JP2005101417A - Method for manufacturing direct-current to direct-current power unit - Google Patents

Method for manufacturing direct-current to direct-current power unit Download PDF

Info

Publication number
JP2005101417A
JP2005101417A JP2003334960A JP2003334960A JP2005101417A JP 2005101417 A JP2005101417 A JP 2005101417A JP 2003334960 A JP2003334960 A JP 2003334960A JP 2003334960 A JP2003334960 A JP 2003334960A JP 2005101417 A JP2005101417 A JP 2005101417A
Authority
JP
Japan
Prior art keywords
manufacturing
prepreg
power supply
electromagnetic wave
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003334960A
Other languages
Japanese (ja)
Inventor
Hidekuni Sugawara
英州 菅原
Naoki Wakao
直樹 若生
Toshiaki Ono
敏明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003334960A priority Critical patent/JP2005101417A/en
Publication of JP2005101417A publication Critical patent/JP2005101417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Dc-Dc Converters (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a DC-DC power unit which can easily be manufactured without increasing stages and is small-sized and highly reliable. <P>SOLUTION: The method for manufacturing the DC-DC power unit constituted by joining electromagnetic wave shielding plates 1 formed of conductors provided with insulating films with both surfaces of a circuit board mounted with electronic components including a semiconductor 8 for power conversion, a capacitor 9, and an inductor in one body across prepreg 4 through thermocompression bonding includes a stage of providing opening parts 21, 22, and 23 which are large enough for the prepreg 4 to flow when the electromagnetic wave shielding plates are joined in the circuit board 7 and a stage of forming a plurality of devices by cutting. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、DC−DC電源装置の製造方法に関し、特に、表裏両面に電磁波遮蔽板を形成した低電圧用の一体型のDC−DC電源装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a DC-DC power supply device, and more particularly to a method for manufacturing a low-voltage integrated DC-DC power supply device in which electromagnetic wave shielding plates are formed on both front and back surfaces.

電池を駆動源とする携帯機器、特に携帯電話などの小型、薄型、高性能化等の技術が急速に進んでいる。これらの小型化等の技術は、これに用いられるL、C、R、半導体等の電子部品の小型化等の技術に負うものである。また、DC−DC電源装置に関しても、DC−DCコンバータやレギュレータを用いて小型化、薄膜化が進んだ表面実装用の構造のみならず、個別の電子部品を内蔵する構造の多層基板が開発されている。   Technologies such as miniaturization, thinning, and high performance of mobile devices using batteries as a driving source, particularly mobile phones, are rapidly progressing. These technologies such as miniaturization depend on technologies such as miniaturization of electronic components such as L, C, R, and semiconductor used in the technology. In addition, DC-DC power supply devices have been developed not only for surface-mounting structures that have been made smaller and thinner using DC-DC converters and regulators, but also for multi-layer boards that contain individual electronic components. ing.

このような状況の中で、プリプレグを用いて電子部品を多層基板に実装する製造方法が多数開示されている。例えば、特許文献1には、プリプレグに穴を開けて、コンデンサやインダクタを構成するセラミックチップを内蔵し、かつプリプレグ及びセラミックチップ上にめっき膜と銅箔とをパターニングする多層基板の製造方法が開示されている。   Under such circumstances, many manufacturing methods for mounting electronic components on a multilayer substrate using a prepreg have been disclosed. For example, Patent Document 1 discloses a method of manufacturing a multilayer substrate in which a hole is formed in a prepreg, a ceramic chip constituting a capacitor or an inductor is built in, and a plating film and a copper foil are patterned on the prepreg and the ceramic chip. Has been.

また、例えば、特許文献2には、多層基板の薄型化方法を工夫して、電子部品が納まる空間を確保したプリプレグを用いて複数の電子部品実装基板に搭載された電子部品を封じ込めるとともに熱加圧により立体的に積層する製造方法が開示されている。   In addition, for example, Patent Document 2 discloses a method for thinning a multilayer board, which encloses electronic components mounted on a plurality of electronic component mounting boards using a prepreg that secures a space in which the electronic components are accommodated, and applies heat. A manufacturing method for three-dimensionally laminating by pressure is disclosed.

また、電磁波遮蔽効果を高める方法としては、従来、図5に示すように、DC−DC電源装置114では、金属ケース113の中にコンデンサ、インダクタ、電力変換半導体等の電子部品140が実装された端子111を有する回路基板117を入れてモールドする方法が一般的に行われていた。しかし、この場合には電磁波遮蔽が完全となるものの、金属ケースを利用するために大きさや重さが大きな問題となっていた。そこで最近では、電子部品が実装された多層基板内に金属層や磁性粉末を利用した複合層からなる電磁波遮蔽層を設ける製造方法や電子部品が実装された基板全体を電磁波遮蔽層で覆う方法が開発されている。   As a method for enhancing the electromagnetic wave shielding effect, conventionally, as shown in FIG. 5, in the DC-DC power supply device 114, an electronic component 140 such as a capacitor, an inductor, and a power conversion semiconductor is mounted in a metal case 113. A method of placing and molding the circuit board 117 having the terminals 111 is generally performed. However, in this case, although the electromagnetic wave shielding is complete, the size and weight are serious problems because the metal case is used. Therefore, recently, there are a manufacturing method in which an electromagnetic wave shielding layer composed of a composite layer using a metal layer or magnetic powder is provided in a multilayer board on which electronic components are mounted, and a method in which the entire board on which electronic components are mounted is covered with an electromagnetic wave shielding layer. Has been developed.

例えば、特許文献3には、完全に電磁波を遮蔽するために、電子部品が実装された基板全体を電波吸収材料や導電性塗料の中に浸漬、塗布することで、基板全体に電磁波遮蔽膜を作製し、この電磁波遮蔽膜を基板の回路のコモンラインに接続する方法が開示されている。   For example, in Patent Document 3, in order to completely shield electromagnetic waves, the entire substrate on which electronic components are mounted is immersed and applied in a radio wave absorbing material or conductive paint, so that an electromagnetic wave shielding film is applied to the entire substrate. A method of manufacturing and connecting this electromagnetic wave shielding film to a common line of a circuit of a substrate is disclosed.

また、特許文献4には、電子部品が壁面に接触せずに納まる空間を有する絶縁性基板を用い、例えば湿式めっき法により、この空間にシールド用の金属層を形成し、GND電極をこの金属層と接合する電子回路装置のシールド方法が開示されている。   In Patent Document 4, an insulating substrate having a space in which an electronic component is accommodated without contacting a wall surface is used, and a metal layer for shielding is formed in this space by, for example, a wet plating method. A method of shielding an electronic circuit device joined to a layer is disclosed.

