JP2005103110A - Deodorant and its manufacturing method - Google Patents

Deodorant and its manufacturing method Download PDF

Info

Publication number
JP2005103110A
JP2005103110A JP2003342700A JP2003342700A JP2005103110A JP 2005103110 A JP2005103110 A JP 2005103110A JP 2003342700 A JP2003342700 A JP 2003342700A JP 2003342700 A JP2003342700 A JP 2003342700A JP 2005103110 A JP2005103110 A JP 2005103110A
Authority
JP
Japan
Prior art keywords
organic material
weight
strength
deodorant
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342700A
Other languages
Japanese (ja)
Inventor
Tomohiko Tsuda
智彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobayashi Pharmaceutical Co Ltd
Original Assignee
Kobayashi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Pharmaceutical Co Ltd filed Critical Kobayashi Pharmaceutical Co Ltd
Priority to JP2003342700A priority Critical patent/JP2005103110A/en
Priority to PCT/JP2004/012551 priority patent/WO2005032605A1/en
Publication of JP2005103110A publication Critical patent/JP2005103110A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorant having high deodorizing effect for all acidic, alkaline and neutral odor components, provided with sufficient strength. <P>SOLUTION: At the time of mixing an inorganic raw material and an organic material for carbonization and firing, they are mixed such that the dry weight of the organic material becomes less than 30 wt.% to the dry weight of the whole. The mixture is kneaded and the deodorant is composed by carbonizing and firing the kneaded material in an unglazed shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸性、アルカリ性及び中性いずれの臭気成分に対しても、脱臭効果の高い脱臭剤に関するものである。   The present invention relates to a deodorizer having a high deodorizing effect with respect to any of acidic, alkaline and neutral odor components.

従来、空気中の臭気成分を除去する脱臭剤として、活性炭のように多孔質構造を有する吸着材を用いて臭気成分を吸着除去するものが知られている。上記活性炭は、優れた吸着性能を有するため、脱臭剤として広く使用されているが、強度が低く、任意形状に成形することが困難であり、現状では粒状物として容器に収容して使用されており、デザイン面で制約があった。   2. Description of the Related Art Conventionally, as a deodorant for removing odor components in the air, one that adsorbs and removes odor components using an adsorbent having a porous structure such as activated carbon is known. The activated carbon is widely used as a deodorant because it has excellent adsorption performance, but it has low strength and is difficult to be molded into an arbitrary shape. And there were limitations in terms of design.

上記問題を解決するものとして、特許文献1には、製紙スラッジ30〜60重量%、アルミナ類5〜30重量%、及び粘土類10〜60重量%を主成分とし、これを焼成してなる吸着材が記載されている。この吸着材は、粘土類を使用することで任意形状に成形可能としたものである。
特開昭63−256132号公報
As a solution to the above problem, Patent Document 1 discloses an adsorption formed by baking paper sludge of 30-60% by weight, aluminas of 5-30% by weight, and clays of 10-60% by weight. The materials are listed. This adsorbent can be molded into an arbitrary shape by using clays.
JP 63-256132 A

しかしながら、上記吸着材においては、脱臭能力を高めるために30〜60重量%と多量の製紙スラッジを配合しているため、吸着材の強度が低下するといった問題が生じていた。また、吸着材は、その表面の性質により酸性の臭気成分あるいはアルカリ性の臭気成分のいずれか一方に有効であるが、他方に対してはあまり効果がないのが一般的であり、活性炭の場合には、アンモニアなどの臭気成分の吸着能力が比較的弱いといった問題があった。   However, since the adsorbent contains 30 to 60% by weight of a large amount of paper sludge in order to increase the deodorizing ability, there has been a problem that the strength of the adsorbent is reduced. Adsorbents are effective for either acidic odor components or alkaline odor components depending on their surface properties, but generally are not effective for the other. Has a problem that the adsorption ability of odorous components such as ammonia is relatively weak.

そこで、本発明は、酸性、アルカリ性及び中性いずれの臭気成分に対しても脱臭効果が高く、任意形状に成形可能で、しかも成形後に十分な強度を備えた脱臭剤を提供することを目的とする。   Therefore, the present invention aims to provide a deodorizing agent that has a high deodorizing effect on any of acidic, alkaline and neutral odor components, can be molded into an arbitrary shape, and has sufficient strength after molding. To do.

上記課題を解決するために、本発明者が種々検討した結果、従来、吸着材を任意形状に成形する目的で用いられていた粘土等の無機原料と、炭化焼成用の有機材料とを混合して素焼状に炭化焼成すれば、配合する有機材料の量が少なくても、活性炭と同レベルで硫化水素やメチルメルカプタン等の酸性臭気成分を脱臭することができ、しかもアンモニアなどをも効果的に脱臭可能であることを見いだして本発明を完成するに至った。   As a result of various studies by the present inventors to solve the above-mentioned problems, conventionally, inorganic materials such as clay, which have been used for the purpose of forming an adsorbent into an arbitrary shape, and an organic material for carbonization firing are mixed. If carbonized and baked into a baked form, acidic odor components such as hydrogen sulfide and methyl mercaptan can be deodorized at the same level as activated carbon even if the amount of organic material to be blended is small. The inventors have found that it is possible to deodorize and have completed the present invention.

