JP2011187183A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2011187183A
JP2011187183A JP2010048286A JP2010048286A JP2011187183A JP 2011187183 A JP2011187183 A JP 2011187183A JP 2010048286 A JP2010048286 A JP 2010048286A JP 2010048286 A JP2010048286 A JP 2010048286A JP 2011187183 A JP2011187183 A JP 2011187183A
Authority
JP
Japan
Prior art keywords
electron
dye
particles
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010048286A
Other languages
Japanese (ja)
Other versions
JP2011187183A5 (en
Inventor
Kunpei Kobayashi
君平 小林
Mikio Baba
幹男 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010048286A priority Critical patent/JP2011187183A/en
Priority to US13/038,508 priority patent/US20110214730A1/en
Priority to CN2011100522559A priority patent/CN102194573A/en
Publication of JP2011187183A publication Critical patent/JP2011187183A/en
Publication of JP2011187183A5 publication Critical patent/JP2011187183A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell with low internal resistance and high power generation efficiency. <P>SOLUTION: Electron emitted from dye 38 by photoexcitation is transferred to a transparent conductive film 20 via electron collection particles for dye absorption 36 with a small particle size consisting of titanium oxide or the like, and electron collection particles for electron transfer 34 with a large particle size. As the electron is transferred to the transparent conductive film 20 via a small number of the electron collection particles for electron transfer 34, joint parts among the electron collection particles for electron transfer 34 that the electron is to go through are small in number. Also, since many electron collection particles for dye absorption 36 exist, a surface area is big and the enough number of dye 38 for power generation is absorbed in the electron collection particles for dye absorption 36. This shows that the electron emitted from the enough number of dye 38 is smoothly transferred to the transparent conductive film 20. As a result, the dye-sensitized solar cell has the low internal resistance and the high power generation efficiency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

近年、環境に調和し、安価でクリーンな自然エネルギーを用いた、太陽光発電が注目されている。現在、太陽電池としてはシリコン結晶を用いたものが実用化されているが、製造にかかるエネルギーコストが高い。この様な状況で、シリコン結晶を用いた太陽電池に比べて、大面積の素子を安価に製造できるという特長があり、またフレキシブルなセルが実現可能である、例えば特許文献1に開示されている様な色素増感型太陽電池の実用化が期待されている。この様な色素増感型太陽電池の発電原理を簡単に説明すると以下の通りである。照射された光を吸収した色素分子は励起され、その色素分子の電子は、例えば半導体である酸化チタンに注入される。一方で色素分子は、失われた分の電子を電解質から供給される。従って、酸化チタンと電解質との間に電位差が生じる。この電位差を電池として利用する。   In recent years, solar power generation using natural energy that is in harmony with the environment and is inexpensive and clean has attracted attention. At present, solar cells using silicon crystals have been put into practical use, but the energy cost for production is high. In such a situation, compared with a solar cell using a silicon crystal, there is a feature that a large-area element can be manufactured at a low cost, and a flexible cell can be realized. The practical application of such dye-sensitized solar cells is expected. The power generation principle of such a dye-sensitized solar cell will be briefly described as follows. The dye molecules that have absorbed the irradiated light are excited, and the electrons of the dye molecules are injected into, for example, titanium oxide, which is a semiconductor. On the other hand, the dye molecules are supplied with the lost amount of electrons from the electrolyte. Accordingly, a potential difference is generated between the titanium oxide and the electrolyte. This potential difference is used as a battery.

特開2008−41258号公報JP 2008-41258 A

例えば特許文献1に開示されている様な色素増感型太陽電池において、色素の励起により放出された電子を受け取るものとして、例えば20nm程度と粒径が小さい酸化チタン粒子の集合体が用いられている。前記酸化チタンの粒径が小さい理由としては、色素分子の光励起電子を活用するには、当該粒子が多くの色素分子と接触する必要があることが挙げられる。一般に、前記粒子で構成される酸化チタン膜のラフネスファクター(R.F=実際の表面積/投影面積)は、1000以上が必要であるとされている。また、十分な出力を得るためには、前記粒子と色素とからなる膜の厚さを、10μm以上にする必要があると言われている。   For example, in a dye-sensitized solar cell as disclosed in Patent Document 1, an aggregate of titanium oxide particles having a small particle size of, for example, about 20 nm is used to receive electrons emitted by excitation of the dye. Yes. The reason why the particle size of the titanium oxide is small is that, in order to utilize the photoexcited electrons of the dye molecule, the particle needs to come into contact with many dye molecules. Generally, the roughness factor (R F = actual surface area / projected area) of the titanium oxide film composed of the particles is required to be 1000 or more. In addition, it is said that in order to obtain a sufficient output, the thickness of the film composed of the particles and the pigment needs to be 10 μm or more.

