5質量部であり、0.05〜0.3質量部がより好ましい。0.02質量部未満ではモルタルの跳ね返りを低減することが難しく、0.5質量部を超えるとその効果の向上が期待できない場合がある。
The thickener used in the present invention adjusts the viscosity of the mortar and is not particularly limited, but is generally called a water-soluble polymer substance, such as methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, Examples thereof include polyacrylic acid, its sodium salt and potassium salt, and polyethylene oxide, which are used to prevent the mortar from bouncing off and falling off, and to improve the sliding of the mortar during pumping.
The usage-amount of a thickener is 0.02-0.5 mass part normally with respect to 100 mass parts of cement, and 0.05-0.3 mass part is more preferable. If it is less than 0.02 parts by mass, it is difficult to reduce the rebound of the mortar, and if it exceeds 0.5 parts by mass, the improvement of the effect may not be expected.

本発明で使用する流動化剤とは、特に限定されるものではないが、メラミン系,ナフタレン系、リグニン系、ポリカルボン酸系のものが挙げられ、モルタルの流動性の調整に使用される。
流動化剤の使用量は、セメント100質量部に対して、0.02〜1質量部が好ましく、0.1〜0.8質量部がより好ましい。0.02質量部未満では、流動性を改善する効果が発揮されない場合があり、1質量部を越えると、流動性が良すぎ吹付けたときにダレや跳ね返りが多くなるおそれがある。
本発明の流動化剤の混合方法は特に限定されるものではないが、例えば、あらかじめセメントに、また、セメントや水に分散しておくことが好ましい。
The fluidizing agent used in the present invention is not particularly limited, and examples thereof include melamine-based, naphthalene-based, lignin-based, and polycarboxylic acid-based agents, and are used for adjusting the fluidity of mortar.
0.02-1 mass part is preferable with respect to 100 mass parts of cement, and, as for the usage-amount of a fluidizing agent, 0.1-0.8 mass part is more preferable. If the amount is less than 0.02 parts by mass, the effect of improving the fluidity may not be exhibited. If the amount exceeds 1 part by mass, the fluidity is too good, and there is a risk that dripping or rebounding will increase.
The mixing method of the fluidizing agent of the present invention is not particularly limited. For example, it is preferable that the fluidizing agent is previously dispersed in cement, cement or water.

本発明で使用する骨材とは、特に限定されるものではないが、川、山、及び海から産出する天然骨材、軽量骨材、及びこれらの2種以上を併用した混合骨材等が使用できる。骨材は施工する現場で混合してもよいが、予めセメントと混合しておく場合は、骨材を乾燥させた乾燥骨材を使用すればよい。
骨材の使用量は、セメント100質量部に対して、150〜300質量部が好ましい。150質量部未満では吹付けたときにダレが多くなる場合があり、300質量部を超えると跳ね返りが多くなる場合がある。
The aggregate used in the present invention is not particularly limited, but natural aggregates produced from rivers, mountains, and the sea, lightweight aggregates, and mixed aggregates using a combination of two or more of these. Can be used. The aggregate may be mixed at the construction site, but when it is mixed with cement in advance, a dry aggregate obtained by drying the aggregate may be used.
As for the usage-amount of an aggregate, 150-300 mass parts is preferable with respect to 100 mass parts of cement. If it is less than 150 parts by mass, dripping may increase when sprayed, and if it exceeds 300 parts by mass, rebound may increase.

本発明では、吹付けたモルタルの曲げ耐力を向上させることを目的に繊維類を配合して使用することが可能である。
繊維の種類としては、ビニロン繊維やプロピレン繊維に代表される高分子繊維類、鋼繊維、ガラス繊維、及び炭素繊維に代表される無機繊維類が挙げられ、特に限定されるものではない。
繊維の使用量は、セメントモルタル1m3に対して、0.05〜3容積部が好ましく、0.1〜2容積部がより好ましい。0.05容積部未満では曲げ耐力を向上させる効果が発揮されない場合があり、3容積部を超えるとモルタルの流動性に悪影響を与える場合がある。
繊維の長さは、曲げ耐力の付与とポンプ圧送性を考慮して3〜40mmが好ましい。
In the present invention, fibers can be blended and used for the purpose of improving the bending strength of the sprayed mortar.
Examples of the types of fibers include polymer fibers typified by vinylon fibers and propylene fibers, steel fibers, glass fibers, and inorganic fibers typified by carbon fibers, and are not particularly limited.
The amount of fiber used is preferably 0.05 to 3 parts by volume, and more preferably 0.1 to 2 parts by volume with respect to 1 m3 of cement mortar. If it is less than 0.05 part by volume, the effect of improving the bending strength may not be exhibited. If it exceeds 3 parts by volume, the flowability of the mortar may be adversely affected.
The length of the fiber is preferably 3 to 40 mm in consideration of imparting bending strength and pumpability.