すなわち、本発明では、無機原料と、炭化焼成用の有機材料とを混合する際に、全体の乾燥重量に対して有機材料の乾燥重量が30重量%未満になるように配合し、この混合物を混練して成形した後に、該混練物を素焼状に炭化焼成することを特徴とする。   That is, in the present invention, when the inorganic raw material and the organic material for carbonization firing are mixed, the organic material is blended so that the dry weight of the organic material is less than 30% by weight with respect to the total dry weight, and this mixture is mixed. After kneading and forming, the kneaded product is carbonized and fired into an unglazed form.

上記構成によれば、酸性、アルカリ性及び中性いずれの臭気成分に対しても脱臭効果を発揮する脱臭剤を得ることができるとともに、無機原料に対する有機原料の配合量が多くないため、両者を混合した混合物は、任意の形状に容易に成形可能であるとともに、素焼状に焼成した状態でも十分な強度を有する焼成体を得ることができる。   According to the above configuration, a deodorizing agent that exerts a deodorizing effect on any of acidic, alkaline, and neutral odor components can be obtained, and since the blending amount of the organic raw material relative to the inorganic raw material is not large, both are mixed. The obtained mixture can be easily formed into an arbitrary shape, and a fired body having sufficient strength can be obtained even in a state of firing in an unglazed form.

ここで、乾燥重量とは、無機原料及び有機材料を夫々105℃で24時間処理して乾燥させた状態での重量をいう。また、素焼状に焼成するとは、無機原料の焼結温度よりも低温で焼成することにより、通気性を有する無機多孔質構造体を形成するように焼成することを意味する。さらに、炭化焼成とは、密閉空間あるいは窒素雰囲気下のように空気を遮断した状態で、無機原料とともに有機材料を焼成することにより、有機原料を炭化させるとともに、有機原料が炭化する際に発生する煤を焼成体に定着させることをいうものである。   Here, the dry weight means the weight in a state where the inorganic raw material and the organic material are each dried at 105 ° C. for 24 hours. In addition, firing in an unglazed form means firing so as to form an inorganic porous structure having air permeability by firing at a temperature lower than the sintering temperature of the inorganic raw material. Furthermore, the carbonization firing is generated when the organic raw material is carbonized and the organic raw material is carbonized by firing the organic material together with the inorganic raw material in a sealed space or a nitrogen atmosphere. It means fixing the soot to the fired body.

本発明においては、有機材料を無機原料と混合しているため、炭化焼成後の焼成体の状態は、有機材料が炭化して生じた炭化物が無機多孔質構造体中に分散した状態で保持されるとともに、多孔質構造体表面に煤が付着保持された状態のものが得られる。従って、脱臭剤としては、焼成体の表面及び断面が黒く着色されたものが得られることになる。   In the present invention, since the organic material is mixed with the inorganic raw material, the state of the fired body after the carbonization firing is maintained in a state where the carbide generated by carbonizing the organic material is dispersed in the inorganic porous structure. In addition, a product in a state where soot is attached and held on the surface of the porous structure is obtained. Therefore, as the deodorizing agent, a product whose surface and cross section of the fired body are colored black is obtained.

ここで特筆すべきは、本発明で得られた脱臭剤は、炭化物の原料となる有機材料の配合量が30重量%未満と少量であっても、酸性臭気成分を脱臭する能力が高い点である。通常、素焼状の無機構造体は、硫化水素やメチルメルカプタン等の酸性臭気成分を脱臭する能力はほとんどないため、酸性臭気成分を脱臭する能力は専ら活性炭の脱臭能力に依存することになる。したがって、従来、酸性臭気成分を脱臭するためには、活性炭(炭化物)の量を増加させる必要があると考えられていたため、結果的に焼成体の強度が低下するという問題があった。   It should be noted that the deodorizer obtained in the present invention has a high ability to deodorize acidic odor components even when the amount of the organic material used as the raw material of the carbide is less than 30% by weight. is there. Usually, an unglazed inorganic structure has little ability to deodorize acidic odor components such as hydrogen sulfide and methyl mercaptan, and therefore the ability to deodorize acidic odor components depends exclusively on the deodorizing ability of activated carbon. Therefore, conventionally, in order to deodorize the acidic odor component, it has been considered that the amount of activated carbon (carbide) needs to be increased, and as a result, there is a problem that the strength of the fired body is lowered.

ところが、本発明に係る脱臭剤では、有機材料の配合量が少なくても、十分酸性臭気成分を脱臭することが可能となるため、最終的に焼成体中に残存する炭化物量を抑えることで脱臭剤の強度を高めることが可能となる。   However, with the deodorizer according to the present invention, it is possible to sufficiently deodorize acidic odor components even if the amount of the organic material is small, so that the deodorization can be achieved by finally suppressing the amount of carbide remaining in the fired body. The strength of the agent can be increased.

