JP2005104760A - Metal oxide structure containing titanium oxide, method for producing the same, and use of the same - Google Patents

Metal oxide structure containing titanium oxide, method for producing the same, and use of the same Download PDF

Info

Publication number
JP2005104760A
JP2005104760A JP2003338938A JP2003338938A JP2005104760A JP 2005104760 A JP2005104760 A JP 2005104760A JP 2003338938 A JP2003338938 A JP 2003338938A JP 2003338938 A JP2003338938 A JP 2003338938A JP 2005104760 A JP2005104760 A JP 2005104760A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide structure
dye
structure according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003338938A
Other languages
Japanese (ja)
Other versions
JP4672973B2 (en
Inventor
Susumu Shikayama
進 鹿山
Hisao Kokoi
久雄 小古井
Atsushi Tanaka
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003338938A priority Critical patent/JP4672973B2/en
Publication of JP2005104760A publication Critical patent/JP2005104760A/en
Application granted granted Critical
Publication of JP4672973B2 publication Critical patent/JP4672973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium oxide structure high in a sensitizing dye adsorption, smooth in electron transfer, high in a photoelectric conversion efficiency, and suitable for use in solar cells and to provide a method for producing a metal oxide structure. <P>SOLUTION: The metal oxide structure is a titanium oxide structure having a BG of 2.7 to 3.1 eV (wherein BG is an optical band gap as calculated from an absoptivity measured with an integrating sphere spectrophotometer) or is a metal oxide structure prepared by dry-blending a plurality of metal oxide powders with different particle sizes or a dispersion thereof and satisfying BG0-BG1 of 0.01 to 0.45 eV (wherein BG0 is the BG of a starting metal oxide, and BG1 is the BG of the metal oxide after the dry blending). A dye-sensitized solar cell containing the metal oxide dispersion as a dye-sensitized electrode and a method for producing the same are also provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽電池用途等に好適な酸化チタンを含む金属酸化物構造体の製造方法に関する。   The present invention relates to a method for producing a metal oxide structure containing titanium oxide suitable for solar cell applications and the like.

現在の太陽電池はシリコン型太陽電池が主流となっているが、有害な原料の使用、高コストな製法等の観点から、新たな形式の太陽電池の研究、開発が行われて来た。
色素増感型太陽電池はその一つであり、1991年にローザンヌ工科大学のグレッツエル等によって報告(例えば非特許文献1参照)されて以来、シリコン型に代わる太陽電池として研究開発が進められている。
Silicon solar cells are the main current solar cells, but new types of solar cells have been researched and developed from the viewpoints of the use of harmful raw materials and high-cost manufacturing methods.
Dye-sensitized solar cells are one of them, and since being reported by Gretzell et al. Of Lausanne Institute of Technology in 1991 (see, for example, Non-Patent Document 1), research and development have been promoted as solar cells replacing silicon types. .

一般的な色素増感型太陽電池は、図1で示されるような構造であり、色素電極、電解層、および対極の3つの部分から構成される。ここで色素電極6とは、導電性ガラス等の、電極基板の上に増感色素の結合した、酸化チタン等の金属酸化物層が形成されている電極を示し、また対極7とは、導電性ガラス等の電極基板の上に白金やグラファイトのような触媒層が形成された電極を指す。電解層4は、電解質が溶解した溶液で、色素電極と対極で挟み込まれた部分である。ここでいう電極基板とは、ガラスや有機重合体等の電極基材にFTO,ITO等を塗布、乾燥させたものを示す。   A general dye-sensitized solar cell has a structure as shown in FIG. 1 and is composed of three parts: a dye electrode, an electrolytic layer, and a counter electrode. Here, the dye electrode 6 refers to an electrode such as conductive glass in which a metal oxide layer such as titanium oxide is bonded to an electrode substrate, and a counter electrode 7 is electrically conductive. An electrode in which a catalyst layer such as platinum or graphite is formed on an electrode substrate such as porous glass. The electrolytic layer 4 is a portion in which the electrolyte is dissolved and is sandwiched between the dye electrode and the counter electrode. The electrode substrate as used herein refers to a substrate obtained by applying FTO, ITO or the like to an electrode base material such as glass or organic polymer and drying it.

光電変換の機構は次のように説明されている。
まず、増感色素が光を吸収し、電子と正孔を発生する。発生した電子は金属酸化物層を通じて電極基板に到達し、外部へと取り出される。一方、発生した正孔は、電解層を通じて対極へと運ばれ、電極基板を通じて供給された電子と結合する。
色素増感型太陽電池の特性を示す指標として、下式で表される光電変換効率がある
η(%)=Jsc×Voc×FF/入射光エネルギー×100
(式中、ηは光電変換効率、Jscは短絡電流密度[mA/cm]、Vocは開放電圧[V]、FFはフィルファクター[−]を示す。入射光エネルギーは単位面積当たりの入射光エネルギー[mW/cm]を示す。)。
The photoelectric conversion mechanism is described as follows.
First, the sensitizing dye absorbs light and generates electrons and holes. The generated electrons reach the electrode substrate through the metal oxide layer and are extracted to the outside. On the other hand, the generated holes are carried to the counter electrode through the electrolytic layer, and are combined with the electrons supplied through the electrode substrate.
As an index indicating the characteristics of the dye-sensitized solar cell, there is a photoelectric conversion efficiency represented by the following formula: η (%) = Jsc × Voc × FF / incident light energy × 100
(Where η is the photoelectric conversion efficiency, Jsc is the short-circuit current density [mA / cm 2 ], Voc is the open circuit voltage [V], and FF is the fill factor [−]. The incident light energy is the incident light per unit area. Energy [mW / cm 2 ] is indicated.)

光電変換効率ηは、色素電極の性能に依存する。色素電極の性能を高める要因として、金属酸化物の単位当たりの表面積を大きくして増感色素の担持量を増やし電子発生量を増加させること、金属酸化物粒子のネッキングを増やして電子伝達を円滑にすること等が挙げられる。ここでいう粒子のネッキングとは図2に示すような構造を表し、粒子同士の点接触構造とは区別される。
以下、金属酸化物の例として酸化チタンを挙げて説明する。
The photoelectric conversion efficiency η depends on the performance of the dye electrode. Factors that enhance the performance of the dye electrode include increasing the surface area per unit of metal oxide to increase the amount of sensitizing dye supported and increasing the amount of generated electrons, and increasing the necking of metal oxide particles to facilitate electron transfer. And so on. The term “particle necking” as used herein represents a structure as shown in FIG. 2 and is distinguished from a point contact structure between particles.
Hereinafter, titanium oxide will be described as an example of the metal oxide.

金属酸化物の単位当たりの表面積を大きくする方法としては、3〜10nmの細孔内径を有する酸化チタンを用いる方法(例えば特許文献1参照)が記載されている。これは、四塩化チタンから調製したゾルを加熱、乾燥させ、酸化チタン粒子を得るという方法である。しかし、四塩化チタン等を加水分解して得られる液相法酸化チタンは、その合成時の熱履歴が低いため、ネッキング構造が少ないという問題がある。   As a method for increasing the surface area per unit of the metal oxide, a method using titanium oxide having a pore inner diameter of 3 to 10 nm (for example, see Patent Document 1) is described. In this method, a sol prepared from titanium tetrachloride is heated and dried to obtain titanium oxide particles. However, liquid phase titanium oxide obtained by hydrolyzing titanium tetrachloride or the like has a problem that the necking structure is small because the thermal history during synthesis is low.

金属酸化物粒子のネッキングを増やすには、導電性ガラス等の基板に酸化チタン層を形成させた後、四塩化チタンで処理する方法が提案されている(例えば非特許文献2参照)。ここで、四塩化チタンは、酸化チタン粒子と反応して新たな結合を生じさせ、粒子同士をネッキングさせる働きを有する。しかし、このような四塩化チタン処理は、ネッキングを増やすものの、酸化チタン粒子表面の結晶性を低下させる、もしくは、格子欠陥を生じさせるという問題がある。結晶性が低かったり、格子欠陥が存在すると、酸化チタンの伝導帯エネルギー準位を低下させるため、太陽電池にした際の開放電圧が低下し、光電変換効率を下げてしまう。   In order to increase the necking of metal oxide particles, a method in which a titanium oxide layer is formed on a substrate such as conductive glass and then treated with titanium tetrachloride has been proposed (see, for example, Non-Patent Document 2). Here, titanium tetrachloride has a function of reacting with titanium oxide particles to form new bonds and necking the particles. However, although such titanium tetrachloride treatment increases necking, there is a problem that the crystallinity of the surface of the titanium oxide particles is reduced or lattice defects are generated. When the crystallinity is low or lattice defects are present, the conduction band energy level of titanium oxide is lowered, so that the open-circuit voltage when the solar cell is formed is lowered, and the photoelectric conversion efficiency is lowered.

別の電子移動促進方法として、粒径の異なる粒子群を混合させて粒子の充填密度を高める方法がある。例えば粒度分布において複数のピークを有する半導体粒子群を用いる方法の提案(例えば特許文献2参照)がなされている。しかし、単に複数の粒子群を混合するだけであり、粒子間の点接触を増やすのみであるため、ネッキング構造よりも電子移動の効率は悪い。   As another electron transfer promoting method, there is a method of increasing the packing density of particles by mixing particle groups having different particle sizes. For example, a method using a group of semiconductor particles having a plurality of peaks in the particle size distribution has been proposed (see, for example, Patent Document 2). However, the efficiency of electron transfer is worse than that of the necking structure because it merely mixes a plurality of particle groups and only increases the point contact between the particles.


特開2001−283942号公報JP 2001-283942 A 特開2001−357899号公報JP 2001-357899 A 国際公開第01/16027号パンフレットInternational Publication No. 01/16027 Pamphlet 特開平6−304423号公報JP-A-6-304423 特公昭36−3359号公報Japanese Patent Publication No.36-3359 M.Graezel,Nature,353,737,(1991)M.M. Graezel, Nature, 353, 737, (1991) 例えば、C.J.Barbe et al.,J.Am.Ceram.Soc.,80,3157(1997))For example, C.I. J. et al. Barbe et al. , J .; Am. Ceram. Soc. , 80, 3157 (1997)) 清野学著,「酸化チタン」技報堂(株),p.129,(1991)Manabu Seino, “Titanium Oxide”, Gihodo Co., Ltd., p. 129, (1991) L.D.Hart and L.K.Hadson,The American Ceramic Society Bulletin,43,No.1,(1964))L. D. Hart and L. K. Hadson, The American Ceramic Society Bulletin, 43, no. 1, (1964)) 橋本和仁、藤嶋昭 編集、「酸化チタン光触媒のすべて」(株)シーエムシー,(1998)Edited by Kazuhito Hashimoto and Akira Fujishima, “All about Titanium Oxide Photocatalyst” CMC, Inc. (1998) 「先端高機能材料(第6編 電磁気的機能材料 2.電池特性材料)」、NGTコーポレーション、p.439〜447、2001年“Advanced high-performance materials (6th electromagnetic functional material 2. Battery characteristic material)”, NGT Corporation, p. 439-447, 2001

本発明は上記問題点を解決すべくなされたものであり、本発明の課題は、増感色素吸着量が多く、かつ、電子移動が円滑に行われる、光電変換効率の高い、太陽電池に好適な酸化チタン構造体及び金属酸化物構造体の製造方法を提供することにある。   The present invention has been made to solve the above problems, and the problem of the present invention is that it is suitable for a solar cell having a high photoelectric conversion efficiency in which a large amount of sensitizing dye is adsorbed and electrons are smoothly transferred. Another object of the present invention is to provide a method for manufacturing a titanium oxide structure and a metal oxide structure.

本発明者らは、上記課題に鑑み鋭意研究した結果、単位質量当たりの表面積が大きく、かつ、粒子同士がネッキングしている金属酸化物構造体を製造し得る方法を見出し、上記課題を解決するに至った。
すなわち、本発明は、
[1] 積分球式分光光度計による吸光度から算出したオプティカルバンドギャップ(以降、BGと称する。)が、2.7eV以上3.1eV以下であり、且つタップ密度が0.15g/cm以上、0.45g/cm以下であることを特徴とする酸化チタン構造体、
[2] 複数の粒度の異なる金属酸化物粉末を乾式混合した金属酸化物構造体であって、原料金属酸化物のBGをBG0とし、乾式混合後の金属酸化物のBGをBG1とした時に、BG0−BG1が0.01eV以上0.45eV以下である金属酸化物構造体。
As a result of intensive studies in view of the above problems, the present inventors have found a method capable of producing a metal oxide structure having a large surface area per unit mass and in which particles are necked, and solve the above problems. It came to.
That is, the present invention
[1] An optical band gap (hereinafter referred to as BG) calculated from absorbance by an integrating sphere spectrophotometer is 2.7 eV or more and 3.1 eV or less, and a tap density is 0.15 g / cm 3 or more. A titanium oxide structure characterized by being 0.45 g / cm 3 or less,
[2] A metal oxide structure obtained by dry-mixing a plurality of metal oxide powders having different particle sizes, wherein BG of the raw metal oxide is BG0, and BG of the metal oxide after dry-mixing is BG1, A metal oxide structure in which BG0-BG1 is 0.01 eV or more and 0.45 eV or less.

[3] 金属酸化物を乾式混合する金属酸化物構造体の製造方法であって、原料金属酸化物のBGをBG0とし、乾式混合後の金属酸化物のBGをBG1とした時に、BG0−BG1が0.01eV以上0.45eV以下となるように混合する金属酸化物構造体の製造方法、
[4] 乾式混合が、ボールミル、高速回転粉砕機、撹拌ミル、ジェット粉砕機のうち少なくとも一つから選ばれる方法であることを特徴とする上記[3]に記載の金属酸化物構造体の製造方法、
[5] 乾式混合がボールミルによって行われ、その乾式混合におけるエネルギー定数k1が、混合する粉の総質量をwp(g)、メディア質量をwm(g)、ボールミル容器内径をd(m)、回転数をn(rpm)、混合時間をt(分)とした時に、
k1=wm/wp×d×n×t
なる関係で表されるk1が、3,000以上250,000以下である上記[3]に記載の金属酸化物構造体の製造方法、
[6] エネルギー定数k1が10,000以上150,000以下である上記[3]に記載の金属酸化物構造体の製造方法、
[7] エネルギー定数k1が10,000以上50,000以下である上記[3]に記載の金属酸化物構造体の製造方法、
[3] A method for producing a metal oxide structure in which metal oxides are dry-mixed, and BG0-BG1 when BG of the raw metal oxide is BG0 and BG of the metal oxide after dry-mixing is BG1 A method for producing a metal oxide structure that is mixed so as to be 0.01 eV or more and 0.45 eV or less,
[4] The production of the metal oxide structure according to the above [3], wherein the dry mixing is a method selected from at least one of a ball mill, a high-speed rotary pulverizer, a stirring mill, and a jet pulverizer. Method,
[5] Dry mixing is performed by a ball mill, and the energy constant k1 in the dry mixing is such that the total mass of the powder to be mixed is wp (g), the media mass is wm (g), the inner diameter of the ball mill container is d (m), and rotation. When the number is n (rpm) and the mixing time is t (minutes),
k1 = wm / wp × d × n × t
The method for producing a metal oxide structure according to the above [3], wherein k1 represented by the relationship is 3,000 or more and 250,000 or less,
[6] The method for producing a metal oxide structure according to [3], wherein the energy constant k1 is 10,000 or more and 150,000 or less,
[7] The method for producing a metal oxide structure according to [3], wherein the energy constant k1 is 10,000 or more and 50,000 or less,