特開2002−164660号公報JP 2002-164660 A 特開2001−119147号公報JP 2001-119147 A 特開平09−246775号公報JP 09-246775 A 特開2001−267710号公報JP 2001-267710 A

しかしながら、上記のような従来のプリプレグを利用した多層基板の製造方法では、プリプレグに穴加工し、電子部品を多段に実装するため、比較的厚さのある部品の実装には適しているものの、厚さが薄い部品を実装する際には基板の厚さや部品を搭載しない空間領域の増加をともない、むしろ部品を実装した装置全体が厚くなってしまうという問題点がある。また、電子部品の実装部分のプリプレグを開口する方法も、電子部品がmmオーダと厚い場合には非常に有効な手段であるが、μmオーダの電子部品を実装する場合にはプリプレグに大部分が埋め込まれるために、不必要な工程となり、むしろ工数が増大することが避けられない。   However, in the multilayer substrate manufacturing method using the conventional prepreg as described above, holes are formed in the prepreg, and electronic components are mounted in multiple stages, which is suitable for mounting relatively thick components. When a component having a small thickness is mounted, there is a problem in that the thickness of the substrate and the space area in which the component is not mounted increase, and the entire apparatus on which the component is mounted becomes thick. In addition, the method of opening the prepreg on the mounting part of the electronic component is also a very effective means when the electronic component is as thick as mm, but most of the prepreg is mounted when mounting the electronic component of μm order. Since it is embedded, it becomes an unnecessary process, and it is inevitable that man-hours are increased.

次に、電磁波遮蔽方法については、電波吸収材料と合成樹脂からなる塗料の中に浸漬、塗布する方法は、装置全体を遮蔽する方法としては非常に適しているが、装置全体を塗布する厚さの制御が難しく、安全側に厚めに塗工することで装置全体が大きくなる傾向にある。また、湿式めっき法により電磁波遮蔽層を形成する場合についても、めっき液を浸透させるための十分な空間を必要とするために、さらに製品と電磁波遮蔽層との間にめっきによるブリッジの生成を防止するために、余分な空間を確保する必要があることで体積自体が大きく増大する問題点がある。   Next, regarding the electromagnetic wave shielding method, the method of immersing and applying in a paint made of a radio wave absorbing material and a synthetic resin is very suitable as a method of shielding the entire apparatus, but the thickness for applying the entire apparatus. It is difficult to control, and the whole apparatus tends to be large by applying a thick coating on the safe side. Also, when forming an electromagnetic wave shielding layer by wet plating, a sufficient space is required to allow the plating solution to penetrate, so that bridge formation due to plating is further prevented between the product and the electromagnetic wave shielding layer. Therefore, there is a problem that the volume itself is greatly increased because it is necessary to secure an extra space.

本発明は、上記の問題点を解決し、工程を増やすことなく容易に製造でき、小型でかつ信頼性の高いDC−DC電源装置の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a small-sized and highly reliable DC-DC power supply device that can be easily manufactured without increasing the number of steps.

上記の問題点を解決するため、本発明は、電子部品が搭載される回路基板と電磁波遮蔽板とを所定の均一な厚さを有するプリプレグを用いて一体構造としたものであり、薄膜フィルムに圧延銅箔によるパターニングされた基板のパターン以外の部分や辺部に所定の厚さのプリプレグに含まれる樹脂が流動するよう多数の開口部を設け、インダクタやコンデンサを実装し、その後、両面にプリプレグと絶縁被覆された導体(電磁波遮蔽板)とを配置し熱圧着することで一体化することを特徴とする。   In order to solve the above-described problems, the present invention is an integrated structure using a prepreg having a predetermined uniform thickness for a circuit board on which electronic components are mounted and an electromagnetic wave shielding plate. A large number of openings are provided in the portions other than the pattern of the substrate patterned with rolled copper foil and the side portions so that the resin contained in the prepreg of a predetermined thickness flows, and inductors and capacitors are mounted. And an insulating-coated conductor (electromagnetic wave shielding plate) are arranged and integrated by thermocompression bonding.

即ち、本発明は、インダクタおよびコンデンサを含む電子部品を搭載または内蔵する回路基板の両面に、プリプレグを介して電磁波遮蔽板を熱圧着により接合して一体化するDC−DC電源装置の製造方法であって、前記基板に、前記電磁波遮蔽板を接合する際にプリプレグが流動できる大きさの開口部を設ける工程を含むこと特徴とするDC−DC電源装置の製造方法である。   That is, the present invention is a method of manufacturing a DC-DC power supply apparatus in which an electromagnetic wave shielding plate is joined by thermocompression bonding via a prepreg to both surfaces of a circuit board on which an electronic component including an inductor and a capacitor is mounted or incorporated. A method for manufacturing a DC-DC power supply apparatus comprising the step of providing the substrate with an opening having a size that allows the prepreg to flow when the electromagnetic wave shielding plate is joined.

また、本発明は、切断により複数個の装置を形成する工程を含むことを特徴とする上記のDC−DC電源装置の製造方法である。   In addition, the present invention is the above-described method for manufacturing a DC-DC power supply device, which includes a step of forming a plurality of devices by cutting.

また、本発明は、前記複数個の装置を製造することができる大きさの回路基板の一辺に形成する開口部は、切断しろ以上の幅を有し、総長さが切断長さ以下で、かつ少なくとも1個以上であることを特徴とする上記のDC−DC電源装置の製造方法である。   According to the present invention, the opening formed on one side of the circuit board having a size capable of manufacturing the plurality of devices has a width greater than or equal to the cutting margin, the total length is equal to or less than the cutting length, and It is a manufacturing method of said DC-DC power supply device characterized by being at least 1 or more.

また、本発明は、前記プリプレグは、厚さが200μm以下のものを組み合わせて接合したことを特徴とする上記のDC−DC電源装置の製造方法である。   Further, the present invention is the above-described method for manufacturing a DC-DC power supply device, wherein the prepreg is bonded in combination with a thickness of 200 μm or less.

また、本発明は、前記電磁波遮蔽板は、箔、線または織物状の金属からなる導体層と、該導体層を絶縁被覆した樹脂または金属酸化物からなる絶縁層とから構成されたシートまたは不織布状であり、前記導体層の平均厚さが170μm以下、かつ、前記絶縁層の片側の平均厚さが50μm以下であることを特徴とする上記のDC−DC電源装置の製造方法である。   In the present invention, the electromagnetic wave shielding plate is a sheet or nonwoven fabric comprising a conductor layer made of a foil, wire, or woven metal, and an insulating layer made of a resin or metal oxide that is insulation-coated on the conductor layer. The above-described method for manufacturing a DC-DC power supply device is characterized in that the conductor layer has an average thickness of 170 μm or less and one side of the insulating layer has an average thickness of 50 μm or less.