後述の実施形態においては、混合物全体の乾燥重量に対してペーパースラッジ(以下、PSという)の配合量(乾燥重量)を74〜6重量%まで変化させて6種の焼成体試料を作製し、夫々の脱臭性能について評価を行なったが、いずれの試料も酸性、アルカリ性の両臭気成分をバランスよく同等レベルで脱臭することが確認されている。   In the embodiment described later, the amount of the paper sludge (hereinafter referred to as PS) (dry weight) is changed from 74 to 6% by weight with respect to the dry weight of the entire mixture to prepare six kinds of fired body samples, Each of the samples was evaluated for deodorization performance, and it was confirmed that both samples deodorized both acidic and alkaline odor components in a balanced manner at the same level.

このように、PSが30重量%未満の脱臭剤が、PSを30重量%以上含有する脱臭剤と同等の脱臭性能を有することは、従来は全く知られておらず、本発明によりはじめて明かになったものであり、これにより、十分な強度を有する脱臭剤を得ることができる。   Thus, it has not been known so far that a deodorant having a PS of less than 30% by weight has the same deodorizing performance as a deodorizer containing 30% by weight or more of PS. Thus, a deodorizing agent having sufficient strength can be obtained.

具体的には、有機材料を含まない無機原料100%のものを上記試料と同条件で焼成して得られた焼成体(以下、素焼品という)の強度を100とした場合、混合物中のPS含有量が30重量%未満の場合は素焼品の60%を超える強度を有しており、PS含有量が23重量%の場合は素焼品の69%の強度を、PS含有量が12重量%の場合は素焼品の74%の強度を、PS含有量が6重量%の場合は素焼品の81%の強度をそれぞれ備えている。   Specifically, when the strength of a fired body obtained by firing 100% inorganic raw material containing no organic material under the same conditions as the above sample (hereinafter referred to as unglazed product) is 100, PS in the mixture When the content is less than 30% by weight, it has a strength exceeding 60% of the unglazed product. When the PS content is 23% by weight, the strength is 69% of the unglazed product, and the PS content is 12% by weight. In this case, the strength is 74% of the unglazed product, and when the PS content is 6% by weight, the strength is 81% of the unglazed product.

焼成体の強度としては、素焼品の50%の強度があれば実用上問題なく使用することができることが確認されており、本発明に係る脱臭剤の混合物中のPS含有量としては、30重量%未満であればよく、さらにPS含有量が23重量%、12重量%、6重量%と低くなるほど焼成体の強度が増加するため好ましい。   As the strength of the fired body, it has been confirmed that it can be used practically as long as it has a strength of 50% of the unglazed product, and the PS content in the deodorant mixture according to the present invention is 30% by weight. The lower the PS content, the lower the content of 23%, 12%, and 6% by weight, which is preferable because the strength of the fired body increases.

炭化物量の含有量が少量でも酸性臭気成分を脱臭することができる理由については明かになっていないものの、有機材料の量を変化させても脱臭剤としての脱臭性能が同等であること、ただし炭化焼成しない素焼品では硫化水素やメチルメルカプタン等の酸性臭気成分の脱臭能がないこと等を考え合わせると、無機多孔質構造体と、炭化焼成により無機多孔質構造体の表面に付着した煤とが相乗的に作用しているものと推測される。   Although it is not clear why the acidic odor component can be deodorized even with a small amount of carbide, the deodorization performance as a deodorant is the same even if the amount of organic material is changed. Considering the fact that non-fired unglazed products do not have the ability to deodorize acidic odor components such as hydrogen sulfide and methyl mercaptan, there are inorganic porous structures and soot adhering to the surface of inorganic porous structures by carbonization firing. Presumably acting synergistically.

今回の実施形態においては、PS含有量が6重量%以上の範囲でしか評価はしていないものの、評価結果を見れば、有機材料の量が6重量%未満でも十分な脱臭性能を発揮するものと推定される。なお、十分な脱臭性能を発揮するために最低限必要とされる有機材料量としては、多孔質構造体の全表面を被覆するだけの煤を発生し得る量の有機材料を用いればよいものと推定される。   In this embodiment, although the PS content is evaluated only in the range of 6% by weight or more, the evaluation result shows that sufficient deodorization performance is exhibited even if the amount of the organic material is less than 6% by weight. It is estimated to be. As the minimum amount of organic material required to exhibit sufficient deodorizing performance, it is sufficient to use an amount of organic material that can generate soot that covers the entire surface of the porous structure. Presumed.