この様に、非常に小さな粒子で厚い膜を形成するため、例えば酸化チタンからなる粒子同士の接合状態が悪くなりやすく、また、会合した色素が粒子間に浸入しやすい。このため、光励起により色素分子から放出された電子を伝達するための、前記粒子により形成される電気接続路の抵抗、即ち内部抵抗が上昇する。その結果、当該色素増感太陽電池の発電効率が低下するという課題がある。   Thus, since a thick film is formed with very small particles, for example, the bonding state of particles made of titanium oxide tends to deteriorate, and the associated dye tends to enter between the particles. For this reason, the resistance of the electrical connection path formed by the particles for transmitting the electrons emitted from the dye molecules by photoexcitation, that is, the internal resistance increases. As a result, there exists a subject that the electric power generation efficiency of the said dye-sensitized solar cell falls.

そこで本発明は、内部抵抗が小さく発電効率が高い色素増感太陽電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a dye-sensitized solar cell with low internal resistance and high power generation efficiency.

前記目的を果たすため、本発明の色素増感太陽電池の一態様は、互いに対向して配置された一対の電極と、前記一対の電極のうち一方の電極の、他方の電極と対向する面上に配された電子捕集剤と、前記一対の電極間に配された電子供給剤と、前記電子捕集剤上に配された、励起状態では前記電子捕集剤のエネルギー準位より高く、基底状態では前記電子供給剤のエネルギー準位より低いエネルギー準位を有する色素と、を具備する色素増感太陽電池において、前記電子捕集剤は、粒径が異なる粒子により構成されている、ことを特徴とする。   In order to achieve the above object, one aspect of the dye-sensitized solar cell of the present invention includes a pair of electrodes arranged to face each other, and one electrode of the pair of electrodes on a surface facing the other electrode. An electron scavenger disposed on, an electron supply agent disposed between the pair of electrodes, and an electron collector disposed on the electron scavenger, in an excited state, higher than the energy level of the electron scavenger, In a dye-sensitized solar cell comprising a dye having an energy level lower than the energy level of the electron supply agent in the ground state, the electron scavenger is composed of particles having different particle sizes, It is characterized by.

本発明に依れば、内部抵抗が小さく発電効率が高い色素増感太陽電池を提供できる。   According to the present invention, a dye-sensitized solar cell with low internal resistance and high power generation efficiency can be provided.

本発明の一実施形態に係る色素増感太陽電池の構成例を示す断面図。Sectional drawing which shows the structural example of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る色素増感太陽電池の電極、電子捕集剤及び色素の部分の構成例を示す模式図。The schematic diagram which shows the structural example of the part of the electrode of the dye-sensitized solar cell which concerns on one Embodiment of this invention, an electron scavenger, and a pigment | dye. 本発明の一実施形態に係る色素増感太陽電池の発電原理を説明するエネルギーダイヤグラム。The energy diagram explaining the electric power generation principle of the dye-sensitized solar cell which concerns on one Embodiment of this invention. 本発明の一実施形態に係る色素増感太陽電池の電子伝達効率を説明する為の図。The figure for demonstrating the electron transfer efficiency of the dye-sensitized solar cell which concerns on one Embodiment of this invention.

[実施形態]
まず、本発明の一実施形態について図面を参照して説明する。本実施形態に係る色素増感太陽電池は、その構成の概要を図1に示す通り、例えばガラスやフィルム等から成る透明基板10上に、酸化インジウム錫(ITO)やフッ素ドープ酸化スズ(FTO)等から成る電極としての透明導電膜20が形成されている。透明導電膜20はパターニングされていても良く、また、透明導電膜20の上層または下層に銀等の集電パターンを設けても良い。透明導電膜20上には、電子捕集−色素層30が形成されている。電子捕集−色素層30については後に詳述する。
[Embodiment]
First, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the dye-sensitized solar cell according to the present embodiment has, as shown in FIG. 1, an indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) on a transparent substrate 10 made of, for example, glass or film. A transparent conductive film 20 is formed as an electrode made of the like. The transparent conductive film 20 may be patterned, and a current collecting pattern such as silver may be provided on the upper layer or the lower layer of the transparent conductive film 20. On the transparent conductive film 20, an electron collection-dye layer 30 is formed. The electron collection-dye layer 30 will be described in detail later.

一方、透明基板10と対向する例えばガラスやフィルム等から成る対向基板40上には、電極としての導電膜50が形成されている。更に、導電膜50の上には、白金やカーボン等から成る触媒層60が形成されている。   On the other hand, a conductive film 50 as an electrode is formed on a counter substrate 40 made of, for example, glass or a film that faces the transparent substrate 10. Further, a catalyst layer 60 made of platinum, carbon or the like is formed on the conductive film 50.

透明基板10と対向基板40は、透明基板10の電子捕集−色素層30が形成されている面と、対向基板40の触媒層60が形成されている面とがそれぞれ対向し、対向する面の間に例えば10〜50μm程度の間隙を有する様に、対向する面の周縁部でシール材70によって貼り合わされている。前記間隙には、電解質である電子供給剤80が封入されている。   In the transparent substrate 10 and the counter substrate 40, the surface of the transparent substrate 10 on which the electron collection-dye layer 30 is formed and the surface of the counter substrate 40 on which the catalyst layer 60 is formed face each other and face each other. For example, the peripheral portions of the opposing surfaces are bonded together by the sealing material 70 so as to have a gap of, for example, about 10 to 50 μm. An electron supply agent 80 that is an electrolyte is sealed in the gap.