[8] 原料金属酸化物が、BET法による比表面積から換算した平均一次粒子径が100〜500nmの範囲にある金属酸化物粉末(以降、粒子群Aと称する。)と、平均一次粒子径が10〜40nmの範囲にある金属酸化物粉末(以降、粒子群Bと称する。)より構成されることを特徴とする上記[3]乃至[7]のいずれかに記載の金属酸化物構造体の製造方法、
[9] 粒子群Bが、BET法による比表面積から換算した平均一次粒子径が20〜40nmの金属酸化物粉末(以降、粒子群Cと称する。)と10〜20nmの金属酸化物粉末(以降、粒子群Dと称する。)の混合物である上記[8]に記載の金属酸化物構造体の製造方法、
[10] 粒子群Bの平均比表面積が60m/g以上110m/g以下である上記[8]または[9]に記載の金属酸化物構造体の製造方法、
[11] 粒子群A乃至Dのうち少なくとも一つが、気相法で合成された金属酸化物である上記[8]乃至[10]のいずれかに記載の金属酸化物構造体の製造方法、
[12] タップ密度が0.15g/cm以上1.0g/cm以下である上記[3]乃至[11]のいずれかに記載の金属酸化物構造体の製造方法、
[8] The metal oxide powder (hereinafter referred to as particle group A) in which the raw metal oxide is in the range of 100 to 500 nm in average primary particle diameter converted from the specific surface area by the BET method, and the average primary particle diameter is The metal oxide structure according to any one of the above [3] to [7], comprising a metal oxide powder (hereinafter referred to as particle group B) in a range of 10 to 40 nm. Production method,
[9] Particle group B has a metal oxide powder (hereinafter referred to as particle group C) having an average primary particle diameter converted from a specific surface area by the BET method of 20 to 40 nm and a metal oxide powder (hereinafter referred to as particle group C). , Referred to as particle group D), and the method for producing a metal oxide structure according to [8] above,
[10] The method for producing a metal oxide structure according to the above [8] or [9], wherein the particle group B has an average specific surface area of 60 m 2 / g or more and 110 m 2 / g or less,
[11] The method for producing a metal oxide structure according to any one of the above [8] to [10], wherein at least one of the particle groups A to D is a metal oxide synthesized by a vapor phase method,
[12] The method for producing a metal oxide structure according to any one of the above [3] to [11], wherein the tap density is 0.15 g / cm 3 or more and 1.0 g / cm 3 or less,

[13] 金属酸化物が酸化チタンであることを特徴とする上記[3]乃至[12]のいずれかに記載の酸化チタン構造体の製造方法、
[14] 金属酸化物が、酸化チタンと、酸化亜鉛、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化スズ、酸化タングステンから選ばれる少なくとも1種類以上の金属酸化物との混合物であることを特徴とする上記[3]乃至[12]のいずれかに記載の金属酸化物構造体の製造方法、
[15] 前項金属酸化物の混合物に含まれる酸化チタンの含量が、10質量%以上であることを特徴とする上記[14]に記載の金属酸化物構造体の製造方法、
[13] The method for producing a titanium oxide structure according to any one of [3] to [12], wherein the metal oxide is titanium oxide,
[14] The metal oxide is a mixture of titanium oxide and at least one metal oxide selected from zinc oxide, niobium oxide, tantalum oxide, zirconium oxide, tin oxide, and tungsten oxide. The method for producing a metal oxide structure according to any one of the above [3] to [12],
[15] The method for producing a metal oxide structure according to the above [14], wherein the content of titanium oxide contained in the metal oxide mixture is 10% by mass or more,

[16] 上記[1]の酸化チタン構造体もしくは[2]の金属酸化物構造体または上記[3]乃至[15]のいずれかに記載の製造方法で得られた金属酸化物構造体に分散媒を加え、ボールミルにて湿式混合して金属酸化物構造体分散体を製造する方法であって、その湿式混合におけるエネルギー定数k2が、混合する粉の総質量をwp(g)、メディア質量をwm(g)、ボールミル容器内径をd(m)、回転数をn(rpm)、混合時間をt(分)とした時に、
k2=wm/wp×d×n×t
なる関係で表されるk2と、乾式混合におけるエネルギー定数k1の関係が
k2≧k1
で表されることを特徴とする金属酸化物分散体の製造方法、
[17] 湿式混合におけるエネルギー定数k2と、乾式混合におけるエネルギー定数k1の関係が
8.0×k1≧k2≧1.5×k1
で表されることを特徴とする上記[16]に記載の金属酸化物分散体の製造方法、
[18] 湿式混合におけるエネルギー定数k2と、乾式混合におけるエネルギー定数k1の関係が
5.0×k1≧k2≧2.5×k1
で表されることを特徴とする上記[16]に記載の金属酸化物分散体の製造方法、
[19] 上記[16]乃至[18]のいずれかに記載の製造方法で得られた酸化チタンを含む金属酸化物分散体、
[16] Dispersed in the titanium oxide structure of [1] or the metal oxide structure of [2] or the metal oxide structure obtained by the production method according to any of [3] to [15] This is a method for producing a metal oxide structure dispersion by adding a medium and performing wet mixing in a ball mill, where the energy constant k2 in the wet mixing is the total mass of the powder to be mixed, wp (g), and the media mass When wm (g), the ball mill container inner diameter is d (m), the rotation speed is n (rpm), and the mixing time is t (minutes),
k2 = wm / wp × d × n × t
The relationship between k2 expressed by the relationship and the energy constant k1 in dry mixing is
k2 ≧ k1
A method for producing a metal oxide dispersion characterized by being represented by:
[17] The relationship between the energy constant k2 in the wet mixing and the energy constant k1 in the dry mixing is
8.0 × k1 ≧ k2 ≧ 1.5 × k1
The method for producing a metal oxide dispersion according to the above [16], characterized by being represented by:
[18] The relationship between the energy constant k2 in wet mixing and the energy constant k1 in dry mixing is
5.0 × k1 ≧ k2 ≧ 2.5 × k1
The method for producing a metal oxide dispersion according to the above [16], characterized by being represented by:
[19] A metal oxide dispersion containing titanium oxide obtained by the production method according to any one of [16] to [18],

[20] 上記[1]の酸化チタン構造体もしくは[2]に記載の金属酸化物構造体、上記[3]乃至[15]のいずれかに記載の製造方法で得られた金属酸化物構造体又は上記[19]に記載の酸化チタンを含む金属酸化物分散体を含む組成物、
[21] 上記[1]の酸化チタン構造体もしくは[2]に記載の金属酸化物構造体、上記[3]乃至[15]のいずれかに記載の製造方法で得られた金属酸化物構造体又は上記[19]に記載の酸化チタンを含む金属酸化物分散体を含む薄膜、
[22] 膜厚が、1μm以上40μm以下であることを特徴とする上記[21]に記載の金属酸化物構造体を含む薄膜、
[20] The titanium oxide structure according to [1] or the metal oxide structure according to [2], or the metal oxide structure obtained by the production method according to any one of [3] to [15]. Or a composition comprising a metal oxide dispersion containing titanium oxide according to [19] above,
[21] The titanium oxide structure according to [1] or the metal oxide structure according to [2], or the metal oxide structure obtained by the production method according to any one of [3] to [15] Or a thin film containing a metal oxide dispersion containing titanium oxide according to [19] above,
[22] The thin film containing the metal oxide structure according to [21], wherein the film thickness is 1 μm or more and 40 μm or less,

[23] 上記[3]乃至[15]のいずれかに記載の金属酸化物構造体を色素増感型電極として含む色素増感型太陽電池の製造方法、
[24] 上記[3]乃至[15]のいずれかに記載の金属酸化物構造体および上記[17]乃至[19]のいずれかに記載の金属酸化物分散体を色素増感型電極として含む色素増感型太陽電池の製造方法、
[25] 上記[23]または[24]の製造方法で製造された色素増感型太陽電池、
[26] 上記[22]に記載の金属酸化物構造体を含む薄膜を構成要素とする色素電極を備えた色素増感型太陽電池、
[27] 色素電極から色素を除去した後の酸化チタンのBGが、2.7〜3.1eVであることを特徴とする色素増感型太陽電池、
[23] A method for producing a dye-sensitized solar cell comprising the metal oxide structure according to any one of [3] to [15] as a dye-sensitized electrode,
[24] The dye-sensitized electrode includes the metal oxide structure according to any one of [3] to [15] and the metal oxide dispersion according to any one of [17] to [19]. Method for producing dye-sensitized solar cell,
[25] A dye-sensitized solar cell produced by the production method of [23] or [24] above,
[26] A dye-sensitized solar cell including a dye electrode having a thin film containing the metal oxide structure according to [22] as a constituent element,
[27] A dye-sensitized solar cell, wherein BG of titanium oxide after removing the dye from the dye electrode is 2.7 to 3.1 eV,

[28] 上記[25]乃至[27]のいずれかに記載の色素増感型太陽電池を備えた発電機能を有する物品、
[29] 上記[25]乃至[27]のいずれかに記載の色素増感型太陽電池を備えた発光機能を有する物品、
[30] 上記[25]乃至[27]のいずれかに記載の色素増感型太陽電池を備えた発熱機能を有する物品、
[31] 上記[25]乃至[27]のいずれかに記載の色素増感型太陽電池を備えた音響発生機能を有する物品、
[32] 上記[25]乃至[27]のいずれかに記載の色素増感型太陽電池を備えた運動機能を有する物品、
を開発することにより上記の課題を解決した。
[28] An article having a power generation function, comprising the dye-sensitized solar cell according to any one of [25] to [27],
[29] An article having a light emitting function, comprising the dye-sensitized solar cell according to any one of [25] to [27],
[30] An article having a heat generating function, comprising the dye-sensitized solar cell according to any one of [25] to [27],
[31] An article having a sound generating function, comprising the dye-sensitized solar cell according to any one of [25] to [27],
[32] An article having a movement function, comprising the dye-sensitized solar cell according to any one of [25] to [27],
By solving this problem, the above problems were solved.

本発明により、増感色素吸着量が多く、かつ、電子移動を円滑にすることができる金属酸化物構造体、及びこれらの製造方法が提供される。
本発明の金属酸化物構造体によれば、光電変換効率の高い色素増感型太陽電池が得られるようになり、本発明は工業的に実用的な価値を有するものである。
According to the present invention, there are provided a metal oxide structure having a large amount of sensitizing dye adsorption and capable of facilitating electron transfer, and a method for producing them.
According to the metal oxide structure of the present invention, a dye-sensitized solar cell having high photoelectric conversion efficiency can be obtained, and the present invention has industrially practical value.

本発明の金属酸化物構造体は、金属酸化物粒子の微小構造体を含む構造体である。すなわち、本発明の金属酸化物構造体は、粒子同士のネッキング構造(部分的な面接触構造)を含むことを特徴とする構造体である。
本発明の金属酸化物構造体は、BET法による比表面積から換算した平均一次粒子径が100〜500nmの範囲にある金属酸化物粉末(粒子群Aと称する。)と、平均一次粒子径が10〜40nmの範囲にある金属酸化物粉末(粒子群Bと称する。)を乾式混合することによって得られる。ここでいう乾式混合とは、水、有機溶媒等の分散媒を用いずに混合する方法を意味する。分散媒を用いる湿式混合では、衝突、摩擦等により発生するエネルギーが粒子だけでなく、分散媒にも拡散するため、メカノケミカル反応が生じにくい。重要なポイントは、乾式混合によってメカノケミカル反応を進め、粒子同士をネッキングさせることにある。
The metal oxide structure of the present invention is a structure including a microstructure of metal oxide particles. That is, the metal oxide structure of the present invention is a structure characterized by including a necking structure (partial surface contact structure) between particles.
The metal oxide structure of the present invention has a metal oxide powder (referred to as particle group A) having an average primary particle diameter in the range of 100 to 500 nm converted from a specific surface area according to the BET method, and an average primary particle diameter of 10. It is obtained by dry-mixing metal oxide powder (referred to as particle group B) in the range of ˜40 nm. Dry mixing here means a method of mixing without using a dispersion medium such as water or an organic solvent. In wet mixing using a dispersion medium, energy generated by collision, friction, etc. is diffused not only in the particles but also in the dispersion medium, so that a mechanochemical reaction hardly occurs. The important point is to advance the mechanochemical reaction by dry mixing and neck the particles.

粒子群Aと粒子群Bが単に混合した状態では粒子同士の点接触部分があるだけであるため、図2に示すようなネッキング構造(部分的な面接触構造)を有する粒子構造に比べて電子移動の効率は悪い。電子移動を円滑にするためには粒子同士がネッキング構造を有していることが重要である。   In the state where the particle group A and the particle group B are simply mixed, there is only a point contact portion between the particles, so that the electrons are compared with a particle structure having a necking structure (partial surface contact structure) as shown in FIG. The efficiency of movement is poor. In order to facilitate electron transfer, it is important that the particles have a necking structure.

ハロゲン化金属等を湿式で加水分解することで得られる、いわゆる液相法金属酸化物は合成時の熱履歴が低く、そのままではネッキング構造が少ないため、電子移動の効率は悪い。一方、ハロゲン化金属等を高温で酸素等の酸化性ガスと反応させる、いわゆる気相法によって得られる金属酸化物粒子群は合成時の熱履歴が高いため結晶性が高く、かつ、ネッキング結合を持ち、電子移動が容易で、電解液の拡散に有利な構造となる。この気相法の製造方法に特に制限はないが、例えば酸化チタンの場合、特許文献3,特許文献4,特許文献5等の方法によって合成することが出来る。   A so-called liquid phase metal oxide obtained by hydrolyzing a metal halide or the like in a wet manner has a low thermal history during synthesis and has a low necking structure as it is, so that the electron transfer efficiency is poor. On the other hand, metal oxide particles obtained by a so-called gas phase method in which a metal halide or the like is reacted with an oxidizing gas such as oxygen at a high temperature has high crystallinity due to a high thermal history during synthesis, and has a necking bond. It has a structure that facilitates electron transfer and is advantageous for diffusion of the electrolyte. Although there is no particular limitation on the production method of this vapor phase method, for example, in the case of titanium oxide, it can be synthesized by the methods of Patent Document 3, Patent Document 4, Patent Document 5, and the like.

本発明の製造方法において、金属酸化物構造体を構成する金属酸化物は、少なくとも一つの粒子群は気相法で得られたものであることが好ましい。前述のように、気相法金属酸化物はそれ自身粒子同士がある程度ネッキング構造を取っており、かかる構造においては電子移動はある程度容易である。電子移動をより促進させるためには、ネッキング構造をとる粒子数を更に増加させれば良く、乾式混合によるメカノケミカル反応の採用はさらに効果的であるといえる。
また、気相法は他の製造方法に比べ、比較的一次粒子の粒度分布の狭い粉末が得られるため、粒子群Aまたは粒子群Bとして用いたとき、本発明の金属酸化物構造体として好ましい一次粒子の粒度分布を得やすい。
In the production method of the present invention, it is preferable that the metal oxide constituting the metal oxide structure has at least one particle group obtained by a vapor phase method. As described above, the vapor phase metal oxide itself has a necking structure to some extent, and in this structure, electron transfer is easy to some extent. In order to further promote the electron transfer, the number of particles having a necking structure may be further increased, and it can be said that adoption of a mechanochemical reaction by dry mixing is more effective.
The gas phase method is preferable as the metal oxide structure of the present invention when used as the particle group A or the particle group B because a powder having a relatively narrow particle size distribution of primary particles is obtained as compared with other production methods. Easy to obtain primary particle size distribution.

本発明の製造方法において、金属酸化物構造体を構成する粒子群Aは、主に太陽電池内部に進入した光線を電池内部で散乱させ、光吸収効率を高める働きを有する。色素増感型太陽電池では、紫外から近赤外領域にわたる光線を吸収し電子を発生するため、太陽電池内部で紫外から近赤外領域の光線を散乱させると増感色素等による光吸収の確率が高まることになる。一般に、光散乱は粒径が光波長の1/2程度であるとき最大になり、粒径がそれより外れると光散乱も弱まるといわれている(非特許文献3)。紫外から近赤外光線を散乱させるためには平均一次粒子径が100nmから500nmの範囲であることが望ましく、散乱させたい光線の波長に合わせて粒子径を選択することもできる。   In the production method of the present invention, the particle group A constituting the metal oxide structure mainly has a function of scattering light rays that have entered the inside of the solar cell inside the cell, thereby increasing the light absorption efficiency. Since dye-sensitized solar cells absorb light from the ultraviolet to the near-infrared region and generate electrons, scattering light from the ultraviolet to the near-infrared region inside the solar cell causes the probability of light absorption by the sensitizing dye Will increase. In general, light scattering is maximized when the particle diameter is about ½ of the light wavelength, and it is said that light scattering is weakened when the particle diameter deviates from that (Non-Patent Document 3). In order to scatter ultraviolet rays to near-infrared rays, the average primary particle size is desirably in the range of 100 nm to 500 nm, and the particle size can be selected in accordance with the wavelength of the light rays to be scattered.