本発明において無機原料とは、焼成用の原料であり、一般的には陶磁器等の原料である粘土を使用することができる。この無機原料を素焼状に焼成するための焼成温度は、無機原料の焼結温度によって変化するが、一般的な陶磁器用の粘土の場合は770℃〜930℃程度である。770℃よりも低温になると、焼成体の強度が低下するおそれが生じ、930℃よりも高温になると、多孔質構造が緻密化して焼成体の表面積が減少するおそれが生じる。   In the present invention, the inorganic raw material is a raw material for firing, and generally clay which is a raw material for ceramics or the like can be used. The firing temperature for firing the inorganic raw material into a raw baking shape varies depending on the sintering temperature of the inorganic raw material, but is about 770 ° C. to 930 ° C. in the case of clay for general ceramics. When the temperature is lower than 770 ° C., the strength of the fired body may be reduced. When the temperature is higher than 930 ° C., the porous structure may be densified and the surface area of the fired body may be reduced.

有機材料としては、炭化焼成により煤を発生しながら炭化するものであればよく、例えば、籾殻、紙、木材片、稲わら、ペーパースラッジなどを使用することができる。ただ、炭化焼成後の焼成体強度のばらつきを少なくするには、焼成体の構造を均質にする必要があり、そのためには有機材料をできるだけ細かく粉砕して使用するのが望ましい。この観点からいえば、ペーパースラッジは、製紙工場より大量に排出されるものであり、入手が容易であるとともに、紙の短繊維と、填料由来の無機物(カオリン、タルク、炭酸カルシウム等)との混合物からなり、無機原料との混練が容易で、均一な構造の焼成体が得られる点で好ましい。   Any organic material may be used as long as it is carbonized while generating cocoons by carbonization and firing. For example, rice husk, paper, wood pieces, rice straw, paper sludge and the like can be used. However, in order to reduce the variation in the strength of the fired body after the carbonization firing, it is necessary to make the structure of the fired body homogeneous, and for this purpose, it is desirable to use the organic material by pulverizing it as finely as possible. From this point of view, paper sludge is discharged in large quantities from paper mills, and is easily available, and is made of paper short fibers and filler-derived inorganic substances (kaolin, talc, calcium carbonate, etc.). It is preferable in that it is made of a mixture and can be easily kneaded with an inorganic raw material to obtain a fired body having a uniform structure.

上述のようにして得られた脱臭剤は、酸性、アルカリ性及び中性いずれの臭気成分に対しても脱臭効果が高く、任意形状に成形可能で、焼成後も十分な強度を備えているため、非常に付加価値が高い。   The deodorant obtained as described above has a high deodorizing effect on any of acidic, alkaline and neutral odor components, can be molded into an arbitrary shape, and has sufficient strength even after firing. Very high added value.

本発明に係る脱臭剤は、無機原料と、有機材料とを所定の重量比で混合しているため、任意形状に成形可能であるとともに、これを素焼状に炭化焼成してなるため、脱臭剤中の炭素量が少量であるにもかかわらず、酸性臭気成分を効率よく脱臭することができ、また、焼成体の強度の低下を抑制することが可能となる。   Since the deodorizer according to the present invention is a mixture of an inorganic raw material and an organic material at a predetermined weight ratio, it can be molded into an arbitrary shape and is carbonized and fired into an unglazed form. In spite of the small amount of carbon in the medium, it is possible to efficiently deodorize the acidic odor component, and to suppress a decrease in strength of the fired body.

[脱臭剤の作製]
次に、本発明に係る脱臭剤の製造方法について説明する。なお、本実施形態においては、特にことわりのない限り、「%」の表示は、「重量%」を示すものである。
[Production of deodorant]
Next, the manufacturing method of the deodorizer which concerns on this invention is demonstrated. In this embodiment, unless otherwise specified, “%” indicates “% by weight”.

無機原料として、陶磁器用原料である粘土(含水率:20%、SiO2:54.3%、Al23:16.4%、Fe23:0.4%、TiO2:0.2%、CaO:0.2%、MgO:0.2%、K2O:2.4%、Na2O:1.2%、その他:4.7%)を使用し、有機材料として天日干ししたPS(含水率:3.5%、強熱減量:59.8%、残渣物量:36.7%)を使用した。上記粘土及びPSの含水率は、予め一部をサンプリングし、初期重量を測定した後、105℃で24時間乾燥した後の乾燥重量を測定し、下記式(1)により算出した。 As an inorganic raw material, clay (water content: 20%, SiO 2 : 54.3%, Al 2 O 3 : 16.4%, Fe 2 O 3 : 0.4%, TiO 2 : 0.00%, which is a ceramic raw material. 2%, CaO: 0.2%, MgO: 0.2%, K 2 O: 2.4%, Na 2 O: 1.2%, others: 4.7%) Sun-dried PS (water content: 3.5%, loss on ignition: 59.8%, amount of residue: 36.7%) was used. The moisture content of the clay and PS was sampled in advance, measured the initial weight, then measured the dry weight after drying at 105 ° C. for 24 hours, and calculated by the following formula (1).