電子供給剤80の溶媒としては、例えばアセトニトリル、メトキシアセトニトリル、炭酸エチレン等を用いることができる。電子供給剤80の溶質としては、例えば1,2−ジメチル−3−n−プロピルイミダゾリウムアイオダイド(DMPImI)、ヨウ化リチウム(LiI)、ヨウ素(I)、4−tert−ブチルピリジン(TBP)等を用いることができる。 As a solvent for the electron supply agent 80, for example, acetonitrile, methoxyacetonitrile, ethylene carbonate, or the like can be used. Examples of the solute of the electron supply agent 80 include 1,2-dimethyl-3-n-propylimidazolium iodide (DMPImI), lithium iodide (LiI), iodine (I 2 ), 4-tert-butylpyridine (TBP). ) Etc. can be used.

ここで、電子捕集−色素層30について詳述する。電子捕集−色素層30は、図2に示す様に、例えばアナターゼ型の酸化チタン等より成る、大きな粒径を有する電子伝達用電子捕集粒子34及び小さな粒径を有する色素吸着用電子捕集粒子36と、ルテニウム色素(N719色素等)等より成る、色素38とから成る。ここで、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36をあわせて電子捕集剤32と呼ぶ事にする。   Here, the electron collection-dye layer 30 will be described in detail. As shown in FIG. 2, the electron collection-dye layer 30 is composed of, for example, an anatase-type titanium oxide or the like and has a large particle diameter for collecting electron transfer particles 34 and a small particle diameter for dye adsorption. It consists of collecting particles 36 and a dye 38 made of a ruthenium dye (N719 dye or the like). Here, the electron collection particles 34 for electron transfer and the electron collection particles 36 for dye adsorption are collectively referred to as an electron collection agent 32.

電子捕集剤32は、酸化チタンに限らず、例えば酸化亜鉛、酸化錫、酸化タングステン、酸化ニオブ、酸化インジウム及びその複合体等を用いることができる。本実施形態では、特に色素増感太陽電池の材料として優れる酸化チタン(TiO)を用いることとして説明する。 The electron scavenger 32 is not limited to titanium oxide, and for example, zinc oxide, tin oxide, tungsten oxide, niobium oxide, indium oxide, and a composite thereof can be used. In the present embodiment, it will be described that titanium oxide (TiO 2 ), which is particularly excellent as a material for a dye-sensitized solar cell, is used.

また、色素38は、N719色素に限らず、例えば、ルテニウム系色素として、N3色素、BlackDyeや、純粋有機色素として、D149、キサンテン、PVK、メロシアニン、オキサジン等を用いることができる。   The dye 38 is not limited to the N719 dye, and for example, N3 dye, BlackDye as a ruthenium dye, D149, xanthene, PVK, merocyanine, oxazine, or the like as a pure organic dye can be used.

図2に示す様に、電子伝達用電子捕集粒子34は、互いに接しており、その一部は透明導電膜20に接している。また、色素吸着用電子捕集粒子36は、電子伝達用電子捕集粒子34と接している。そして色素38は、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36に吸着されている。この様な構成により、電子伝達用電子捕集粒子34は、主に色素38から放出された電子を透明導電膜20に伝達する役割を担っている。また、色素吸着用電子捕集粒子36は、より多くの色素38を吸着するために、電子捕集剤32としての表面積を大きくする役割を担っている。   As shown in FIG. 2, the electron collection particles 34 for electron transfer are in contact with each other, and some of them are in contact with the transparent conductive film 20. The dye-adsorbing electron-collecting particles 36 are in contact with the electron-transmitting electron-collecting particles 34. The dye 38 is adsorbed on the electron collecting electron collecting particles 34 and the dye adsorbing electron collecting particles 36. With such a configuration, the electron collection particle 34 for electron transmission plays a role of transmitting mainly electrons emitted from the pigment 38 to the transparent conductive film 20. Further, the dye-adsorbing electron collection particles 36 have a role of increasing the surface area of the electron collection agent 32 in order to adsorb more dye 38.

ここで、色素吸着用電子捕集粒子36の直径は、例えば5nm以上25nm以下であり、電子伝達用電子捕集粒子34の直径は、例えば100nm以上400nm以下である。色素吸着用電子捕集粒子36と電子伝達用電子捕集粒子34の割合は、重量割合で色素吸着用電子捕集粒子36が例えば20〜25%等であり、電子伝達用電子捕集粒子34が例えば75〜80%等である。電子伝達用電子捕集粒子34、色素吸着用電子捕集粒子36及び色素38から成る電子捕集−色素層30の厚さは、例えばおよそ10μm等である。   Here, the diameter of the dye-adsorbing electron collection particles 36 is, for example, 5 nm or more and 25 nm or less, and the diameter of the electron transfer electron collection particles 34 is, for example, 100 nm or more and 400 nm or less. The ratio of the dye-adsorbing electron-collecting particles 36 and the electron-transmitting electron-collecting particles 34 is, for example, 20 to 25% of the dye-adsorbing electron-collecting particles 36 by weight, and the electron-transmitting electron-collecting particles 34. Is, for example, 75 to 80%. The thickness of the electron collection-dye layer 30 composed of the electron collection particles 34 for electron transfer, the electron collection particles 36 for dye adsorption and the dye 38 is, for example, about 10 μm.

