JP2011204464A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2011204464A
JP2011204464A JP2010070574A JP2010070574A JP2011204464A JP 2011204464 A JP2011204464 A JP 2011204464A JP 2010070574 A JP2010070574 A JP 2010070574A JP 2010070574 A JP2010070574 A JP 2010070574A JP 2011204464 A JP2011204464 A JP 2011204464A
Authority
JP
Japan
Prior art keywords
dye
electron
solar cell
sensitized solar
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070574A
Other languages
Japanese (ja)
Other versions
JP2011204464A5 (en
Inventor
Kunpei Kobayashi
君平 小林
Norihiro Arai
則博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010070574A priority Critical patent/JP2011204464A/en
Priority to US13/038,508 priority patent/US20110214730A1/en
Priority to CN2011100522559A priority patent/CN102194573A/en
Publication of JP2011204464A publication Critical patent/JP2011204464A/en
Publication of JP2011204464A5 publication Critical patent/JP2011204464A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell with a high utilization rate of light and high power generation efficiency.SOLUTION: Light having entered from a transparent substrate 10 side is absorbed by dyes of an electron capture-dye layer 30 and excites the dyes. Electrons of the excited dyes are passed to an electron capturing agent of the electron capture-dye layer 30. The electrons received by the electron capturing agent move to the transparent conductive film 20. On the other hand, the dyes which have lost the electrons are supplied with electrons from an electron supply agent 80 which is in contact with a catalyst layer 60 on a conductive film 50. Thus, electric potential is generated between the transparent conductive film 20 and the conductive film 50. That means it functions as a battery. In this case, the light which is not absorbed by the dyes and has transmitted the electron capture-dye layer 30 and reached the catalyst layer 60 is diffused and reflected by a rough surface of the catalyst layer 60 and a part of the reflection light is absorbed by the dyes. That is to say, the light which has reached the catalyst layer 60 is reutilized. Since the catalyst layer 60 is a diffusion reflection surface, the reflected light is more scattered than the case of a mirror surface, and absorption rate by the dyes is high and power generation efficiency is good.

Description

本発明は、色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

近年、環境に調和し、安価でクリーンな自然エネルギーを用いた、太陽光発電が注目されている。現在、太陽電池としてはシリコン結晶を用いたものが実用化されているが、製造にかかるエネルギーコストが高い。この様な状況で、シリコン結晶を用いた太陽電池に比べて、大面積の素子を安価に製造できるという特長があり、またフレキシブルなセルが実現可能である、例えば特許文献1に開示されている様な色素増感型太陽電池の実用化が期待されている。この様な色素増感型太陽電池の発電原理を簡単に説明すると以下の通りである。当該色素増感型太陽電池の光の入射側に配設された色素分子は、入射してきた光を吸収し、励起される。励起した色素分子の電子は、例えば半導体である酸化チタンに注入される。一方で色素分子は、失われた分の電子を電解質から供給される。従って、酸化チタンと電解質との間に電位差が生じる。この電位差を電池として利用する。   In recent years, solar power generation using natural energy that is in harmony with the environment and is inexpensive and clean has attracted attention. At present, solar cells using silicon crystals have been put into practical use, but the energy cost for production is high. In such a situation, compared with a solar cell using a silicon crystal, there is a feature that a large-area element can be manufactured at a low cost, and a flexible cell can be realized. The practical application of such dye-sensitized solar cells is expected. The power generation principle of such a dye-sensitized solar cell will be briefly described as follows. The dye molecules disposed on the light incident side of the dye-sensitized solar cell absorb the incident light and are excited. The excited dye molecule electrons are injected into, for example, titanium oxide, which is a semiconductor. On the other hand, the dye molecules are supplied with the lost amount of electrons from the electrolyte. Accordingly, a potential difference is generated between the titanium oxide and the electrolyte. This potential difference is used as a battery.

特開2008−41258号公報JP 2008-41258 A

例えばシリコン結晶を用いた太陽電池と比較したときに、例えば特許文献1に開示されている様な色素増感型太陽電池の、発電効率は低いという課題がある。   For example, when compared with a solar cell using silicon crystals, there is a problem that the power generation efficiency of the dye-sensitized solar cell as disclosed in Patent Document 1, for example, is low.

本発明は、光利用率が高く、発電効率が高い色素増感太陽電池を提供することを目的とする。   An object of the present invention is to provide a dye-sensitized solar cell with high light utilization rate and high power generation efficiency.

前記目的を果たすため、本発明の色素増感太陽電池の一態様は、第1の基板と、前記第1の基板と対向して配置された第2の基板と、前記第1の基板の前記第2の基板と対向する面に形成された第1の電極と、前記第1の電極上に配された電子捕集剤と、前記第1の基板と前記第2の基板との間に配された電子供給剤と、前記電子捕集剤上に配された、励起状態では前記電子捕集剤のエネルギー準位より高く、基底状態では前記電子供給剤のエネルギー準位より低いエネルギー準位を有する色素と、前記第2の基板の前記第1の基板と対向する面に配された触媒層と、を具備する色素増感太陽電池において、前記触媒層の前記第1の基板と対向する面は、拡散反射面である、ことを特徴とする。   In order to achieve the above object, one aspect of the dye-sensitized solar cell of the present invention includes a first substrate, a second substrate disposed to face the first substrate, and the first substrate. A first electrode formed on a surface facing the second substrate; an electron scavenger disposed on the first electrode; and the first electrode and the second substrate. The electron supply agent disposed on the electron scavenger and an energy level higher than the energy level of the electron scavenger in the excited state and lower than the energy level of the electron supplier in the ground state. In the dye-sensitized solar cell comprising: a dye having a dye; and a catalyst layer disposed on a surface of the second substrate facing the first substrate, a surface of the catalyst layer facing the first substrate Is a diffuse reflection surface.

本発明に依れば、光利用率が高く、発電効率が高い色素増感太陽電池を提供できる。   According to the present invention, a dye-sensitized solar cell having a high light utilization rate and a high power generation efficiency can be provided.