含水率(重量%)=(初期重量−乾燥後重量)×100/初期重量・・・(1)
次に、表1に示すように、粘土と、PSとの実使用重量比を変化させた7種類の混合物を調製し、それぞれ均一に混練した。表1に粘土とPSの乾燥重量比及び混合物全体の乾燥重量に対するPSの乾燥重量の含有量を併記する。粘土及びPSの乾燥重量は、上記式(1)で算出した含水率を基に以下のようにして算出した。
Water content (% by weight) = (initial weight−weight after drying) × 100 / initial weight (1)
Next, as shown in Table 1, seven types of mixtures in which the actual use weight ratio of clay and PS was changed were prepared and kneaded uniformly. Table 1 shows the dry weight ratio of clay and PS and the content of the dry weight of PS with respect to the dry weight of the entire mixture. The dry weight of clay and PS was calculated as follows based on the water content calculated by the above formula (1).

粘土乾燥重量=粘土実使用重量×(1−0.20)
PS乾燥重量=PS実使用重量×(1−0.035)
次いで、上記混合物を成形し、得られた成形体を密閉容器(さや)に収容し、窯で炭化焼成(800℃×7.5〜8.5時間)した。このようにして得られた焼成体の形状は、底面積9.4cm2,高さ6.0cm,開口周長さ21.6cm、肉厚4.7mmの茶碗形状であった。
Clay dry weight = Clay actual use weight × (1−0.20)
PS dry weight = PS actual use weight × (1-0.035)
Subsequently, the said mixture was shape | molded, the obtained molded object was accommodated in the airtight container (sheath), and carbonization baking (800 degreeC x 7.5 to 8.5 hours) was carried out with the kiln. The shape of the fired body thus obtained was a bowl shape with a bottom area of 9.4 cm 2 , a height of 6.0 cm, an opening circumferential length of 21.6 cm, and a wall thickness of 4.7 mm.

また、焼成体は、無機多孔質構造を有し、炭化物が無機多孔質構造体内に分散保持されるとともに、煤が多孔質表面に付着して全体として黒色を呈した状態であった。試料ごとに得られた焼成体の重量を表1に併記する。   Moreover, the fired body had an inorganic porous structure, and the carbide was dispersed and held in the inorganic porous structure, and the soot was attached to the porous surface and exhibited a black color as a whole. Table 1 also shows the weight of the fired body obtained for each sample.

[脱臭剤の性能評価]
以上のようにして作製した7種類の脱臭剤を用いて、脱臭性能の評価を実施した。評価方法としては、先ず、各試料を4個一組にして、一個ずつ10リットル容量のテドラバックに収容した。臭気成分として、アンモニア、トリメチルアミン、硫化水素、メチルメルカプタンの4種類を用い、それぞれ100ppm濃度になるように調製した基準ガス8リットルをさきほどの4つのテドラバックにそれぞれ封入して、所定時間ごとにガス濃度を測定し(検知管法)、測定したガス濃度を基に以下の式(2)により脱臭率を算出した。
[Performance evaluation of deodorizer]
The deodorizing performance was evaluated using the seven types of deodorizing agents produced as described above. As an evaluation method, first, four samples were made into a set, and each sample was housed in a 10-liter capacity tedra bag. Using four types of odor components, ammonia, trimethylamine, hydrogen sulfide, and methyl mercaptan, 8 liters of a reference gas prepared to a concentration of 100 ppm each was enclosed in the four tedra bags, and the gas concentration was set every predetermined time. Was measured (detector tube method), and the deodorization rate was calculated by the following equation (2) based on the measured gas concentration.

脱臭率(%)=(初期ガス濃度−測定ガス濃度)×100/初期ガス濃度・・・(2)
なお、比較として、PSを混合せずに粘土単体を使用して焼成した焼成体(素焼品)と、市販の活性炭44g入り脱臭剤(以下、活性炭という)とを用いて同様に評価した。脱臭率の結果を図1〜4及び表2〜5に示す。
Deodorization rate (%) = (initial gas concentration−measured gas concentration) × 100 / initial gas concentration (2)
For comparison, the same evaluation was performed using a fired body (unglazed product) fired using clay alone without mixing PS and a 44 g commercial deodorizer (hereinafter referred to as activated carbon). The result of a deodorizing rate is shown to FIGS. 1-4 and Tables 2-5.

[脱臭剤の炭素含有率及び炭素含有量測定]
本発明に係る脱臭剤においては、試料中に存在する炭化物及び煤に由来する炭素が酸性の臭気成分の脱臭性能に寄与していると考えられる。そこで、上記7種類の脱臭剤を用いて脱臭剤中の炭素含有率(重量%)を測定した。以下に測定条件を記す。
[Measurement of carbon content and carbon content of deodorizer]
In the deodorizer according to the present invention, it is considered that the carbon derived from the carbide and soot present in the sample contributes to the deodorizing performance of the acidic odor component. Therefore, the carbon content (% by weight) in the deodorizer was measured using the above seven types of deodorizer. The measurement conditions are described below.