粒子群Bは、増感色素を担持し、かつ、増感色素が発生させた電子を伝達する役割を持つ。増感色素は金属酸化物の表面水酸基、もしくは金属原子(以下、色素結合部と称する。)との化学結合により金属酸化物に担持されており、その結合を通じて電子を金属酸化物へと移動させる。よって金属酸化物と結合した増感色素量の増加に伴ない、電子移動数も増加することになる。金属酸化物、例えば酸化チタンの粒子表面には、表面水酸基が9から14個/nmあることが判っており(前述の非特許文献3、清野「酸化チタン」,p.54,55)、高比表面積を有する酸化チタンほど色素結合部が多くなる。太陽電池に好適な粒子群Bの比表面積は約40m/gから約150m/gであり、好ましくは約60m/g以上約110m/g以下である。 The particle group B carries a sensitizing dye and has a role of transmitting electrons generated by the sensitizing dye. The sensitizing dye is supported on the metal oxide by a chemical bond with a surface hydroxyl group of the metal oxide or a metal atom (hereinafter referred to as a dye bonding portion), and moves electrons to the metal oxide through the bond. . Therefore, as the amount of the sensitizing dye bonded to the metal oxide increases, the number of electron transfer increases. It is known that the surface of metal oxide, for example, titanium oxide particles has 9 to 14 surface hydroxyl groups / nm 2 (Non-patent Document 3, Kiyono “Titanium oxide”, p. 54, 55), Titanium oxide having a higher specific surface area has more dye binding portions. The specific surface area of the particle group B suitable for the solar cell is about 40 m 2 / g to about 150 m 2 / g, preferably about 60 m 2 / g or more and about 110 m 2 / g or less.

酸化チタンの場合、平均一次粒子径に換算すると約10nmから約40nm、好ましくは約13nmから約25nmとなる。平均一次粒子径が約10nmより小さい粒子群は、一般に結晶性が低く、電子移動が円滑に行われないため太陽電池用途には適していない。この結晶性の低さは、その合成の際、粒子成長を抑制するために熱履歴を低く抑えることに起因する。平均一次粒径が約40nmより大きな粒子群は比表面積が小さく、色素吸着量が不充分となる。粒子群Aと粒子群Bとの配合比は質量比でA/B=5/95〜30/70,好ましくはA/B=10/90〜20/80である。   In the case of titanium oxide, the average primary particle size is about 10 nm to about 40 nm, preferably about 13 nm to about 25 nm. Particle groups having an average primary particle size of less than about 10 nm are generally not suitable for solar cell applications because they have low crystallinity and electron transfer is not performed smoothly. This low crystallinity is attributed to a low thermal history in order to suppress particle growth during the synthesis. A group of particles having an average primary particle size larger than about 40 nm has a small specific surface area and an insufficient amount of dye adsorption. The mixing ratio of the particle group A and the particle group B is A / B = 5/95 to 30/70, preferably A / B = 10/90 to 20/80 in terms of mass ratio.

円滑な電子移動のためには粒子同士がネッキング構造を持つと同時に、密に充填されている方が良く、充填密度を高めるためには平均粒径の異なる粒子群を組み合わせる方法が簡便である。特に、超微粒子に分類される粒子群Bはそのまま(単一粒子群)であっても良いが、充填密度が低いことが多いので、異径粒子群の組み合わせにより充填密度を高めた方が良い結果が得られる。組み合わせのベースとなる各々の粒子群の平均一次粒子径は、前述の粒子群Bに好適な粒径範囲から選択されるのが良く、平均一次粒子径が20〜40nmの粒子群Cと平均一次粒子径が10〜20nmの粒子群Dの組み合わせが好適である。粒子群Cと粒子群Dとの配合比は質量比で、C/D=10/90〜80/20、好ましくはC/D=15/85〜75/25である。
また、粒子群A、B、Cの化学組成は同一であってもいいし、お互い異なっていてもかまわない。
For smooth electron transfer, the particles should have a necking structure and be packed closely, and a method of combining particle groups having different average particle diameters is convenient for increasing the packing density. In particular, the particle group B classified as ultrafine particles may be the same (single particle group), but since the packing density is often low, it is better to increase the packing density by combining different diameter particle groups. Results are obtained. The average primary particle size of each particle group serving as the base of the combination is preferably selected from a particle size range suitable for the particle group B described above, and the particle group C having an average primary particle size of 20 to 40 nm and the average primary particle size. A combination of particle groups D having a particle size of 10 to 20 nm is preferable. The compounding ratio of the particle group C and the particle group D is a mass ratio, and is C / D = 10 / 90-80 / 20, preferably C / D = 15 / 85-75 / 25.
The chemical composition of the particle groups A, B, and C may be the same or different from each other.

粒子の充填状態を示す指標の一つとしてタップ密度が挙げられる。充填密度が高まるに従い、値は増加する。タップ密度は以下の方法により測定される。
装置は、ホソカワミクロン(株)製粉体特性総合測定装置タイプPT−D等を用いる。試料を、補助カップを備えた100cmカップに充填し、測定装置にて100回タッピングさせる。補助カップを取り外した後、試料を正確に100cmとし、試料の質量(g)を測定する。タップ密度は粉体の質量(g)を100で除して得る。
本発明の製造方法においては、得られる金属酸化物構造体のタップ密度を、0.15g/cm以上1.0g/cm以下にすることが好ましい。タップ密度が0.15g/cm未満である場合、充填密度が不足していることを示し、タップ密度が1.0g/cmより大きいと、金属酸化物構造体を分散体として利用する際に分散しにくくなる。分散状態の悪い金属酸化物構造体分散体は、金属酸化物構造体の空隙部分が少なく、色素増感型太陽電池にした際、電解質が金属酸化物層に拡散しにくくなり、金属酸化物層内部で電解質が不足する。電解質が不足すると電荷移動がスムースに進まなくなる。
One of the indexes indicating the particle filling state is the tap density. As the packing density increases, the value increases. The tap density is measured by the following method.
As the apparatus, a powder characteristic total measuring apparatus type PT-D manufactured by Hosokawa Micron Corporation is used. The sample is filled into a 100 cm 3 cup equipped with an auxiliary cup and tapped 100 times with a measuring device. After removing the auxiliary cup, the sample is accurately set to 100 cm 3 and the mass (g) of the sample is measured. The tap density is obtained by dividing the mass (g) of the powder by 100.
In the production method of the present invention, the tap density of the obtained metal oxide structure is preferably 0.15 g / cm 3 or more and 1.0 g / cm 3 or less. When the tap density is less than 0.15 g / cm 3 , this indicates that the packing density is insufficient. When the tap density is greater than 1.0 g / cm 3 , the metal oxide structure is used as a dispersion. It becomes difficult to disperse. The metal oxide structure dispersion having a poor dispersion state has few void portions in the metal oxide structure, and when the dye-sensitized solar cell is formed, the electrolyte is difficult to diffuse into the metal oxide layer. Insufficient electrolyte inside. If the electrolyte is insufficient, the charge transfer will not proceed smoothly.

乾式混合には、例えば、ボールミル、高速回転粉砕機、撹拌ミル、ジェット粉砕機等が用いられる。粒子群にメカノケミカル反応を生じさせるエネルギーを与えるものであればどのようなものを利用しても良いが、使用する機材はコンタミしにくい材質が好ましい。以下、ボールミルのうち、転動ボールミルを例に説明する。   For dry mixing, for example, a ball mill, a high-speed rotary pulverizer, a stirring mill, a jet pulverizer, or the like is used. Any material can be used as long as it gives energy to cause a mechanochemical reaction to the particle group, but the material to be used is preferably a material that is not easily contaminated. Hereinafter, among the ball mills, a rolling ball mill will be described as an example.

転動ボールミルは最も汎用的な混合・粉砕方法であり、円筒状の容器を転動させることで起こる容器内の粉体とメディアの衝突、摩擦作用等を利用している。この場合のエネルギー定数kは、転動ボールミルによる混合、粉砕効果を統一して評価する指標として提案されており(非特許文献4)、下式で表される。
k=wm/wp×d×n×t
(式中、wpは混合する粉の総質量(g)、wmはメディア質量(g)、dはボールミル容器内径(m)、nは回転数(rpm)、tは混合時間(分)を示す。)
The rolling ball mill is the most general mixing and pulverization method, and utilizes the collision between the powder in the container and the media, the frictional action, etc. that occur when the cylindrical container is rolled. The energy constant k in this case has been proposed as an index for unifying and evaluating the mixing and pulverization effect by the rolling ball mill (Non-Patent Document 4), and is expressed by the following equation.
k = wm / wp × d × n × t
(Wp is the total mass (g) of the powder to be mixed, wm is the media mass (g), d is the inner diameter of the ball mill container (m), n is the rotation speed (rpm), and t is the mixing time (minutes). .)

エネルギー定数が高くなるほど粉体が受ける衝突、摩擦エネルギーは増加し、メカノケミカル反応が進行するのであるが、それに伴なって凝集が激しくなる。
本発明の金属酸化物構造体の製造方法においては、乾式混合におけるエネルギー定数をkとしたとき、k1が、3,000以上250,000以下であることが望ましい。エネルギー定数k1が下限値を下回ると、メカノケミカル反応が不充分となり、粒子同士の結合が生じにくい。エネルギー定数k1が上限値よりも高いとメカノケミカル反応は進行するものの、金属酸化物構造体を分散体として利用する際に分散しにくく、得られる金属酸化物構造体の空隙部分が少なくなる。空隙部分の減少は色素増感型太陽電池にした際の電解質拡散に悪影響を与え、太陽電池の性能を低下させる。また、過剰なメカノケミカル反応は、金属酸化物構造体の伝導帯エネルギー準位を極端に低下させるため、太陽電池にした際の開放電圧が低下し、光電変換効率を下げてしまう。
As the energy constant increases, the impact and frictional energy received by the powder increases and the mechanochemical reaction proceeds, but the agglomeration becomes intense accordingly.
In the method for producing a metal oxide structure of the present invention, k1 is desirably 3,000 or more and 250,000 or less, where k is an energy constant in dry mixing. When the energy constant k1 is lower than the lower limit, the mechanochemical reaction becomes insufficient and the particles are hardly bonded. When the energy constant k1 is higher than the upper limit, the mechanochemical reaction proceeds, but when the metal oxide structure is used as a dispersion, it is difficult to disperse and the resulting metal oxide structure has fewer voids. The reduction of the void portion adversely affects the electrolyte diffusion when the dye-sensitized solar cell is made, and the performance of the solar cell is lowered. Moreover, since an excessive mechanochemical reaction drastically lowers the conduction band energy level of the metal oxide structure, the open circuit voltage when the solar cell is formed is lowered, and the photoelectric conversion efficiency is lowered.

他の混合方法においても、混合粒子群にメカノケミカル反応を生じさせるのに充分なエネルギーを与える条件に調整することが望ましい。例えば、高速回転粉砕機にあっては、回転数、滞留時間等の調整;撹拌ミルにあっては、撹拌速度、メディア質量、撹拌時間等の調整;ジェット粉砕機にあってはキャリアガスの圧力、滞留時間等の調整を行い、メカノケミカル反応を進行させれば良い。   Also in other mixing methods, it is desirable to adjust to a condition that gives sufficient energy to cause a mechanochemical reaction in the mixed particle group. For example, in the case of a high-speed rotary pulverizer, adjustment of the rotational speed, residence time, etc .; in the case of a stirring mill, adjustment of the stirring speed, media mass, stirring time, etc .; in the case of a jet pulverizer, the pressure of the carrier gas It is sufficient to adjust the residence time and advance the mechanochemical reaction.

メカノケミカル反応を検知する方法として、乾式混合前後のオプティカルバンドギャップ(以降、BGと略記する。)の変化を測定する方法が挙げられる。
金属酸化物のBGの変化は、メカノケミカル反応によって金属酸化物粒子の表面近傍の分子軌道が変化するために生じているものと考えられる。一次粒子径の異なる粒子は粒子表面の格子状態も異なるため、BGに差が存在する。メカノケミカル反応によってBGの異なる粒子同士が結合すると、新たな分子軌道が生じ、メカノケミカル反応前のBGとは異なる値となる。また、粒子表面の結晶性が低下し、BGが変化する現象も起こりうる。よって、乾式混合前後のBG差(以降、ΔBGと略記する。)を測定することにより、粒子群Aの粒子と粒子群Bの粒子の結合や表面状態を規定することが出来る。ここで、BG、及び、ΔBGの測定方法について以下に説明する。
As a method for detecting a mechanochemical reaction, there is a method for measuring a change in an optical band gap (hereinafter abbreviated as BG) before and after dry mixing.
It is considered that the change in BG of the metal oxide occurs because the molecular orbital near the surface of the metal oxide particle is changed by a mechanochemical reaction. Since particles having different primary particle diameters also have different lattice states on the particle surface, there is a difference in BG. When particles having different BGs are bonded to each other by a mechanochemical reaction, a new molecular orbital is generated, which becomes a value different from that of the BG before the mechanochemical reaction. In addition, the crystallinity of the particle surface is lowered, and a phenomenon in which BG changes can occur. Therefore, by measuring the BG difference before and after dry mixing (hereinafter abbreviated as ΔBG), the bonding and surface state of the particles of the particle group A and the particles of the particle group B can be defined. Here, a method for measuring BG and ΔBG will be described below.

(株)島津製作所製積分球式分光光度計UV−2400及びISR−240A型等を用いて、波長と吸光度の関係を測定する。得られた吸光度のパターン(図3参照)の変曲点に対して接線を引き、接線が波長軸と交わる点(吸収端波長)を読み取る。吸光度のパターンと吸収端波長の関係の一例を図3に示す。   The relationship between wavelength and absorbance is measured using an integrating sphere spectrophotometer UV-2400, ISR-240A, etc. manufactured by Shimadzu Corporation. A tangent line is drawn with respect to the inflection point of the obtained absorbance pattern (see FIG. 3), and a point where the tangent line intersects the wavelength axis (absorption edge wavelength) is read. An example of the relationship between the absorbance pattern and the absorption edge wavelength is shown in FIG.

BGは
E=1240/λ
(式中、EはBG[eV]、λは吸収端波長[nm]を示す)で表されることから、乾式混合前のBG及び吸収端波長をそれぞれBG0[eV]、λ0[nm]、また、乾式混合後のBG及び吸収端波長をそれぞれBG1[eV]、λ1[nm]とすると、乾式混合前後のBG[eV]は、それぞれ
BG0=1240/λ0
BG1=1240/λ1
となる。よって、乾式混合前後でのΔBG[eV]は、次式
ΔBG=BG0−BG1=(1240/λ0)−(1240/λ1)
で表される。
BG is E = 1240 / λ
(Wherein E represents BG [eV] and λ represents absorption edge wavelength [nm]), BG and absorption edge wavelength before dry mixing are represented by BG0 [eV], λ0 [nm], Further, assuming that the BG and the absorption edge wavelength after dry mixing are BG1 [eV] and λ1 [nm], respectively, the BG [eV] before and after dry mixing is BG0 = 1240 / λ0, respectively.
BG1 = 1240 / λ1
It becomes. Therefore, ΔBG [eV] before and after dry mixing is expressed by the following equation: ΔBG = BG0−BG1 = (1240 / λ0) − (1240 / λ1)
It is represented by

一般に、アナターゼ型酸化チタンのBGは、3.2eVと言われている(非特許文献5参照)が、メカノケミカル反応によりBGは低下する傾向が見られる。
他の金属酸化物、あるいはそれら混合物でも同様のBG低下傾向は認められる。
Generally, BG of anatase-type titanium oxide is said to be 3.2 eV (see Non-Patent Document 5), but BG tends to decrease due to mechanochemical reaction.
The same tendency to decrease BG is observed with other metal oxides or mixtures thereof.