本発明では、必要に応じ、減水剤、AE減水剤、高性能AE減水剤、AE剤、消泡剤、防錆剤、撥水剤、ベントナイト等の粘土鉱物、抗菌剤等の各種セメント混和剤を併用することが可能である。   In the present invention, if necessary, various cement admixtures such as water reducing agents, AE water reducing agents, high performance AE water reducing agents, AE agents, antifoaming agents, rust preventives, water repellents, bentonite and other clay minerals, and antibacterial agents. Can be used in combination.

本発明の吹付け材料と混合する水量は、モルタルのポンプ圧送性、吹付け性、及び硬化物性を考慮し、通常、セメント100質量部に対して、30〜60質量部が好ましく、35〜50質量部がより好ましい。30質量部未満ではモルタルの流動性が低下する場合があり、60質量部を超えると強度発現性が低下する場合がある。   The amount of water to be mixed with the spray material of the present invention is preferably 30 to 60 parts by weight with respect to 100 parts by weight of cement, considering the pumpability, sprayability and hardened properties of the mortar. Part by mass is more preferable. If the amount is less than 30 parts by mass, the fluidity of the mortar may be reduced. If the amount exceeds 60 parts by mass, the strength development may be reduced.

本発明の吹付け材料の施工方法は、吹付け材料と水とを混合し、練り混ぜたモルタルをポンプで圧送し、圧送途中で圧縮空気と硫酸アルミニウムを主成分とする凝結促進剤を合流混合して吹付ける方法であれば、吹付けシステムや方法は特に限定されるものではない。
本発明の吹付け材料で吹付けた面は、コテ仕上げを行わないでそのままの状態でもよく、美観を求められる場合はコテ仕上げを行うことも可能である。コテ仕上げを行える時間は、本発明の凝結促進剤の使用量および気温等によって異なるが、概ね、10〜120分の範囲である。例えば、凝結促進剤使用量が多くなるほど、気温が高くなるほどコテ仕上げを行える時間は短くなり、凝結促進剤使用量が少なくなるほど、気温が低くなるほどコテ仕上げを行える時間は長くなる。
コテ仕上げを行う場合は、コテ仕上げを行う層のみをコテ作業の時間を考慮して凝結促進剤の使用量を少なくして吹付けることも可能である。
The spraying material construction method of the present invention comprises mixing a spraying material and water, pumping the kneaded mortar with a pump, and merging and mixing a condensed accelerator mainly composed of compressed air and aluminum sulfate during the pumping. As long as the spraying method is used, the spraying system and method are not particularly limited.
The surface sprayed with the spray material of the present invention may be left as it is without performing a trowel finish, and may be troweled if aesthetics are required. The time during which the trowel finish can be performed varies depending on the amount of use of the setting accelerator of the present invention and the temperature, but is generally in the range of 10 to 120 minutes. For example, as the amount of setting accelerator used increases, the time at which the iron finish can be performed becomes shorter as the temperature increases, and as the amount of setting accelerator used decreases, the time at which the iron finish can be performed becomes longer as the temperature decreases.
When performing a trowel finish, it is possible to spray only the layer to be trowel finished with a reduced amount of setting accelerator in consideration of the time of the trowel work.

本発明では、修復した材料自体には乾燥収縮抵抗性を持たせてあるが、中性化、遮塩性に対する抵抗性は不充分な面がある。従って、より耐久性を向上させることを目的にコンクリート表面に表面改質材を施工する。
本発明の表面改質材とは、コンクリートの表面に塗布し、コンクリートの劣化要因となる炭酸ガス、塩化物イオン、水の浸入を大幅に抑制する作用を持つものであり、特に限定されるものではなく市販されているものが使用可能である。
種類としては、アクリル系塗布材、アクリル−シリコン系塗布材、エポキシ系塗布材、ウレタン系塗布材、アクリル−ウレタン系塗布材、クロロプレン系塗布材、ブタジエン系塗布材、シラン系塗布材、ポリエステル系塗布材、ケイ酸塩系塗布材等が挙げられる。
他に、JIS R 6203で規定されているようなポリマーエマルジョンを表面に塗布することも可能である。
表面改質材の塗布量および塗布方法は、各材料の製造メーカーの施工要領に従えばよい。 以下、実施例に基づき詳細に説明する。
In the present invention, the repaired material itself has dry shrinkage resistance, but there is an insufficient aspect of resistance to neutralization and salt blocking. Therefore, a surface modifying material is applied to the concrete surface for the purpose of improving durability.
The surface modifying material of the present invention is applied to the surface of concrete and has a function of greatly suppressing the ingress of carbon dioxide, chloride ions and water, which cause deterioration of the concrete, and is particularly limited. Instead, commercially available ones can be used.
Types include acrylic coating materials, acrylic-silicon coating materials, epoxy coating materials, urethane coating materials, acrylic-urethane coating materials, chloroprene coating materials, butadiene coating materials, silane coating materials, and polyester coating materials. Examples of the coating material include silicate-based coating materials.
In addition, a polymer emulsion as defined in JIS R 6203 can be applied to the surface.
The coating amount and the coating method of the surface modifying material may be in accordance with the construction guidelines of each material manufacturer. Hereinafter, it demonstrates in detail based on an Example.