本発明の一実施形態に係る色素増感太陽電池の構成例を示す断面図。Sectional drawing which shows the structural example of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る色素増感太陽電池の発電原理を説明するエネルギーダイヤグラム。The energy diagram explaining the electric power generation principle of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る色素増感太陽電池の対向基板の表面形状の例を示す図。The figure which shows the example of the surface shape of the opposing board | substrate of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る色素増感太陽電池の対向基板上に形成される構造の概略の例を示す図。The figure which shows the example of the outline of the structure formed on the opposing board | substrate of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明に係る色素増感太陽電池の実施例及び比較例における電流−電圧曲線の一例を示す図。The figure which shows an example of the electric current-voltage curve in the Example and comparative example of a dye-sensitized solar cell which concern on this invention. 本発明の一実施形態の変形例に係る色素増感太陽電池の電極、電子捕集剤及び色素の部分の構成例を示す模式図。The schematic diagram which shows the structural example of the part of the electrode of the dye-sensitized solar cell which concerns on the modification of one Embodiment of this invention, an electron scavenger, and a pigment | dye. 本発明の一実施形態の変形例に係る色素増感太陽電池の作用を説明する為の図。The figure for demonstrating the effect | action of the dye-sensitized solar cell which concerns on the modification of one Embodiment of this invention.

本発明の一実施形態について図面を参照して説明する。本実施形態に係る色素増感太陽電池において、その構成の概要を図1に示す様に、例えばガラスやフィルム等から成る透明基板10上には、酸化インジウム錫(ITO)やフッ素ドープ酸化スズ(FTO)等から成る電極としての透明導電膜20が形成されている。透明導電膜20はパターニングされていても良く、また、透明導電膜20の上層または下層に銀等の集電パターンを設けても良い。透明導電膜20上には、電子捕集−色素層30が形成されている。   An embodiment of the present invention will be described with reference to the drawings. In the dye-sensitized solar cell according to the present embodiment, as shown in FIG. 1, an outline of the configuration is formed on, for example, indium tin oxide (ITO) or fluorine-doped tin oxide ( A transparent conductive film 20 as an electrode made of FTO) or the like is formed. The transparent conductive film 20 may be patterned, and a current collecting pattern such as silver may be provided on the upper layer or the lower layer of the transparent conductive film 20. On the transparent conductive film 20, an electron collection-dye layer 30 is formed.

電子捕集−色素層30は、例えばアナターゼ型の酸化チタンの粒子等より成る電子捕集剤と、ルテニウム色素(N719色素等)等より成る色素とを有する。電子捕集剤の直径は、例えば20nm程度である。電子捕集剤は、酸化チタンに限らず、例えば酸化亜鉛、酸化錫、酸化タングステン、酸化ニオブ、酸化インジウム及びその複合体等を用いることができる。本実施形態では、特に色素増感太陽電池の材料として優れる酸化チタン(TiO)を用いることとして説明する。また、色素は、N719色素に限らず、例えば、ルテニウム系色素として、N3色素、BlackDyeや、純粋有機色素として、D149、キサンテン、PVK、メロシアニン、オキサジン等を用いることができる。色素は、光を吸収し、電子を放出する役割を担う。 The electron collection-dye layer 30 includes, for example, an electron collection agent made of anatase-type titanium oxide particles and the like, and a dye made of ruthenium dye (N719 dye or the like). The diameter of the electron scavenger is, for example, about 20 nm. The electron scavenger is not limited to titanium oxide, and for example, zinc oxide, tin oxide, tungsten oxide, niobium oxide, indium oxide, and a composite thereof can be used. In the present embodiment, it will be described that titanium oxide (TiO 2 ), which is particularly excellent as a material for a dye-sensitized solar cell, is used. The dye is not limited to the N719 dye, and for example, N3 dye, BlackDye as the ruthenium-based dye, and D149, xanthene, PVK, merocyanine, oxazine, and the like as the pure organic dye can be used. The dye plays a role of absorbing light and emitting electrons.

一方、透明基板10と対向する例えばガラスやフィルム等から成る対向基板40上には、電極としての導電膜50が形成されている。更に、導電膜50の上には、白金から成る触媒層60が形成されている。尚、導電膜50を形成せずとも、対向基板40上に形成した白金から成る触媒層60が、導電膜50の機能を担うこともできる。   On the other hand, a conductive film 50 as an electrode is formed on a counter substrate 40 made of, for example, glass or a film that faces the transparent substrate 10. Further, a catalyst layer 60 made of platinum is formed on the conductive film 50. Even if the conductive film 50 is not formed, the catalyst layer 60 made of platinum formed on the counter substrate 40 can also function as the conductive film 50.

ここで本実施形態では、本色素増感太陽電池に透明基板10側から入射し、電子捕集−色素層30を透過した光を、拡散反射させることで再利用して発電効率を高めるため、触媒層60の表面は、拡散反射面となっている。このため、対向基板40には微細な凹凸が形成されている。この凹凸は、例えば溶液によるエッチング等化学的手法によりに形成しても良いし、例えばサンドブラスト等物理的手法により形成しても良い。微細な凹凸が形成された対向基板40上に、導電膜50、及び白金から成る触媒層60を形成することで拡散反射面が形成される。   Here, in the present embodiment, in order to increase the power generation efficiency by reusing the light incident on the dye-sensitized solar cell from the transparent substrate 10 side and transmitted through the electron collection-dye layer 30 by diffuse reflection, The surface of the catalyst layer 60 is a diffuse reflection surface. Therefore, fine irregularities are formed on the counter substrate 40. The unevenness may be formed by a chemical method such as etching with a solution, or may be formed by a physical method such as sand blasting. A diffuse reflection surface is formed by forming the conductive film 50 and the catalyst layer 60 made of platinum on the counter substrate 40 on which fine irregularities are formed.

尚、対向基板40を削って凹凸を形成しなくとも、平らなガラス表面に有機散乱膜等を成膜することで凹凸を形成しても同様に拡散反射面を形成することができる。   Even if the counter substrate 40 is not shaved to form irregularities, a diffuse reflection surface can be similarly formed even if irregularities are formed by forming an organic scattering film or the like on a flat glass surface.

透明基板10と対向基板40は、透明基板10の電子捕集−色素層30が形成されている面と、対向基板40の触媒層60が形成されている面とがそれぞれ対向し、対向する面の間に例えば10〜50μm程度の間隙を有する様に、対向する面の周縁部でシール材70によって貼り合わされている。前記間隙には、電解質である電子供給剤80が封入されている。   In the transparent substrate 10 and the counter substrate 40, the surface of the transparent substrate 10 on which the electron collection-dye layer 30 is formed and the surface of the counter substrate 40 on which the catalyst layer 60 is formed face each other and face each other. For example, the peripheral portions of the opposing surfaces are bonded together by the sealing material 70 so as to have a gap of, for example, about 10 to 50 μm. An electron supply agent 80 that is an electrolyte is sealed in the gap.