分析方法としては、熱伝導度検出器を備えたエレメンタール社製CHN自動分析装置(varioEL)を使用して、キャリアガスとしてヘリウムガス(ガス流量:200±5ml/min)を用い、燃焼管温度950℃、還元管温度500℃に設定して行なった。試薬としてはアセトアニリドを使用し、試料量3mgで分析を行なった。なお、得られた炭素含有率を各試料の重量を乗じ、試料(焼成体)中に存在する炭素含有量(g)を算出した。これらの分析結果を表1に併記する。   As an analysis method, a CHN automatic analyzer (varioEL) manufactured by Elemental Co., Ltd., equipped with a thermal conductivity detector, helium gas (gas flow rate: 200 ± 5 ml / min) as a carrier gas, and combustion tube temperature It was carried out by setting 950 ° C. and reducing tube temperature 500 ° C. Acetanilide was used as a reagent, and analysis was performed with a sample amount of 3 mg. The obtained carbon content was multiplied by the weight of each sample, and the carbon content (g) present in the sample (fired body) was calculated. These analysis results are also shown in Table 1.

[脱臭剤の強度評価]
上記7種類の脱臭剤を用いて強度試験を行なった。試験内容は以下の通りである。強度の評価は、レオメーター(サン科学社製)を用い、下記の条件で測定した。
[Strength evaluation of deodorizer]
A strength test was conducted using the above seven types of deodorants. The contents of the test are as follows. The strength was evaluated using a rheometer (manufactured by Sun Science Co., Ltd.) under the following conditions.

試験台の上にサンプルを置き、先端直径0.45mmのプローブを押しあて、進入速度60mm/minで最大強度を測定した。試験結果を表1に併記する。   A sample was placed on a test bench, a probe having a tip diameter of 0.45 mm was pressed against it, and the maximum strength was measured at an approach speed of 60 mm / min. The test results are also shown in Table 1.

[評価結果]
図1〜4及び表2〜5より、素焼品は酸性臭気成分である硫化水素及びメチルメルカプタンの脱臭性能が乏しく、活性炭ではアンモニアの脱臭試験(図1、表2)において、1時間経過後も他の焼成試料(試料1〜6及び素焼品)よりも脱臭率が低いことが判る。
[Evaluation results]
1-4 and Tables 2-5, the unglazed product has poor deodorizing performance of hydrogen sulfide and methyl mercaptan, which are acidic odor components, and activated carbon has an ammonia deodorization test (FIGS. 1 and 2), even after 1 hour has passed. It can be seen that the deodorization rate is lower than those of other fired samples (samples 1 to 6 and unglazed products).

一方、本実施形態で作製した試料1〜6は、アンモニア、トリメチルアミン、硫化水素及びメチルメルカプタンのいずれの臭気成分も効率よく脱臭することが確認された。特に、酸性臭気成分であるメチルメルカプタンの脱臭試験(図4、表5)においては、活性炭よりも早期に高い脱臭率に達していることが判る。   On the other hand, it was confirmed that Samples 1 to 6 produced in this embodiment efficiently deodorized any odor components of ammonia, trimethylamine, hydrogen sulfide, and methyl mercaptan. In particular, in the deodorization test (FIG. 4, Table 5) of methyl mercaptan, which is an acidic odor component, it can be seen that a higher deodorization rate is reached earlier than activated carbon.

これは、試料1〜6が茶碗形状であり、臭気成分と直接触れる接触面積が大きいのに対して、活性炭は粒状体の集合物として容器に収容されているため、内部に存在する粒状体が臭気成分と接触しにくいためと推測された。このように、脱臭剤の性能は、材料自身の吸着性能もさることながら、その形状にも大きく影響されているものと考えられる。   This is because the samples 1 to 6 are shaped like a bowl and have a large contact area directly in contact with odor components, whereas activated carbon is contained in a container as an aggregate of granular materials, It was assumed that it was difficult to come in contact with odor components. Thus, the performance of the deodorizer is considered to be greatly influenced by its shape as well as the adsorption performance of the material itself.

試料1〜6と活性炭とを比較した場合、試料1〜6に含まれる炭素含有量は3.1〜0.8gであり、活性炭44gに対して大幅に少なくなっている。特に、試料6は炭素含有量が0.8gと最も少量であるのにも拘らず、他の試料と同レベルの脱臭性能を示すことが確認された。   When comparing the samples 1 to 6 and the activated carbon, the carbon content contained in the samples 1 to 6 is 3.1 to 0.8 g, which is significantly smaller than the activated carbon 44 g. In particular, it was confirmed that the sample 6 showed the same level of deodorization performance as the other samples, although the carbon content was as small as 0.8 g.

ただ、試料1及び2は、脱臭性能は優れているものの、その強度は素焼品の強度の23〜29%程度しかなく脆くなっている(表1)。なお、強度をYとし、PS乾燥重量%をXとすると、両者の間にはY=-9600.7X+8695という相関性が存在する(R2=0.9531)。 However, although samples 1 and 2 have excellent deodorizing performance, the strength is only about 23 to 29% of the strength of the unglazed product and is brittle (Table 1). When the strength is Y and the PS dry weight% is X, there is a correlation of Y = −9600.7X + 8695 (R 2 = 0.9531).