本発明の製造方法においては、得られる金属酸化物構造体の乾式混合前後のΔBGを0.01eV以上0.45eV以下にすることが望ましい。ΔBGが0.01eVよりも小さい場合は粒子同士の結合が少ないことを表し、粒子間の電子移動が行われにくい。ΔBGが0.45eVよりも大きい場合は、粒子表面の結晶性の低下が大きく、電子移動速度が低下するとともに、金属酸化物構造体の伝導帯エネルギー準位が極端に低下するため、太陽電池にした際の開放電圧が低下し、光電変換効率を下げてしまう。
本発明の酸化チタン構造体においては、BG1が2.7eV以上3.1eV以下であることを特徴とする。
In the production method of the present invention, ΔBG before and after dry mixing of the obtained metal oxide structure is preferably 0.01 eV or more and 0.45 eV or less. When ΔBG is smaller than 0.01 eV, it means that there are few bonds between particles, and electron transfer between particles is difficult to be performed. When ΔBG is larger than 0.45 eV, the crystallinity of the particle surface is greatly reduced, the electron transfer rate is lowered, and the conduction band energy level of the metal oxide structure is extremely lowered. The open-circuit voltage at the time of doing will fall, and photoelectric conversion efficiency will fall.
In the titanium oxide structure of the present invention, BG1 is 2.7 eV or more and 3.1 eV or less.

本発明の製造方法で得られた金属酸化物構造体は、金属酸化物が分散可能な溶媒、例えば、水、エタノール、アセトン、アセトニトリル、エチレンカーボネート、プロピレンカーボネート等、又はそれらの混合溶媒などに分散させ、酸化チタン構造体の分散体として使用することも出来る。また、その分散体にポリエチレングリコール、ポリビニルアルコール、ポリN−ビニルアセトアミド、ポリアクリル酸塩、N−ビニルアセトアミド−アクリル酸ナトリウム共重合体、N−ビニルアセトアミド−アクリルアミド共重合体、ポリアクリルアミド、アクリルアミド−アクリル酸ナトリウム共重合体、ポリN−ビニルホルムアミド、ポリテトラフルオロエチレン、テトラフルオロエチレン−ポリフッ化プロピレン共重合体、テトラフルオロエチレン−ポリフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニル、ポリフッ化ビニリデン、スチレン−ブタジエン共重合体、ポリビニルピリジン、ビニルピリジン−メタクリル酸メチル共重合体、ポリビニルピロリドンから選ばれる高分子化合物の一つもしくはそれらの混合物等のバインダーを添加することもできる。ここでいうバインダーとは、分散体を基板等に塗布し、製膜させる際に生じるひび割れや、基材からの剥離を防止する働きを有する物質を示す。これらの中でも、ポリエチレングリコール、ポリビニルアルコール、ポリN−ビニルアセトアミド、ポリアクリルアミド、ポリアクリル酸塩、N−ビニルアセトアミド−アクリル酸ナトリウム共重合体、アクリルアミド−アクリル酸ナトリウム共重合体およびポリテトラフルオロエチレンが好ましい。ポリアクリル酸塩を使用する場合、塩としてアルカリ金属類あるいはアルカリ土類金属類が好ましく、中でもナトリウム、リチウム、カリウム、アンモニウム、マグネシウムがより好ましい。
また、バインダーは高分子量であるほど性能が高くなる。具体的には、平均分子量は500以上が好ましく、1万以上がさらに好ましい。
The metal oxide structure obtained by the production method of the present invention is dispersed in a solvent in which the metal oxide can be dispersed, such as water, ethanol, acetone, acetonitrile, ethylene carbonate, propylene carbonate, or a mixed solvent thereof. And can be used as a dispersion of a titanium oxide structure. In addition, polyethylene glycol, polyvinyl alcohol, poly N-vinylacetamide, polyacrylate, N-vinylacetamide-sodium acrylate copolymer, N-vinylacetamide-acrylamide copolymer, polyacrylamide, acrylamide- Sodium acrylate copolymer, poly N-vinylformamide, polytetrafluoroethylene, tetrafluoroethylene-polyfluorinated propylene copolymer, tetrafluoroethylene-polyfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, polyvinylidene fluoride, styrene -One of polymer compounds selected from butadiene copolymer, polyvinyl pyridine, vinyl pyridine-methyl methacrylate copolymer, polyvinyl pyrrolidone, or a mixture thereof, etc. It can also be added Indah. The binder here refers to a substance having a function of preventing cracks generated when the dispersion is applied to a substrate or the like to form a film and peeling from the substrate. Among these, polyethylene glycol, polyvinyl alcohol, poly N-vinylacetamide, polyacrylamide, polyacrylate, N-vinylacetamide-sodium acrylate copolymer, acrylamide-sodium acrylate copolymer, and polytetrafluoroethylene are included. preferable. When using a polyacrylate, alkali metals or alkaline earth metals are preferable as the salt, and sodium, lithium, potassium, ammonium, and magnesium are more preferable.
Further, the higher the molecular weight of the binder, the higher the performance. Specifically, the average molecular weight is preferably 500 or more, and more preferably 10,000 or more.

本発明の金属酸化物分散体を製造する方法では、得られる金属酸化物構造体に分散媒を加え、ボールミルにて湿式混合する際のエネルギー定数をk2としたとき、乾式混合におけるエネルギー定数k1との関係をk2≧k1とすることが好ましい。さらに好ましくは8.0×k1≧k2≧1.5×k1であり、最も好ましくは5.0×k1≧k2≧2.5×k1である。   In the method for producing a metal oxide dispersion of the present invention, when a dispersion medium is added to the resulting metal oxide structure and the energy constant when wet-mixing with a ball mill is k2, the energy constant k1 in dry mixing is It is preferable that k2 ≧ k1. More preferably, 8.0 × k1 ≧ k2 ≧ 1.5 × k1, and most preferably 5.0 × k1 ≧ k2 ≧ 2.5 × k1.

乾式混合によって生成する金属酸化物構造体は、金属酸化物構造体同士も凝集しており、空隙部分は少なくなっている。乾式混合で得られた金属酸化物構造体のタップ密度が0.45g/cm以下であれば太陽電池にした際の電解液拡散性に顕著な影響を与えないが、0.45g/cmを超えていると電解液拡散性は低下し、太陽電池の性能低下を引き起こす場合がある。太陽電池の性能低下を避けるためには金属酸化物構造体同士の凝集を湿式混合によって分散させるのが好ましい。湿式混合の方法は、ボールミル、高速回転粉砕機、攪拌ミルなど、金属酸化物と分散媒を混合させ、且つ金属酸化物構造体の凝集を解するものであれば特に制限はない。ボールミルによる湿式混合の場合、エネルギー定数k2の増加に伴なって分散性は高まるのであるが、経験的に、乾式混合におけるエネルギー定数k1の1.0倍以上に調整するのが効果的である。k2は大きいほど分散効果が得られるが、経済的な観点から上限が決定される。
乾式混合後の金属酸化物構造体のタップ密度が1.0g/cmを超えている場合、湿式混合におけるk2を大きく設定しなければ金属酸化物を分散させることが出来ず、経済的に不利である。
本発明の製造方法が適用できる金属酸化物には、酸化チタン、あるいは酸化チタンと、酸化亜鉛、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化スズ、酸化タングステンから選ばれる少なくとも1種類以上の金属酸化物との混合物が挙げられる。
In the metal oxide structure produced by dry mixing, the metal oxide structures are also agglomerated with each other, and void portions are reduced. If the tap density of the metal oxide structure obtained by dry mixing is 0.45 g / cm 3 or less, there is no significant effect on the electrolyte diffusibility when the solar cell is formed, but 0.45 g / cm 3 If it exceeds 1, the electrolyte diffusibility decreases, which may cause a decrease in the performance of the solar cell. In order to avoid degradation of the performance of the solar cell, it is preferable to disperse the aggregation of the metal oxide structures by wet mixing. The wet mixing method is not particularly limited as long as the metal oxide and the dispersion medium are mixed and the aggregation of the metal oxide structure is solved, such as a ball mill, a high-speed rotary pulverizer, and a stirring mill. In the case of wet mixing using a ball mill, the dispersibility increases as the energy constant k2 increases, but it is empirically effective to adjust the energy constant k1 to 1.0 times or more in the dry mixing. As k2 is larger, a dispersion effect is obtained, but the upper limit is determined from an economical viewpoint.
When the tap density of the metal oxide structure after dry mixing exceeds 1.0 g / cm 3 , the metal oxide cannot be dispersed unless k2 in the wet mixing is set large, which is economically disadvantageous. It is.
The metal oxide to which the production method of the present invention can be applied includes titanium oxide or titanium oxide and at least one metal oxide selected from zinc oxide, niobium oxide, tantalum oxide, zirconium oxide, tin oxide, and tungsten oxide. And a mixture thereof.

また、本発明の金属酸化物構造体、または前述の金属酸化物構造体分散体は、導電性ガラス基板等の電極基板に塗布し薄膜化することで色素太陽電池用の電極として用いることも出来る。
本発明の金属酸化物を含む色素増感型太陽電池の電極基板を構成する電極基材は、ガラスであっても、有機重合体であってもかまわない。
Further, the metal oxide structure of the present invention or the above-mentioned metal oxide structure dispersion can be applied to an electrode substrate such as a conductive glass substrate and thinned to be used as an electrode for a dye solar cell. .
The electrode substrate constituting the electrode substrate of the dye-sensitized solar cell containing the metal oxide of the present invention may be glass or an organic polymer.

有機重合体の具体例としては、ポリエチレン、ポリプロピレン、ポリスチレンなどのポリオレフイン、ナイロン6、ナイロン66、アラミドなどのポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、不飽和ポリエステルなどのポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンオキサイド、ポリエチレングリコール、シリコン樹脂、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、エボキシ樹脂、酢酸ビニル樹脂、セルロースおよびレーヨンその他のセルロース誘導体、ウレタン樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、フェノール樹脂、セルロイド、キチン、澱粉シート、アクリル樹脂、メラミン樹脂、アルキド樹脂などが挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましい。   Specific examples of the organic polymer include polyolefins such as polyethylene, polypropylene and polystyrene, polyamides such as nylon 6, nylon 66 and aramid, polyesters such as polyethylene terephthalate, polyethylene naphthalate and unsaturated polyester, polyvinyl chloride, and polyvinylidene chloride. , Polyethylene oxide, polyethylene glycol, silicone resin, polyvinyl alcohol, vinyl acetal resin, polyacetate, ABS resin, epoxy resin, vinyl acetate resin, cellulose and rayon and other cellulose derivatives, urethane resin, polyurethane resin, polycarbonate resin, urea resin, Fluorine resin, polyvinylidene fluoride, phenol resin, celluloid, chitin, starch sheet, acrylic resin, melamine resin, alkyl Such as resin and the like. Of these, polyethylene terephthalate and polyethylene naphthalate are preferable.

透明電極基板は、前述の電極基材上に、酸化スズ、フッ素ドープ酸化スズ、酸化インジウム、酸化亜鉛、酸化アンチモン等、またはそれら混合物の導電性酸化物薄膜を形成させることで得られる。これらの中でも、フッ素ドープ酸化スズ(FTO)、酸化インジウムスズ(ITO)、あるいはこれら混合物が導電性酸化物薄膜として好ましい。薄膜の形成方法は、例えば、塩化インジウムと塩化スズのエタノール溶液を加熱した電極基材に吹き付ける方法、対象とする導電性酸化物ターゲットをArガス雰囲気下でスパッタリングする方法、酸素雰囲気下で対象導電性酸化物を真空蒸着する方法やイオンプレーティング法が挙げられる。後処理として、酸化雰囲気下、電極基材の種類に合わせた温度で加熱し、結晶性を高めることも効果的である。薄膜形成方法によって電極基板の表面抵抗は異なるが、いずれの薄膜形成法でも表面抵抗値が20Ω/□以下になるように調製することが好ましい。   The transparent electrode substrate can be obtained by forming a conductive oxide thin film of tin oxide, fluorine-doped tin oxide, indium oxide, zinc oxide, antimony oxide, or a mixture thereof on the above-described electrode base material. Among these, fluorine-doped tin oxide (FTO), indium tin oxide (ITO), or a mixture thereof is preferable as the conductive oxide thin film. Thin film formation methods include, for example, a method of spraying an ethanol solution of indium chloride and tin chloride onto a heated electrode substrate, a method of sputtering a target conductive oxide target in an Ar gas atmosphere, and a target conductivity in an oxygen atmosphere. Examples thereof include a method of vacuum-depositing a functional oxide and an ion plating method. As post-treatment, it is also effective to increase the crystallinity by heating at a temperature according to the type of the electrode substrate in an oxidizing atmosphere. Although the surface resistance of the electrode substrate varies depending on the thin film forming method, it is preferable that the surface resistance value be 20 Ω / □ or less in any thin film forming method.

金属酸化物構造体を電極基板上で薄膜化させる方法は、金属酸化物構造体分散体を電極基板に塗布する工程と、それに続く乾燥工程に分けられる。塗布工程における分散体塗布方法には、スキージ法、ドクターブレード法、スクリーン印刷法、噴霧法、スピンコート法などが挙げられるが、これら以外でも膜厚を調整できる方法であれば特に制限はない。   The method of thinning the metal oxide structure on the electrode substrate is divided into a step of applying the metal oxide structure dispersion to the electrode substrate and a subsequent drying step. Examples of the dispersion coating method in the coating process include a squeegee method, a doctor blade method, a screen printing method, a spraying method, a spin coating method, and the like, but there are no particular limitations as long as the method can adjust the film thickness.

分散体の乾燥工程における乾燥方法には、塗膜にドライヤーなどで温風を吹き付ける方法、赤外線を照射する方法、電極基板を昇温する方法、塗膜に乾燥空気を吹き付ける方法などが挙げられる。他にも電極基板上に塗布された金属酸化物構造体分散液から溶剤を蒸発させる方法で、且つ乾燥温度が電極基板を変形、変質させない温度であれば制限なく使用できる。   Examples of the drying method in the drying process of the dispersion include a method of spraying warm air on the coating film with a dryer, a method of irradiating infrared rays, a method of heating the electrode substrate, and a method of spraying dry air on the coating film. In addition, any method can be used without limitation as long as the solvent is evaporated from the metal oxide structure dispersion liquid applied on the electrode substrate and the drying temperature is a temperature that does not deform or alter the electrode substrate.

このようにして得られた金属酸化物構造体の薄膜には、微小なクラック等が存在することがあるため、太陽電池にした際に電極基板と電解液が直接接触し、逆電子移動(漏れ電流)の原因となってしまうことがある。クラック防止のためには、金属酸化物構造体分散体を塗布する前に、あらかじめ電極基板上に緻密な金属酸化物層を形成させておくのが好ましい。(以降、あらかじめ形成される緻密な金属酸化物層をアンダーコート層と称し、アンダーコート層を形成する材料をアンダーコート剤と称する。)アンダーコート剤としては、一次粒子径が20nm以下の粒子を使用するのが好ましく、分散性の良好な金属酸化物がより好ましい。中でも、超微粒子酸化チタンを使用するのが最も好ましい。   Since the thin film of the metal oxide structure obtained in this way may have microcracks or the like, the electrode substrate and the electrolytic solution are in direct contact with each other in the solar cell, and reverse electron transfer (leakage) Current). In order to prevent cracks, it is preferable to form a dense metal oxide layer in advance on the electrode substrate before applying the metal oxide structure dispersion. (Hereinafter, a dense metal oxide layer formed in advance is referred to as an undercoat layer, and a material for forming the undercoat layer is referred to as an undercoat agent.) As the undercoat agent, particles having a primary particle size of 20 nm or less are used. It is preferable to use a metal oxide having good dispersibility. Among these, it is most preferable to use ultrafine titanium oxide.