電子供給剤80の溶媒としては、例えばアセトニトリル、メトキシアセトニトリル、炭酸エチレン等を用いることができる。電子供給剤80の溶質としては、例えば1,2−ジメチル−3−n−プロピルイミダゾリウムアイオダイド(DMPImI)、ヨウ化リチウム(LiI)、ヨウ素(I)、4−tert−ブチルピリジン(TBP)等を用いることができる。 As a solvent for the electron supply agent 80, for example, acetonitrile, methoxyacetonitrile, ethylene carbonate, or the like can be used. Examples of the solute of the electron supply agent 80 include 1,2-dimethyl-3-n-propylimidazolium iodide (DMPImI), lithium iodide (LiI), iodine (I 2 ), 4-tert-butylpyridine (TBP). ) Etc. can be used.

この様に、例えば透明基板10は、第1の基板として機能し、例えば対向基板40は、第2の基板として機能し、例えば透明導電膜20は、第1の基板の第2の基板と対向する面に形成された第1の電極として機能し、例えば電子捕集−色素層30中の電子捕集剤は、電極上に配された電子捕集剤として機能し、例えば電子供給剤80は、第1の基板と第2の基板との間に配された電子供給剤として機能し、例えば電子捕集−色素層30中の色素は、電子捕集剤上に配された、励起状態では電子捕集剤のエネルギー準位より高く、基底状態では電子供給剤のエネルギー準位より低いエネルギー準位を有する色素として機能し、例えば触媒層60は、第2の基板の第1の基板と対向する面に配された触媒層として機能し、例えば導電膜50は、第2の電極として機能する。   In this way, for example, the transparent substrate 10 functions as a first substrate, for example, the counter substrate 40 functions as a second substrate, and for example, the transparent conductive film 20 faces the second substrate of the first substrate. For example, the electron collection agent in the electron collection-dye layer 30 functions as an electron collection agent disposed on the electrode. For example, the electron supply agent 80 is , Functioning as an electron supply agent arranged between the first substrate and the second substrate, for example, the dye in the electron collection-dye layer 30 is arranged on the electron collection agent in an excited state. It functions as a dye having an energy level higher than that of the electron scavenger and lower than that of the electron supply agent in the ground state. For example, the catalyst layer 60 is opposed to the first substrate of the second substrate. For example, the conductive film 50 is It serves as the second electrode.

次に、本実施形態に係る色素増感太陽電池の発電原理を図2を参照して説明する。まず、本色素増感太陽電池に光が入射すると、その光は電子捕集−色素層30中の色素に吸収される。色素に吸収された光は、色素を励起する(図2中の破線矢印)。また、色素に吸収されず、電子捕集−色素層30を透過した光は、その一部は電子供給剤80に吸収されるが、他の光の一部は、触媒層60に到達する。触媒層60に到達した光は、触媒層60で拡散反射し、反射光の一部は電子捕集−色素層30の色素に吸収される。この様に触媒層60で反射されて色素に吸収された光も、色素を励起する。   Next, the power generation principle of the dye-sensitized solar cell according to this embodiment will be described with reference to FIG. First, when light enters the dye-sensitized solar cell, the light is absorbed by the dye in the electron collection-dye layer 30. The light absorbed by the dye excites the dye (broken arrow in FIG. 2). Further, a part of the light that has not been absorbed by the dye and has passed through the electron collection-dye layer 30 is absorbed by the electron supply agent 80, but a part of the other light reaches the catalyst layer 60. The light reaching the catalyst layer 60 is diffusely reflected by the catalyst layer 60, and a part of the reflected light is absorbed by the dye of the electron collection-dye layer 30. Thus, the light reflected by the catalyst layer 60 and absorbed by the pigment also excites the pigment.

ここで励起された電子捕集−色素層30中の色素の電子は、例えばワイドギャップ半導体である酸化チタン等で構成される電子捕集−色素層30中の電子捕集剤に受け渡される。即ち、色素は酸化する。電子捕集剤が受け取った電子は、透明導電膜20に移動する。一方、電子を失った色素は、触媒層60を有する導電膜50と接している電子供給剤80の例えばIから、電子を供給される。即ち、色素は電子供給剤80により還元される。3Iは電子を色素に供給するとI となる。従って、電子供給剤80の例えばI は、導電膜50から電子を受け取ろうとする。このとき、透明導電膜20と導電膜50との間には、電位差が発生する。透明導電膜20と導電膜50との間に外部回路が接続されていれば、透明導電膜20に移動した電子は、外部回路を介して導電膜50に移動する。そして、この電子は電子供給剤80の例えばI に移動し、I は3Iとなる。電子を失った色素は、電子供給剤80の例えばIから電子を供給される。この様に、透明導電膜20と導電膜50に、外部回路を接続することによって、外部回路は光を吸収した本実施形態に係る色素増感太陽電池から、電流を取り出すことができる。即ち、本色素増感太陽電池は電池として機能する。 The electrons of the dye in the electron collecting-dye layer 30 excited here are transferred to the electron collecting agent in the electron collecting-dye layer 30 composed of, for example, titanium oxide which is a wide gap semiconductor. That is, the dye is oxidized. The electrons received by the electron scavenger move to the transparent conductive film 20. On the other hand, the dye that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80 in contact with the conductive film 50 having the catalyst layer 60. That is, the dye is reduced by the electron supply agent 80. 3I becomes I 3 when electrons are supplied to the dye. Therefore, for example, I 3 of the electron supply agent 80 tries to receive electrons from the conductive film 50. At this time, a potential difference is generated between the transparent conductive film 20 and the conductive film 50. If an external circuit is connected between the transparent conductive film 20 and the conductive film 50, the electrons that have moved to the transparent conductive film 20 move to the conductive film 50 through the external circuit. Then, the electrons move to, for example, I 3 of the electron supply agent 80, and I 3 becomes 3I . The dye that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80. In this way, by connecting an external circuit to the transparent conductive film 20 and the conductive film 50, the external circuit can extract current from the dye-sensitized solar cell according to the present embodiment that has absorbed light. That is, this dye-sensitized solar cell functions as a battery.