また、本発明は、前記電子部品を、電磁波遮蔽効果を有する導体を挟んだ厚さが270μm以下のプリプレグを介して上下に積み重ねて配置したことを特徴とする上記のDC−DC電源装置の製造方法である。   Further, the present invention provides the above-described DC-DC power supply device, wherein the electronic component is arranged by being stacked up and down via a prepreg having a thickness of 270 μm or less with a conductor having an electromagnetic wave shielding effect interposed therebetween. Is the method.

このように、本発明の絶縁被覆された電磁波遮蔽板を利用したDC−DC電源装置は、金属ケースで覆うことなく一体化することで小型化および製造工程の簡略化に寄与する効果がある。また、必要最小限の薄いプリプレグを用いることで装置全体が薄型化され、機械的ストレスの解消と熱放散により優れた信頼性が確保できる。   As described above, the DC-DC power supply device using the electromagnetically shielded electromagnetic shielding plate according to the present invention has an effect of contributing to miniaturization and simplification of the manufacturing process by being integrated without being covered with the metal case. Further, by using the minimum necessary thin prepreg, the entire apparatus is thinned, and excellent reliability can be secured by eliminating mechanical stress and heat dissipation.

最近では半導体技術の進歩により、付属部品が極端に少ない状態で、かつμmオーダで実装する薄型化の要求を満足するDC−DC電源装置や電子部品を製造することが可能になった。また、稼動時にも変換効率が高いために発熱量が少なくなり、さらに待機時の電流ロスが少なく、これらの装置の高密度実装が可能となっている。電子部品の実装密度を高くすることで、実装領域の空間が極端に小さくでき、プリプレグを流動させることで、プリプレグに含まれる樹脂を実装領域の大部分の空間内に満たすことができ、信頼性を大幅に向上させることができるようになった。   Recently, advances in semiconductor technology have made it possible to manufacture DC-DC power supply devices and electronic components that satisfy the requirements for thinning that are mounted in the order of μm with extremely few accessory parts. In addition, since the conversion efficiency is high even during operation, the amount of heat generation is reduced, and further, the current loss during standby is small, enabling high-density mounting of these devices. By increasing the mounting density of electronic components, the space in the mounting area can be made extremely small, and by flowing the prepreg, the resin contained in the prepreg can be filled in most of the space in the mounting area. Can be greatly improved.

しかし、実装領域内を流動したプリプレグで完全に満たすためには、片側が平面基板の場合にはプリプレグの流動を妨げる堰となるために新たな方法が必要であった。そこで、基板の配線パターン以外の部分に開口部を設け、プリプレグの流動性を妨げずに積極的に回り込むことができる構造とした。また、フレームや空中配線等で回路を形成する場合も同様にプリプレグの流動性を利用し実装空間内に回り込むことができる構造とした。さらに電子部品が搭載される基板が薄くなるにともない装置の端部に基板が露出している部分が少ない方が実装時の基板への機械的応力が解消されることで、実装される電子部品へ及ぼす機械的ダメージが少なくなり、はんだクラック等の発生が激減し信頼性が向上することが分かった。そのため、装置の端部に相当する基板の辺部を開口する構造とし、開口した部分にプリプレグの樹脂で充填させる構造をとることとした。なお、この開口部は、後の工程で個々の装置に切断するため、切断しろ以上の幅を有し、総長さが切断長さ以下で、かつ1個または複数個形成される。   However, in order to completely fill the mounting region with the flowing prepreg, a new method is required to serve as a weir that hinders the flow of the prepreg when one side is a flat substrate. Therefore, an opening is provided in a portion other than the wiring pattern of the substrate so that the prepreg can be actively wound without disturbing the fluidity of the prepreg. In addition, when a circuit is formed with a frame, an aerial wiring, or the like, the structure can be used so that the flow of the prepreg can be used to wrap around the mounting space. Furthermore, as the board on which the electronic component is mounted becomes thinner, the smaller the portion where the board is exposed at the end of the device, the more the mechanical stress on the board during mounting is eliminated, so the mounted electronic component It has been found that the mechanical damage on the surface is reduced, the occurrence of solder cracks is drastically reduced and the reliability is improved. For this reason, the side portion of the substrate corresponding to the end portion of the apparatus is opened, and the opened portion is filled with the resin of the prepreg. In addition, since this opening part cut | disconnects to an individual apparatus at a next process, it has a width | variety more than a cutting margin, a total length is below a cutting length, and one or more are formed.

また、DC−DC電源装置等に用いられるヘリカル型インダクタや有機電解コンデンサは、要求される特性によりまだまだ大きな面積を必要とする。そこで、これらを小さな実装面積内に収納するためには積み重ねることで対処しなければ小型化の要求に満足しない場合がある。この小型化の要求に応える部品の配置の仕方は各々の部品の積み重ね、さらに端子部分を左右にずらし回路配線と接続することや、各々の端子を直交するような積み重ねた配置とし回路配線と接続することができるが、どのような立体的な積み重ねによる配置を採用しても、実装領域内の空間が大きくなるためにプリプレグの流動量を多くする必要がある。そこで単なる接着剤を用いることなく、これらの部品よりも大きなプリプレグで接合することで実装領域内に円滑にプリプレグ量を供給調整する構造とする。また、電磁波遮蔽をされていないインダクタを採用する場合は、インダクタを電磁波遮蔽するために金属箔や布織等を間に挟んだプリプレグを用いて接合することもできる。ここで用いられるプリプレグは、ポリイミド樹脂、エポキシ樹脂、アラミドエポキシ樹脂等の一般的基板に用いられる樹脂が選定できる。また、樹脂中にガラスクロス入り、アラミド繊維入り、ナイロン不織布やガラスクロスを用いないものも利用できる。   Further, helical inductors and organic electrolytic capacitors used for DC-DC power supply devices and the like still require a large area due to required characteristics. Therefore, in order to store them in a small mounting area, there is a case where the requirement for downsizing is not satisfied unless they are dealt with by stacking. The layout of the parts that meet this demand for miniaturization is the stacking of each part, and the terminal part is shifted to the left and right to connect to the circuit wiring, and each terminal is stacked to be orthogonal and connected to the circuit wiring. However, even if any three-dimensional stacking arrangement is adopted, it is necessary to increase the flow amount of the prepreg because the space in the mounting area becomes large. Therefore, a structure is adopted in which the amount of prepreg is smoothly supplied and adjusted in the mounting region by joining with a prepreg larger than these components without using a simple adhesive. In addition, when an inductor that is not shielded against electromagnetic waves is employed, the inductor can be joined using a prepreg sandwiched between a metal foil or a cloth to shield the electromagnetic wave. As the prepreg used here, a resin used for a general substrate such as a polyimide resin, an epoxy resin, or an aramid epoxy resin can be selected. Further, a resin containing glass cloth, aramid fiber, nylon non-woven fabric or glass cloth can be used.