また、アンダーコート剤を電極基板に結着させるにはアンダーコート剤を塗布した後、300℃以上で焼成する方法等が例示されるが、この温度で焼成すると電極基材の材質によっては変形、変質することがある。この場合には、アンダーコート剤に結着成分を添加するのが効果的である。結着成分とは、金属酸化物構造体と電極基板を結着させる働きを有する物質で、水や有機溶媒に可溶なシリカ化合物、ジルコニア化合物、アルミナ化合物、チタニア化合物が用いられ、例えば、各金属のオキシ塩化物、ヒドロキシ塩化物、硝酸塩、炭酸アンモニウム塩、プロピオン酸塩等が挙げられる。これら結着成分は常温、あるいは比較的低温の乾燥でもアンダーコート剤と電極基板を結着させることができる。   Further, in order to bind the undercoat agent to the electrode substrate, there is exemplified a method of baking at 300 ° C. or higher after applying the undercoat agent, but depending on the material of the electrode base material, it is deformed when baked at this temperature, May be altered. In this case, it is effective to add a binder component to the undercoat agent. The binder component is a substance that has a function of binding the metal oxide structure and the electrode substrate, and silica compounds, zirconia compounds, alumina compounds, titania compounds that are soluble in water or an organic solvent are used. Examples thereof include metal oxychlorides, hydroxychlorides, nitrates, ammonium carbonates, propionates and the like. These binder components can bind the undercoat agent and the electrode substrate even when drying at room temperature or at a relatively low temperature.

結着成分の添加量は電子移動を阻害しないように調整する必要があり、金属酸化物構造体100重量部に対し、結着成分に含まれる金属を金属酸化物に換算した重量比で3〜200重量部の範囲が好ましい。   The addition amount of the binder component needs to be adjusted so as not to inhibit the electron transfer, and is 3 to 3 by weight ratio in which the metal contained in the binder component is converted to metal oxide with respect to 100 parts by weight of the metal oxide structure. A range of 200 parts by weight is preferred.

薄膜を得る方法の一例として、ポリエチレンテレフタレートを電極基材とした導電性基板に、結着剤を添加した超微粒子酸化チタンゾルを塗布し、120℃で乾燥させ、その後、本発明の製造方法で得られた金属酸化物分散体を噴霧法にて塗布し、熱風乾燥炉にて120℃、20分加熱する方法が挙げられる。   As an example of a method for obtaining a thin film, an ultrafine titanium oxide sol added with a binder is applied to a conductive substrate using polyethylene terephthalate as an electrode base material, dried at 120 ° C., and then obtained by the production method of the present invention. An example is a method in which the obtained metal oxide dispersion is applied by a spraying method and heated in a hot air drying furnace at 120 ° C. for 20 minutes.

電極基材の外界側の面(2面)に、透明性の高い光触媒膜やUV吸収膜を設けることもできる。
光触媒膜を設けることによって、電極面を清浄に保つことができ、それによって電池内への入射光の経時的低減を抑制することができる。光触媒膜を構成する光触媒粒子は特に限定されないが、遷移金属の超微粒子酸化物が好ましく、中でも酸化チタンや酸化亜鉛の超微粒子が好ましい。
光触媒膜について以下説明する。(構成1) 電極基材の外界面上に、少なくとも、光触媒活性を有すると同時に波長550nmの光に対する光直線透過率が50%以上、好ましくは80%以上有する光触媒薄膜を形成してなる構成とし、 この構成1の態様として、(構成2) 前記光触媒薄膜の膜厚が0.1μm〜5μmであることを特徴とする構成とする。構成1ないし2のいずれかの態様として、前記電極基材の外界面と光触媒薄膜との間に光透過性を有するプレコート薄膜を設けてもかまわない。このプレコート薄膜の膜厚は0.02〜0.2μmであることが好ましい。また、前記プレコート薄膜がSiO2もしくはその前駆体を主成分とする材料からなることが好ましい。
また、光触媒膜の製造方法は、電極基材の外界面上に光触媒薄膜をパイロゾル法、ディップ法、印刷法又はCVD法によって成膜することができる。また、電池を組みたて後に光触媒膜を形成してもいいし、予め光触媒膜を形成しておいた電極基材を作製しておいてもいい。
少なくとも光触媒活性を有すると同時に波長550nmの光に対する光直線透過率が50%以上、好ましくは80%以上有する光触媒薄膜を形成して構成したことにより、長期にわたり電極の外界側の面を清浄に保つことができる。それによって、電池内に入射する光量を高く保つことでき、光電変換効率を維持することができる。また、光触媒粒子が超微粒子酸化チタンや超微粒子酸化亜鉛であれば、光触媒膜によって紫外線が良く遮蔽されるので、電池内に存在する有機物(色素や電解質成分など)の紫外線による経時劣化を抑制することができる。
A highly transparent photocatalyst film or UV absorbing film can also be provided on the outer surface side (two surfaces) of the electrode substrate.
By providing the photocatalyst film, the electrode surface can be kept clean, whereby the time-dependent reduction of the incident light into the battery can be suppressed. The photocatalyst particles constituting the photocatalyst film are not particularly limited, but ultrafine oxides of transition metals are preferable, and ultrafine particles of titanium oxide and zinc oxide are particularly preferable.
The photocatalytic film will be described below. (Configuration 1) On the outer interface of the electrode base material, a photocatalytic thin film having at least 50%, preferably 80% or more of a linear optical transmittance for light having a wavelength of 550 nm at the same time as photocatalytic activity is formed. As an aspect of Configuration 1, (Configuration 2) The photocatalytic thin film has a thickness of 0.1 μm to 5 μm. As one of the configurations 1 and 2, a precoat thin film having light transmittance may be provided between the outer interface of the electrode base material and the photocatalytic thin film. It is preferable that the film thickness of this precoat thin film is 0.02-0.2 micrometer. The precoat thin film is preferably made of a material mainly composed of SiO 2 or a precursor thereof.
Moreover, the photocatalyst film manufacturing method can form a photocatalyst thin film on the outer interface of the electrode substrate by a pyrosol method, a dip method, a printing method, or a CVD method. Moreover, a photocatalyst film may be formed after the battery is assembled, or an electrode base material on which a photocatalyst film has been formed in advance may be prepared.
By forming a photocatalytic thin film having at least 50%, preferably 80% or more of linear light transmittance with respect to light having a wavelength of 550 nm at the same time as photocatalytic activity, the surface on the outside side of the electrode is kept clean for a long period of time. be able to. Thereby, the amount of light entering the battery can be kept high, and the photoelectric conversion efficiency can be maintained. In addition, if the photocatalyst particles are ultrafine titanium oxide or ultrafine zinc oxide, the photocatalyst film shields the ultraviolet rays well, thereby suppressing deterioration of the organic matter (pigment, electrolyte component, etc.) present in the battery over time due to the ultraviolet rays. be able to.

酸化チタン薄膜を形成する材料として、次のような超微粒子酸化チタンゾルを用いることができる。超微粒子酸化チタンゾルの製造方法としては、特開平11−43327を例示することができる。例えば、四塩化チタンを加水分解して超微粒子酸化チタンゾルを得ることができる。
この場合には、加水分解する四塩化チタン水溶液中の四塩化チタンの濃度は低過ぎると生産性が悪く、生成する水分散酸化チタンゾルから薄膜を形成する際に効率が低くなるために好ましくない。また、濃度が高過ぎると反応が激しくなり、得られる酸化チタンの粒子が微細になりにくく、かつ分散性も悪くなるために透明薄膜形成材としては好ましくない。従って、加水分解により酸化チタン濃度の高いゾルを生成させ、これを多量の水で希釈することで酸化チタンの濃度を0.05〜10モル/リットルに調整する方法は好ましくない。ゾルの生成時において酸化チタンの濃度を0.05〜10モル/リットルの範囲にするのがよく、そのためには、加水分解される四塩化チタン水溶液中の四塩化チタンの濃度は生成する酸化チタンの濃度と大差ない値、即ちほぼ0.05〜10モル/リットルとすればよく、必要ならば以後の工程で少量の水の添加もしくは濃縮することで濃度を0.05〜10モル/リットルに調整してもよい。
As a material for forming the titanium oxide thin film, the following ultrafine titanium oxide sol can be used. JP-A-11-43327 can be exemplified as a method for producing ultrafine titanium oxide sol. For example, titanium tetrachloride can be hydrolyzed to obtain an ultrafine titanium oxide sol.
In this case, if the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride to be hydrolyzed is too low, the productivity is poor, and the efficiency is reduced when forming a thin film from the water-dispersed titanium oxide sol to be produced. On the other hand, if the concentration is too high, the reaction becomes violent, and the resulting titanium oxide particles are difficult to become fine, and the dispersibility also deteriorates. Therefore, a method of adjusting the titanium oxide concentration to 0.05 to 10 mol / liter by producing a sol having a high titanium oxide concentration by hydrolysis and diluting it with a large amount of water is not preferable. The concentration of titanium oxide is preferably in the range of 0.05 to 10 mol / liter at the time of sol formation. For this purpose, the concentration of titanium tetrachloride in the aqueous solution of titanium tetrachloride to be hydrolyzed is the titanium oxide produced. It is sufficient that the value is not significantly different from the concentration of the liquid, that is, about 0.05 to 10 mol / liter, and if necessary, the concentration is reduced to 0.05 to 10 mol / liter by adding or concentrating a small amount of water in the subsequent steps. You may adjust.

加水分解における温度は50℃以上、四塩化チタン水溶液の沸点迄の範囲が好ましい。50℃未満では加水分解反応に長時間を要するので好ましくない。加水分解は所定の温度に昇温し、10分から12時間程度保持して行われる。この保持時間は加水分解の温度が高温側にある程短くてよい。四塩化チタン水溶液の加水分解は、四塩化チタンと水との混合溶液を反応槽中で所定の温度に加熱する方法で実施してもよく、また水を反応槽中で予め加熱しておき、これに四塩化チタンを添加し、所定の温度にしてもよい。この加水分解により一般的にはブルーカイト型にアナターゼ型及び/又はブルーカイト型が混合した酸化チタンが得られる。   The temperature in the hydrolysis is preferably in the range of 50 ° C. or higher and the boiling point of the aqueous titanium tetrachloride solution. If it is less than 50 degreeC, since a long time is required for a hydrolysis reaction, it is not preferable. The hydrolysis is carried out by raising the temperature to a predetermined temperature and holding for about 10 minutes to 12 hours. This holding time may be shorter as the hydrolysis temperature is higher. The hydrolysis of the aqueous solution of titanium tetrachloride may be carried out by a method in which a mixed solution of titanium tetrachloride and water is heated to a predetermined temperature in a reaction vessel, and water is preheated in the reaction vessel, Titanium tetrachloride may be added to this, and you may make it predetermined temperature. This hydrolysis generally provides titanium oxide in which an anatase type and / or a blue kite type are mixed with a blue kite type.

ブルーカイト型の酸化チタンの含有率を高める場合には、水を反応槽で予め75〜100℃に加熱しておき、これに四塩化チタンを添加し、75℃〜溶液の沸点の温度範囲で加水分解する方法が適する。該方法によれば、生成する全酸化チタンのうち、ブルーカイト型の酸化チタンを70重量%以上とすることが可能である。
加水分解における四塩化チタン水溶液の昇温速度は、早い方が得られる粒子が細かくなるので好ましい。よって、好ましい昇温速度は0.2℃/min以上であり、さらに好ましい昇温速度は0.5℃/min以上である。該方法によれば、ゾル中の酸化チタン粒子の平均粒径が0.5μm以下、好ましくは0.01〜0.1μmの範囲となり、さらに結晶性の高い粒子となる。
In order to increase the content of brookite-type titanium oxide, water is heated in advance to 75 to 100 ° C. in a reaction vessel, and titanium tetrachloride is added thereto, and the temperature ranges from 75 ° C. to the boiling point of the solution. A method of hydrolysis is suitable. According to this method, it is possible to make the brookite-type titanium oxide 70% by weight or more of the total titanium oxide produced.
The faster the temperature increase rate of the aqueous titanium tetrachloride solution in the hydrolysis, the more preferable particles are obtained because the obtained particles become finer. Therefore, a preferable temperature increase rate is 0.2 ° C./min or more, and a more preferable temperature increase rate is 0.5 ° C./min or more. According to this method, the average particle diameter of the titanium oxide particles in the sol is 0.5 μm or less, preferably in the range of 0.01 to 0.1 μm, and particles with higher crystallinity are obtained.

本発明の水分散酸化チタンゾルの製造方法はバッチ式に限らず、反応槽を連続槽にして四塩化チタンと水を連続投入しながら、投入口の反対側で反応液を取り出し、引き続き脱塩素処理するような連続方式も可能である。生成したゾルは脱塩素処理や、あるいは支障ない範囲で水の添加、脱水等により塩素イオンが50〜10,000ppmになるように調整する。脱塩素処理は一般の公知手段でよく電気透析、イオン交換樹脂、電気分解などが可能である。脱塩素の程度はゾルのpHを目安にすればよく、塩素イオンが50〜10,000ppmの場合、pHは約5〜0.5、好ましい範囲である100〜4,000ppmの場合、pHは約4〜1である。本発明の水分散ゾルに有機溶媒を加え、水と有機溶媒の混合物に酸化チタン粒子を分散させることもできる。この水分散酸化チタンゾルから酸化チタンの薄膜を形成する場合、加水分解反応で生成したゾルをそのまま用いるのが好ましく、このゾルから酸化チタンの粉末を製造し、これを水に分散し、ゾルにして用いることは好ましい方法ではない。   The production method of the water-dispersed titanium oxide sol of the present invention is not limited to a batch type, and while continuously feeding titanium tetrachloride and water with the reaction tank as a continuous tank, the reaction solution is taken out on the opposite side of the inlet, and subsequently dechlorinated. Such a continuous method is also possible. The produced sol is adjusted so that the chlorine ion becomes 50 to 10,000 ppm by dechlorination treatment or addition of water or dehydration within a range that does not hinder. The dechlorination treatment may be performed by a general known means, and electrodialysis, ion exchange resin, electrolysis and the like are possible. The degree of dechlorination may be based on the pH of the sol. When the chlorine ion is 50 to 10,000 ppm, the pH is about 5 to 0.5, and when the preferred range is 100 to 4,000 ppm, the pH is about 4 to 1. An organic solvent can be added to the water-dispersed sol of the present invention, and the titanium oxide particles can be dispersed in a mixture of water and the organic solvent. When forming a titanium oxide thin film from this water-dispersed titanium oxide sol, it is preferable to use the sol produced by the hydrolysis reaction as it is. A titanium oxide powder is produced from this sol and dispersed in water to form a sol. Use is not a preferred method.