本色素増感太陽電池の発電原理は前記の通りなので、励起状態の色素のエネルギー準位は、電子捕集剤のエネルギー準位より高く、基底状態の色素のエネルギー準位は、電子供給剤80のエネルギー準位より低いという関係を要する。   Since the power generation principle of the dye-sensitized solar cell is as described above, the energy level of the excited state dye is higher than the energy level of the electron scavenger, and the energy level of the ground state dye is the electron supply agent 80. It requires a relationship that it is lower than the energy level of.

[実施例]
次に前記実施形態に係る色素増感太陽電池の実施例について説明する。ここでは、対向基板40に微細な凹凸を形成し、触媒層60の表面を拡散反射面とした本実施例の色素増感太陽電池と、対向基板40を平面とし、触媒層60の表面を鏡面とした比較例の色素増感太陽電池との性能を比較した。比較に用いた指標は、入射光のエネルギーに対する発生した電力のエネルギーの比である変換効率ηである。
[Example]
Next, examples of the dye-sensitized solar cell according to the embodiment will be described. Here, the fine substrate is formed on the counter substrate 40, the surface of the catalyst layer 60 is a diffuse reflection surface, the dye-sensitized solar cell of this example, the counter substrate 40 is a plane, and the surface of the catalyst layer 60 is a mirror surface. The performance of the dye-sensitized solar cell of the comparative example was compared. The index used for the comparison is the conversion efficiency η, which is the ratio of the generated power energy to the incident light energy.

対向基板40には化学研磨によって凹凸を形成した。凹凸を形成した対向基板40の表面形状を図3に示す。図3(a)は平面図を、図3(b)は斜視図を、それぞれ示す。この凹凸面の、中心線平均粗さRaは0.137μm、十点平均高さRzは0.692μmであった。ここで、中心線平均粗さRaは、注目する長さを抜き取り、粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって囲まれた部分の面積を、前記注目する長さで割った値を表す。また、十点平均高さRzは、断面曲線の基準長さにおいて、高い方から5つの山頂の高さの平均値と、低い方から5つの谷底の深さの平均値との差の値を表す。なおRaは0.14μm±0.1μm、Rzは0.7μm±0.3μmが望ましい。   Unevenness was formed on the counter substrate 40 by chemical polishing. FIG. 3 shows the surface shape of the counter substrate 40 on which the irregularities are formed. 3A shows a plan view, and FIG. 3B shows a perspective view. The uneven surface had a center line average roughness Ra of 0.137 μm and a ten-point average height Rz of 0.692 μm. Here, for the centerline average roughness Ra, the length of interest is extracted, the roughness curve is folded back from the centerline, and the area surrounded by the roughness curve and the centerline is divided by the length of interest. Value. Further, the ten-point average height Rz is a difference value between the average value of the heights of the five peaks from the highest and the average value of the depths of the five valleys from the lowest in the reference length of the cross-sectional curve. To express. Ra is preferably 0.14 μm ± 0.1 μm and Rz is preferably 0.7 μm ± 0.3 μm.

対向基板40の凹凸を有する面上には、図4に示す様に、ITOから成る導電膜50を形成し、その上にはチタンを成膜して白金下地層55を形成した。そして、白金下地層55上に白金を成膜し、触媒層60を形成した。触媒層60を成す白金膜は、対向基板40に形成した凹凸により拡散反射面となっている。ここで、白金下地層55は触媒層60である白金の表面積を増加させる効果がある。   As shown in FIG. 4, a conductive film 50 made of ITO was formed on the surface of the counter substrate 40 having unevenness, and titanium was deposited thereon to form a platinum underlayer 55. Then, a platinum film was formed on the platinum base layer 55 to form the catalyst layer 60. The platinum film constituting the catalyst layer 60 is a diffuse reflection surface due to the unevenness formed on the counter substrate 40. Here, the platinum underlayer 55 has an effect of increasing the surface area of platinum which is the catalyst layer 60.

一方、ガラスより成る透明基板10上には、ITOより成る透明導電膜20を形成した。透明導電膜20上には、その形状が30mm角で膜厚が約2μmになる様に粒径20nmのアナターゼ型酸化チタンペーストを、スクリーン印刷し、熱処理を行い、電子捕集剤を形成した。電子捕集剤には、色素を構成するD149色素を吸着させた。この様にして電子捕集−色素層30を形成した。   On the other hand, a transparent conductive film 20 made of ITO was formed on a transparent substrate 10 made of glass. On the transparent conductive film 20, an anatase-type titanium oxide paste having a particle size of 20 nm was screen-printed so as to have a 30 mm square and a film thickness of about 2 μm, and heat treatment was performed to form an electron scavenger. The D149 dye constituting the dye was adsorbed on the electron collector. In this way, an electron collection-dye layer 30 was formed.

次に、触媒層60を形成した対向基板40と、電子捕集−色素層30を形成した透明基板10とを、10μmの間隙を設けるように貼り合わせシーリングした。その後、電子供給剤80を構成するヨウ素電解液を真空注入して封止し、色素増感太陽電池を作製した。   Next, the counter substrate 40 on which the catalyst layer 60 was formed and the transparent substrate 10 on which the electron collection-dye layer 30 was formed were bonded and sealed so as to provide a gap of 10 μm. Then, the iodine electrolyte solution which comprises the electron supply agent 80 was vacuum-injected and sealed, and the dye-sensitized solar cell was produced.

比較例の色素増感太陽電池においては、対向基板40に凹凸を形成しなかった。その他の構成は、本実施例の場合と同様とした。   In the dye-sensitized solar cell of the comparative example, no unevenness was formed on the counter substrate 40. Other configurations were the same as those in this example.

前記本実施例に係る色素増感太陽電池と、比較例に係る色素増感太陽電池との変換効率ηの値を、JIS規格のJIS C 8914「結晶系太陽電池モジュール出力測定方法」に従って計測した。簡単に説明すると、計測では波長400〜1100nm、照度1000W/mの光を照射し、電流I−電圧V曲線を取得した。そして、取得したI−V曲線から、変換効率ηの値を求めた。変換効率ηの値は、大きい程、光エネルギーを電気エネルギーに変換する効率が良く、性能が高いことを示す。 The value of the conversion efficiency η of the dye-sensitized solar cell according to this example and the dye-sensitized solar cell according to the comparative example was measured in accordance with JIS C 8914 “Crystalline solar cell module output measurement method” of JIS standard. . Briefly, in the measurement, light having a wavelength of 400 to 1100 nm and an illuminance of 1000 W / m 2 was irradiated to obtain a current I-voltage V curve. And the value of conversion efficiency (eta) was calculated | required from the acquired IV curve. The larger the value of the conversion efficiency η, the higher the efficiency of converting light energy into electric energy and the higher the performance.