セメント100質量部に対して、骨材200質量部、ポリオキシアルキレン誘導体5質量部、膨張材を表に示すように加えた(質量部、以下同じ)ドライセメントモルタルを調整した。このドライセメントモルタルに水をセメント100質量部に対して45質量部加えモルタルミキサーで練り混ぜてセメントモルタルとし、これに、凝結促進剤として硫酸アルミニウム水溶液をセメント100質量部に対して固形分で1.5質量部となるように加え10秒間練り混ぜ、すばやく、厚さ4×横4×縦16cmの型枠に詰めて、所定材齢で長さ変化と圧縮強度を測定した。結果を表1に示す。
(使用材料)
セメント:普通ポルトランドセメント 市販品
骨材 :新潟県青海町産石灰砂乾燥品 最大粒径1.2mm
膨張材 :カルシウムサルホアルミネート系膨張材 市販品
ポリオキシアルキレン誘導体 :HO−(CH2CH2O)189−H 市販品
凝結促進剤:硫酸アルミニウム水溶液 固形分20%
(試験方法)
長さ変化率:JHS-416に準拠した。測定材齢は28日。
圧縮強度 :JIS R 5201に準拠した。測定材齢は28日。
A dry cement mortar in which 200 parts by mass of aggregate, 5 parts by mass of a polyoxyalkylene derivative, and an expanding material were added as shown in the table with respect to 100 parts by mass of cement (the same applies hereinafter) was prepared. To this dry cement mortar, 45 parts by mass of water is added with respect to 100 parts by mass of cement, and kneaded with a mortar mixer to obtain a cement mortar. The mixture was kneaded for 10 seconds so as to be 5 parts by mass, quickly packed in a form 4 × 4 × 16 × 16 cm, and the length change and compressive strength were measured at a predetermined age. The results are shown in Table 1.
(Materials used)
Cement: Ordinary Portland cement Commercial products Aggregate: Dry lime sand from Aomi-cho, Niigata Prefecture Maximum particle size 1.2mm
Expansion material: Calcium sulfoaluminate-based expansion material Commercially available product Polyoxyalkylene derivative: HO— (CH 2 CH 2 O) 189-H Commercial product Setting accelerator: Aluminum sulfate aqueous solution Solid content 20%
(Test method)
Length change rate: Conforms to JHS-416. Measurement material age is 28 days.
Compressive strength: Conforms to JIS R 5201. Measurement material age is 28 days.

Figure 2005104826
Figure 2005104826

表1によれば、2〜10質量部の膨張材をポリオキシアルキレン誘導体と併用することにより、長さ変化が極めて小さくなり、硬化収縮が小さくなっているのがわかる。   According to Table 1, it can be seen that by using 2 to 10 parts by mass of the expansion material in combination with the polyoxyalkylene derivative, the length change is extremely small and the curing shrinkage is small.

セメント100質量部に対して、骨材200質量部、膨張材6質量部、ポリオキシアルキレン誘導体を表に示すように加えたドライセメントモルタルを調整したこと以外は実施例1と同様に行った。結果を表2に示す。   The same procedure as in Example 1 was performed except that dry cement mortar in which 200 parts by mass of aggregate, 6 parts by mass of an expanding material, and a polyoxyalkylene derivative were added as shown in the table was adjusted with respect to 100 parts by mass of cement. The results are shown in Table 2.

Figure 2005104826
Figure 2005104826

表2によれば、1〜10質量部のポリオキシアルキレン誘導体を膨張材と併用することにより、長さ変化が小さくなり、硬化収縮が小さくなっているのがわかる。特に、ポリオキシアルキレン誘導体を3〜10質量部にすると、長さ変化が極めて小さくなる。   According to Table 2, it can be seen that, when 1 to 10 parts by mass of the polyoxyalkylene derivative is used in combination with the expansion material, the length change is reduced and the curing shrinkage is reduced. In particular, when the polyoxyalkylene derivative is 3 to 10 parts by mass, the change in length is extremely small.