さらに、電池外部への電解液の液漏れあるいは電極物質の溶出などの抑制、電池内での電解液の偏りや液枯れによる内部インピーダンスの上昇あるいは内部短絡の問題を回避する手段として、電解質の固体化もしくは擬固体化が有効である。具体的には、オキシアルキレン、フルオロカーボン、オキシフルオロカーボン及び/またはカーボネート基からなる部分を分子中に有する(メタ)アクリレートを含む熱重合性化合物をベンゼン環を有しない有機過酸化物である重合開始剤とを組み合わせてなる熱重合性組成物を熱硬化させて得られる固体電解質を電解質とすることができる。
さらに具体的には、重合することにより架橋及び/または側鎖形構造を有する高分子となる熱重合性化合物が、以下の一般式(1)及び/または一般式(2)

Figure 2005104760

[式中、R1及びR3は水素またはアルキル基を表わし、R2及びR5はオキシアルキレン、フルオロカーボン、オキシフルオロカーボン及び/またはカーボネート基を含む2価の基、R4は炭素数10以下の2価の基を表わす。R2、R4及びR5はヘテロ原子を含んでいてもよく、直鎖状、分岐状または環状のいずれの構造を有するものでもよい。xは0または1〜10の整数を示す。但し、同一分子中に複数個の上記一般式(1)または(2)で表される重合性官能基が含まれる場合、それぞれの重合性官能基中のR1、R2、R3、R4、R5及びxは、同一でもよいし異なってもよい。]で表される重合性官能基を有する化合物を含んでいることが好ましい。
また、ベンゼン環を有しない有機過酸化物である重合開始剤としては、以下の一般式(3)
Figure 2005104760

[式中、Xは置換基を有してもよいアルキル基またはアルコキシ基を表わし、Yは置換基を有してもよいアルキル基を表わす。X及びYは、直鎖状、分岐状または環状のいずれの構造を有するものでもよい。m、nはそれぞれ0または1であるが、(m,n)=(0,1)の組み合わせは除く。]で表される有機過酸化物であることが好ましい。
電極基材の材質がガラスである場合は、電気炉等を利用して比較的高温条件で乾燥させることもできる。
金属酸化物構造体の薄膜は、その膜厚が1μm以上40μm以下であることが好ましい。膜厚が1μm未満の場合、薄膜内の光線の散乱や吸収が不十分となり、光電変換効率が低下する。膜厚が40μmを超えると、電解質の拡散抵抗が大きくなったり、あるいは電子の移動距離が長くなったりするため、必ずしも性能が向上しないばかりか、成膜作業が繁雑になってしまう。 Furthermore, as a means to prevent electrolyte leakage or electrode material elution from the outside of the battery, and to prevent problems such as internal impedance rise or internal short circuit due to electrolyte bias or liquid drainage within the battery, the solid electrolyte Or pseudo-solidification is effective. Specifically, a polymerization initiator that is an organic peroxide that does not have a benzene ring as a thermally polymerizable compound containing a (meth) acrylate having a methoxyacrylate, fluorocarbon, oxyfluorocarbon and / or carbonate group moiety in the molecule. A solid electrolyte obtained by thermosetting a thermopolymerizable composition in combination with can be used as the electrolyte.
More specifically, the thermopolymerizable compound that becomes a polymer having a cross-linked and / or side chain structure by polymerization is represented by the following general formula (1) and / or general formula (2).
Figure 2005104760

[Wherein R 1 and R 3 represent hydrogen or an alkyl group, R 2 and R 5 represent a divalent group containing an oxyalkylene, fluorocarbon, oxyfluorocarbon and / or carbonate group, and R 4 represents a divalent group having 10 or less carbon atoms. Represent. R2, R4 and R5 may contain a hetero atom, and may have any of a linear, branched or cyclic structure. x represents 0 or an integer of 1 to 10. However, when a plurality of polymerizable functional groups represented by the above general formula (1) or (2) are contained in the same molecule, R1, R2, R3, R4, R5 in each polymerizable functional group and x may be the same or different. It is preferable that the compound which has a polymerizable functional group represented by this is included.
Moreover, as a polymerization initiator which is an organic peroxide having no benzene ring, the following general formula (3)
Figure 2005104760

[Wherein, X represents an alkyl group or an alkoxy group which may have a substituent, and Y represents an alkyl group which may have a substituent. X and Y may have any of a linear, branched or cyclic structure. m and n are each 0 or 1, but the combination of (m, n) = (0, 1) is excluded. It is preferable that it is an organic peroxide represented by this.
When the material of the electrode substrate is glass, it can be dried at a relatively high temperature using an electric furnace or the like.
The thin film of the metal oxide structure preferably has a thickness of 1 μm to 40 μm. When the film thickness is less than 1 μm, scattering and absorption of light rays in the thin film are insufficient, and the photoelectric conversion efficiency is lowered. When the film thickness exceeds 40 μm, the diffusion resistance of the electrolyte increases or the distance of electron movement increases, so that not only the performance is not improved, but the film forming operation becomes complicated.

本発明の色素増感型太陽電池の製造方法は、前記粒子群A,B,Cを用意する工程と、前記BGを規定する乾式混合によってそれらの粒子を混合する工程と、前記湿式混合によって、該乾式混合粒子を湿式混合する工程を含むことを特徴とする。
また、そのような色素増感型太陽電池においては、金属酸化物電極のBGを次のようにして確認することができる。
The method for producing a dye-sensitized solar cell of the present invention includes the step of preparing the particle groups A, B, and C, the step of mixing those particles by dry mixing that defines the BG, and the wet mixing. It includes a step of wet mixing the dry mixed particles.
Moreover, in such a dye-sensitized solar cell, BG of a metal oxide electrode can be confirmed as follows.

色素増感型太陽電池の金属酸化物電極を、0.1モル/Lの水酸化ナトリウム水溶液等に浸漬させ、金属酸化物から色素を充分溶離させる。色素が溶離した金属酸化物電極を水洗し、120℃で2時間乾燥させ、試料電極とする。この試料電極に担持された金属酸化物のBGを、前述のBG測定法及びBG算出式にて求めることができる。
金属酸化物が酸化チタンである場合には、そのBGが2.7〜3.1eVであることが確認できる。
The metal oxide electrode of the dye-sensitized solar cell is immersed in a 0.1 mol / L sodium hydroxide aqueous solution or the like to sufficiently elute the dye from the metal oxide. The metal oxide electrode from which the dye is eluted is washed with water and dried at 120 ° C. for 2 hours to form a sample electrode. The BG of the metal oxide supported on the sample electrode can be obtained by the BG measurement method and the BG calculation formula described above.
When the metal oxide is titanium oxide, it can be confirmed that the BG is 2.7 to 3.1 eV.

本発明の金属酸化物構造体を含む色素増感型太陽電池は、光、熱、音響等の発生、運動などの機能を有する物品に備えることで、太陽光、室内光、蛍光灯、白熱電球などの照明用電灯のみならずその他各種の光源からの光が照射される環境下において、その機能のための電力源として利用することができる。
この場合には、色素増感型太陽電池の製造手順として、非特許文献6に記載の方法を採用することができる。
The dye-sensitized solar cell including the metal oxide structure according to the present invention is provided with an article having functions such as generation of light, heat, sound, and movement, motion, etc., so that sunlight, room light, fluorescent light, and incandescent light bulb are provided. It can be used as a power source for its function in an environment where light from various other light sources as well as illumination lamps is irradiated.
In this case, the method described in Non-Patent Document 6 can be employed as a procedure for manufacturing the dye-sensitized solar cell.

また、リチウムイオン電池やケミカルキャパシタや電気2重層キャパシタなどと組み合わせた複合充電素子、ペルチェ素子と組み合わせた複合冷却素子、有機ELや液晶などの表示素子と組み合わせた複合表示素子などとして利用することができる。   It can also be used as a composite charging element combined with a lithium ion battery, chemical capacitor, electric double layer capacitor, etc., a composite cooling element combined with a Peltier element, a composite display element combined with a display element such as an organic EL or liquid crystal. it can.

また、ポリマー電池との複合素子とすることもできる。そのポリマー電池とは、少なくとも、化合物の酸化還元反応に伴う電子授受を電気エネルギーとして取り出す電極と、電解液または固体電解質もしくはゲル電解質を有するポリマー電池において、前記電極を構成する正極および負極の活物質が、前記酸化還元反応に伴う電子授受にプロトンの結合・脱離が関与し得る、窒素原子を含むπ共役高分子または/及びキノン系化合物であり、前記電解液または固体電解質もしくはゲル電解質がプロトンを含み、正極および負極の活物質の酸化還元反応に伴う電子授受が、前記窒素原子に結合または配位しているプロトンあるいは生成したヒドロキシル基のプロトンの結合・脱離にのみ関与して行われるように、前記電解液または固体電解質もしくはゲル電解質のプロトン濃度が設定され動作電圧が制御されていることを特徴とするポリマー電池である。   Moreover, it can also be set as a composite element with a polymer battery. The polymer battery includes at least an electrode that takes out electron exchange accompanying the oxidation-reduction reaction of a compound as electric energy, and a polymer battery having an electrolyte solution, a solid electrolyte, or a gel electrolyte, and an active material of positive and negative electrodes constituting the electrode Is a π-conjugated polymer or / and a quinone-based compound containing a nitrogen atom, which can involve the binding and desorption of protons in the electron transfer associated with the oxidation-reduction reaction, and the electrolyte solution or solid electrolyte or gel electrolyte is a proton. The electron transfer accompanying the redox reaction of the active material of the positive electrode and the negative electrode is performed only in connection with the binding / desorption of the proton bonded or coordinated to the nitrogen atom or the proton of the generated hydroxyl group Thus, the proton concentration of the electrolyte, solid electrolyte or gel electrolyte is set so that the operating voltage is It is a polymer battery which is characterized in that it is your.

特に、色素増感型太陽電池の電極基板に樹脂を採用し、前記の組み合わせる素子や部品もフレキシブルな基材をベースにすれば、得られる複合素子もフレキシブルにすることができる。
そのような色素増感型太陽電池やその複合素子を利用した物品の例としては、例えば、建材、機械、車両、ガラス製品、家電製品、農業資材、電子機器、携帯電話、工具、食器、風呂用品、トイレ用品、家具、文房具、衣類、ワッペン、帽子、鞄、靴、傘、ブラインド、意匠性窓ガラス、布製品、繊維、革製品、紙製品、樹脂製品、スポーツ用品、蒲団、容器、眼鏡、看板、掲示板、配管、看板、アドバルーン、配管、配線、金具、照明、LED、信号機、街灯、衛生資材、自動車用品、玩具、交通信号機、道路標識、装飾品、テント、クーラーボックスなどのアウトドア用品、造花、オブジェ、心臓ペースメーカー用電源など、発電、発光、発熱、音響の発生、運動の機能を有する物品が例示できる。
例えば、風呂用品に本願発明の色素増感型太陽電池を設置し、湯沸し用ヒーター、浴室用テレビ、浴槽のお湯の循環装置などの電源として使用することが可能である。
さらに、本願発明の色素増感型太陽電池はSi型太陽電池が採用されている全ての用途・物品に対する代替品として使用することが可能である。
また、前記色素増感型太陽電池やその複合素子の製造工程を構成する部材を揃えて、学習教材セットやDIYセットとすることもできる。
In particular, if a resin is employed for the electrode substrate of the dye-sensitized solar cell and the above-described combined elements and components are based on a flexible base material, the resulting composite element can be made flexible.
Examples of articles using such dye-sensitized solar cells and composite elements thereof include, for example, building materials, machines, vehicles, glass products, home appliances, agricultural materials, electronic devices, mobile phones, tools, tableware, and baths. Goods, toilet articles, furniture, stationery, clothing, emblems, hats, bags, shoes, umbrellas, blinds, design windows, fabric products, textiles, leather products, paper products, resin products, sporting goods, baskets, containers, glasses, Signboards, bulletin boards, piping, signboards, ad balloons, piping, wiring, metal fittings, lighting, LEDs, traffic lights, street lights, sanitary materials, automotive supplies, toys, traffic lights, road signs, ornaments, tents, cooler boxes and other outdoor equipment Examples include articles having functions of power generation, light emission, heat generation, sound generation, and movement, such as a power source for artificial flowers, objects, and cardiac pacemakers.
For example, it is possible to install the dye-sensitized solar cell of the present invention in a bathroom product and use it as a power source for a water heater, bathroom television, bathtub hot water circulation device, and the like.
Furthermore, the dye-sensitized solar cell of the present invention can be used as an alternative to all applications and articles in which Si-type solar cells are employed.
Moreover, it is possible to prepare a learning material set or a DIY set by arranging the members constituting the manufacturing process of the dye-sensitized solar cell and its composite element.

以下、酸化チタンについて実施例及び比較例にて具体的に説明するが、本発明はこれらに何ら限定されるものではない。
〈色素溶液調製〉
アセトニトリル(関東化学(株)製、試薬特級)50容量%、エタノール(関東化学(株)製、試薬特級)50容量%の混合溶媒に、3mmol/Lのルテニウム錯体色素(Ru(dcbpy)(NCS) 小島化学薬品(株)製)を溶解させた。
Hereinafter, although titanium oxide is concretely demonstrated in an Example and a comparative example, this invention is not limited to these at all.
<Dye solution preparation>
In a mixed solvent of 50% by volume of acetonitrile (manufactured by Kanto Chemical Co., Ltd., reagent special grade) and 50% by volume of ethanol (manufactured by Kanto Chemical Co., Ltd., reagent special grade), 3 mmol / L ruthenium complex dye (Ru (dcbpy) 2 ( NCS) 2 Kojima Chemical Co., Ltd.) was dissolved.

〈電解液の調製〉
アセトニトリルに、0.1mol/リットル ヨウ化リチウム(キシダ化学(株)製、純度97%)、0.05mol/リットル ヨウ素(関東化学(株)製、試薬特級)、0.5mol/リットル テトラブチルアンモニウムヨウ素塩(Acros Organics製、純度98%)を溶解させた。
<Preparation of electrolyte>
To acetonitrile, 0.1 mol / liter lithium iodide (manufactured by Kishida Chemical Co., Ltd., purity 97%), 0.05 mol / liter iodine (manufactured by Kanto Chemical Co., Ltd., reagent special grade), 0.5 mol / liter tetrabutylammonium Iodine salt (Acros Organics, purity 98%) was dissolved.

〈光電変換効率測定法〉
作製した色素増感型太陽電池に、光源としてキセノンランプ(ウシオ電機(株)製、UXL−150D−S)を使用し、100mW/cmの光線を照射した。この時の最大光電変換効率をポテンショスタット(北斗電工(株)製、HAB151)を使用して測定した。
<Photoelectric conversion efficiency measurement method>
The prepared dye-sensitized solar cell was irradiated with a light of 100 mW / cm 2 using a xenon lamp (manufactured by USHIO INC., UXL-150D-S) as a light source. The maximum photoelectric conversion efficiency at this time was measured using a potentiostat (manufactured by Hokuto Denko Corporation, HAB151).

(実施例1):
気相法で得られた平均一次粒子径150nmの酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)F−10)1.5g及び平均一次粒子径25nmの酸化チタン(同、スーパータイタニア(登録商標)F−5)13.5g、3φジルコニアボール500gを800cmのポリエチレン容器(φ96×133mm)に入れ、ボールミル((株)アサヒ理化製作所製、AV)にて回転数80rpmで1時間、混合メカノケミカル反応させた。エネルギー定数k1は15,360であり、得られた酸化チタン構造体のタップ密度は0.19g/cm、ΔBGは0.18eVであった。この酸化チタン構造体には、ジルコニアボールの摩耗等によるコンタミは認められなかった。
(Example 1):
1.5 g of titanium oxide (manufactured by Showa Denko KK, Super Titania (registered trademark) F-10) obtained by a vapor phase method with an average primary particle diameter of 150 nm and titanium oxide having an average primary particle diameter of 25 nm (same as Super Titania) (Registered trademark) F-5) 13.5 g, 500 g of 3φ zirconia balls are put into an 800 cm 3 polyethylene container (φ96 × 133 mm), and 1 hour at a rotational speed of 80 rpm with a ball mill (Asahi Rika Seisakusho Co., Ltd., AV). And mixed mechanochemical reaction. The energy constant k1 was 15,360, the tap density of the obtained titanium oxide structure was 0.19 g / cm 3 , and ΔBG was 0.18 eV. In this titanium oxide structure, contamination due to wear of zirconia balls or the like was not observed.

酸化チタン構造体15.0g、純水70g、エタノール10g、ポリエチレングリコール(和光純薬工業(株)製、試薬一級、分子量500,000)5g、3φジルコニアボール500gを800cmのポリエチレン容器(φ96×133mm)に入れ、ボールミルにて回転数80rpmで1時間、エネルギー定数k2が15,360となるように湿式混合した。得られた酸化チタン構造体分散体を導電性ガラス基板(旭硝子(株)製)に塗布した後、500℃で20分間焼成し、導電性ガラス基板上に10〜12μmの酸化チタン薄膜を形成させた。 Titanium oxide structure 15.0 g, pure water 70 g, ethanol 10 g, polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1, molecular weight 500,000) 5 g, 3φ zirconia ball 500 g in an 800 cm 3 polyethylene container (φ96 × 133 mm), and wet-mixed with a ball mill at 80 rpm for 1 hour so that the energy constant k2 was 15,360. The obtained titanium oxide structure dispersion was applied to a conductive glass substrate (Asahi Glass Co., Ltd.) and then baked at 500 ° C. for 20 minutes to form a 10-12 μm titanium oxide thin film on the conductive glass substrate. It was.