取得したI−V曲線を図5に示す。この図において、実線は本実施例に係る色素増感太陽電池のI−V曲線を、破線は比較例に係る色素増感太陽電池のI−V曲線を示す。この図に示す通り、本実施例に係る色素増感太陽電池のI−V曲線は、比較例に係るそれよりも、グラフにおいて右上方向にある。これは、光エネルギーから電気エネルギーへの変換効率が良いことを示している。本実施例に係る色素増感太陽電池の変換効率ηは0.117%であり、比較例に係るそれは0.096%であった。即ち、本実施例に係る変換効率ηは、比較例のそれの1.23倍であった。   The acquired IV curve is shown in FIG. In this figure, the solid line indicates the IV curve of the dye-sensitized solar cell according to this example, and the broken line indicates the IV curve of the dye-sensitized solar cell according to the comparative example. As shown in this figure, the IV curve of the dye-sensitized solar cell according to the present example is in the upper right direction in the graph than that according to the comparative example. This indicates that the conversion efficiency from light energy to electrical energy is good. The conversion efficiency η of the dye-sensitized solar cell according to this example was 0.117%, and that according to the comparative example was 0.096%. That is, the conversion efficiency η according to this example was 1.23 times that of the comparative example.

比較例に比べて本実施例の変換効率ηが高い理由として以下が考えられる。透明基板10側から入射し、電子捕集−色素層30中の色素に吸収されずに触媒層60に到達した光は、触媒層60表面で反射され、再び電子捕集−色素層30に入射する。この際、比較例の場合には、触媒層60表面が鏡面であるため、反射光は直進し、電子捕集−色素層30内を通る光路は短い。このため、一部の光は色素に吸収されるが、その他の多くの光は吸収されずに透過してしまう。これに比べて、本実施例の場合には、触媒層60表面の拡散反射面であるため、拡散反射され電子捕集−色素層30内を通る光路が長くなる。このため、比較例の場合より色素に吸収され光の割合が増加すると考えられる。このため、変換効率ηが高くなったと考えられる。   The reason why the conversion efficiency η of this embodiment is higher than that of the comparative example can be considered as follows. Light that enters from the transparent substrate 10 side and reaches the catalyst layer 60 without being absorbed by the dye in the electron collection-dye layer 30 is reflected by the surface of the catalyst layer 60 and enters the electron collection-dye layer 30 again. To do. At this time, in the case of the comparative example, since the surface of the catalyst layer 60 is a mirror surface, the reflected light travels straight and the optical path passing through the electron collection-dye layer 30 is short. For this reason, a part of the light is absorbed by the pigment, but a lot of other light is transmitted without being absorbed. Compared to this, in the case of the present embodiment, since it is a diffuse reflection surface on the surface of the catalyst layer 60, the light path that is diffusely reflected and passes through the electron collection-dye layer 30 becomes long. For this reason, it is considered that the proportion of light is absorbed by the pigment and increased compared to the comparative example. For this reason, it is considered that the conversion efficiency η has increased.

以上の通り、本実施形態に係る色素増感太陽電池では、触媒層60表面が拡散反射面となっているため、反射光のうち色素に吸収される割合が、触媒層60表面が鏡面の場合よりも高くなる。このため、変換効率ηが高くなる。即ち、本実施形態に依れば色素増感太陽電池の性能が向上する。   As described above, in the dye-sensitized solar cell according to this embodiment, since the surface of the catalyst layer 60 is a diffuse reflection surface, the proportion of the reflected light absorbed by the dye is when the surface of the catalyst layer 60 is a mirror surface. Higher than. For this reason, the conversion efficiency η increases. That is, according to this embodiment, the performance of the dye-sensitized solar cell is improved.

[変形例]
色素増感太陽電池の性能を上昇させるためには、電子捕集−色素層30の構成を工夫することも有意義である。即ち、図6に示す様に、電子捕集剤32を構成するアナターゼ型の酸化チタンに、粒径が異なる2種類の酸化チタンを用いればいい。例えば、大きな粒径を有する電子捕集剤32を電子伝達用電子捕集粒子34と呼び、小さな粒径を有する電子捕集剤32を色素吸着用電子捕集粒子36と呼ぶ事にする。
[Modification]
In order to improve the performance of the dye-sensitized solar cell, it is also meaningful to devise the configuration of the electron collection-dye layer 30. That is, as shown in FIG. 6, two types of titanium oxides having different particle diameters may be used for the anatase type titanium oxide constituting the electron scavenger 32. For example, the electron collecting agent 32 having a large particle diameter is called an electron collecting electron collecting particle 34, and the electron collecting agent 32 having a small particle diameter is called a dye adsorption electron collecting particle 36.

図6に示す様に、電子伝達用電子捕集粒子34は、互いに接しており、その一部は透明導電膜20に接している。また、色素吸着用電子捕集粒子36は、電子伝達用電子捕集粒子34と接している。そして色素38は、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36に吸着されている。この様な構成により、電子伝達用電子捕集粒子34は、主に色素38から放出された電子を透明導電膜20に伝達する役割を担っている。また、色素吸着用電子捕集粒子36は、より多くの色素38を吸着するために、電子捕集剤32としての表面積を大きくする役割を担っている。   As shown in FIG. 6, the electron collection particles 34 for electron transfer are in contact with each other, and some of them are in contact with the transparent conductive film 20. The dye-adsorbing electron-collecting particles 36 are in contact with the electron-transmitting electron-collecting particles 34. The dye 38 is adsorbed on the electron collecting electron collecting particles 34 and the dye adsorbing electron collecting particles 36. With such a configuration, the electron collection particle 34 for electron transmission plays a role of transmitting mainly electrons emitted from the pigment 38 to the transparent conductive film 20. Further, the dye-adsorbing electron collection particles 36 have a role of increasing the surface area of the electron collection agent 32 in order to adsorb more dye 38.