セメント100質量部に対して、骨材200質量部、膨張材6質量部、ポリオキシアルキレン誘導体5質量部加えたドライセメントモルタルを調整した。このドライセメントモルタルに水をセメント100質量部に対して45質量部加えモルタルミキサーで練り混ぜてセメントモルタルとし、これに、凝結促進剤として硫酸アルミニウム水溶液をセメント100質量部に対して固形分で表に示すように加え10秒間練り混ぜ、すばやく、厚さ4×横4×縦16cmの型枠に詰めて、所定材齢で長さ変化と圧縮強度を測定した。結果を表3に示す。   A dry cement mortar in which 200 parts by mass of aggregate, 6 parts by mass of an expansion material, and 5 parts by mass of a polyoxyalkylene derivative were added to 100 parts by mass of cement was prepared. To this dry cement mortar, 45 parts by mass of water is added with respect to 100 parts by mass of cement, and kneaded with a mortar mixer to obtain cement mortar. In addition, the mixture was kneaded for 10 seconds and quickly packed into a mold having a thickness of 4 × 4 × 16 cm, and the length change and compressive strength were measured at a predetermined age. The results are shown in Table 3.

Figure 2005104826
Figure 2005104826

表3によれば、凝結促進剤として固形分で0.05〜3質量部の硫酸アルミニウムを加えても、長さ変化はそれほど大きくならないから、凝結促進剤の使用による硬化収縮が抑制されているのがわかる。   According to Table 3, even when 0.05 to 3 parts by mass of aluminum sulfate in solid content is added as a setting accelerator, the length change does not increase so much, so that shrinkage due to use of the setting accelerator is suppressed. I understand.

セメント100質量部に対して、骨材200質量部、膨張材6質量部、ポリオキシアルキレン誘導体5質量部、増粘剤及び/又は流動化剤を表に示すように加えたドライセメントモルタルを調整した。このドライセメントモルタルに水をセメント100質量部に対して45質量部加え左官ミキサーで練り混ぜてセメントモルタルとし、これをスクイズポンプで圧送し、途中で、凝結促進剤として硫酸アルミニウム水溶液をセメント100質量部に対して固形分で1.5質量部となるように圧縮空気と共に加え吹き付けた。そのときのポンプ圧力、リバウンド率、及び厚さ4×横4×縦16cmの型枠に吹き付けて採取した試験体の長さ変化および圧縮強度を測定した。結果を表4に示す。
(使用材料)
増粘剤:メチルセルロース 市販品
流動化剤:メチロールメラミン系流動化剤 市販品
(試験方法)
ポンプ圧力:スクイズポンプ吐出口に圧力計を設置し、内径40mmのホースで10m
圧送したときの最大圧力を測定した。
リバウンド率:モルタルを3分間コンクリートでできた天井面に吹き付けたときの、付
着せずに落下したモルタル分の全吹付け量に対する割合(百分率)。
Adjust dry cement mortar with 200 parts by weight of aggregate, 6 parts by weight of expansion material, 5 parts by weight of polyoxyalkylene derivative, thickener and / or fluidizing agent added to 100 parts by weight of cement as shown in the table. did. 45 parts by weight of water is added to 100 parts by weight of this dry cement mortar and kneaded with a plastering mixer to form a cement mortar, which is pumped with a squeeze pump. It was added and sprayed with compressed air so that the solid content was 1.5 parts by mass. At that time, the pump pressure, the rebound rate, and the change in length and compressive strength of the test specimen collected by spraying on a mold having a thickness of 4 × width 4 × length 16 cm were measured. The results are shown in Table 4.
(Materials used)
Thickener: Methyl cellulose Commercial product Fluidizer: Methylol melamine fluidizer Commercial product (test method)
Pump pressure: A pressure gauge is installed at the discharge port of the squeeze pump, and it is 10 m with a hose with an inner diameter of 40 mm.
The maximum pressure when pumped was measured.
Rebound rate: Attached when mortar is sprayed on a concrete ceiling for 3 minutes
The ratio (percentage) of the total amount of mortar that has fallen without being worn.

Figure 2005104826
Figure 2005104826

表4によれば、0.02〜0.5質量部の増粘剤を加えることにより、リバウンド率が小さくなり、モルタルの跳ね返りが低減されること、0.02〜1質量部の流動化剤を加えることにより、ポンプ圧力が小さくなり、流動性が改善されることがわかる。増粘剤と流動化剤を併用することにより、モルタルの跳ね返りと流動性が共に改善される。   According to Table 4, by adding 0.02 to 0.5 parts by mass of the thickener, the rebound rate is reduced, and the rebound of the mortar is reduced, 0.02 to 1 parts by mass of the fluidizing agent. It can be seen that by adding, the pump pressure is reduced and the fluidity is improved. By using a thickener and a fluidizing agent in combination, both the rebound and fluidity of the mortar are improved.