この酸化チタン薄膜を色素溶液に20〜25℃で一晩浸漬して色素を吸着させ、色素電極を得た。導電性ガラス基板に白金を担持させた白金対極と5mm角に成形した色素電極を各々の活性面を30μm間隔で向かい合わせて固定し、その間に電解液を注入して、オープンタイプの色素増感型太陽電池を作製した。この太陽電池の光電変換効率は3.1%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。   This titanium oxide thin film was immersed in a dye solution at 20 to 25 ° C. overnight to adsorb the dye, thereby obtaining a dye electrode. Open type dye sensitization by fixing a platinum counter electrode with platinum supported on a conductive glass substrate and a dye electrode molded in 5 mm square with each active surface facing each other at 30 μm intervals and injecting an electrolyte between them. Type solar cells were produced. The photoelectric conversion efficiency of this solar cell was 3.1%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.

(実施例2):
実施例1の酸化チタンを、平均一次粒子径250nmの気相法酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)G1)1.5g、平均一次粒子径30nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−4)6.8g、平均一次粒子径15nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−6)6.7gに変え、湿式混合時間を5時間に変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は4.0%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。
(Example 2):
The titanium oxide of Example 1 was vapor-phase-processed titanium oxide having an average primary particle size of 250 nm and 1.5 g of vapor-phase-process titanium oxide having an average primary particle size of 30 nm (manufactured by Showa Denko KK, Super Titania (registered trademark) G1). (Same as above, Super Titania (registered trademark) F-4) 6.8g, Gas phase method titanium oxide with the average primary particle diameter 15nm (Super Titania (registered trademark) F-6) 6.7g, wet mixing time A dye-sensitized solar cell was produced in the same manner as in Example 1 except that was changed to 5 hours. The photoelectric conversion efficiency of this solar cell was 4.0%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.

(実施例3):
実施例1の酸化チタンを、平均一次粒子径150nmの気相法酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)F−10)3.0g、平均一次粒子径25nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−5)2.0g、平均一次粒子径15nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−6)10.0gに変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は4.2%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。
(Example 3):
Vapor phase titanium oxide of Example 1 having an average primary particle diameter of 150 nm, 3.0 g of titanium oxide (manufactured by Showa Denko KK, Super Titania (registered trademark) F-10), an average primary particle diameter of 25 nm Except for changing to 2.0 g of titanium oxide (same as Super Titania (registered trademark) F-5) and 10.0 g of vapor phase titanium oxide (same as Super Titania (registered trademark) F-6) having an average primary particle diameter of 15 nm. Prepared a dye-sensitized solar cell in the same manner as in Example 1. The photoelectric conversion efficiency of this solar cell was 4.2%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.

(実施例4)
乾式混合時間及び湿式混合時間を各10時間に変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は4.4%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。
Example 4
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the dry mixing time and the wet mixing time were changed to 10 hours each. The photoelectric conversion efficiency of this solar cell was 4.4%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.

(実施例5):
実施例1の酸化チタンを、平均一次粒子径250nmの気相法酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)G1)1.5g、平均一次粒子径30nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−4)10.1g、平均一次粒子径15nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−6)3.4gに変えた。また、ボールミル混合をジェットミル((株)セイシン企業製、CP−04)で20℃、65MPaでの5回混合に代えた。それ以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は3.7%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。
(Example 5):
The titanium oxide of Example 1 was vapor-phase-processed titanium oxide having an average primary particle size of 250 nm and 1.5 g of vapor-phase-process titanium oxide having an average primary particle size of 30 nm (manufactured by Showa Denko KK, Super Titania (registered trademark) G1). (Same as above, Super Titania (registered trademark) F-4) 10.1 g, Gas phase process titanium oxide having the average primary particle diameter of 15 nm (Same as Super Titania (registered trademark) F-6) was changed to 3.4 g. Further, the ball mill mixing was replaced with a jet mill (manufactured by Seishin Enterprise Co., Ltd., CP-04) at 5 ° C. and 65 MPa for 5 times. Otherwise, a dye-sensitized solar cell was produced in the same manner as in Example 1. The photoelectric conversion efficiency of this solar cell was 3.7%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.

(実施例6):
実施例1の酸化チタンを、平均一次粒子径150nmの酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)F―10)1.0g、及び平均一次粒子径25nmの酸化チタン(同、スーパータイタニア(登録商標)F−5)13.0g、平均一次粒子径30nmの気相法酸化亜鉛1.0gに変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.7%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表1に示す。

Figure 2005104760
(Example 6):
The titanium oxide of Example 1 was prepared by adding 1.0 g of titanium oxide having an average primary particle diameter of 150 nm (manufactured by Showa Denko KK, Super Titania (registered trademark) F-10) and titanium oxide having an average primary particle diameter of 25 nm (same as above). A dye-sensitized solar cell was produced in the same manner as in Example 1 except that 13.0 g of Super Titania (registered trademark) F-5) and 1.0 g of vapor phase zinc oxide having an average primary particle diameter of 30 nm were used. The photoelectric conversion efficiency of this solar cell was 2.7%. Table 1 shows the results of the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of the particle group B.
Figure 2005104760

(比較例1):
平均一次粒子径150nmの気相法酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)F−10)1.5g及び平均一次粒子径25nmの気相法酸化チタン(同、スーパータイタニア(登録商標)F−5)13.5gを500mlのポリエチレン袋に入れ、50回振って混合した。得られた酸化チタン混合物のタップ密度は0.11g/cm、ΔBGは0eVであった。
(Comparative Example 1):
Gas phase method titanium oxide with an average primary particle size of 150 nm (manufactured by Showa Denko KK, Super Titania (registered trademark) F-10) 1.5 g and gas phase method titanium oxide with an average primary particle size of 25 nm (same as Super Titania ( (Registered trademark) F-5) 13.5 g was put into a 500 ml polyethylene bag and mixed by shaking 50 times. The tap density of the obtained titanium oxide mixture was 0.11 g / cm 3 , and ΔBG was 0 eV.

この酸化チタン混合物を実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.1%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表2に示す。   A dye-sensitized solar cell was produced from this titanium oxide mixture in the same manner as in Example 1. The photoelectric conversion efficiency of this solar cell was 2.1%. Table 2 shows the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of particle group B.

(比較例2):
実施例1の乾式混合時間を0.1時間に変え、湿式混合時間を5時間に変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.2%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表2に示す。
(Comparative Example 2):
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the dry mixing time in Example 1 was changed to 0.1 hour and the wet mixing time was changed to 5 hours. The photoelectric conversion efficiency of this solar cell was 2.2%. Table 2 shows the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of particle group B.

(比較例3):
実施例1の乾式混合時間を5時間に変え、湿式混合時間を2時間に変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.4%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表2に示す。
(Comparative Example 3):
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the dry mixing time in Example 1 was changed to 5 hours and the wet mixing time was changed to 2 hours. The photoelectric conversion efficiency of this solar cell was 2.4%. Table 2 shows the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of particle group B.

(比較例4):
乾式混合時間を10時間に変えた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.3%であった。粒子群Bの加重平均比表面積、タップ密度、乾式混合後のBG、ΔBG、光電変換効率の結果を表2に示す。
(Comparative Example 4):
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the dry mixing time was changed to 10 hours. The photoelectric conversion efficiency of this solar cell was 2.3%. Table 2 shows the weighted average specific surface area, tap density, BG after dry mixing, ΔBG, and photoelectric conversion efficiency of particle group B.

(比較例5)
気相法で得られた平均一次粒子径150nmの酸化チタン(昭和電工(株)製、スーパータイタニア(登録商標)F−10)1.5g及び平均一次粒子径25nmの酸化チタン(同、スーパータイタニア(登録商標)F−5)13.5g、純水70.0g、エタノール10.0g、ポリエチレングリコール(分子量500,000)5.0g、3φジルコニアボール500gを800cmのポリエチレン容器(φ96×133mm)に入れ、ボールミルにて回転数80rpmで1時間混合し、酸化チタン分散液を得た。この酸化チタン分散液を酸化チタン構造体分散体の替わりに用いた以外は実施例1と同様に色素増感型太陽電池を作製した。この太陽電池の光電変換効率は2.2%であった。粒子群Bの加重平均比表面積、光電変換効率の結果を表2に示す。
(Comparative Example 5)
1.5 g of titanium oxide (manufactured by Showa Denko KK, Super Titania (registered trademark) F-10) obtained by a vapor phase method with an average primary particle diameter of 150 nm and titanium oxide having an average primary particle diameter of 25 nm (same as Super Titania) (Registered Trademark) F-5) 13.5 g, pure water 70.0 g, ethanol 10.0 g, polyethylene glycol (molecular weight 500,000) 5.0 g, 3φ zirconia balls 500 g in an 800 cm 3 polyethylene container (φ96 × 133 mm) And mixed with a ball mill at a rotation speed of 80 rpm for 1 hour to obtain a titanium oxide dispersion. A dye-sensitized solar cell was produced in the same manner as in Example 1 except that this titanium oxide dispersion was used in place of the titanium oxide structure dispersion. The photoelectric conversion efficiency of this solar cell was 2.2%. Table 2 shows the results of the weighted average specific surface area and photoelectric conversion efficiency of the particle group B.

Figure 2005104760
Figure 2005104760

色素増感型太陽電池の構成の概略を示す断面図。Sectional drawing which shows the outline of a structure of a dye-sensitized solar cell. 酸化チタン粒子のネッキング状態を示す電子顕微鏡写真。The electron micrograph which shows the necking state of a titanium oxide particle. 吸収端波長を求めるための吸光度パターン。Absorbance pattern for obtaining the absorption edge wavelength.

符号の説明Explanation of symbols

1 導電性ガラス
2 酸化チタン粒子
3 増感色素
4 電解層
5 触媒層
6 色素電極
7 対極
ア ネッキング部
イ 点接触部

DESCRIPTION OF SYMBOLS 1 Conductive glass 2 Titanium oxide particle 3 Sensitizing dye 4 Electrolytic layer 5 Catalyst layer 6 Dye electrode 7 Counter electrode A necking part A Point contact part

Claims (32)