ここで、プリプレグが硬化する際に溶剤が揮発し発生したガスを外に逃がすための細孔が必要となるが、プリプレグの体積が増せば増すほど均一な硬化が難しくなる。本発明の装置は小型であるが、プリプレグの厚さが200μmを越えると製造上取り扱いが難しくなる。そこで単位プリプレグの厚さを200μm以下のものを使用することとした。   Here, when the prepreg is cured, pores are required for allowing the solvent to volatilize and escape the generated gas. However, as the volume of the prepreg increases, uniform curing becomes more difficult. Although the apparatus of the present invention is small, if the thickness of the prepreg exceeds 200 μm, it becomes difficult to handle in production. Therefore, a unit prepreg having a thickness of 200 μm or less was used.

次に、金属板による電磁波遮蔽を考慮すると、銅の表皮深さは周波数1MHzで66μm、10MHzで21μm、100MHzで7μm、1GHzで2μmとなる。また、導体層に、銅やアルミニウム等の金属箔、ニッケル被覆炭素繊維やワイヤー状のメッシュ等の布織等、金属粉末やセンダスト系材料が混錬されたシートを用いることができるが、これらの各種材料を使用して、1MHz以上の高周波を遮断するためには、銅板以上の厚さが必要となり、材料の平均厚さが170μm以下の厚さが必要である。したがって、この導体層には、導電率を1×104Ω/□以下の値を有する材料を選択することで、良好な電磁波遮蔽効果が得られることになる。この導体層を絶縁する層は、熱放散を考慮し片面の厚さが50μm以下のポリイミド樹脂、エポキシ樹脂、アラミドエポキシ樹脂等の一般的な樹脂フィルムで覆うことで形成する。即ち薄膜絶縁フィルムを熱圧着することや薄膜塗膜を形成し硬化することで製造できる。 Next, considering the electromagnetic wave shielding by the metal plate, the copper skin depth is 66 μm at a frequency of 1 MHz, 21 μm at 10 MHz, 7 μm at 100 MHz, and 2 μm at 1 GHz. In addition, a sheet in which metal powder or sendust-based material is kneaded, such as a metal foil such as copper or aluminum, a woven fabric such as nickel-coated carbon fiber or a wire mesh, can be used for the conductor layer. In order to cut off a high frequency of 1 MHz or higher using various materials, a thickness of a copper plate or more is required, and an average thickness of the material is 170 μm or less. Therefore, a good electromagnetic wave shielding effect can be obtained by selecting a material having a conductivity of 1 × 10 4 Ω / □ or less for this conductor layer. The layer that insulates the conductor layer is formed by covering with a general resin film such as polyimide resin, epoxy resin, or aramid epoxy resin having a thickness of 50 μm or less in consideration of heat dissipation. That is, it can be produced by thermocompression bonding a thin film insulating film or by forming and curing a thin film coating film.

センダスト系材料を用いた場合はセンダストの特性上、GND電極との接続を考慮する必要がないが、銅等の導体層から基板のGND電極に接続する場合は絶縁被覆された電磁波遮蔽板にUVやYAGレーザを用いて電磁波遮蔽板から回路基板のGND電極に達する外径が100μm程度の底付穴を開けて、導電材料を充填することで電磁波遮蔽効果が増大する。更にこの穴の導電材料の上に有機絶縁物を塗工して封止してもよい。また、前もって、GND電極に接続する電磁波遮蔽板の回路基板側の絶縁層に所定の穴を開け銅等の導体を露出させ、回路基板の電磁波遮蔽板との接続個所に導体を盛り上げた個所と一体化する際に熱圧着することで接続させてもよい。   When Sendust-based materials are used, there is no need to consider the connection with the GND electrode due to the characteristics of Sendust. However, when connecting from the conductor layer such as copper to the GND electrode of the substrate, the insulation-coated electromagnetic shielding plate is UV-coated. The electromagnetic shielding effect is increased by forming a bottomed hole having an outer diameter of about 100 μm from the electromagnetic shielding plate to the GND electrode of the circuit board using a YAG laser and filling with a conductive material. Further, an organic insulator may be applied on the conductive material in the hole and sealed. In addition, a predetermined hole is made in the insulating layer on the circuit board side of the electromagnetic wave shielding plate connected to the GND electrode, and a conductor such as copper is exposed, and the conductor is raised at the connection point with the electromagnetic wave shielding plate of the circuit board. When they are integrated, they may be connected by thermocompression bonding.

装置に端子を形成する場合には、装置内の基板にIC用端子フレーム等を用いてはんだや導電接着剤にて接続し、装置から金属端子を露出させることや、部品点数を少なくするために電磁波遮蔽板の一部を電気的に分割、独立させ、回路基板の回路と導電材料で接続することや、回路基板の裏面にはんだや導電接着剤に導電材料を盛り上げて、プリプレグから導電材料を露出させることにより行う。導電材料で接続したり、露出させたりした場合には、平面状端子として利用する。   When forming terminals in the device, connect it to the board in the device with solder or conductive adhesive using an IC terminal frame, etc., to expose the metal terminals from the device, or to reduce the number of parts A part of the electromagnetic shielding plate is electrically divided and made independent and connected to the circuit board circuit with a conductive material, or a conductive material is raised on the back of the circuit board with solder or conductive adhesive, and the conductive material is removed from the prepreg. This is done by exposing. When connected with a conductive material or exposed, it is used as a planar terminal.

装置の端子と電磁波遮蔽用の導体露出部との短絡がある場合には、導体露出部に絶縁層を形成し絶縁処理を行うか、もしくは前もって導体が露出しないように導体をパターン化して電磁波遮蔽板の絶縁層内に埋め込めばよい。   If there is a short circuit between the terminal of the device and the exposed conductor for shielding electromagnetic waves, an insulating layer is formed on the exposed conductor to perform insulation treatment, or the conductor is patterned in advance so that the conductor is not exposed. What is necessary is just to embed in the insulating layer of a board.

以下に、本発明の実施例を詳細に説明する。以下の実施例ではDC−DC電源装置としてDC−DCコンバータの例で示す。   Examples of the present invention will be described in detail below. In the following embodiments, a DC-DC power supply device is shown as an example of a DC-DC converter.

(実施例1)
図1は、本発明の実施例1におけるDC−DC電源装置の一部を破砕させて示す斜視図である。実際の製造時には多数個取りの多層基板で製造を行うが、図面上では分かりやすくするために、1装置分の基板や端子で示した。図2は、図1のDC−DC電源装置を構成する主な部品を示す斜視図である。図1に示すように、実施例1のDC−DC電源装置は、開口部21、22、23を有する回路基板7上に、電力変換用半導体8、コンデンサ9、インダクタ等の電子部品と端子11をはんだ実装し、この上下に、プリプレグ4、電磁波遮蔽板1を順に接合して一体化したものである。
(Example 1)
FIG. 1 is a perspective view showing a part of the DC-DC power supply apparatus according to the first embodiment of the present invention. In actual manufacturing, a multi-layer substrate with a large number of pieces is manufactured. However, in order to make it easy to understand on the drawing, the substrate and terminals for one device are shown. FIG. 2 is a perspective view showing main parts constituting the DC-DC power supply device of FIG. As shown in FIG. 1, the DC-DC power supply device according to the first embodiment includes a power conversion semiconductor 8, a capacitor 9, an electronic component such as an inductor, and a terminal 11 on a circuit board 7 having openings 21, 22, and 23. Is mounted by soldering, and the prepreg 4 and the electromagnetic wave shielding plate 1 are joined together in this order on top and bottom.