ここで、色素吸着用電子捕集粒子36の直径は、例えば5nm以上25nm以下であり、電子伝達用電子捕集粒子34の直径は、例えば100nm以上400nm以下である。色素吸着用電子捕集粒子36と電子伝達用電子捕集粒子34の割合は、重量割合で色素吸着用電子捕集粒子36が例えば20〜25%等であり、電子伝達用電子捕集粒子34が例えば75〜80%等である。電子伝達用電子捕集粒子34、色素吸着用電子捕集粒子36及び色素38から成る電子捕集−色素層30の厚さは、例えばおよそ10μm等である。   Here, the diameter of the dye-adsorbing electron collection particles 36 is, for example, 5 nm or more and 25 nm or less, and the diameter of the electron transfer electron collection particles 34 is, for example, 100 nm or more and 400 nm or less. The ratio of the dye-adsorbing electron-collecting particles 36 and the electron-transmitting electron-collecting particles 34 is, for example, 20 to 25% of the dye-adsorbing electron-collecting particles 36 by weight, and the electron-transmitting electron-collecting particles 34. Is, for example, 75 to 80%. The thickness of the electron collection-dye layer 30 composed of the electron collection particles 34 for electron transfer, the electron collection particles 36 for dye adsorption and the dye 38 is, for example, about 10 μm.

電子捕集−色素層30の作製は、例えば以下の様に行う。電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36としてのアナターゼ型の2種類の粒径を持つ酸化チタン粒子を混合し、ペースト状にした後に、透明基板10に、そのペーストを印刷又は塗布し、その後焼成して酸化チタン膜形成を行う。前記酸化チタン膜の形成後、当該酸化チタン膜を、有機溶剤に溶かした色素38の液中に浸し、酸化チタンに色素38を吸着させる。   The electron collection-dye layer 30 is produced as follows, for example. After mixing titanium oxide particles having two kinds of particle sizes of anatase type as the electron collection particles 34 for electron transfer and the electron collection particles 36 for dye adsorption into a paste, the paste is applied to the transparent substrate 10. Printing or coating is performed, followed by baking to form a titanium oxide film. After the formation of the titanium oxide film, the titanium oxide film is immersed in a liquid of a dye 38 dissolved in an organic solvent, and the dye 38 is adsorbed on the titanium oxide.

次に本変形例の色素増感太陽電池の実施例について説明する。ここでは、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36として、直径が異なる2種類の電子捕集剤32としての酸化チタンを用いた本実施例の色素増感太陽電池と、直径が1種類の電子捕集剤32としての酸化チタンを用いた比較例の色素増感太陽電池との性能を比較した。比較したのは、見かけの最大電力に対する実際の電力の比であるフィルファクター(FF)の値である。   Next, examples of the dye-sensitized solar cell of this modification will be described. Here, the dye-sensitized solar cell of this example using titanium oxide as two types of electron-trapping agents 32 having different diameters as the electron-collecting particles 34 for electron transfer and the electron-trapping particles 36 for dye adsorption The performance was compared with that of a dye-sensitized solar cell of a comparative example using titanium oxide as the electron scavenger 32 having one diameter. What is compared is the value of the fill factor (FF), which is the ratio of the actual power to the apparent maximum power.

本実施例では、電子伝達用電子捕集粒子34としての酸化チタンの直径を100nmとし、色素吸着用電子捕集粒子36としての酸化チタンの直径を10nmとした。そして、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36の混合比を重量割合で、電子伝達用電子捕集粒子34を75%、色素吸着用電子捕集粒子36を25%とした。電子伝達用電子捕集粒子34、色素吸着用電子捕集粒子36及び色素38を含む電子捕集−色素層30の厚さの平均は、5μmとした。一方、参照用の従来例としての色素増感太陽電池においては、電子捕集剤32を構成する酸化チタンの直径を全て10nmとし、その他の条件は前記本実施例の場合と同様とした。なお、電子捕集剤32を構成する酸化チタンの直径を単純に大きくしただけの場合は、ラフネスファクター(RF=実際の表面積/投影面積)が単純に小さくなってしまい、ラフネスファクターが小さくなった分だけ電子捕集−色素層30の厚さの平均を厚くすると、可視光の吸収が多くなってしまい実用的ではないことが知られている。   In this example, the diameter of titanium oxide as the electron collection particle 34 for electron transfer was set to 100 nm, and the diameter of titanium oxide as the electron collection particle 36 for dye adsorption was set to 10 nm. The mixing ratio of the electron transfer electron collection particles 34 and the dye adsorption electron collection particles 36 is 75% by weight, the electron transfer electron collection particles 34 are 75%, and the dye adsorption electron collection particles 36 are 25%. It was. The average thickness of the electron collection-dye layer 30 containing the electron collection particles 34 for electron transfer, the electron collection particles 36 for dye adsorption and the dye 38 was 5 μm. On the other hand, in the dye-sensitized solar cell as a conventional example for reference, the diameter of titanium oxide constituting the electron scavenger 32 was all 10 nm, and other conditions were the same as in the case of the present example. In addition, when the diameter of the titanium oxide constituting the electron scavenger 32 is simply increased, the roughness factor (RF = actual surface area / projected area) is simply decreased, and the roughness factor is decreased. It is known that if the average of the thickness of the electron collection-dye layer 30 is increased by the amount, absorption of visible light increases, which is not practical.

前記本実施例に係る色素増感太陽電池と、従来例に係る色素増感太陽電池とのFF値を、JIS規格のJIS C 8914「結晶系太陽電池モジュール出力測定方法」に従って取得したI−V曲線から求めた。この値は、大きいほど、当該太陽電池の内部損失が小さく、性能が高いことを示す。   The FF values of the dye-sensitized solar cell according to the present example and the dye-sensitized solar cell according to the conventional example were obtained according to JIS standard JIS C 8914 “Crystalline solar cell module output measurement method” IV Obtained from the curve. The larger this value, the smaller the internal loss of the solar cell and the higher the performance.

本実施例と従来例それぞれについて3回計測した結果、FF値は、本実施例に係る色素増感太陽電池では、44.4±1.3(平均±標準偏差)、従来例に係る色素増感太陽電池では、25.6±0.3(平均±標準偏差)となった。即ち本実施例のFF値は、従来例に比較して74%の上昇となった。   As a result of measuring three times for each of the present example and the conventional example, the FF value is 44.4 ± 1.3 (average ± standard deviation) in the dye-sensitized solar cell according to the present example, and the dye increase according to the conventional example. In the solar cell, it was 25.6 ± 0.3 (average ± standard deviation). That is, the FF value of this example increased by 74% compared to the conventional example.