セメント100質量部に対して、骨材200質量部、膨張材6質量部、ポリオキシアルキレン誘導体5質量部、増粘剤0.05質量部、流動化剤0.5質量部加えたドライセメントモルタルを調整した。このドライセメントモルタルに水をセメント100質量部に対して45質量部加え左官ミキサーで練り混ぜてセメントモルタルとした。このモルタル1m3あたり繊維類が表に示すような容積になるように加えさらに練り混ぜ、得られた繊維含有モルタルをスクイズポンプで圧送し、途中で、凝結促進剤として硫酸アルミニウム水溶液をセメント100質量部に対して固形分で1.5質量部となるように圧縮空気と共に加え吹き付け、厚さ10×横10×縦40cmの型枠に吹き付けて採取した試験体の曲げタフネスを測定した。結果を表5に示す。
(使用材料)
繊維A:ビニロン繊維 繊維長さ6mm 繊維径0.2mm 市販品
繊維B:鋼繊維 繊維長さ10mm 繊維径0.2mm 市販品
(試験方法)
曲げタフネス:JSCE G 552に準拠した。養生方法は温度20℃,湿度60%
の部屋で気中養生した。測定材齢は28日とした。
Dry cement mortar with 200 parts by weight of aggregate, 6 parts by weight of expansion material, 5 parts by weight of polyoxyalkylene derivative, 0.05 parts by weight of thickener, and 0.5 parts by weight of fluidizing agent for 100 parts by weight of cement Adjusted. To this dry cement mortar, 45 parts by mass of water was added to 100 parts by mass of cement, and the mixture was kneaded with a plastering mixer to obtain cement mortar. The fibers are added to the volume as shown in the table per 1 m3 of the mortar and further kneaded. The obtained fiber-containing mortar is pumped with a squeeze pump, and an aqueous solution of aluminum sulfate is used as a setting accelerator in the middle of 100 parts by mass of cement. The bending toughness of the test specimen collected by spraying with compressed air so as to be 1.5 parts by mass with respect to the solid content was measured by spraying on a mold having a thickness of 10 × width 10 × length 40 cm. The results are shown in Table 5.
(Materials used)
Fiber A: Vinylon fiber Fiber length 6 mm Fiber diameter 0.2 mm Commercial product Fiber B: Steel fiber Fiber length 10 mm Fiber diameter 0.2 mm Commercial product (test method)
Bending toughness: Conforms to JSCE G552. Curing method is temperature 20 ℃, humidity 60%
I was cured in the room. The measurement material age was 28 days.

Figure 2005104826
Figure 2005104826

表5によれば、0.05〜3.0容積部の繊維類を加えることにより、曲げタフネスが向上することがわかる。   According to Table 5, it can be seen that bending toughness is improved by adding 0.05 to 3.0 parts by volume of fibers.

セメント100質量部に対して、骨材200質量部、膨張材6質量部、ポリオキシアルキレン誘導体5質量部、増粘剤0.05質量部、流動化剤0.5質量部加えたドライセメントモルタルを調整した。このドライセメントモルタルに水をセメント100質量部に対して45質量部加え左官ミキサーで練り混ぜてセメントモルタルとした。このモルタル1m3あたり繊維A1容量部となるように加えさらに練り混ぜ、得られた繊維含有モルタルをスクイズポンプで圧送し、途中で、凝結促進剤として硫酸アルミニウム水溶液をセメント100質量部に対して固形分で表に示すようになるように圧縮空気と共に加え吹き付け、厚付け性を測定した。結果を表6に示す。
(試験方法)
厚付け性:コンクリートでできた天井面とノズル先端の距離を50cmとしてモルタル
を吹き付け、落下しないで天井面に付着している最大の厚さ。
Dry cement mortar with 200 parts by weight of aggregate, 6 parts by weight of expansion material, 5 parts by weight of polyoxyalkylene derivative, 0.05 parts by weight of thickener, and 0.5 parts by weight of fluidizing agent for 100 parts by weight of cement Adjusted. To this dry cement mortar, 45 parts by mass of water was added to 100 parts by mass of cement, and the mixture was kneaded with a plastering mixer to obtain cement mortar. In addition to kneading and adding 1 part by volume of fiber A per 1 m 3 of this mortar, the resulting fiber-containing mortar is pumped with a squeeze pump, and an aqueous solution of aluminum sulfate as a setting accelerator is solidified to 100 parts by weight of cement. It was sprayed with compressed air as shown in the table in minutes, and the thickness was measured. The results are shown in Table 6.
(Test method)
Thickness: Mortar with 50cm distance between concrete ceiling and nozzle tip
The maximum thickness that adheres to the ceiling surface without spraying and dropping.

Figure 2005104826
Figure 2005104826

表6によれば、凝結促進剤として固形分で0.05〜3質量部の硫酸アルミニウムを加えることにより、厚付け性が向上することがわかる。特に、硫酸アルミニウムを1.0質量部以上にすると、厚付け性が顕著に向上する。   According to Table 6, it can be seen that by adding 0.05 to 3 parts by mass of aluminum sulfate as a solidification accelerator as a setting accelerator, the thickening property is improved. In particular, when the aluminum sulfate is at least 1.0 part by mass, the thickness is remarkably improved.