このような構成の実施例1におけるDC−DC電源装置は、次のようにして作製される。まず、図2(a)に示すように、電磁波遮蔽用の基材(電磁波遮蔽板1)として、電源装置として完成させた場合に端部に露出しないように形成した厚さ9μm銅箔の両面に厚さ12μmのポリイミド系樹脂を形成したフィルムを作製した。今回採用した銅箔の厚さが9μmのものは、10MHz以上の高周波に対して有効な電磁波遮蔽効果を示す。また、GND電極と接続するために、UVレーザを用いて基板側のポリイミド系樹脂の接続個所33に外径が100μmの底付穴を開け、銅箔を露出させた。この銅箔が露出した個所に30μm厚さの導電剤を塗工し、仮キュア(硬化)した。また、銅箔を露出させた電磁波遮蔽板1は、側面に端子形成部12を有する。   The DC-DC power supply device according to the first embodiment having such a configuration is manufactured as follows. First, as shown in FIG. 2A, both surfaces of a 9 μm-thick copper foil formed so as not to be exposed at the end when the power supply device is completed as a base material for electromagnetic wave shielding (electromagnetic wave shielding plate 1). A film having a polyimide resin with a thickness of 12 μm formed thereon was prepared. The copper foil having a thickness of 9 μm adopted this time exhibits an effective electromagnetic shielding effect against a high frequency of 10 MHz or more. Further, in order to connect to the GND electrode, a bottomed hole having an outer diameter of 100 μm was made in the polyimide resin connecting portion 33 on the substrate side using a UV laser to expose the copper foil. A conductive agent having a thickness of 30 μm was applied to the exposed portion of the copper foil, and was temporarily cured (cured). Moreover, the electromagnetic wave shielding plate 1 with the copper foil exposed has a terminal forming portion 12 on the side surface.

次に、図2(c)に示すように、9μmのパターン化された銅箔と厚さ15μmからなるポリイミド系の樹脂フィルムからなる3層の回路形成用の多層基板(回路基板)7を形成した。さらに、パターンが形成されていない部分から基板の全面積の30%に相当する面積にわたって開口した。開口する際には、1箇所で30%相当分とせずに、1箇所の大きさを0.01mm以上の面積を有するように辺部も含めて複数箇所に分割させて、金型を用いたマイクロプレス、UVレーザやYAGレーザにより開口した。実際には、パターンが形成されていない部分および辺部に加工して開口し、特に端子が形成される2辺はプリプレグに含まれる樹脂分が流動するように4分割し開口し開口部22を形成し、端子11が形成されない辺は3分割し開口して開口部23を形成した。さらに、基板上には、次工程で部品が搭載される位置にも開口部がかかるようにして5箇所を開口し開口部21を形成した。 Next, as shown in FIG. 2 (c), a multilayer substrate (circuit substrate) 7 for forming a three-layer circuit comprising a 9 μm patterned copper foil and a polyimide resin film having a thickness of 15 μm is formed. did. Further, an opening was made from an area where no pattern was formed over an area corresponding to 30% of the total area of the substrate. When opening, do not make 30% equivalent at one place, and divide the size of one place into multiple places including sides so that it has an area of 0.01 mm 2 or more. The aperture was opened by a micro press, UV laser or YAG laser. Actually, the portion and side where the pattern is not formed are processed and opened, and in particular, the two sides where the terminal is formed are divided into four so that the resin component contained in the prepreg flows, and the opening 22 is formed. The side where the terminal 11 was not formed was divided into three and opened to form the opening 23. Further, the opening 21 was formed on the substrate by opening five places so that the opening is also applied to the position where the component is mounted in the next process.

次いで、回路基板7を用いて、電力変換用半導体のベアチップ、コンデンサやインダクタ等の電子部品と端子をはんだ実装した。同時にGND電極の所定個所に電磁波遮蔽板1との接続用のはんだ盛りを行った。これらの電子部品の実装に際しては、基板下面側への部品の実装も可能である。   Next, the circuit board 7 was used to solder-mount electronic components such as bare chips, capacitors, inductors, and the like of power conversion semiconductors. At the same time, soldering for connection to the electromagnetic wave shielding plate 1 was performed at a predetermined position of the GND electrode. When mounting these electronic components, it is also possible to mount the components on the lower surface side of the board.

次に、搭載する電子部品の概略を述べる。電力変換用半導体としては同期整流型降圧DC−DCコンバータ用ICのベアチップで形状が長さ2.5mm、幅2.0mm、高さ0.6mmのものを用いた。コンデンサはB温度特性を有する2.2μFの積層セラミックコンデンサで長さが2.0mm、幅が1.25mm、高さが0.7mmのものを2ケ用いた。インダクタは2μHの積層チップインダクタで長さが1.6mm、幅が0.8mm、高さが0.7mmのものを用いた。他に長さが1.0mm、幅が0.5mm、高さが0.5mmの温度補償用の小容量チップコンデンサやチップ抵抗を用いた。   Next, an outline of electronic components to be mounted will be described. As the power conversion semiconductor, a synchronous rectification step-down DC-DC converter IC bare chip having a length of 2.5 mm, a width of 2.0 mm, and a height of 0.6 mm was used. Two capacitors having a B temperature characteristic of 2.2 μF multilayer ceramic capacitor having a length of 2.0 mm, a width of 1.25 mm, and a height of 0.7 mm were used. The inductor used was a 2 μH multilayer chip inductor having a length of 1.6 mm, a width of 0.8 mm, and a height of 0.7 mm. In addition, a small-capacity chip capacitor or chip resistor for temperature compensation having a length of 1.0 mm, a width of 0.5 mm, and a height of 0.5 mm was used.