従って、混合物全体の乾燥重量に対してPSの乾燥重量%が30%未満のときには、脱臭剤の強度は5815を超えることになり、素焼品強度の約60%よりも大きい強度を保持することになる。素焼品の強度の50%の強度を有していれば、実用上はまったく問題なく使用することが可能であることは確認されており、これにより従来にない優れた強度を備えた脱臭剤を得ることができる。   Therefore, when the dry weight% of PS is less than 30% with respect to the dry weight of the entire mixture, the strength of the deodorizer will exceed 5815, and the strength of greater than about 60% of the unglazed product strength will be maintained. Become. It has been confirmed that if it has 50% strength of the unglazed product, it can be used without any problem in practical use. Can be obtained.

さらに、PS含有量が23重量%の場合は素焼品の69%の強度を、PS含有量が12重量%の場合は素焼品の74%の強度を、PS含有量が6重量%の場合は素焼品の81%の強度をそれぞれ備えており、PS含有量が低くなるほど焼成体の強度が増加しているのが判る。従って、PS含有量は、低いほど、焼成体の強度が増加するために好ましい。   Furthermore, when the PS content is 23% by weight, the strength of the unglazed product is 69%, when the PS content is 12% by weight, the strength of the unglazed product is 74%, and when the PS content is 6% by weight. It can be seen that the unglazed product has 81% strength, and the strength of the fired body increases as the PS content decreases. Therefore, the lower the PS content, the better the strength of the fired body.

以上、混合物全体に対するPS含有量と焼成体強度に見られる関係について説明したが、同様の関係が炭素含有率と焼成体強度についても見られる。すなわち、焼成体中の炭素含有率が小さいほど、焼成体強度が大きくなっている。具体的には炭素含有率が2.1%未満の場合は素焼品の強度の56%よりも大きい強度を保持することになる。炭素含有率が1.8%の場合は素焼品の69%の強度となり、炭素含有率が1.2%の場合は素焼品の74%の強度を、炭素含有率が1.0%の場合は素焼品の81%の強度をそれぞれ備えており、炭素含有率が低下するほど、焼成体の強度は大きくなる。   As mentioned above, although the relationship seen in PS content and the sintered body strength with respect to the whole mixture was demonstrated, the same relationship is seen also about a carbon content rate and a sintered body strength. That is, the smaller the carbon content in the fired body, the greater the strength of the fired body. Specifically, when the carbon content is less than 2.1%, the strength higher than 56% of the strength of the unglazed product is retained. When the carbon content is 1.8%, the strength of the unglazed product is 69%. When the carbon content is 1.2%, the strength of the unglazed product is 74%, and when the carbon content is 1.0%. Has a strength of 81% of the unglazed product, and the strength of the fired body increases as the carbon content decreases.

本実施形態では、混合物全体に対するPS含有量が6%、炭素含有率でいえば1.0%を最低レベルとして評価したが(試料6)、脱臭性能は他の試料(試料1〜5)と変わらない結果となった。   In this embodiment, the PS content with respect to the entire mixture was evaluated as 6%, and the carbon content was 1.0% as the lowest level (Sample 6), but the deodorizing performance was different from that of other samples (Samples 1 to 5). The result was unchanged.

一方、炭化焼成していない素焼品では、硫化水素やメチルメルカプタンといった酸性臭気成分に対する脱臭能はほとんど見られない。これらを考え合わせると、酸性臭気成分の脱臭能力は、主として無機多孔質構造体と、無機多孔質構造体の表面に付着した煤とが相乗的に作用することで発揮されるものと推測された。   On the other hand, in an unglazed product that has not been carbonized and fired, there is almost no deodorizing ability with respect to acidic odor components such as hydrogen sulfide and methyl mercaptan. Considering these factors, it was speculated that the deodorizing ability of the acidic odor component is exhibited mainly by the synergistic action of the inorganic porous structure and the soot adhering to the surface of the inorganic porous structure. .

以上の評価結果より、有機材料の量が6重量%未満、あるいは、炭素含有率が1.0%未満でもまだ十分な脱臭性能を発揮するものと推定される。なお、十分な脱臭性能を発揮するために最低限必要とされる有機材料量としては、多孔質構造体の全表面を被覆するだけの煤を発生し得る量の有機材料を用いればよいものと推定される。   From the above evaluation results, it is estimated that even if the amount of the organic material is less than 6% by weight or the carbon content is less than 1.0%, sufficient deodorizing performance is still exhibited. As the minimum amount of organic material required to exhibit sufficient deodorizing performance, it is sufficient to use an amount of organic material that can generate soot that covers the entire surface of the porous structure. Presumed.