実施例6の実験No.6-6で採取した試験体に表面改質材を塗布し塩化物イオン浸透深さと中性化深さを測定した。その結果、塩化物イオン浸透深さは2.5mm、中性化深さは1.9mmであった。尚、比較のためになにも塗布しない試験体も同様に行った結果、塩化物イオン浸透深さは6.1mm、中性化深さは5.2mmであった。
表面改質材:シラン系水性エマルジョン 市販品
塗布方法:4×4×16cmに成形したモルタルの全面に300g/m2となるように
塗布した。
養生期間:28日間 (温度20℃、湿度60%)
(試験方法)
塩化物イオン浸透試験:JIS A 1171に準拠した。測定材齢は28日
中性化深さ試験:JIS A 1171に準拠した。測定材齢は28日
促進条件:炭酸ガス濃度5%、温度30℃、湿度60%
The surface modifier was applied to the test specimen collected in Experiment No. 6-6 of Example 6, and the chloride ion penetration depth and the neutralization depth were measured. As a result, the chloride ion penetration depth was 2.5 mm, and the neutralization depth was 1.9 mm. For comparison, a test specimen that was not coated at all was also subjected to the same test. As a result, the chloride ion penetration depth was 6.1 mm, and the neutralization depth was 5.2 mm.
Surface modifier: Silane aqueous emulsion Commercial product Application method: 300g / m2 on the entire surface of the mortar molded into 4x4x16cm
Applied.
Curing period: 28 days (temperature 20 ° C, humidity 60%)
(Test method)
Chloride ion penetration test: compliant with JIS A 1171. Measurement material age was 28 days. Neutralization depth test: JIS A 1171 compliant. Measurement material age is 28 days
Promotion conditions: carbon dioxide concentration 5%, temperature 30 ° C, humidity 60%

実施例6の実験No.6-6で採取した試験体に表面改質材を塗布し塩化物イオン浸透深さと中性化深さを測定した。その結果、塩化物イオン浸透深さは2.8mm、中性化深さは2.1mmであった。尚、比較のためになにも塗布しない試験体も同様に行った結果、塩化物イオン浸透深さは6.1mm、中性化深さは5.2mmであった。
表面改質材:ケイ酸塩系塗布材 市販品
塗布方法:4×4×16cmに成形したモルタルの全面に200g/m2となるように
塗布した。
養生期間:28日
The surface modifier was applied to the test specimen collected in Experiment No. 6-6 of Example 6, and the chloride ion penetration depth and the neutralization depth were measured. As a result, the chloride ion penetration depth was 2.8 mm, and the neutralization depth was 2.1 mm. For comparison, a test specimen that was not coated at all was also subjected to the same test. As a result, the chloride ion penetration depth was 6.1 mm, and the neutralization depth was 5.2 mm.
Surface modifier: silicate-based coating material Commercially available coating method: 200 g / m2 on the entire surface of the mortar molded into 4 × 4 × 16 cm
Applied.
Curing period: 28 days

実施例6の実験No.6-6で採取した試験体に表面改質材を塗布し塩化物イオン浸透深さと中性化深さを測定した。その結果、塩化物イオン浸透深さは0mm、中性化深さは0mmであった。尚、比較のためになにも塗布しない試験体も同様に行った結果、塩化物イオン浸透深さは6.1mm、中性化深さは5.2mmであった。
表面改質材:下塗り材:アクリル系塗布材 市販品
上塗り材:アクリル−ウレタン系塗布材 市販品
塗布方法:4×4×16cmに成形したモルタルの全面にプライマーとしてアクリル系
塗布材を200g/m2(下塗り材)となるように塗布し、硬化後に、さら
にアクリル−ウレタン系塗布材を400g/m2(上塗り材)となるように
塗布した。
養生期間:28日
The surface modifier was applied to the test specimen collected in Experiment No. 6-6 of Example 6, and the chloride ion penetration depth and the neutralization depth were measured. As a result, the chloride ion penetration depth was 0 mm, and the neutralization depth was 0 mm. For comparison, a test specimen that was not coated at all was also subjected to the same test. As a result, the chloride ion penetration depth was 6.1 mm, and the neutralization depth was 5.2 mm.
Surface modifier: Undercoat: Acrylic coating material Commercially available
Top coating material: Acrylic-urethane coating material Commercially available coating method: Acrylic primer as a primer on the entire surface of mortar molded into 4x4x16cm
Apply the coating material to 200 g / m2 (undercoat material), and after curing,
So that the acrylic-urethane coating material is 400 g / m 2 (top coating material).
Applied.
Curing period: 28 days

Claims (6)