基板上の実装領域内の電子部品が占める体積比率は最密充填的に実装させても60%程度であり、残り40%は電子部品が実装されない空間領域であり、この電子部品が実装されていない空間領域ヘプリプレグの流動性を利用し、樹脂を均一に補充する必要がある。樹脂を補充する際に片面のプリプレグからのみ補充すると、プリプレグ樹脂分の厚さが200μm以上の厚さが必要となってしまう場合が多く、プリプレグの厚さが200μmを越えると均一な硬化が難しくなるために、プリプレグの厚さを200μm以下のものを利用する必要がある。そこで、電子部品が実装されない部分を埋めるための樹脂の不足分は、基板下面に配置されたプリプレグに含まれる樹脂の流動性を用いて基板に形成した開口部から基板上の部品実装領域へ流動補充する。本実施例では図2(b)に示すように、2枚重ねにした100μm厚さを有するポリイミド樹脂からなるプリプレグ4を基板上下面側から接合した。   The volume ratio occupied by the electronic components in the mounting area on the substrate is about 60% even when close-packed, and the remaining 40% is a space area where no electronic components are mounted. It is necessary to replenish the resin uniformly by utilizing the fluidity of the prepreg that is not in the space region. If the resin is replenished only from one side of the prepreg, the thickness of the prepreg resin is often required to be 200 μm or more. If the thickness of the prepreg exceeds 200 μm, uniform curing is difficult. Therefore, it is necessary to use a prepreg having a thickness of 200 μm or less. Therefore, the shortage of resin to fill the part where electronic components are not mounted flows from the opening formed in the board using the fluidity of the resin contained in the prepreg placed on the lower surface of the board to the component mounting area on the board. refill. In this embodiment, as shown in FIG. 2 (b), two prepregs 4 made of polyimide resin having a thickness of 100 μm and laminated were joined from above and below the substrate.

この上下面に最初に準備した電磁波遮蔽用の基材を配置して125℃、9.8×105Pa(10kgf/cm2)の圧力で熱圧着した。ダイサーを用いてこの装置群を個辺の装置(長さ4.5mm、幅3.2mm)の形状に切断した。 The first prepared electromagnetic shielding substrate was placed on the upper and lower surfaces, and thermocompression bonded at 125 ° C. and a pressure of 9.8 × 10 5 Pa (10 kgf / cm 2 ). The device group was cut into a single-sided device (length 4.5 mm, width 3.2 mm) using a dicer.

以上、プリプレグを用いることで電源回路全体が一体化された装置として出来上がり、従来から行われている図5の金属ケースや樹脂ケースを用いた場合よりも体積比で42%が削減される小型化の効果が得られた。更に、製造歩留が100%(n=100p)、変換効率が92%であり、信頼性の高く、電源性能として優れた電源が得られた。   As described above, by using the prepreg, the power supply circuit as a whole is completed as an integrated device, and it is reduced in size by 42% compared to the conventional case of using the metal case or resin case of FIG. The effect of was obtained. Furthermore, the production yield was 100% (n = 100p), the conversion efficiency was 92%, a highly reliable power source with excellent power source performance was obtained.

(実施例2)
図3は、本発明の実施例2におけるDC−DC電源装置の一部を破砕させて示す斜視図である。実際の製造時には多数個取りの多層基板で製造を行うが、図面上では分かりやすくするために、1装置分の基板や端子で示した。図4は、図3のDC−DC電源装置を構成する主な部品を示す斜視図である。図3に示すように、実施例2のDC−DC電源装置は、開口部21a、22a、23aを有する回路基板7a上に、電力変換用半導体8a、コンデンサ9a、インダクタ10等の電子部品をはんだ実装し、長辺の両端部に端子11aを設け、これらの上下に、プリプレグ4、電磁波遮蔽板1aを順に接合して一体化したものである。また、コンデンサ9a上に電磁波遮蔽効果を有するプリプレグ5、この上にインダクタ10が配置されている。この場合、プリプレグ5には厚さが導体を含めて270μm以下であるものが使用される。
(Example 2)
FIG. 3 is a perspective view showing a part of the DC-DC power supply device according to the second embodiment of the present invention. In actual manufacturing, a multi-layer substrate with a large number of pieces is manufactured, but in order to make it easy to understand on the drawing, it is shown with a substrate and a terminal for one device. FIG. 4 is a perspective view showing main parts constituting the DC-DC power supply device of FIG. As shown in FIG. 3, in the DC-DC power supply device according to the second embodiment, electronic components such as a power conversion semiconductor 8a, a capacitor 9a, and an inductor 10 are soldered onto a circuit board 7a having openings 21a, 22a, and 23a. The terminal 11a is provided at both ends of the long side, and the prepreg 4 and the electromagnetic wave shielding plate 1a are joined together in order above and below these so as to be integrated. A prepreg 5 having an electromagnetic wave shielding effect is disposed on the capacitor 9a, and an inductor 10 is disposed thereon. In this case, a prepreg 5 having a thickness of 270 μm or less including the conductor is used.

このような構成の実施例2におけるDC−DC電源装置は、次のようにして作製される。まず、図4(a)に示すように、電磁波遮蔽用の基材(電磁波遮蔽板1a)として、厚さ20μmのニッケル被覆炭素繊維にエポシキ系樹脂を被覆した、少なくとも表面にエポキシ樹脂が形成された100μm厚さのフィルムを作製した。ニッケル被覆炭素繊維では1MHz以上の高周波に対して有効な電磁波遮蔽効果を示す。また、基板側の電磁波遮蔽板1aは、長辺の両端部に端子形成部12aを有する。   The DC-DC power supply device according to the second embodiment having such a configuration is manufactured as follows. First, as shown in FIG. 4A, an epoxy resin is formed on at least the surface of a nickel-coated carbon fiber having a thickness of 20 μm coated as an electromagnetic shielding substrate (electromagnetic wave shielding plate 1a). A film having a thickness of 100 μm was prepared. Nickel-coated carbon fibers exhibit an effective electromagnetic shielding effect against high frequencies of 1 MHz or higher. Further, the electromagnetic wave shielding plate 1a on the substrate side has terminal forming portions 12a at both ends of the long side.

次に、図4(c)に示すように、パターン化された圧延銅箔と厚さ15μmからなるポリイミド系の樹脂フィルムからなる3層の回路形成用の多層基板(回路基板)7aを形成した。さらに、パターンが形成されていない部分から多層基板の全面積の20%に相当する面積にわたって開口した。開口する際には、1箇所で20%相当分とせずに、1箇所の大きさを0.02mm以上の面積を有するように辺部も含めて複数箇所に分割させ、金型を用いたマイクロプレス、UVレーザやYAGレーザにより開口した。実際には、パターンが形成されていない部分および辺部に加工して開口し、端子が形成されない辺は2分割し開口し開口部23aを形成した。また端子が形成される辺を3分割し開口し開口部22aを形成した。さらに、端子形成部に対応する、回路パターンが形成された部分に外径が80μmの穴を開けた。基板上には、次工程で部品が搭載される位置にも開口部がかかるようにして3箇所を開口し開口部21aを形成した。 Next, as shown in FIG. 4C, a multilayer substrate (circuit substrate) 7a for forming a circuit composed of a patterned rolled copper foil and a polyimide resin film having a thickness of 15 μm was formed. . Furthermore, an opening was made over an area corresponding to 20% of the total area of the multilayer substrate from a portion where no pattern was formed. When opening, it was not divided into 20% equivalent at one place, and the size of one place was divided into a plurality of places including the side so as to have an area of 0.02 mm 2 or more, and a mold was used. Opening was performed with a micro press, UV laser or YAG laser. Actually, the portion and the side where the pattern is not formed are processed and opened, and the side where the terminal is not formed is divided into two to form the opening 23a. Further, the side where the terminal is formed is divided into three and opened to form the opening 22a. Further, a hole having an outer diameter of 80 μm was formed in a portion where the circuit pattern was formed corresponding to the terminal forming portion. On the substrate, the opening 21a was formed by opening three places so that the opening is also applied to the position where the component is mounted in the next step.

次いで、回路基板7aを用いて、電力変換用半導体のベアチップや機能性高分子アルミニウム電解コンデンサ等のインダクタ以外の電子部品と装置の端子を仮止め固着した。機能性高分子アルミニウム電解コンデンサ上に電磁波遮蔽板にさらに50μm厚さのプリプレグ5にてサンドイッチしたものを配置し、この上にCoFeSiB系の軟磁性体とエポキシ系有機フィルムを積層した薄膜磁性体の周りを銅線で100ターンの密巻線を施したヘリカル型インダクタを仮止め固着した。仮止め固着後にはんだを用いて実装した。更に、基板裏面から端子形成部に金属が混合された導電接着剤を塗工し、次工程でプリプレグ4aを突き抜けて端子形成の一部となるように盛り上げた。この端子形成に際しては、今回用いた導電接着剤の替わりにはんだ盛りをすることも可能である。   Next, using the circuit board 7a, electronic components other than the inductor, such as a power conversion semiconductor bare chip and a functional polymer aluminum electrolytic capacitor, and the terminal of the device were temporarily fixed. A thin film magnetic body in which an electromagnetic wave shielding plate sandwiched by 50 μm thick prepreg 5 is placed on a functional polymer aluminum electrolytic capacitor, and a CoFeSiB soft magnetic material and an epoxy organic film are laminated thereon. A helical inductor with 100 turns of dense winding with copper wire was temporarily fixed. It was mounted using solder after temporary fixing. Further, a conductive adhesive mixed with a metal was applied from the back surface of the substrate to the terminal formation portion, and in the next step, the prepreg 4a was penetrated to be part of the terminal formation. In forming this terminal, it is also possible to add solder instead of the conductive adhesive used this time.

次に、搭載する電子部品の概略を述べる。電力変換用の半導体としては同期整流型降圧DC−DCコンバータ用ICのベアチップで形状が長さ2.5mm、幅2.0mm、高さ0.6mmのものを用いた。コンデンサは2.2μFの機能性高分子アルミニウム電解コンデンサで長さが2.5mm、幅が2.2mm、高さが0.3mmのものを用いた。インダクタは2μHの電磁波遮蔽構造が施されていないヘリカル型インダクタで長さが2.5mm、幅が2.0mm、高さが0.3mmのものを用いた。他に長さが1.0mm、幅が0.5mm、高さが0.5mmの温度補償用の小容量チップコンデンサやチップ抵抗を用いた。   Next, an outline of electronic components to be mounted will be described. As a semiconductor for power conversion, a synchronous rectification step-down DC-DC converter IC with a bare chip having a length of 2.5 mm, a width of 2.0 mm, and a height of 0.6 mm was used. The capacitor used was a 2.2 μF functional polymer aluminum electrolytic capacitor having a length of 2.5 mm, a width of 2.2 mm, and a height of 0.3 mm. As the inductor, a helical inductor not having an electromagnetic wave shielding structure of 2 μH and having a length of 2.5 mm, a width of 2.0 mm, and a height of 0.3 mm was used. In addition, a small-capacity chip capacitor or chip resistor for temperature compensation having a length of 1.0 mm, a width of 0.5 mm, and a height of 0.5 mm was used.

基板上の実装領域内の電子部品が占める体積比率は最密充填的に実装させても60%程度であり、残り40%は電子部品が実装されない空間領域であり、この電子部品が実装されていない空間領域ヘプリプレグの流動性を利用し、樹脂を均一に補充する必要がある。そこで、電子部品が実装されない部分を埋めるための樹脂の不足分は、基板下面に配置されたプリプレグに含まれる樹脂の流動性を用いて基板に形成された開口部から基板上の部品実装領域へ流動補充する。本実施例では、図4(b)に示すように、基板上側には2枚重ねにした100μm厚さを有するポリイミド樹脂からなるプリプレグ4を、基板下面側には100μm厚さのポリイミド樹脂からなるプリプレグ4aを用いて接合した。   The volume ratio occupied by the electronic components in the mounting area on the substrate is about 60% even when close-packed, and the remaining 40% is a space area where no electronic components are mounted. It is necessary to replenish the resin uniformly by utilizing the fluidity of the prepreg that is not in the space region. Therefore, the shortage of resin for filling the part where the electronic component is not mounted is from the opening formed in the substrate using the fluidity of the resin contained in the prepreg arranged on the lower surface of the substrate to the component mounting region on the substrate. Fluid replenishment. In this embodiment, as shown in FIG. 4B, a prepreg 4 made of a polyimide resin having a thickness of 100 μm stacked on the upper side of the substrate and a polyimide resin having a thickness of 100 μm on the lower side of the substrate is used. It joined using the prepreg 4a.

この上下面に最初に準備した電磁波遮蔽板を配置して125℃、9.8×105Pa(10kgf/cm2)の圧力で熱圧着した。その後、基板の長辺の両端部にUVレーザやYAGレーザを用いて穴を開け、端子形成部分での導通が確実に接続できるように、この形成された穴に導電接着剤を塗工し、基板の回路パターンと接続させた後に乾燥する。また、上記のように導電接着剤の替わりにはんだを用いることもできるし、導電体を盛り上げた部分のみを研削することで端子を形成する導電体を露出させることで端子を形成することもできる。また、今回は電磁波遮蔽板内の導体層に端子が接触することがないように回路基板に開けた端子用穴の径の2倍の面積を有する穴を電磁波遮蔽板に開け、プリプレグが流動し電磁波遮蔽板内の導体層を絶縁するように設計した。しかし、これでも絶縁性の信頼性がない場合は前もって電磁波遮蔽板内の導体層を有機絶縁材料で覆うとよい。その後、ダイサーを用いて、この出来上がった装置群を個辺の装置(長さ4.5mm、幅3.0mm)に切断した。 The electromagnetic shielding plates prepared first were placed on the upper and lower surfaces, and thermocompression bonded at 125 ° C. and a pressure of 9.8 × 10 5 Pa (10 kgf / cm 2 ). Then, a hole is made using UV laser or YAG laser at both ends of the long side of the substrate, and a conductive adhesive is applied to the formed hole so that conduction at the terminal forming portion can be reliably connected, After connecting with the circuit pattern of the substrate, it is dried. Also, solder can be used in place of the conductive adhesive as described above, and the terminal can be formed by exposing the conductor forming the terminal by grinding only the portion where the conductor is raised. . In addition, this time, a hole having an area twice the diameter of the hole for the terminal formed in the circuit board is made in the electromagnetic wave shielding plate so that the terminal does not contact the conductor layer in the electromagnetic wave shielding plate, and the prepreg flows. It was designed to insulate the conductor layer in the electromagnetic shielding plate. However, if there is no insulation reliability, it is preferable to cover the conductor layer in the electromagnetic wave shielding plate with an organic insulating material in advance. Thereafter, this completed device group was cut into individual devices (length 4.5 mm, width 3.0 mm) using a dicer.