電子捕集−色素層30の作製は、例えば以下の様に行う。電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36としてのアナターゼ型の2種類の粒径を持つ酸化チタン粒子を混合し、ペースト状にした後に、透明基板10に、そのペーストを印刷又は塗布し、その後焼成して酸化チタン膜形成を行う。前記酸化チタン膜の形成後、当該酸化チタン膜を、有機溶剤に溶かした色素38の液中に浸し、酸化チタンに色素38を吸着させる。   The electron collection-dye layer 30 is produced as follows, for example. After mixing titanium oxide particles having two kinds of particle sizes of anatase type as the electron collection particles 34 for electron transfer and the electron collection particles 36 for dye adsorption into a paste, the paste is applied to the transparent substrate 10. Printing or coating is performed, followed by baking to form a titanium oxide film. After the formation of the titanium oxide film, the titanium oxide film is immersed in a liquid of a dye 38 dissolved in an organic solvent, and the dye 38 is adsorbed on the titanium oxide.

この様に、例えば電子伝達用電子捕集粒子34は、粒径が大きい方の電子捕集剤を構成する粒子として機能し、例えば色素吸着用電子捕集粒子36は、粒径が小さい方の電子捕集剤を構成する粒子として機能する。   Thus, for example, the electron collection particles 34 for electron transfer function as particles constituting the electron collection agent having a larger particle size, and for example, the dye adsorption electron collection particles 36 have a smaller particle size. Functions as particles constituting the electron scavenger.

次に、本実施形態に係る色素増感太陽電池の発電原理を図3を参照して説明する。まず、本色素増感太陽電池に光が入射すると、その光は色素38に吸収される。色素38に吸収された光は、色素38を励起する(図3中の破線矢印)。ここで励起された色素38の電子は、例えばワイドギャップ半導体である酸化チタン等で構成される電子捕集剤32に受け渡される。即ち、色素38は酸化する。電子捕集剤32が受け取った電子は、透明導電膜20に移動する。一方、電子を失った色素38は、触媒層60を有する導電膜50と接している電子供給剤80の例えばIから、電子を供給される。即ち、色素38は電子供給剤80により還元される。3Iは電子を色素38に供給するとI となる。従って、電子供給剤80の例えばI は、導電膜50から電子を受け取ろうとする。このとき、透明導電膜20と導電膜50との間には、電位差が発生する。透明導電膜20と導電膜50との間に外部回路が接続されていれば、透明導電膜20に移動した電子は、外部回路を介して導電膜50に移動する。そして、この電子は電子供給剤80の例えばI に移動し、I は3Iとなる。電子を失った色素38は、電子供給剤80の例えばIから電子を供給される。この様に、透明導電膜20と導電膜50に、外部回路を接続することによって、外部回路は光を吸収した本実施形態に係る色素増感太陽電池から、電流を取り出すことができる。即ち、本色素増感太陽電池は電池として機能する。 Next, the power generation principle of the dye-sensitized solar cell according to this embodiment will be described with reference to FIG. First, when light enters the dye-sensitized solar cell, the light is absorbed by the dye 38. The light absorbed by the dye 38 excites the dye 38 (broken line arrow in FIG. 3). The excited electrons of the dye 38 are transferred to an electron collecting agent 32 made of, for example, titanium oxide which is a wide gap semiconductor. That is, the pigment 38 is oxidized. The electrons received by the electron scavenger 32 move to the transparent conductive film 20. On the other hand, the dye 38 that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80 in contact with the conductive film 50 having the catalyst layer 60. That is, the dye 38 is reduced by the electron supply agent 80. 3I becomes I 3 when electrons are supplied to the dye 38. Therefore, for example, I 3 of the electron supply agent 80 tries to receive electrons from the conductive film 50. At this time, a potential difference is generated between the transparent conductive film 20 and the conductive film 50. If an external circuit is connected between the transparent conductive film 20 and the conductive film 50, the electrons that have moved to the transparent conductive film 20 move to the conductive film 50 through the external circuit. Then, the electrons move to, for example, I 3 of the electron supply agent 80, and I 3 becomes 3I . The dye 38 that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80. In this way, by connecting an external circuit to the transparent conductive film 20 and the conductive film 50, the external circuit can extract current from the dye-sensitized solar cell according to the present embodiment that has absorbed light. That is, this dye-sensitized solar cell functions as a battery.

本色素増感太陽電池の発電原理は前記の通りなので、励起状態の色素38のエネルギー準位は、電子捕集剤32のエネルギー準位より高く、基底状態の色素38のエネルギー準位は、電子供給剤80のエネルギー準位より低いという関係を要する。   Since the power generation principle of this dye-sensitized solar cell is as described above, the energy level of the dye 38 in the excited state is higher than the energy level of the electron scavenger 32, and the energy level of the dye 38 in the ground state is the electron level. The relationship that it is lower than the energy level of the supply agent 80 is required.

[実施例]
次に前記実施形態に係る色素増感太陽電池の実施例について説明する。ここでは、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36として、直径が異なる2種類の電子捕集剤32としての酸化チタンを用いた本実施例の色素増感太陽電池と、直径が1種類の電子捕集剤32としての酸化チタンを用いた従来例の色素増感太陽電池との性能を比較した。比較したのは、見かけの最大電力に対する実際の電力の比であるフィルファクター(FF)の値である。
[Example]
Next, examples of the dye-sensitized solar cell according to the embodiment will be described. Here, the dye-sensitized solar cell of this example using titanium oxide as two types of electron-trapping agents 32 having different diameters as the electron-collecting particles 34 for electron transfer and the electron-trapping particles 36 for dye adsorption The performance of the conventional dye-sensitized solar cell using titanium oxide as the electron scavenger 32 having one diameter was compared. What is compared is the value of the fill factor (FF), which is the ratio of the actual power to the apparent maximum power.

本実施例では、電子伝達用電子捕集粒子34としての酸化チタンの直径を100nmとし、色素吸着用電子捕集粒子36としての酸化チタンの直径を10nmとした。そして、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36の混合比を重量割合で、電子伝達用電子捕集粒子34を75%、色素吸着用電子捕集粒子36を25%とした。電子伝達用電子捕集粒子34、色素吸着用電子捕集粒子36及び色素38を含む電子捕集−色素層30の厚さの平均は、5μmとした。一方、参照用の従来例としての色素増感太陽電池においては、電子捕集剤32を構成する酸化チタンの直径を全て10nmとし、その他の条件は前記本実施例の場合と同様とした。なお、電子捕集剤32を構成する酸化チタンの直径を単純に大きくしただけの場合は、ラフネスファクターが単純に小さくなってしまい、ラフネスファクターが小さくなった分だけ電子捕集−色素層30の厚さの平均を厚くすると、可視光の吸収が多くなってしまい実用的ではないことが知られている。   In this example, the diameter of titanium oxide as the electron collection particle 34 for electron transfer was set to 100 nm, and the diameter of titanium oxide as the electron collection particle 36 for dye adsorption was set to 10 nm. The mixing ratio of the electron transfer electron collection particles 34 and the dye adsorption electron collection particles 36 is 75% by weight, the electron transfer electron collection particles 34 are 75%, and the dye adsorption electron collection particles 36 are 25%. It was. The average thickness of the electron collection-dye layer 30 containing the electron collection particles 34 for electron transfer, the electron collection particles 36 for dye adsorption and the dye 38 was 5 μm. On the other hand, in the dye-sensitized solar cell as a conventional example for reference, the diameter of titanium oxide constituting the electron scavenger 32 was all 10 nm, and other conditions were the same as in the case of the present example. Note that when the diameter of the titanium oxide constituting the electron scavenger 32 is simply increased, the roughness factor is simply reduced, and the amount of the electron trapping-dye layer 30 corresponding to the reduced roughness factor is reduced. It is known that increasing the average thickness increases the absorption of visible light and is not practical.

前記本実施例に係る色素増感太陽電池と、従来例に係る色素増感太陽電池とのFF値をJIS規格のJIS C 8914「結晶系太陽電池モジュール出力測定方法」に従って計測した。簡単に説明すると、計測では波長400〜1100nm、照度1000W/mの光を照射し、電流I−電圧V曲線を取得した。そして、取得したI−V曲線から、最大出力を開放電圧と短絡電流の積で除した値であるFFを求めた。この値は、大きいほど、当該太陽電池の内部損失が小さく、性能が高いことを示す。 The FF values of the dye-sensitized solar cell according to this example and the dye-sensitized solar cell according to the conventional example were measured in accordance with JIS C 8914 “Method for measuring output of crystalline solar cell module” of JIS standard. Briefly, in the measurement, light having a wavelength of 400 to 1100 nm and an illuminance of 1000 W / m 2 was irradiated to obtain a current I-voltage V curve. And FF which is the value which remove | divided the maximum output by the product of the open circuit voltage and the short circuit current was calculated | required from the acquired IV curve. The larger this value, the smaller the internal loss of the solar cell and the higher the performance.

本実施例と従来例それぞれについて3回計測した結果、FF値は、本実施例に係る色素増感太陽電池では、25.6±0.3(平均±標準偏差)、従来例に係る色素増感太陽電池では、44.4±1.3(平均±標準偏差)となった。即ち本実施例のFF値は、従来例に比較して74%の上昇となった。   As a result of measuring three times for each of this example and the conventional example, the FF value is 25.6 ± 0.3 (average ± standard deviation) in the dye-sensitized solar cell according to this example, and the dye sensitization according to the conventional example. In the solar cell, the value was 44.4 ± 1.3 (average ± standard deviation). That is, the FF value of this example increased by 74% compared to the conventional example.

この様な違いが現れた理由として以下が考えられる。図4(a)に従来例の電子捕集−色素層30の模式図を示す通り、従来例では、図4(a)中白抜き矢尻Aで指し示す様に、色素38から放出された電子eは、電子捕集剤32を構成する直径が小さい粒子を多く伝って、透明導電膜20に伝達される。従って電子eは、電子捕集剤32内の粒子の接合部分を多く超える必要がある。このため、電子捕集剤32中に形成される電気接続路の抵抗が高くなって、電子が伝達されにくい。更に、図4(a)中白抜き矢尻Bで指し示す様に、色素38同士が会合し、それが電子捕集剤32を構成する粒子間に浸入し、電子捕集剤32を構成する粒子同士が接触しない部分ができることがある。そして、この様に電子捕集剤32を構成する粒子同士が接触しない部分では、電子eが伝達されないことになる。 Possible reasons for this difference are as follows. As shown in the schematic diagram of the electron collecting-dye layer 30 of the conventional example in FIG. 4A, in the conventional example, as indicated by the white arrowhead A in FIG. Is transmitted to the transparent conductive film 20 through many particles having a small diameter constituting the electron scavenger 32. Therefore, it is necessary for the electron e to greatly exceed the junction of the particles in the electron scavenger 32. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 becomes high and electrons are not easily transmitted. Further, as indicated by the white arrowhead B in FIG. 4A, the dyes 38 are associated with each other and enter between the particles constituting the electron scavenger 32, so that the particles constituting the electron scavenger 32 are There may be a part that does not touch. And in the part which the particles which comprise the electron scavenger 32 do not contact in this way, an electron e < - > will not be transmitted.

これに対して、図4(b)に本実施例の電子捕集−色素層30の模式図を示す通り、本実施例では、色素38から放出された電子eは、少数の直径が大きな電子伝達用電子捕集粒子34を伝って、透明導電膜20に伝達される。従って、電子eが超える必要のある電子伝達用電子捕集粒子34の接合部分は少ない。また、電子伝達用電子捕集粒子34の直径は大きく、1個あたりの表面積が大きいため、電子伝達用電子捕集粒子34間の接合は良好に成されている。このため、電子捕集剤32中に形成される電気接続路の抵抗が図4(b)の場合よりも低くなって、電子が伝達されやすい。また、色素吸着用電子捕集粒子36が多く存在するので、表面積は大きく、ラフネスファクター(RF=実際の表面積/投影面積)は、1000以上と、色素増感太陽電池において必要であるといわれている値以上と成っている。このため、十分な数の色素38が電子捕集剤32に吸着されている。 On the other hand, as shown in the schematic diagram of the electron collection-dye layer 30 of this example in FIG. 4B, in this example, the electrons e emitted from the dye 38 have a small number of large diameters. It is transmitted to the transparent conductive film 20 through the electron collecting particles 34 for electron transmission. Therefore, there are few junction parts of the electron collection particle | grains 34 for electron transmission which the electron e < - > needs to exceed. In addition, since the electron-collecting particles 34 for electron transfer have a large diameter and a large surface area per one, the bonding between the electron-collecting particles 34 for electron transfer is excellent. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 is lower than in the case of FIG. 4B, and electrons are easily transmitted. Further, since there are many dye-adsorbing electron-collecting particles 36, the surface area is large, and the roughness factor (RF = actual surface area / projected area) is 1000 or more, which is said to be necessary in dye-sensitized solar cells. It is more than a certain value. For this reason, a sufficient number of dyes 38 are adsorbed by the electron scavenger 32.

以上のことから、本実施例では、十分な数の色素38が放出した電子eが、滑らかに透明導電膜20に伝達される。その結果、本実施例では、従来例に比較し、FF値が上昇したと考えられる。 From the above, in this embodiment, electrons e emitted from a sufficient number of dyes 38 are smoothly transmitted to the transparent conductive film 20. As a result, in this example, it is considered that the FF value increased compared to the conventional example.

以上の通り、本実施形態に係る色素増感太陽電池では、電子捕集剤32として粒径が異なる電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36を用いている。このことに依り、色素38から透明導電膜20への電子伝達に係る障害が小さくなり、電子伝達が滑らかに行われ、且つ十分な表面積を有するため、十分な数の色素38を電子捕集剤32に吸着させることができる。その結果、FF値を高くすることができる。即ち、当該色素増感太陽電池の内部損失を小さくし、性能を高くすることができる。   As described above, in the dye-sensitized solar cell according to the present embodiment, the electron collection particles 34 and the dye adsorption electron collection particles 36 having different particle diameters are used as the electron collection agent 32. As a result, obstacles related to the electron transfer from the dye 38 to the transparent conductive film 20 are reduced, the electron transfer is performed smoothly and has a sufficient surface area. 32 can be adsorbed. As a result, the FF value can be increased. That is, the internal loss of the dye-sensitized solar cell can be reduced and the performance can be improved.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problem described in the column of problems to be solved by the invention can be solved and the effect of the invention can be obtained. The configuration in which this component is deleted can also be extracted as an invention.