積分球式分光光度計による吸光度から算出したオプティカルバンドギャップ(以降、BGと称する。)が、2.7eV以上3.1eV以下であり、且つタップ密度が0.15g/cm以上、0.45g/cm以下であることを特徴とする酸化チタン構造体。 The optical band gap (hereinafter referred to as BG) calculated from the absorbance by an integrating sphere spectrophotometer is 2.7 eV or more and 3.1 eV or less, and the tap density is 0.15 g / cm 3 or more and 0.45 g. Titanium oxide structure characterized by being / cm 3 or less. 複数の粒度の異なる金属酸化物粉末を乾式混合した金属酸化物構造体であって、原料金属酸化物のBGをBG0とし、乾式混合後の金属酸化物のBGをBG1とした時に、BG0−BG1が0.01eV以上0.45eV以下である金属酸化物構造体。 A metal oxide structure obtained by dry-mixing a plurality of metal oxide powders having different particle sizes, where BG0 of the raw metal oxide is BG0, and BG of the metal oxide after dry-mixing is BG1. Is a metal oxide structure having 0.01 eV or more and 0.45 eV or less. 金属酸化物を乾式混合する金属酸化物構造体の製造方法であって、原料金属酸化物のBGをBG0とし、乾式混合後の金属酸化物のBGをBG1とした時に、BG0−BG1が0.01eV以上0.45eV以下となるように混合する金属酸化物構造体の製造方法。 A method for producing a metal oxide structure in which metal oxides are dry mixed, wherein BG0-BG1 is 0.00 when BG of the raw metal oxide is BG0 and BG of the metal oxide after dry mixing is BG1. A method for manufacturing a metal oxide structure, wherein the metal oxide structure is mixed so as to have a voltage of 01 eV or more and 0.45 eV or less. 乾式混合が、ボールミル、高速回転粉砕機、撹拌ミル、ジェット粉砕機のうち少なくとも一つから選ばれる方法であることを特徴とする請求項3に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to claim 3, wherein the dry mixing is a method selected from at least one of a ball mill, a high-speed rotary pulverizer, a stirring mill, and a jet pulverizer. 乾式混合がボールミルによって行われ、その乾式混合におけるエネルギー定数k1が、混合する粉の総質量をwp(g)、メディア質量をwm(g)、ボールミル容器内径をd(m)、回転数をn(rpm)、混合時間をt(分)とした時に、
k1=wm/wp×d×n×t
なる関係で表されるk1が、3,000以上250,000以下である請求項3に記載の金属酸化物構造体の製造方法。
Dry mixing is performed by a ball mill, and the energy constant k1 in the dry mixing is such that the total mass of the powder to be mixed is wp (g), the media mass is wm (g), the inner diameter of the ball mill container is d (m), and the rotational speed is n. (Rpm), when the mixing time is t (minutes)
k1 = wm / wp × d × n × t
The method for producing a metal oxide structure according to claim 3, wherein k1 represented by the following relationship is 3,000 or more and 250,000 or less.
エネルギー定数k1が10,000以上150,000以下である請求項3に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to claim 3, wherein the energy constant k1 is 10,000 or more and 150,000 or less. エネルギー定数k1が10,000以上50,000以下である請求項3に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to claim 3, wherein the energy constant k1 is 10,000 or more and 50,000 or less. 原料金属酸化物が、BET法による比表面積から換算した平均一次粒子径が100〜500nmの範囲にある金属酸化物粉末(以降、粒子群Aと称する。)と、平均一次粒子径が10〜40nmの範囲にある金属酸化物粉末(以降、粒子群Bと称する。)より構成されることを特徴とする請求項3乃至7のいずれか1項に記載の金属酸化物構造体の製造方法。 The raw metal oxide is a metal oxide powder (hereinafter referred to as particle group A) having an average primary particle diameter in the range of 100 to 500 nm as converted from the specific surface area by the BET method, and the average primary particle diameter is 10 to 40 nm. The method for producing a metal oxide structure according to any one of claims 3 to 7, wherein the metal oxide powder is composed of a metal oxide powder (hereinafter referred to as a particle group B) in the range of. 粒子群Bが、BET法による比表面積から換算した平均一次粒子径が20〜40nmの金属酸化物粉末(以降、粒子群Cと称する。)と10〜20nmの金属酸化物粉末(以降、粒子群Dと称する。)の混合物である請求項8に記載の金属酸化物構造体の製造方法。 Particle group B is a metal oxide powder (hereinafter referred to as particle group C) having an average primary particle diameter converted from a specific surface area according to the BET method of 20 to 40 nm and a metal oxide powder (hereinafter referred to as particle group) of 10 to 20 nm. 9. The method for producing a metal oxide structure according to claim 8, wherein the metal oxide structure is a mixture. 粒子群Bの平均比表面積が60m/g以上110m/g以下である請求項8または9に記載の金属酸化物構造体の製造方法。 Method for producing a metal oxide structure according to claim 8 or 9 average specific surface area of the particle group B is less than 60 m 2 / g or more 110m 2 / g. 粒子群A乃至Dのうち少なくとも一つが、気相法で合成された金属酸化物である請求項8乃至10のいずれか1項に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to any one of claims 8 to 10, wherein at least one of the particle groups A to D is a metal oxide synthesized by a vapor phase method. タップ密度が0.15g/cm以上1.0g/cm以下である請求項3乃至11のいずれか1項に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to claim 3, wherein the tap density is 0.15 g / cm 3 or more and 1.0 g / cm 3 or less. 金属酸化物が酸化チタンであることを特徴とする請求項3乃至12のいずれか1項に記載の酸化チタン構造体の製造方法。 The method for producing a titanium oxide structure according to any one of claims 3 to 12, wherein the metal oxide is titanium oxide. 金属酸化物が、酸化チタンと、酸化亜鉛、酸化ニオブ、酸化タンタル、酸化ジルコニウム、酸化スズ、酸化タングステンから選ばれる少なくとも1種類以上の金属酸化物との混合物であることを特徴とする請求項3乃至12のいずれか1項に記載の金属酸化物構造体の製造方法。 The metal oxide is a mixture of titanium oxide and at least one metal oxide selected from zinc oxide, niobium oxide, tantalum oxide, zirconium oxide, tin oxide, and tungsten oxide. 13. The method for producing a metal oxide structure according to any one of items 1 to 12. 前項金属酸化物の混合物に含まれる酸化チタンの含量が、10質量%以上であることを特徴とする請求項14に記載の金属酸化物構造体の製造方法。 The method for producing a metal oxide structure according to claim 14, wherein the content of titanium oxide contained in the mixture of metal oxides is 10% by mass or more. 請求項1の酸化チタン構造体もしくは2の金属酸化物構造体または請求項3乃至15のいずれか1項に記載の製造方法で得られた金属酸化物構造体に分散媒を加え、ボールミルにて湿式混合して金属酸化物構造体分散体を製造する方法であって、その湿式混合におけるエネルギー定数k2が、混合する粉の総質量をwp(g)、メディア質量をwm(g)、ボールミル容器内径をd(m)、回転数をn(rpm)、混合時間をt(分)とした時に、
k2=wm/wp×d×n×t
なる関係で表されるk2と、乾式混合におけるエネルギー定数k1の関係が
k2≧k1
で表されることを特徴とする金属酸化物分散体の製造方法。
A dispersion medium is added to the titanium oxide structure according to claim 1, the metal oxide structure according to 2, or the metal oxide structure obtained by the production method according to any one of claims 3 to 15, and A method for producing a metal oxide structure dispersion by wet mixing, wherein the energy constant k2 in the wet mixing is such that the total mass of powder to be mixed is wp (g), the media mass is wm (g), and a ball mill container When the inner diameter is d (m), the rotation speed is n (rpm), and the mixing time is t (minutes),
k2 = wm / wp × d × n × t
The relationship between k2 expressed by the relationship and the energy constant k1 in dry mixing is
k2 ≧ k1
The manufacturing method of the metal oxide dispersion characterized by these.
湿式混合におけるエネルギー定数k2と、乾式混合におけるエネルギー定数k1の関係が
8.0×k1≧k2≧1.5×k1
で表されることを特徴とする請求項16に記載の金属酸化物分散体の製造方法。
The relationship between the energy constant k2 in wet mixing and the energy constant k1 in dry mixing is
8.0 × k1 ≧ k2 ≧ 1.5 × k1
It is represented by these, The manufacturing method of the metal oxide dispersion of Claim 16 characterized by the above-mentioned.
湿式混合におけるエネルギー定数k2と、乾式混合におけるエネルギー定数k1の関係が
5.0×k1≧k2≧2.5×k1
で表されることを特徴とする請求項16に記載の金属酸化物分散体の製造方法。
The relationship between the energy constant k2 in wet mixing and the energy constant k1 in dry mixing is
5.0 × k1 ≧ k2 ≧ 2.5 × k1
It is represented by these, The manufacturing method of the metal oxide dispersion of Claim 16 characterized by the above-mentioned.
請求項16乃至18のいずれか1項に記載の製造方法で得られた酸化チタンを含む金属酸化物分散体。 The metal oxide dispersion containing the titanium oxide obtained by the manufacturing method of any one of Claims 16 thru | or 18. 請求項1の酸化チタン構造体もしくは2に記載の金属酸化物構造体、請求項3乃至15のいずれか1項に記載の製造方法で得られた金属酸化物構造体又は請求項19に記載の酸化チタンを含む金属酸化物分散体を含む組成物。 The titanium oxide structure according to claim 1 or the metal oxide structure according to claim 2, the metal oxide structure obtained by the production method according to any one of claims 3 to 15, or the metal oxide structure according to claim 19. A composition comprising a metal oxide dispersion comprising titanium oxide. 請求項1の酸化チタン構造体もしくは2に記載の金属酸化物構造体、請求項3乃至15のいずれか1項に記載の製造方法で得られた金属酸化物構造体又は請求項19に記載の酸化チタンを含む金属酸化物分散体を含む薄膜。 The titanium oxide structure according to claim 1 or the metal oxide structure according to claim 2, the metal oxide structure obtained by the production method according to any one of claims 3 to 15, or the metal oxide structure according to claim 19. A thin film containing a metal oxide dispersion containing titanium oxide. 膜厚が、1μm以上40μm以下であることを特徴とする請求項21に記載の金属酸化物構造体を含む薄膜。 The thin film containing a metal oxide structure according to claim 21, wherein the film thickness is 1 μm or more and 40 μm or less. 請求項3乃至15のいずれか1項に記載の金属酸化物構造体を色素増感型電極として含む色素増感型太陽電池の製造方法。 A method for producing a dye-sensitized solar cell, comprising the metal oxide structure according to any one of claims 3 to 15 as a dye-sensitized electrode. 請求項3乃至15のいずれか1項に記載の金属酸化物構造体および請求項17乃至19のいずれか1項に記載の金属酸化物分散体を色素増感型電極として含む色素増感型太陽電池の製造方法。 A dye-sensitized solar comprising the metal oxide structure according to any one of claims 3 to 15 and the metal oxide dispersion according to any one of claims 17 to 19 as a dye-sensitized electrode. Battery manufacturing method. 請求項23または24の製造方法で製造された色素増感型太陽電池。 A dye-sensitized solar cell manufactured by the manufacturing method according to claim 23 or 24. 請求項22に記載の金属酸化物構造体を含む薄膜を構成要素とする色素電極を備えた色素増感型太陽電池。 A dye-sensitized solar cell comprising a dye electrode comprising a thin film containing the metal oxide structure according to claim 22 as a constituent element. 色素電極から色素を除去した後の酸化チタンのBGが、2.7〜3.1eVであることを特徴とする色素増感型太陽電池。 A dye-sensitized solar cell, wherein the BG of titanium oxide after removing the dye from the dye electrode is 2.7 to 3.1 eV. 請求項25乃至27のいずれか1項に記載の色素増感型太陽電池を備えた発電機能を有する物品。 An article having a power generation function, comprising the dye-sensitized solar cell according to any one of claims 25 to 27. 請求項25乃至27のいずれか1項に記載の色素増感型太陽電池を備えた発光機能を有する物品。 An article having a light emitting function, comprising the dye-sensitized solar cell according to any one of claims 25 to 27. 請求項25乃至27のいずれか1項に記載の色素増感型太陽電池を備えた発熱機能を有する物品。 An article having a heat generating function, comprising the dye-sensitized solar cell according to any one of claims 25 to 27. 請求項25乃至27のいずれか1項に記載の色素増感型太陽電池を備えた音響発生機能を有する物品。 An article having a sound generating function, comprising the dye-sensitized solar cell according to any one of claims 25 to 27. 請求項25乃至27のいずれか1項に記載の色素増感型太陽電池を備えた運動機能を有する物品。
An article having a motion function, comprising the dye-sensitized solar cell according to any one of claims 25 to 27.
JP2003338938A 2002-09-30 2003-09-30 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof Expired - Fee Related JP4672973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003338938A JP4672973B2 (en) 2002-09-30 2003-09-30 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002285334 2002-09-30
JP2003169421 2003-06-13
JP2003197672 2003-07-16
JP2003320123 2003-09-11
JP2003338938A JP4672973B2 (en) 2002-09-30 2003-09-30 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2005104760A true JP2005104760A (en) 2005-04-21
JP4672973B2 JP4672973B2 (en) 2011-04-20

Family

ID=34557741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003338938A Expired - Fee Related JP4672973B2 (en) 2002-09-30 2003-09-30 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4672973B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112704A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2008112705A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2009096842A (en) * 2007-10-15 2009-05-07 Konica Minolta Holdings Inc Coating liquid for forming semiconductor membrane, semiconductor membrane using the same, and dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010202486A (en) * 2009-03-06 2010-09-16 Toho Titanium Co Ltd Production method of particulate titanium oxide powder and particulate titanium oxide powder
JPWO2009035128A1 (en) * 2007-09-11 2010-12-24 東邦チタニウム株式会社 Method for producing fine particle titanium oxide powder and fine particle titanium oxide powder
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011204464A (en) * 2010-03-25 2011-10-13 Casio Computer Co Ltd Dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2015018664A (en) * 2013-07-10 2015-01-29 大日本印刷株式会社 Method for manufacturing dye-sensitized solar cell, and coating liquid for forming porous layer

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188979A (en) * 1983-04-11 1984-10-26 Hitachi Ltd Solar battery element
JPH01220380A (en) * 1988-02-12 1989-09-04 Gebr Sulzer Ag Photoelectrochemical battery and its manufacture
JPH05182177A (en) * 1992-01-08 1993-07-23 Fuji Photo Film Co Ltd Magnetic recording medium
JPH08269433A (en) * 1995-03-28 1996-10-15 Kao Corp Ultraviolet-shielding platy composite microparticle and its production
JPH10504521A (en) * 1994-05-02 1998-05-06 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Phosphonated polypyridyl compounds and their complexes
JPH10177714A (en) * 1996-12-16 1998-06-30 Toda Kogyo Corp Titanium oxide particle powder for nonmagnetic base layer of magnetic recording medium which uses metal magnetic particle powder essentially comprising iron, substrate of magnetic recording medium having nonmagnetic base layer using that titanium oxide powder, and magnetic recording medium using that substrate
JPH1111912A (en) * 1997-06-24 1999-01-19 Fuji Xerox Co Ltd Metal oxide particulate aggregate and its production
JPH11307141A (en) * 1998-02-18 1999-11-05 Nikon Corp Wet type solar battery and manufacture thereof
JPH11345991A (en) * 1998-06-02 1999-12-14 Ricoh Co Ltd Solar battery
US20010043904A1 (en) * 2000-04-25 2001-11-22 Jun Tanaka Production process for ultrafine particulate complex oxide containing titanium oxide
JP2002083987A (en) * 2000-09-06 2002-03-22 Seiko Epson Corp Semiconductor, method for manufacturing the semiconductor, and solar cell
JP2002246076A (en) * 2001-02-15 2002-08-30 Nec Corp Manufacturing method for pigment-sensitized wet solar cell
WO2003048048A1 (en) * 2001-12-05 2003-06-12 Kemira Pigments Oy Titanium dioxide photocatalyst and a method of preparation and uses of the same
JP2004130171A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Nano-structure consisting of titania-based crystal formed on substrate, and its manufacturing method
JP2004331490A (en) * 2003-04-15 2004-11-25 Sumitomo Chem Co Ltd Titania nanotube and its manufacturing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188979A (en) * 1983-04-11 1984-10-26 Hitachi Ltd Solar battery element
JPH01220380A (en) * 1988-02-12 1989-09-04 Gebr Sulzer Ag Photoelectrochemical battery and its manufacture
JPH05182177A (en) * 1992-01-08 1993-07-23 Fuji Photo Film Co Ltd Magnetic recording medium
JPH10504521A (en) * 1994-05-02 1998-05-06 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Phosphonated polypyridyl compounds and their complexes
JPH08269433A (en) * 1995-03-28 1996-10-15 Kao Corp Ultraviolet-shielding platy composite microparticle and its production
JPH10177714A (en) * 1996-12-16 1998-06-30 Toda Kogyo Corp Titanium oxide particle powder for nonmagnetic base layer of magnetic recording medium which uses metal magnetic particle powder essentially comprising iron, substrate of magnetic recording medium having nonmagnetic base layer using that titanium oxide powder, and magnetic recording medium using that substrate
JPH1111912A (en) * 1997-06-24 1999-01-19 Fuji Xerox Co Ltd Metal oxide particulate aggregate and its production
JPH11307141A (en) * 1998-02-18 1999-11-05 Nikon Corp Wet type solar battery and manufacture thereof
JPH11345991A (en) * 1998-06-02 1999-12-14 Ricoh Co Ltd Solar battery
US20010043904A1 (en) * 2000-04-25 2001-11-22 Jun Tanaka Production process for ultrafine particulate complex oxide containing titanium oxide
JP2002083987A (en) * 2000-09-06 2002-03-22 Seiko Epson Corp Semiconductor, method for manufacturing the semiconductor, and solar cell
JP2002246076A (en) * 2001-02-15 2002-08-30 Nec Corp Manufacturing method for pigment-sensitized wet solar cell
WO2003048048A1 (en) * 2001-12-05 2003-06-12 Kemira Pigments Oy Titanium dioxide photocatalyst and a method of preparation and uses of the same
JP2004130171A (en) * 2002-10-09 2004-04-30 National Institute For Materials Science Nano-structure consisting of titania-based crystal formed on substrate, and its manufacturing method
JP2004331490A (en) * 2003-04-15 2004-11-25 Sumitomo Chem Co Ltd Titania nanotube and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112704A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JP2008112705A (en) * 2006-10-31 2008-05-15 Kubota Matsushitadenko Exterior Works Ltd Dye-sensitization solar cell and construction board provided with solar cell
JPWO2009035128A1 (en) * 2007-09-11 2010-12-24 東邦チタニウム株式会社 Method for producing fine particle titanium oxide powder and fine particle titanium oxide powder
JP2009096842A (en) * 2007-10-15 2009-05-07 Konica Minolta Holdings Inc Coating liquid for forming semiconductor membrane, semiconductor membrane using the same, and dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
JP2010202486A (en) * 2009-03-06 2010-09-16 Toho Titanium Co Ltd Production method of particulate titanium oxide powder and particulate titanium oxide powder
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP2011204464A (en) * 2010-03-25 2011-10-13 Casio Computer Co Ltd Dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2015018664A (en) * 2013-07-10 2015-01-29 大日本印刷株式会社 Method for manufacturing dye-sensitized solar cell, and coating liquid for forming porous layer

Also Published As

Publication number Publication date
JP4672973B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
Jiang et al. Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO 2 spheres for water pollution treatment and hydrogen production
Liang et al. Constructing a novel pn heterojunction photocatalyst LaFeO3/g-C3N4 with enhanced visible-light-driven photocatalytic activity
AU2005207253B2 (en) Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell
Rani et al. Sn doped α-Fe2O3 (Sn= 0, 10, 20, 30 wt%) photoanodes for photoelectrochemical water splitting applications
KR100693798B1 (en) Titanium oxide for dye-sensitized solar cells
Han et al. Novel upconversion Er, Yb-CeO2 hollow spheres as scattering layer materials for efficient dye-sensitized solar cells
Suresh et al. Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitized with low-cost metal-free organic dye
JP4873864B2 (en) Metal oxide dispersion and coating method thereof
Azimirad et al. Photoelectrochemical activity of graphene quantum dots/hierarchical porous TiO2 photoanode
JP4672973B2 (en) Metal oxide structure containing titanium oxide, method for producing the same, and use thereof
Wei et al. Porous and visible-light-driven p–n heterojunction constructed by Bi2O3 nanosheets and WO3 microspheres with enhanced photocatalytic performance
Wang et al. AgBr and GO co-decorated g-C3N4/Ag2WO4 composite for enhanced photocatalytic activity of contaminants degradation
Liu et al. Preparation and photovoltaic properties of dye-sensitized solar cells based on zinc titanium mixed metal oxides
CN107649183A (en) A kind of photochemical catalyst preparation method based on graphene
KR101236969B1 (en) Method of preparing titania nano-powder for dye-sensitized solar cell, method of preparing titania nano-dispersion, and photocatalyst
JP2005235757A (en) Metal oxide electrode film and dye sensitized solar cell
JP2006108080A (en) Kit for manufacturing dye-sensitized solar cell, and method for manufacturing dye-sensitized solar cell
Martínez-Sánchez et al. Effects of Ce doping on the photocatalytic and electrochemical performance of nickel hydroxide nanostructures
US6252156B1 (en) Photosensitive semiconductor electrode, method of manufacturing photosensitive semiconductor electrode, and photoelectric converter using photosensitive semiconductor
Ramaripa et al. Influence of phthalocyanine nanowire dye on the performance of titanium dioxide-metal organic framework nanocomposite for dye-sensitized solar cells
Kannan et al. Heterostructured CoTe2/g-C3N4 nanocomposite thin film counters electrodes for enhancing the photovoltaic performance of dye-sensitized solar cells
Huang et al. Interfacial engineering affects the photocatalytic activity of poly (3-hexylthiophene)-modified TiO 2
Zhang et al. Metal-organic Frameworks Derived Porous Cake-like TiO2 as an Efficient Scattering Layer for Dye-Sensitized Solar Cells
JP2013191273A (en) Photoelectrode, manufacturing method thereof, and dye-sensitized solar cell using the same
CN101656154B (en) Iodine-doped titanium-based film material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees