JP2011204464A5 - - Google Patents

Download PDF

Info

Publication number
JP2011204464A5
JP2011204464A5 JP2010070574A JP2010070574A JP2011204464A5 JP 2011204464 A5 JP2011204464 A5 JP 2011204464A5 JP 2010070574 A JP2010070574 A JP 2010070574A JP 2010070574 A JP2010070574 A JP 2010070574A JP 2011204464 A5 JP2011204464 A5 JP 2011204464A5
Authority
JP
Japan
Prior art keywords
dye
electron
solar cell
sensitized solar
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070574A
Other languages
Japanese (ja)
Other versions
JP2011204464A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010070574A priority Critical patent/JP2011204464A/en
Priority claimed from JP2010070574A external-priority patent/JP2011204464A/en
Priority to US13/038,508 priority patent/US20110214730A1/en
Priority to CN2011100522559A priority patent/CN102194573A/en
Publication of JP2011204464A publication Critical patent/JP2011204464A/en
Publication of JP2011204464A5 publication Critical patent/JP2011204464A5/ja
Pending legal-status Critical Current

Links

Description

前記目的を果たすため、本発明の色素増感太陽電池の一態様は、第1の基板と、前記第1の基板と対向して配置された第2の基板と、前記第1の基板の第1の面に形成された第1の電極であって、前記第1の面は前記第2の基板の第2の面と対向する、第1の電極と、前記第1の電極上に配された電子捕集−色素層と、前記第2の面に配され、前記第1の基板と対向する面が拡散反射面として形成されている触媒層と、前記電子捕集−色素層と前記触媒層との間に配された電子供給剤と、を備える、ことを特徴とする。
また、前記目的を果たすため、本発明の色素増感太陽電池の一態様は、第1の電極と、前記第1の電極と対向する第2の電極と、前記第1の電極の第1の面上に配された電子捕集−色素層と、前記第1の面は前記第2の電極の第2の面と対向し、前記第2の面上に配され、前記第1の電極と対向する表面が拡散反射面として形成されている触媒層と、前記電子捕集−色素層と前記触媒層との間に配された電子供給剤と、を備える、ことを特徴とする。
In order to achieve the above object, one aspect of the dye-sensitized solar cell of the present invention includes a first substrate, a second substrate disposed opposite to the first substrate, and a first substrate of the first substrate . A first electrode formed on the first surface, the first surface facing the second surface of the second substrate, and the first electrode disposed on the first electrode An electron collection -dye layer , a catalyst layer disposed on the second surface and facing the first substrate as a diffuse reflection surface, the electron collection-dye layer, and the catalyst And an electron supply agent disposed between the layers .
In order to achieve the above object, one embodiment of the dye-sensitized solar cell of the present invention includes a first electrode, a second electrode facing the first electrode, and a first electrode of the first electrode. An electron collecting-dye layer disposed on a surface, the first surface is opposite to a second surface of the second electrode, and is disposed on the second surface; It is characterized by comprising: a catalyst layer whose opposing surface is formed as a diffuse reflection surface; and an electron supply agent disposed between the electron collection-dye layer and the catalyst layer.

ここで本実施形態では、本色素増感太陽電池に透明基板10側から入射し、電子捕集−色素層30を透過した光を、拡散反射させることで再利用して発電効率を高めるため、触媒層60の表面は、拡散反射面となっている。このため、対向基板40には微細な凹凸が形成されている。この凹凸は、例えば溶液によるエッチング等化学的手法により形成しても良いし、例えばサンドブラスト等物理的手法により形成しても良い。微細な凹凸が形成された対向基板40上に、導電膜50、及び白金から成る触媒層60を形成することで拡散反射面が形成される。 Here, in the present embodiment, in order to increase the power generation efficiency by reusing the light incident on the dye-sensitized solar cell from the transparent substrate 10 side and transmitted through the electron collection-dye layer 30 by diffuse reflection, The surface of the catalyst layer 60 is a diffuse reflection surface. Therefore, fine irregularities are formed on the counter substrate 40. The irregularities may, for example to solution may form Rikatachi by the etching chemical method by, for example, it may be formed by sandblasting or the like physical means. A diffuse reflection surface is formed by forming the conductive film 50 and the catalyst layer 60 made of platinum on the counter substrate 40 on which fine irregularities are formed.

透明基板10と対向基板40は、透明基板10の電子捕集−色素層30が形成されている面と、対向基板40の触媒層60が形成されている面とがそれぞれ対向し、対向する面の間に例えば10〜50μm程度の間隙を有する様に、対向する面の周縁部でシール材70によって貼り合わされている。前記間隙には、電解質である電子供給剤80が封入されている。 The transparent substrate 10 and the counter substrate 40, an electron collecting the transparent substrate 10 - to a plane dye layer 30 is formed, the surface catalyst layer 60 of the counter substrate 40 are formed, but opposite, respectively, opposite For example, the peripheral surfaces of the opposing surfaces are bonded together by the sealing material 70 so as to have a gap of about 10 to 50 μm between the surfaces to be processed. An electron supply agent 80 that is an electrolyte is sealed in the gap.

ここで励起された電子捕集−色素層30中の色素の電子は、例えばワイドギャップ半導体である酸化チタン等で構成される電子捕集−色素層30中の電子捕集剤に受け渡される。即ち、色素は酸化する。電子捕集剤が受け取った電子は、透明導電膜20に移動する。一方、電子を失った色素は、触媒層60を有する導電膜50と接している電子供給剤80の例えばIから、電子を供給される。即ち、色素は電子供給剤80により還元される。3Iは電子を色素に供給するとI となる。従って、電子供給剤80の例えばI は、導電膜50から電子を受け取ろうとする。このとき、透明導電膜20と導電膜50との間には、電位差が発生する。透明導電膜20と導電膜50との間に外部回路が接続されていれば、透明導電膜20に移動した電子は、外部回路を介して導電膜50に移動する。そして、この電子は電子供給剤80の例えばI に移動し、I は3Iとなる。電子を失った色素は、電子供給剤80の例えばIから電子を供給される。この様に、透明導電膜20と導電膜50との間に、外部回路を接続することによって、外部回路は光を吸収した本実施形態に係る色素増感太陽電池から、電流を取り出すことができる。即ち、本色素増感太陽電池は電池として機能する。 The electrons of the dye in the electron collecting-dye layer 30 excited here are transferred to the electron collecting agent in the electron collecting-dye layer 30 composed of, for example, titanium oxide which is a wide gap semiconductor. That is, the dye is oxidized. The electrons received by the electron scavenger move to the transparent conductive film 20. On the other hand, the dye that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80 in contact with the conductive film 50 having the catalyst layer 60. That is, the dye is reduced by the electron supply agent 80. 3I becomes I 3 when electrons are supplied to the dye. Therefore, for example, I 3 of the electron supply agent 80 tries to receive electrons from the conductive film 50. At this time, a potential difference is generated between the transparent conductive film 20 and the conductive film 50. If an external circuit is connected between the transparent conductive film 20 and the conductive film 50, the electrons that have moved to the transparent conductive film 20 move to the conductive film 50 through the external circuit. Then, the electrons move to, for example, I 3 of the electron supply agent 80, and I 3 becomes 3I . The dye that has lost electrons is supplied with electrons from, for example, I of the electron supply agent 80. In this way, by connecting an external circuit between the transparent conductive film 20 and the conductive film 50, the external circuit can extract current from the dye-sensitized solar cell according to the present embodiment that has absorbed light. . That is, this dye-sensitized solar cell functions as a battery.

対向基板40には化学研磨によって凹凸を形成した。凹凸を形成した対向基板40の表面形状を図3に示す。図3(a)は平面図を、図3(b)は斜視図を、それぞれ示す。この凹凸面の、中心線平均粗さRaは0.137μm、十点平均高さRzは0.692μmであった。ここで、中心線平均粗さRaは、注目する長さを抜き取り、粗さ曲線を中心線から折り返し、その粗さ曲線と中心線によって囲まれた部分の面積を、前記注目する長さで割った値を表す。また、十点平均高さRzは、断面曲線の基準長さにおいて、高い方から5つの山頂の高さの平均値と、低い方から5つの谷底の深さの平均値との差の値を表す。なおRaは0.14μm±0.1μm、Rzは0.7μm±0.3μmが望ましい。 Unevenness was formed on the counter substrate 40 by chemical polishing. FIG. 3 shows the surface shape of the counter substrate 40 on which the irregularities are formed. 3A shows a plan view, and FIG. 3B shows a perspective view. The uneven surface had a center line average roughness Ra of 0.137 μm and a ten-point average height Rz of 0.692 μm. Here, the centerline average roughness Ra is a length of interest, and the roughness curve is folded back from the centerline, and the area of the portion surrounded by the roughness curve and the centerline is the length of interest. Represents the divided value. Further, the ten-point average height Rz is a difference value between the average value of the heights of the five peaks from the highest and the average value of the depths of the five valleys from the lowest in the reference length of the cross-sectional curve. To express. Ra is preferably 0.14 μm ± 0.1 μm and Rz is preferably 0.7 μm ± 0.3 μm.

比較例に比べて本実施例の変換効率ηが高い理由として以下が考えられる。透明基板10側から入射し、電子捕集−色素層30中の色素に吸収されずに触媒層60に到達した光は、触媒層60表面で反射され、再び電子捕集−色素層30に入射する。この際、比較例の場合には、触媒層60表面が鏡面であるため、反射光は直進し、電子捕集−色素層30内を通る光路は短い。このため、一部の光は色素に吸収されるが、その他の多くの光は吸収されずに透過してしまう。これに比べて、本実施例の場合には、触媒層60表面拡散反射面であるため、拡散反射され電子捕集−色素層30内を通る光路が長くなる。このため、比較例の場合より色素に吸収され光の割合が増加すると考えられる。このため、変換効率ηが高くなったと考えられる。 The reason why the conversion efficiency η of this embodiment is higher than that of the comparative example can be considered as follows. Light that enters from the transparent substrate 10 side and reaches the catalyst layer 60 without being absorbed by the dye in the electron collection-dye layer 30 is reflected by the surface of the catalyst layer 60 and enters the electron collection-dye layer 30 again. To do. At this time, in the case of the comparative example, since the surface of the catalyst layer 60 is a mirror surface, the reflected light travels straight and the optical path passing through the electron collection-dye layer 30 is short. For this reason, a part of the light is absorbed by the pigment, but a lot of other light is transmitted without being absorbed. In contrast, in the case of the present embodiment, the surface of the catalyst layer 60 is a diffuse reflection surface, so that the light path that is diffusely reflected and passes through the electron collection-dye layer 30 becomes long. Therefore, it is considered that the proportion of light that will be absorbed into the dye than in the comparative example increases. For this reason, it is considered that the conversion efficiency η has increased.

以上の通り、本実施形態に係る色素増感太陽電池では、触媒層60表面が拡散反射面となっているため、反射光のうち色素に吸収される割合が、触媒層60表面が鏡面の場合よりも高くなる。このため、変換効率ηが高くなる。即ち、本実施形態に依れば色素増感太陽電池の性能が向上する。 As described above, in the dye-sensitized solar cell according to the present embodiment, since the surface of the catalyst layer 60 is a diffuse reflection surface, the ratio of the reflected light absorbed by the dye is that the surface of the catalyst layer 60 is specular. Higher than the case. For this reason, the conversion efficiency η increases. That is, according to this embodiment, the performance of the dye-sensitized solar cell is improved.

[変形例]
色素増感太陽電池の性能を上昇させるためには、電子捕集−色素層30の構成を工夫することも有意義である。即ち、図6に示す様に、電子捕集剤32を構成するアナターゼ型の酸化チタンに、粒径が異なる2種類の酸化チタンを用いればいい。例えば、大きな粒径を有する電子捕集剤32を電子伝達用電子捕集粒子(第2の電子捕集粒子)34と呼び、小さな粒径を有する電子捕集剤32を色素吸着用電子捕集粒子(第1の電子捕集粒子)36と呼ぶ事にする。
[Modification]
In order to improve the performance of the dye-sensitized solar cell, it is also meaningful to devise the configuration of the electron collection-dye layer 30. That is, as shown in FIG. 6, two types of titanium oxides having different particle diameters may be used for the anatase type titanium oxide constituting the electron scavenger 32. For example, the electron collection agent 32 having a large particle size is called an electron transfer electron collection particle (second electron collection particle) 34, and the electron collection agent 32 having a small particle size is used for dye adsorption electron collection. This is referred to as particle (first electron collection particle) 36.

次に本変形例の色素増感太陽電池の実施例について説明する。ここでは、電子伝達用電子捕集粒子34及び色素吸着用電子捕集粒子36として、直径が異なる2種類の電子捕集剤32としての酸化チタンを用いた本実施例の色素増感太陽電池と、直径が1種類の電子捕集剤32としての酸化チタンを用いた比較例の色素増感太陽電池との性能を比較した。比較したのは、見かけの最大電力に対する実際の電力の比であるフィルファクター(FF)の値である。 Next, examples of the dye-sensitized solar cell of this modification will be described. Here, the dye-sensitized solar cell of this example using titanium oxide as two types of electron-trapping agents 32 having different diameters as the electron-collecting particles 34 for electron transfer and the electron-trapping particles 36 for dye adsorption was compared with the dye-sensitized solar cell of Comparative example having a diameter titanium oxide was used as one type of electronic scavenger 32, performance of. What is compared is the value of the fill factor (FF), which is the ratio of the actual power to the apparent maximum power.

本実施例と従来例とのそれぞれについて3回計測した結果、FF値は、本実施例に係る色素増感太陽電池では、44.4±1.3(平均±標準偏差)、従来例に係る色素増感太陽電池では、25.6±0.3(平均±標準偏差)となった。即ち本実施例のFF値は、従来例に比較して74%の上昇となった。 As a result of measuring three times for each of the present example and the conventional example, the FF value is 44.4 ± 1.3 (average ± standard deviation) in the dye-sensitized solar cell according to the present example. In the dye-sensitized solar cell, it was 25.6 ± 0.3 (average ± standard deviation). That is, the FF value of this example increased by 74% compared to the conventional example.

この様な違いが現れた理由として以下が考えられる。図7(a)に従来例の電子捕集−色素層30の模式図を示す通り、従来例では、図7(a)中白抜き矢尻Aで指し示す様に、色素38から放出された電子eは、電子捕集剤32を構成する直径が小さい粒子を多く伝って、透明導電膜20に伝達される。従って電子eは、電子捕集剤32内の粒子の接合部分を多くえる必要がある。このため、電子捕集剤32中に形成される電気接続路の抵抗が高くなって、電子が伝達されにくい。更に、図7(a)中白抜き矢尻Bで指し示す様に、色素38同士が会合し、それが電子捕集剤32を構成する粒子間に浸入し、電子捕集剤32を構成する粒子同士が接触しない部分ができることがある。そして、この様に電子捕集剤32を構成する粒子同士が接触しない部分では、電子eが伝達されないことになる。 Possible reasons for this difference are as follows. As shown in the schematic diagram of the electron collecting-dye layer 30 of the conventional example in FIG. 7A, in the conventional example, as indicated by the white arrowhead A in FIG. Is transmitted to the transparent conductive film 20 through many particles having a small diameter constituting the electron scavenger 32. Thus electrons e - are required many Eru Yue the joint portion of the particles in the electron scavenger 32. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 becomes high and electrons are not easily transmitted. Further, as indicated by the white arrowhead B in FIG. 7A, the dyes 38 are associated with each other and enter between the particles constituting the electron scavenger 32, so that the particles constituting the electron scavenger 32 are in contact with each other. There may be a part that does not touch. And in the part which the particles which comprise the electron scavenger 32 do not contact in this way, an electron e < - > will not be transmitted.

これに対して、図7(b)に本実施例の電子捕集−色素層30の模式図を示す通り、本実施例では、色素38から放出された電子eは、少数の直径が大きな電子伝達用電子捕集粒子34を伝って、透明導電膜20に伝達される。従って、電子eが越える必要のある電子伝達用電子捕集粒子34の接合部分は少ない。また、電子伝達用電子捕集粒子34の直径は大きく、1個あたりの表面積が大きいため、電子伝達用電子捕集粒子34間の接合は良好に成されている。このため、電子捕集剤32中に形成される電気接続路の抵抗が図7(b)の場合よりも低くなって、電子が伝達されやすい。また、色素吸着用電子捕集粒子36が多く存在するので、表面積は大きく、ラフネスファクターは、1000以上と、色素増感太陽電池において必要であるといわれている値以上と成っている。このため、十分な数の色素38が電子捕集剤32に吸着されている。 On the other hand, as shown in the schematic diagram of the electron collection-dye layer 30 of this example in FIG. 7B, in this example, the electrons e emitted from the dye 38 have a small number of large diameters. It is transmitted to the transparent conductive film 20 through the electron collecting particles 34 for electron transmission. Therefore, there are few junction parts of the electron collection particle | grains 34 for electron transmission which the electron e < - > needs to exceed. In addition, since the electron-collecting particles 34 for electron transfer have a large diameter and a large surface area per one, the bonding between the electron-collecting particles 34 for electron transfer is excellent. For this reason, the resistance of the electrical connection path formed in the electron scavenger 32 is lower than in the case of FIG. 7B, and electrons are easily transmitted. Further, since there are many dye-adsorbing electron-collecting particles 36, the surface area is large, and the roughness factor is 1000 or more, which is more than the value that is said to be necessary in a dye-sensitized solar cell. For this reason, a sufficient number of dyes 38 are adsorbed by the electron scavenger 32.

10…透明基板(第1の基板)、20…透明導電膜(第1の電極)、30…電子捕集−色素層、32…電子捕集剤、34…電子伝達用電子捕集粒子(第2の電子捕集粒子)、36…色素吸着用電子捕集粒子(第1の電子捕集粒子)、38…色素、40…対向基板(第2の基板)、50…導電膜(第2の電極)、55…白金下地層、60…触媒層、70…シール材、80…電子供給剤。 DESCRIPTION OF SYMBOLS 10 ... Transparent substrate (1st board | substrate) , 20 ... Transparent electrically conductive film (1st electrode) , 30 ... Electron collection-dye layer, 32 ... Electron collection agent, 34 ... Electron collection particle | grains for electron transmission (1st 2 electronic trapping particles), 36 ... dye adsorption for electronic trapping particles (first electronic trapping particles), 38 ... dye, 40 ... counter substrate (second substrate), 50 ... conductive film (second Electrode) , 55 ... platinum underlayer, 60 ... catalyst layer, 70 ... sealing material, 80 ... electron supply agent.

Claims (11)

第1の基板と、
前記第1の基板と対向して配置された第2の基板と、
前記第1の基板の第1の面に形成された第1の電極であって、前記第1の面は前記第2の基板の第2の面と対向する、第1の電極と、
前記第1の電極上に配された電子捕集−色素層と、
前記第2の面に配され、前記第1の基板と対向する面が拡散反射面として形成されている触媒層と、
前記電子捕集−色素層と前記触媒層との間に配された電子供給剤と、
を備える、
ことを特徴とする色素増感型太陽電池。
A first substrate;
A second substrate disposed opposite the first substrate;
A first electrode formed on a first surface of the first substrate , wherein the first surface is opposite to a second surface of the second substrate ;
An electron collection -dye layer disposed on the first electrode;
A catalyst layer disposed on the second surface and facing the first substrate as a diffuse reflection surface;
An electron supply agent disposed between the electron collection-dye layer and the catalyst layer;
Comprising
A dye-sensitized solar cell characterized by the above.
前記第2の面は、粗面を含み、
前記拡散反射面は、前記拡散反射面の形状が前記粗面の形状に追従するように形成されている、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The second surface includes a rough surface,
The diffuse reflection surface is formed such that the shape of the diffuse reflection surface follows the shape of the rough surface,
The dye-sensitized solar cell according to claim 1 .
前記粗面は、フロスト加工、ケミカルエッチング及び/又はサンドブラスト面である、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The rough surface is a frosted surface , a chemically etched surface and / or a sandblasted surface,
The dye-sensitized solar cell according to claim 2 .
前記第2の基板と前記触媒層との間に配置され、前記触媒層に接するとともに前記触媒層の表面積を増加させるように成膜された下地層を更に備える、
ことを特徴とする請求項1乃至3のいずれかに記載の色素増感型太陽電池。
Further comprising an underlayer disposed between the second substrate and the catalyst layer and formed to increase the surface area of the catalyst layer while being in contact with the catalyst layer;
The dye-sensitized solar cell according to any one of claims 1 to 3 .
前記触媒層は白金を含み、
前記下地層はチタンを含む、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The catalyst layer comprises platinum;
The underlayer includes titanium;
The dye-sensitized solar cell according to claim 4 .
前記電子捕集−色素層は、酸化チタンを含む電子捕集剤を含む、
ことを特徴とする請求項1乃至5のいずれかに記載の色素増感型太陽電池。
The electron collecting-dye layer includes an electron collecting agent including titanium oxide.
The dye-sensitized solar cell according to any one of claims 1 to 5, wherein:
前記色素は、
励起状態と基底状態とを有しており、
前記励起状態の前記色素は、前記電子捕集剤よりも高いエネルギー準位を有し、
前記基底状態の前記色素は、前記電子供給剤よりも低いエネルギー準位を有する、
ことを特徴とする請求項1乃至6のいずれかに記載の色素増感型太陽電池。
The dye is
Has an excited state and a ground state,
The dye in the excited state has a higher energy level than the electron scavenger,
The dye in the ground state has a lower energy level than the electron donor;
A dye-sensitized solar cell according to any one of claims 1 to 6 .
第1の電極と、
前記第1の電極と対向する第2の電極と、
前記第1の電極の第1の面上に配された電子捕集−色素層と、
前記第1の面は前記第2の電極の第2の面と対向し、前記第2の面上に配され、前記第1の電極と対向する表面が拡散反射面として形成されている触媒層と、
前記電子捕集−色素層と前記触媒層との間に配された電子供給剤と、
を備える、
ことを特徴とする色素増感型太陽電池。
A first electrode;
A second electrode facing the first electrode;
An electron collection-dye layer disposed on the first surface of the first electrode;
The catalyst layer in which the first surface faces the second surface of the second electrode, is disposed on the second surface, and the surface facing the first electrode is formed as a diffuse reflection surface When,
An electron supply agent disposed between the electron collection-dye layer and the catalyst layer;
Comprising
A dye-sensitized solar cell characterized by the above.
前記電子捕集−色素層は、電子捕集剤と色素とを含んで一つの層をなし、
前記電子捕集剤は、第1の粒径範囲内の粒径を有する第1の電子捕集粒子と第2の粒径範囲内の粒径を有する第2の電子捕集粒子とが混合されて形成され、前記第2の粒径範囲の最小値は前記第1の粒径範囲の最大値よりも大きい、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The electron collecting-dye layer comprises an electron collecting agent and a dye to form a single layer,
The electron collecting agent includes a mixture of first electron collecting particles having a particle size within a first particle size range and second electron collecting particles having a particle size within a second particle size range. The minimum value of the second particle size range is greater than the maximum value of the first particle size range,
The dye-sensitized solar cell according to claim 8 .
前記第1の電子捕集粒子は、前記色素を吸着するように構成されており、
前記第2の電子捕集粒子は、前記色素から放出された電子を前記第1の電極に伝達するように構成されている、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The first electron collection particles are configured to adsorb the dye,
The second electron collection particles are configured to transmit electrons emitted from the dye to the first electrode.
The dye-sensitized solar cell according to claim 9 .
前記第2の電子捕集粒子の平均的な直径は、前記第1の電子捕集粒子の平均的な直径の10倍以上である、
ことを特徴とする請求項に記載の色素増感型太陽電池。
The average diameter of the second electron collection particles is 10 times or more the average diameter of the first electron collection particles.
The dye-sensitized solar cell according to claim 9 .
JP2010070574A 2010-03-04 2010-03-25 Dye-sensitized solar cell Pending JP2011204464A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010070574A JP2011204464A (en) 2010-03-25 2010-03-25 Dye-sensitized solar cell
US13/038,508 US20110214730A1 (en) 2010-03-04 2011-03-02 Dye-sensitized solar cell
CN2011100522559A CN102194573A (en) 2010-03-04 2011-03-04 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070574A JP2011204464A (en) 2010-03-25 2010-03-25 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2011204464A JP2011204464A (en) 2011-10-13
JP2011204464A5 true JP2011204464A5 (en) 2012-11-08

Family

ID=44880920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070574A Pending JP2011204464A (en) 2010-03-04 2010-03-25 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2011204464A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953026B2 (en) * 2011-10-20 2016-07-13 ローム株式会社 Method for producing dye-sensitized solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196104A (en) * 2000-01-07 2001-07-19 Ricoh Co Ltd Photoelectric transducer, its manufacturing method and porous titanium oxide semiconductor electrode
JP4213355B2 (en) * 2001-02-28 2009-01-21 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module
JP4672973B2 (en) * 2002-09-30 2011-04-20 昭和電工株式会社 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof
JP2006147261A (en) * 2004-11-17 2006-06-08 Enplas Corp Counter electrode of dye-sensitized solar cell and dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Similar Documents

Publication Publication Date Title
TWI469370B (en) A solar cell module
KR101097252B1 (en) Photoelectric conversion device
JP2011204680A (en) Dye-sensitized solar battery
JP2010045332A (en) Thin-film solar cell and method of manufacturing the same
US20120024367A1 (en) Electrode for photoelectric conversion device, method of preparing the same and photoelectric conversion device comprising the same
JP5484402B2 (en) Photoelectric conversion module
JP2011204464A5 (en)
US9209335B2 (en) Solar cell system
TWI467785B (en) A solar cell substrate
JP2011187567A (en) Solar cell module
US20120266955A1 (en) Photoelectric conversion device and method of preparing the same
TW201314935A (en) Solar cell package structure
KR102574926B1 (en) Perovskite silicon tandem solar cell and method for manufacturing the same
JP2011187183A5 (en)
JP2011204464A (en) Dye-sensitized solar cell
KR102132938B1 (en) Connecting member and solar cell module with the same
JP2013125633A (en) Solar battery module
JP5745622B2 (en) Solar cell and method for manufacturing the same
KR20120072319A (en) Solar cell
JP2011187183A (en) Dye-sensitized solar cell
TWI469369B (en) A solar cell module
KR102139224B1 (en) Interconnector for solar cell module
TWI412142B (en) A photoelectrode with metal-based light reflective layer and dye-sensitized solar cell structure of using the same
TWI431786B (en) Reflective counter electrode and dye-sensitized solar cell structure of using the same
US20120167938A1 (en) Solar cell, solar cell system, and method for making the same