各脱臭剤におけるアンモニアの脱臭性能を示すグラフGraph showing the deodorization performance of ammonia in each deodorizer 各脱臭剤におけるトリメチルアミンの脱臭性能を示すグラフGraph showing the deodorization performance of trimethylamine in each deodorant 各脱臭剤における硫化水素の脱臭性能を示すグラフGraph showing the deodorization performance of hydrogen sulfide in each deodorizer 各脱臭剤におけるメチルメルカプタンの脱臭性能を示すグラフGraph showing the deodorization performance of methyl mercaptan in each deodorant

Claims (5)

無機原料と、炭化焼成用の有機材料とを混合する際に、全体の乾燥重量に対して有機材料の乾燥重量が30重量%未満となるように配合し、この混合物を混練して、該混練物を素焼状に炭化焼成することを特徴とする脱臭剤の製造方法。 When mixing the inorganic raw material and the organic material for carbonization firing, the organic material is blended so that the dry weight of the organic material is less than 30% by weight with respect to the total dry weight, and the mixture is kneaded and the kneaded A method for producing a deodorant, characterized in that a product is carbonized and fired into an unglazed form. 前記有機材料が、ペーパースラッジであることを特徴とする請求項1記載の脱臭剤の製造方法。 The method for producing a deodorant according to claim 1, wherein the organic material is paper sludge. 無機原料と有機材料との混合物を成形して素焼状に炭化焼成してなる脱臭剤であって、前記混合物中の有機材料の配合割合が、乾燥重量%で30重量%未満であることを特徴とする脱臭剤。 A deodorant formed by molding a mixture of an inorganic raw material and an organic material and carbonizing and firing it into an unglazed form, wherein the blending ratio of the organic material in the mixture is less than 30% by dry weight Deodorant. 無機原料と有機材料との混合物を素焼状に炭化焼成してなる多孔質構造体であって、該構造体中の炭素含有率が2.1重量%未満であることを特徴とする脱臭剤。 A deodorizer, which is a porous structure obtained by carbonizing and firing a mixture of an inorganic raw material and an organic material in an unglazed form, wherein the carbon content in the structure is less than 2.1% by weight. 前記有機材料がペーパースラッジである請求項3又は4記載の脱臭剤。
The deodorizer according to claim 3 or 4, wherein the organic material is paper sludge.
JP2003342700A 2003-09-30 2003-09-30 Deodorant and its manufacturing method Pending JP2005103110A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003342700A JP2005103110A (en) 2003-09-30 2003-09-30 Deodorant and its manufacturing method
PCT/JP2004/012551 WO2005032605A1 (en) 2003-09-30 2004-08-31 Deodorant and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342700A JP2005103110A (en) 2003-09-30 2003-09-30 Deodorant and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005103110A true JP2005103110A (en) 2005-04-21

Family

ID=34419271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342700A Pending JP2005103110A (en) 2003-09-30 2003-09-30 Deodorant and its manufacturing method

Country Status (2)

Country Link
JP (1) JP2005103110A (en)
WO (1) WO2005032605A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256132A (en) * 1987-04-14 1988-10-24 Miyajima Shoji Adsorbent
JPH06104173B2 (en) * 1991-06-26 1994-12-21 實 伊神 Filter material made from paper sludge
JPH1179864A (en) * 1997-09-08 1999-03-23 Maruishi Yogyo Genryo Kk Carbonized ceramic
JP2001270773A (en) * 2000-01-10 2001-10-02 Oyo Kikaku:Kk Adsorbent
JP2002079098A (en) * 2000-09-07 2002-03-19 Shimaya:Kk Method for manufacturing ceramic for cleaning exhaust gas and converter for cleaning exhaust gas

Also Published As

Publication number Publication date
WO2005032605A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
BRPI0617033A2 (en) adsorbent, method for making an adsorbent, process for removing acid gases from damp air streams and method for producing an adsorbent
JP2007261906A (en) Porous granule
Manocha et al. Porosity development on activation of char from dry and wet babbool wood
JP2005103110A (en) Deodorant and its manufacturing method
KR100840735B1 (en) Deodorizing agent and method for manufacturing same
JP4119947B2 (en) Ceramic porous body and method for producing the same
ES2681680T3 (en) Method for preparing an oil binder
JP4732680B2 (en) Deodorant and method for producing the same
KR100787541B1 (en) Eco-brick including carbon type adsorbent and manufacturing method thereof
KR101392963B1 (en) Functional earthenware composition and method of manufacturing functional earthenware
JPH11302547A (en) Bamboo coal-incorporated composition and sheet using the same
KR0124983B1 (en) Preparation of granule of mixed molecular sieve
JP2007099603A (en) Ceramic product
JP3026339B2 (en) Deodorizing composition
JP4018886B2 (en) Carbide sintered body and manufacturing method thereof
JP2006272047A (en) Aldehyde gas adsorbent and its production method
JPS63256132A (en) Adsorbent
JP2016034620A (en) Metal oxide catalyst and deodorant
JP2011092808A (en) Adsorbent and method for manufacturing the same
JP2002274972A (en) Charcoal-ceramic body and method of producing the same
JP3431416B2 (en) Porous surface amorphous porous ceramics and method for producing the same
JP3052231B2 (en) Deodorizing composition
JP3060801B2 (en) Deodorizing composition
JP2000263012A (en) Porous powder, its manufacture and use thereof
JPH10194865A (en) Porous fired compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302