10…透明基板、20…透明導電膜、30…電子捕集−色素層、32…電子捕集剤、34…電子伝達用電子捕集粒子、36…色素吸着用電子捕集粒子、38…色素、40…対向基板、50…導電膜、60…触媒層、70…シール材、80…電子供給剤。   DESCRIPTION OF SYMBOLS 10 ... Transparent substrate, 20 ... Transparent electrically conductive film, 30 ... Electron collection-dye layer, 32 ... Electron collection agent, 34 ... Electron collection particle | grains for electron transfer, 36 ... Electron collection particle | grains for dye adsorption, 38 ... Dye 40 ... counter substrate, 50 ... conductive film, 60 ... catalyst layer, 70 ... sealing material, 80 ... electron supply agent.

Claims (10)

互いに対向して配置された一対の電極と、
前記一対の電極のうち一方の電極の、他方の電極と対向する面上に配された電子捕集剤と、
前記一対の電極間に配された電子供給剤と、
前記電子捕集剤上に配された、励起状態では前記電子捕集剤のエネルギー準位より高く、基底状態では前記電子供給剤のエネルギー準位より低いエネルギー準位を有する色素と、
を具備する色素増感太陽電池において、
前記電子捕集剤は、粒径が異なる粒子により構成されている、
ことを特徴とする色素増感太陽電池。
A pair of electrodes disposed opposite each other;
An electron scavenger disposed on a surface of one of the pair of electrodes facing the other electrode;
An electron supply agent disposed between the pair of electrodes;
A dye disposed on the electron scavenger, having an energy level higher than the energy level of the electron scavenger in the excited state and lower than the energy level of the electron supplier in the ground state;
In a dye-sensitized solar cell comprising:
The electron scavenger is composed of particles having different particle sizes,
The dye-sensitized solar cell characterized by the above-mentioned.
前記電子捕集剤は、
粒径が所定の大きさの色素吸着用電子捕集粒子と、
前記色素吸着用電子捕集粒子の粒径よりも粒径が大きい電子伝達用電子捕集粒子と、
からなることを特徴とする請求項1に記載の色素増感太陽電池。
The electron scavenger is
Electron collecting particles for dye adsorption having a predetermined particle size;
An electron collecting particle for electron transfer having a particle size larger than the particle size of the electron collecting particle for dye adsorption;
The dye-sensitized solar cell according to claim 1, comprising:
前記電子伝達用電子捕集粒子は互いに接し、
前記電子伝達用電子捕集粒子の一部は前記一方の電極に接し、
前記色素吸着用電子捕集粒子は、前記電子伝達用電子捕集粒子に接している、
ことを特徴とする請求項2に記載の色素増感太陽電池。
The electron collection particles for electron transfer are in contact with each other,
A part of the electron collection particles for electron transfer is in contact with the one electrode,
The dye-adsorbing electron-collecting particles are in contact with the electron-transmitting electron-collecting particles,
The dye-sensitized solar cell according to claim 2.
前記色素吸着用電子捕集粒子は、前記電子捕集剤としての表面積を大きくする役割を担い、
前記電子伝達用電子捕集粒子は、前記色素から放出された電子を前記一方の電極に伝達する役割を担う、
ことを特徴とする請求項3に記載の色素増感太陽電池。
The dye-adsorbing electron-collecting particles play a role of increasing the surface area as the electron-trapping agent,
The electron-collecting particles for electron transfer play a role of transmitting electrons emitted from the dye to the one electrode.
The dye-sensitized solar cell according to claim 3.
前記色素吸着用電子捕集粒子は、大きい表面積を有するため多くの数の前記色素を前記電子捕集剤に吸着させることができ、
前記電子伝達用電子捕集粒子は、前記色素から前記一方の電極への電子伝達に係る抵抗を小さくして電子伝達を円滑にすることで内部損失を小さくできる、
ことを特徴とする請求項4に記載の色素増感太陽電池。
Since the dye-adsorbing electron-collecting particles have a large surface area, a large number of the dyes can be adsorbed on the electron-collecting agent.
The electron collection particles for electron transfer can reduce internal loss by reducing the resistance related to electron transfer from the dye to the one electrode and facilitating electron transfer.
The dye-sensitized solar cell according to claim 4.
前記色素吸着用電子捕集粒子の直径は5nm以上25nm以下であり、
前記電子伝達用電子捕集粒子の直径は100nm以上400nm以下である、
ことを特徴とする請求項2に記載の色素増感太陽電池。
The diameter of the electron collecting particles for dye adsorption is 5 nm or more and 25 nm or less,
The diameter of the electron collection particles for electron transfer is 100 nm or more and 400 nm or less,
The dye-sensitized solar cell according to claim 2.
前記電子捕集剤のうち、前記色素吸着用電子捕集粒子の重量割合は、20%以上25%以下であることを特徴とする請求項6に記載の色素増感太陽電池。   7. The dye-sensitized solar cell according to claim 6, wherein a weight ratio of the electron-collecting particles for dye adsorption in the electron-collecting agent is 20% or more and 25% or less. 前記色素吸着用電子捕集粒子の直径は10nmであり、
前記電子伝達用電子捕集粒子の直径は100nmであり、
前記電子捕集剤のうち、前記色素吸着用電子捕集粒子の重量割合は、25%である、
ことを特徴とする請求項2に記載の色素増感太陽電池。
The diameter of the electron collecting particles for dye adsorption is 10 nm,
The diameter of the electron collecting particles for electron transfer is 100 nm,
Of the electron collector, the weight ratio of the dye-adsorbing electron-collecting particles is 25%.
The dye-sensitized solar cell according to claim 2.
前記粒子は、酸化チタンであることを特徴とする請求項1乃至請求項8のうち何れか1項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 8, wherein the particles are titanium oxide. 前記電子捕集剤は、
前記粒径が異なる酸化チタン粒子を混合してペースト状にし、
前記ペースト状の酸化チタン粒子を前記一方の電極上に塗布し、
前記ペースト状の酸化チタン粒子を焼成し、
形成されることを特徴とする請求項1乃至請求項8のうち何れか1項に記載の色素増感太陽電池。
The electron scavenger is
Mixing titanium oxide particles with different particle sizes into a paste,
Applying the paste-like titanium oxide particles on the one electrode,
Firing the pasty titanium oxide particles,
The dye-sensitized solar cell according to any one of claims 1 to 8, wherein the dye-sensitized solar cell is formed.
JP2010048286A 2010-03-04 2010-03-04 Dye-sensitized solar cell Pending JP2011187183A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010048286A JP2011187183A (en) 2010-03-04 2010-03-04 Dye-sensitized solar cell
US13/038,508 US20110214730A1 (en) 2010-03-04 2011-03-02 Dye-sensitized solar cell
CN2011100522559A CN102194573A (en) 2010-03-04 2011-03-04 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010048286A JP2011187183A (en) 2010-03-04 2010-03-04 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2011187183A true JP2011187183A (en) 2011-09-22
JP2011187183A5 JP2011187183A5 (en) 2012-11-08