セメント100質量部に対して、膨張材2〜10質量部、一般式がX[O(AO)nR]mで示され、Xは2〜8個の水酸基を有する化合物の残基、AOは炭素数2〜18のオキシアルキレン基、Rは水素原子、炭素数1〜18の炭化水素基、又は炭素数2〜18のアシル基、nは30〜1000、mは2〜8であり、オキシアルキレン基の60モル%以上はオキシエチレン基であるポリオキシアルキレン誘導体1〜10質量部、砂を含有するセメントモルタルに、さらに、硫酸アルミニウムを主成分とする凝結促進剤を含有することを特徴とする吹付け材料。   2 to 10 parts by mass of expansive material with respect to 100 parts by mass of cement, the general formula is represented by X [O (AO) nR] m, X is the residue of a compound having 2 to 8 hydroxyl groups, and AO is carbon An oxyalkylene group having 2 to 18 carbon atoms, R is a hydrogen atom, a hydrocarbon group having 1 to 18 carbon atoms, or an acyl group having 2 to 18 carbon atoms, n is 30 to 1000, m is 2 to 8, 60 mol% or more of the group is characterized in that 1-10 parts by mass of a polyoxyalkylene derivative that is an oxyethylene group, cement mortar containing sand, and further containing a setting accelerator mainly composed of aluminum sulfate. Spray material. 硫酸アルミニウムを主成分とする凝結促進剤をセメント100質量部に対して固形分で0.05〜3質量部含有することを特徴とする請求項1に記載の吹付け材料。   The spraying material according to claim 1, further comprising 0.05 to 3 parts by mass of a solidification content of a setting accelerator mainly composed of aluminum sulfate with respect to 100 parts by mass of cement. 増粘剤及び/又は流動化剤を含有することを特徴とする請求項1又は2に記載の吹付け材料。   The spraying material according to claim 1, further comprising a thickener and / or a fluidizing agent. 繊維類を含有することを特徴とする請求項1〜3のいずれか一項に記載の吹付け材料。   The spray material according to any one of claims 1 to 3, further comprising fibers. 請求項1〜4のいずれか一項に記載の吹付け材料を用いて、劣化したコンクリートを取り除いた断面を修復することを特徴とするコンクリート構造物の補修工法。   A repair method for a concrete structure, comprising repairing a cross-section from which deteriorated concrete has been removed using the spray material according to any one of claims 1 to 4. 請求項1〜4のいずれか一項に記載の吹付け材料を用いて、劣化したコンクリートを取り除いた断面を修復し、さらにその断面修復部が硬化した後に、外部からの塩化物、炭酸ガス、及び水の侵入を防止するために表面部分に表面改質材を塗布することを特徴とするコンクリート構造物の補修工法。
Using the spray material according to any one of claims 1 to 4, after repairing the cross-section from which the deteriorated concrete has been removed, and further curing the cross-section repair portion, chloride from the outside, carbon dioxide gas, And a method for repairing a concrete structure, wherein a surface modifying material is applied to the surface portion to prevent water from entering.
JP2004249139A 2003-09-08 2004-08-27 Spray material and repair method using the same Active JP4785359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249139A JP4785359B2 (en) 2003-09-08 2004-08-27 Spray material and repair method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003315341 2003-09-08
JP2003315341 2003-09-08
JP2004249139A JP4785359B2 (en) 2003-09-08 2004-08-27 Spray material and repair method using the same

Publications (2)

Publication Number Publication Date
JP2005104826A true JP2005104826A (en) 2005-04-21
JP4785359B2 JP4785359B2 (en) 2011-10-05

Family

ID=34554159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249139A Active JP4785359B2 (en) 2003-09-08 2004-08-27 Spray material and repair method using the same

Country Status (1)