この様な違いが現れた理由として以下が考えられる。図7(a)に従来例の電子捕集−色素層30の模式図を示す通り、従来例では、図7(a)中白抜き矢尻Aで指し示す様に、色素38から放出された電子eは、電子捕集剤32を構成する直径が小さい粒子を多く伝って、透明導電膜20に伝達される。従って電子eは、電子捕集剤32内の粒子の接合部分を多く超える必要がある。このため、電子捕集剤32中に形成される電気接続路の抵抗が高くなって、電子が伝達されにくい。更に、図7(a)中白抜き矢尻Bで指し示す様に、色素38同士が会合し、それが電子捕集剤32を構成する粒子間に浸入し、電子捕集剤32を構成する粒子同士が接触しない部分ができることがある。そして、この様に電子捕集剤32を構成する粒子同士が接触しない部分では、電子eが伝達されないことになる。 Possible reasons for this difference are as follows. As shown in the schematic diagram of the electron collecting-dye layer 30 of the conventional example in FIG. 7A, in the conventional example, as indicated by the white arrowhead A in FIG. Is transmitted to the transparent conductive film 20 through many particles having a small diameter constituting the electron scavenger 32. Therefore, it is necessary for the electron e to greatly exceed the junction of the particles in the electron scavenger 32. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 becomes high and electrons are not easily transmitted. Further, as indicated by the white arrowhead B in FIG. 7A, the dyes 38 are associated with each other and enter between the particles constituting the electron scavenger 32, so that the particles constituting the electron scavenger 32 are There may be a part that does not touch. And in the part which the particles which comprise the electron scavenger 32 do not contact in this way, an electron e < - > will not be transmitted.

これに対して、図7(b)に本実施例の電子捕集−色素層30の模式図を示す通り、本実施例では、色素38から放出された電子eは、少数の直径が大きな電子伝達用電子捕集粒子34を伝って、透明導電膜20に伝達される。従って、電子eが超える必要のある電子伝達用電子捕集粒子34の接合部分は少ない。また、電子伝達用電子捕集粒子34の直径は大きく、1個あたりの表面積が大きいため、電子伝達用電子捕集粒子34間の接合は良好に成されている。このため、電子捕集剤32中に形成される電気接続路の抵抗が図7(b)の場合よりも低くなって、電子が伝達されやすい。また、色素吸着用電子捕集粒子36が多く存在するので、表面積は大きく、ラフネスファクターは、1000以上と、色素増感太陽電池において必要であるといわれている値以上と成っている。このため、十分な数の色素38が電子捕集剤32に吸着されている。 On the other hand, as shown in the schematic diagram of the electron collection-dye layer 30 of this example in FIG. 7B, in this example, the electrons e emitted from the dye 38 have a small number of large diameters. It is transmitted to the transparent conductive film 20 through the electron collecting particles 34 for electron transmission. Therefore, there are few junction parts of the electron collection particle | grains 34 for electron transmission which the electron e < - > needs to exceed. In addition, since the electron-collecting particles 34 for electron transfer have a large diameter and a large surface area per one, the bonding between the electron-collecting particles 34 for electron transfer is excellent. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 is lower than in the case of FIG. 7B, and electrons are easily transmitted. Further, since there are many dye-adsorbing electron-collecting particles 36, the surface area is large, and the roughness factor is 1000 or more, which is more than the value that is said to be necessary in a dye-sensitized solar cell. For this reason, a sufficient number of dyes 38 are adsorbed by the electron scavenger 32.

以上のことから、本実施例では、十分な数の色素38が放出した電子eが、滑らかに透明導電膜20に伝達される。その結果、本実施例では、従来例に比較し、FF値が上昇したと考えられる。 From the above, in this embodiment, electrons e emitted from a sufficient number of dyes 38 are smoothly transmitted to the transparent conductive film 20. As a result, in this example, it is considered that the FF value increased compared to the conventional example.

以上の通り、本変形例に係る色素増感太陽電池では、電子捕集剤32として粒径が異なる電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36を用いている。このことに依り、色素38から透明導電膜20への電子伝達に係る障害が小さくなり、電子伝達が滑らかに行われ、且つ十分な表面積を有するため、十分な数の色素38を電子捕集剤32に吸着させることができる。その結果、FF値を高くすることができる。即ち、当該色素増感太陽電池の内部損失を小さくし、性能を高くすることができる。   As described above, in the dye-sensitized solar cell according to this modification, the electron collection particles 34 and the dye adsorption electron collection particles 36 having different particle diameters are used as the electron collection agent 32. As a result, obstacles related to the electron transfer from the dye 38 to the transparent conductive film 20 are reduced, the electron transfer is performed smoothly and has a sufficient surface area. 32 can be adsorbed. As a result, the FF value can be increased. That is, the internal loss of the dye-sensitized solar cell can be reduced and the performance can be improved.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problem described in the column of problems to be solved by the invention can be solved and the effect of the invention can be obtained. The configuration in which this component is deleted can also be extracted as an invention.

10…透明基板、20…透明導電膜、30…電子捕集−色素層、32…電子捕集剤、34…電子伝達用電子捕集粒子、36…色素吸着用電子捕集粒子、38…色素、40…対向基板、50…導電膜、55…白金下地層、60…触媒層、70…シール材、80…電子供給剤。   DESCRIPTION OF SYMBOLS 10 ... Transparent substrate, 20 ... Transparent electrically conductive film, 30 ... Electron collection-dye layer, 32 ... Electron collection agent, 34 ... Electron collection particle | grains for electron transfer, 36 ... Electron collection particle | grains for dye adsorption, 38 ... Dye 40 ... Counter substrate, 50 ... Conductive film, 55 ... Platinum underlayer, 60 ... Catalyst layer, 70 ... Sealing material, 80 ... Electron supply agent.