Family

ID=44793262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010048286A Pending JP2011187183A (en) 2010-03-04 2010-03-04 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2011187183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364145B1 (en) * 2012-06-19 2014-02-17 김인상 Manufacturing method of far-infrared ray emiting powder
CN105551803A (en) * 2016-01-13 2016-05-04 肖小玉 Self-powered detection-based outdoor gas boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106222A (en) * 1998-09-28 2000-04-11 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion element and photo-electrochemical cell
JP2001196104A (en) * 2000-01-07 2001-07-19 Ricoh Co Ltd Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP2001357899A (en) * 2000-04-12 2001-12-26 Hayashibara Biochem Lab Inc Semiconductor layer, solar battery using the same, and their manufacturing method and use
JP2003059549A (en) * 2001-06-29 2003-02-28 Aisin Seiki Co Ltd Electrochemical solar cell
JP2003303629A (en) * 2002-04-11 2003-10-24 Sony Corp Dye sensitizing solar cell
JP2008251518A (en) * 2007-03-02 2008-10-16 Tokyo Univ Of Science Method of manufacturing photo-electrode for dye-sensitized solar cell, photo-electrode for dye-sensitized solar cell, and dye-sensitized solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106222A (en) * 1998-09-28 2000-04-11 Fuji Photo Film Co Ltd Semiconductor film for photoelectric conversion element and photo-electrochemical cell
JP2001196104A (en) * 2000-01-07 2001-07-19 Ricoh Co Ltd Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP2001357899A (en) * 2000-04-12 2001-12-26 Hayashibara Biochem Lab Inc Semiconductor layer, solar battery using the same, and their manufacturing method and use
JP2003059549A (en) * 2001-06-29 2003-02-28 Aisin Seiki Co Ltd Electrochemical solar cell
JP2003303629A (en) * 2002-04-11 2003-10-24 Sony Corp Dye sensitizing solar cell
JP2008251518A (en) * 2007-03-02 2008-10-16 Tokyo Univ Of Science Method of manufacturing photo-electrode for dye-sensitized solar cell, photo-electrode for dye-sensitized solar cell, and dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364145B1 (en) * 2012-06-19 2014-02-17 김인상 Manufacturing method of far-infrared ray emiting powder
CN105551803A (en) * 2016-01-13 2016-05-04 肖小玉 Self-powered detection-based outdoor gas boiler

Similar Documents

Publication Publication Date Title
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5084730B2 (en) Dye-sensitized solar cell
JP4683396B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2007280906A (en) Functional device and manufacturing method therefor
JP5171810B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2005235725A (en) Dye-sensitized solar cell module
JP2006024574A (en) Dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2011187183A (en) Dye-sensitized solar cell
JP7295957B2 (en) Dye-sensitized solar cell
JP5344282B2 (en) Dye-sensitized solar cell
JP6721686B2 (en) Dye-sensitized solar cell and manufacturing method thereof
JP2011187183A5 (en)
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
TWI449190B (en) Dye-sensitized solar cell
JP6663989B2 (en) Dye-sensitized solar cell manufacturing method, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2013046956A1 (en) Wet-type solar cell module
JP2011204464A (en) Dye-sensitized solar cell
JP2015228486A (en) Photoelectric conversion element
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2023089661A (en) Dye-sensitized solar cell
JP2006100025A (en) Solar cell module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204