Country Link
JP (1) JP4785359B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176740A (en) * 2005-12-28 2007-07-12 Taiheiyo Material Kk Thickening mortar
JP2008239384A (en) * 2007-03-27 2008-10-09 Sumitomo Osaka Cement Co Ltd Thick application mortar for spraying
JP2009256121A (en) * 2008-04-14 2009-11-05 Denki Kagaku Kogyo Kk Spraying material and spray repairing method using the same
FR2990942A1 (en) * 2012-05-22 2013-11-29 Pergolese Ingenierie Repairing perennial burst concrete having steel corrosion and carbonation, comprises re-coating a high performance stabilized concrete, where high performance concrete is reinforced and stabilized by organic fibers
JP2014084260A (en) * 2012-10-25 2014-05-12 Denki Kagaku Kogyo Kk Repair mortar for spray having low electric resistance and repair method using the same
JP2014152057A (en) * 2013-02-06 2014-08-25 Denki Kagaku Kogyo Kk Liquid quick setting agent, cement composition using the same, and spraying method
JP2015196627A (en) * 2014-04-02 2015-11-09 清水建設株式会社 Concrete coating agent and concrete structure
KR101586488B1 (en) * 2015-06-16 2016-01-19 (주)대우건설 Inorganic waterstop composition with water-soluble inflation and quick setting
JP2017110354A (en) * 2015-12-15 2017-06-22 飛島建設株式会社 Cement mortar spraying method
JP2018008855A (en) * 2016-07-15 2018-01-18 デンカ株式会社 Cement admixture for spraying material, spraying material and spraying method using the same
JP7391728B2 (en) 2020-03-11 2023-12-05 太平洋マテリアル株式会社 Cement compositions and concrete compositions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233954A (en) * 1998-12-18 2000-08-29 Denki Kagaku Kogyo Kk Spraying material and spray process using the same
JP2002068813A (en) * 2000-08-30 2002-03-08 Denki Kagaku Kogyo Kk Cement composition
JP2002201058A (en) * 2000-12-28 2002-07-16 Toagosei Co Ltd Composition for repair of steel reinforced concrete and repairing construction method using the same
JP2002338316A (en) * 2001-03-08 2002-11-27 Denki Kagaku Kogyo Kk Accelerator of hardening for spraying, quick-hardening cement concrete and spraying method using the same
JP2003055021A (en) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk Spraying material and spraying technique using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233954A (en) * 1998-12-18 2000-08-29 Denki Kagaku Kogyo Kk Spraying material and spray process using the same
JP2002068813A (en) * 2000-08-30 2002-03-08 Denki Kagaku Kogyo Kk Cement composition
JP2002201058A (en) * 2000-12-28 2002-07-16 Toagosei Co Ltd Composition for repair of steel reinforced concrete and repairing construction method using the same
JP2002338316A (en) * 2001-03-08 2002-11-27 Denki Kagaku Kogyo Kk Accelerator of hardening for spraying, quick-hardening cement concrete and spraying method using the same
JP2003055021A (en) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk Spraying material and spraying technique using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176740A (en) * 2005-12-28 2007-07-12 Taiheiyo Material Kk Thickening mortar
JP2008239384A (en) * 2007-03-27 2008-10-09 Sumitomo Osaka Cement Co Ltd Thick application mortar for spraying
JP2009256121A (en) * 2008-04-14 2009-11-05 Denki Kagaku Kogyo Kk Spraying material and spray repairing method using the same
FR2990942A1 (en) * 2012-05-22 2013-11-29 Pergolese Ingenierie Repairing perennial burst concrete having steel corrosion and carbonation, comprises re-coating a high performance stabilized concrete, where high performance concrete is reinforced and stabilized by organic fibers
JP2014084260A (en) * 2012-10-25 2014-05-12 Denki Kagaku Kogyo Kk Repair mortar for spray having low electric resistance and repair method using the same
JP2014152057A (en) * 2013-02-06 2014-08-25 Denki Kagaku Kogyo Kk Liquid quick setting agent, cement composition using the same, and spraying method
JP2015196627A (en) * 2014-04-02 2015-11-09 清水建設株式会社 Concrete coating agent and concrete structure
KR101586488B1 (en) * 2015-06-16 2016-01-19 (주)대우건설 Inorganic waterstop composition with water-soluble inflation and quick setting
JP2017110354A (en) * 2015-12-15 2017-06-22 飛島建設株式会社 Cement mortar spraying method
JP2018008855A (en) * 2016-07-15 2018-01-18 デンカ株式会社 Cement admixture for spraying material, spraying material and spraying method using the same
JP7391728B2 (en) 2020-03-11 2023-12-05 太平洋マテリアル株式会社 Cement compositions and concrete compositions

Also Published As

Publication number Publication date
JP4785359B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4520321B2 (en) Spraying material and spraying method using the same
JP4516293B2 (en) Repair mortar
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
JP5010209B2 (en) Spraying material and spraying method using the same
JP4536537B2 (en) Spraying material and spraying method using the same
KR101073967B1 (en) Pre-mix composition for shotcrete of wet method and repair method using the same
JP4785359B2 (en) Spray material and repair method using the same
JP5415015B2 (en) Spray repair method
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
JP2020158371A (en) Polymer cement mortar and repair method of reinforced concrete
JP2011121795A (en) Fiber-reinforced mortar composition
JP6033636B2 (en) Repair mortar for spraying with low electrical resistance and repair method using the same
JP4209191B2 (en) Spraying material and spraying method using the same
KR102218825B1 (en) Mortar composition of scattering dust reduction type with improved workability, condensation speed, durability and mechanical property for repairment and reinforcement and method of repairing and reinforcing structure using the same
JP4987491B2 (en) Grout material and grout method using the same
KR102218193B1 (en) Modified ceramic polymer mortar composition and method of repairing and reinforcing cross section of concrete structure using the same
KR102218239B1 (en) Modified ceramic polymer mortar composition and method of repairing and reinforcing cross section of concrete structure using the same
JP5046472B2 (en) Cement admixture and cement composition
JP4265761B2 (en) Spraying material and spraying method using the same
JP2008002176A (en) Composite body and method of producing the same
JP4476859B2 (en) Dry mortar spraying method
JP4767785B2 (en) Mortar or concrete composition
JP4406246B2 (en) Cement admixture and cement composition
JP2013082597A (en) Acid-resistant mortar material for dry spraying and manufacturing method therefor
JP5073688B2 (en) Spray material and spraying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250