Claims (11)

第1の基板と、
前記第1の基板と対向して配置された第2の基板と、
前記第1の基板の前記第2の基板と対向する面に形成された第1の電極と、
前記第1の電極上に配された電子捕集剤と、
前記第1の基板と前記第2の基板との間に配された電子供給剤と、
前記電子捕集剤上に配された、励起状態では前記電子捕集剤のエネルギー準位より高く、基底状態では前記電子供給剤のエネルギー準位より低いエネルギー準位を有する色素と、
前記第2の基板の前記第1の基板と対向する面に配された触媒層と、
を具備する色素増感太陽電池において、
前記触媒層の前記第1の基板と対向する面は、拡散反射面である、
ことを特徴とする色素増感太陽電池。
A first substrate;
A second substrate disposed opposite the first substrate;
A first electrode formed on a surface of the first substrate facing the second substrate;
An electron scavenger disposed on the first electrode;
An electron supply agent disposed between the first substrate and the second substrate;
A dye disposed on the electron scavenger, having an energy level higher than the energy level of the electron scavenger in the excited state and lower than the energy level of the electron supplier in the ground state;
A catalyst layer disposed on a surface of the second substrate facing the first substrate;
In a dye-sensitized solar cell comprising:
The surface of the catalyst layer facing the first substrate is a diffuse reflection surface.
The dye-sensitized solar cell characterized by the above-mentioned.
前記拡散反射面は、前記第2の基板の前記第1の基板と対向する面を粗面にし、該粗面上に第2の電極を形成し、前記第2の電極上に前記触媒層を形成することを特徴とする請求項1に記載の色素増感太陽電池。   The diffuse reflection surface is formed by roughening a surface of the second substrate facing the first substrate, forming a second electrode on the rough surface, and forming the catalyst layer on the second electrode. It forms, The dye-sensitized solar cell of Claim 1 characterized by the above-mentioned. 前記粗面は、フロスト加工、ケミカルエッチング及び/又はサンドブラストにより形成されていること特徴とする請求項2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 2, wherein the rough surface is formed by frost processing, chemical etching, and / or sand blasting. 前記粗面の中心線平均粗さRaは0.14μmであり、十点平均高さRzは0.7μmであることを特徴とする請求項3に記載の色素増感太陽電池。   4. The dye-sensitized solar cell according to claim 3, wherein a center line average roughness Ra of the rough surface is 0.14 μm and a ten-point average height Rz is 0.7 μm. 前記粗面は、前記第2の基板上に有機散乱膜を成膜することにより形成されていることを特徴とする請求項2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 2, wherein the rough surface is formed by forming an organic scattering film on the second substrate. 前記第2の電極と前記触媒層の間に下地層を形成することを特徴とする請求項2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 2, wherein an underlayer is formed between the second electrode and the catalyst layer. 前記下地層はチタンで形成されていることを特徴とする請求項6に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 6, wherein the underlayer is made of titanium. 前記触媒層は、白金膜であることを特徴とする請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the catalyst layer is a platinum film. 前記第1の電極はパターニングされていることを特徴とする請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the first electrode is patterned. 前記第1の電極の上層または下層に集電パターンが設けられていることを特徴とする請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein a current collecting pattern is provided on an upper layer or a lower layer of the first electrode. 前記集電パターンは銀で形成されていることを特徴とする請求項10に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 10, wherein the current collection pattern is made of silver.
JP2010070574A 2010-03-04 2010-03-25 Dye-sensitized solar cell Pending JP2011204464A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010070574A JP2011204464A (en) 2010-03-25 2010-03-25 Dye-sensitized solar cell
US13/038,508 US20110214730A1 (en) 2010-03-04 2011-03-02 Dye-sensitized solar cell
CN2011100522559A CN102194573A (en) 2010-03-04 2011-03-04 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070574A JP2011204464A (en) 2010-03-25 2010-03-25 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2011204464A true JP2011204464A (en) 2011-10-13
JP2011204464A5 JP2011204464A5 (en) 2012-11-08

Family

ID=44880920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070574A Pending JP2011204464A (en) 2010-03-04 2010-03-25 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2011204464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089521A (en) * 2011-10-20 2013-05-13 Rohm Co Ltd Dye sensitized solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196104A (en) * 2000-01-07 2001-07-19 Ricoh Co Ltd Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP2002260746A (en) * 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc Dye sensitized solar battery and dye sensitized solar battery module
JP2005104760A (en) * 2002-09-30 2005-04-21 Showa Denko Kk Metal oxide structure containing titanium oxide, method for producing the same, and use of the same
JP2006147261A (en) * 2004-11-17 2006-06-08 Enplas Corp Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196104A (en) * 2000-01-07 2001-07-19 Ricoh Co Ltd Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP2002260746A (en) * 2001-02-28 2002-09-13 Toyota Central Res & Dev Lab Inc Dye sensitized solar battery and dye sensitized solar battery module
JP2005104760A (en) * 2002-09-30 2005-04-21 Showa Denko Kk Metal oxide structure containing titanium oxide, method for producing the same, and use of the same
JP2006147261A (en) * 2004-11-17 2006-06-08 Enplas Corp Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089521A (en) * 2011-10-20 2013-05-13 Rohm Co Ltd Dye sensitized solar cell

Similar Documents

Publication Publication Date Title
US7312507B2 (en) Sensitizing dye solar cell
JP4613468B2 (en) Solar cell and solar cell unit
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP4606777B2 (en) Wet solar cell
US8110740B2 (en) Photoelectrode substrate of dye sensitizing solar cell, and method for producing same
JP2008147037A (en) Wet type solar cell and its manufacturing method
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
TWI426617B (en) Dye-sensitized solar cell and method for manufacturing the same
EP2453266A1 (en) Dye-sensitized solar cell
EP2407986A1 (en) Photoelectric conversion module and method of manufacturing the same
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
US20110214730A1 (en) Dye-sensitized solar cell
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
JP2011204464A (en) Dye-sensitized solar cell
JP4710291B2 (en) Photoelectric conversion element container, photoelectric conversion unit, and photoelectric conversion module
JP5098744B2 (en) Dye-sensitized solar cell
EP2492934A2 (en) Dye-sensitized solar cell
JP2011187183A (en) Dye-sensitized solar cell
US20080078438A1 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP2009135395A (en) Photoelectric conversion device, photovoltaic generator, and photoelectric conversion module
KR101070861B1 (en) Dye-sensitized tandem solar cells comprising two-side electrode linked through via hole of a common substrate
KR20120080796A (en) Dye sensitized solar cell comprising multi-functional oxide layer and preparation method thereof
KR20120072319A (en) Solar cell
TWI449190B (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603