このように、プリプレグを用いることで電源回路全体が一体化された装置として仕上がり、従来から行われている図5の金属ケースや樹脂ケースを用いた場合よりも体積比で46%が削減される小型化の効果が得られた。更に、製造歩留が100%(n=100p)、変換効率が90%であり、信頼性が高く、電源性能としての優れた電源が得られた。本実施例のように構成することにより電磁波を遮蔽する構造を有しないインダクタを用いることができる。   Thus, by using the prepreg, it is finished as an apparatus in which the entire power circuit is integrated, and the volume ratio is reduced by 46% compared to the case where the conventional metal case or resin case of FIG. 5 is used. The effect of miniaturization was obtained. Furthermore, the production yield was 100% (n = 100p), the conversion efficiency was 90%, the reliability was high, and an excellent power source as power source performance was obtained. By configuring as in this embodiment, an inductor having no structure for shielding electromagnetic waves can be used.

以上、DC−DC電源装置の例を示したが、これ以外に各種電子部品を搭載した装置にも本発明を適用できる。   As mentioned above, although the example of the DC-DC power supply apparatus was shown, this invention is applicable also to the apparatus which mounts various electronic components besides this.

本発明の実施例1におけるDC−DC電源装置の一部を破砕させて示す斜視図。The perspective view which crushes and shows a part of DC-DC power supply device in Example 1 of this invention. 図1のDC−DC電源装置を構成する主な部品の斜視図。図2(a)は、電磁波遮蔽板の斜視図。図2(b)は、プリプレグの斜視図。図2(c)は、回路基板の斜視図。The perspective view of the main components which comprise the DC-DC power supply device of FIG. FIG. 2A is a perspective view of an electromagnetic wave shielding plate. FIG. 2B is a perspective view of the prepreg. FIG. 2C is a perspective view of the circuit board. 本発明の実施例2におけるDC−DC電源装置の一部を破砕させて示す斜視図。The perspective view which crushes and shows a part of DC-DC power supply device in Example 2 of this invention. 図3のDC−DC電源装置を構成する主な部品の斜視図。図4(a)は、電磁波遮蔽板の斜視図。図4(b)は、プリプレグの斜視図。図4(c)は、回路基板の斜視図。The perspective view of the main components which comprise the DC-DC power supply device of FIG. FIG. 4A is a perspective view of an electromagnetic wave shielding plate. FIG. 4B is a perspective view of the prepreg. FIG. 4C is a perspective view of the circuit board. 金属ケースを用いた従来のDC−DC電源装置の一部を破砕させて示す斜視図。The perspective view which crushes and shows a part of conventional DC-DC power supply device using a metal case.

符号の説明Explanation of symbols

1,1a 電磁波遮蔽板
2 導電層
3 樹脂
4,4a,5 プリプレグ
7,7a,117 回路基板
8,8a 電力変換用半導体
9,9a コンデンサ
10 インダクタ
11,11a,111 端子
12,12a 端子形成部
14,14a,114 (DC−DC電源)装置
21,21a (基板上の)開口部
22,22a (端子が形成される辺の)開口部
23,23a (端子が形成されない辺の)開口部
33 (GND電極との)接続個所
113 金属ケース
140 電子部品
1, 1a Electromagnetic wave shielding plate 2 Conductive layer 3 Resin 4, 4a, 5 Prepreg 7, 7a, 117 Circuit board 8, 8a Power conversion semiconductor 9, 9a Capacitor 10 Inductor 11, 11a, 111 Terminal 12, 12a Terminal formation part 14 , 14a, 114 (DC-DC power supply) devices 21, 21a (on the substrate) openings 22, 22a (on sides where terminals are formed) openings 23, 23a (on sides where no terminals are formed) openings 33 ( Connection point 113 (with GND electrode) Metal case 140 Electronic component

Claims (6)

インダクタおよびコンデンサを含む電子部品を搭載または内蔵する回路基板の両面に、プリプレグを介して電磁波遮蔽板を熱圧着により接合して一体化するDC−DC電源装置の製造方法であって、前記基板に、前記電磁波遮蔽板を接合する際にプリプレグが流動できる大きさの開口部を設ける工程を含むこと特徴とするDC−DC電源装置の製造方法。   A method of manufacturing a DC-DC power supply apparatus, in which an electromagnetic wave shielding plate is joined by thermocompression bonding via a prepreg to both surfaces of a circuit board on which electronic components including an inductor and a capacitor are mounted or built-in. A method of manufacturing a DC-DC power supply device, comprising the step of providing an opening having a size that allows the prepreg to flow when the electromagnetic wave shielding plate is joined. 切断により複数個の装置を形成する工程を含むことを特徴とする請求項1記載のDC−DC電源装置の製造方法。   2. The method of manufacturing a DC-DC power supply device according to claim 1, further comprising a step of forming a plurality of devices by cutting. 前記複数個の装置を製造することができる大きさの回路基板の一辺に形成する開口部は、切断しろ以上の幅を有し、総長さが切断長さ以下で、かつ少なくとも1個以上であることを特徴とする請求項2記載のDC−DC電源装置の製造方法。   The opening formed on one side of the circuit board having a size capable of manufacturing the plurality of devices has a width equal to or larger than a cutting margin, a total length is equal to or less than the cutting length, and is at least one. The method of manufacturing a DC-DC power supply device according to claim 2. 前記プリプレグは、厚さが200μm以下のものを組み合わせて接合したことを特徴とする請求項1〜3のいずれかに記載のDC−DC電源装置の製造方法。   The method for manufacturing a DC-DC power supply device according to any one of claims 1 to 3, wherein the prepregs are bonded in combination with a thickness of 200 µm or less. 前記電磁波遮蔽板は、箔、線または織物状の金属からなる導体層と、該導体層を絶縁被覆した樹脂または金属酸化物からなる絶縁層とから構成されたシートまたは不織布状であり、前記導体層の平均厚さが170μm以下、かつ、前記絶縁層の片側の平均厚さが50μm以下であることを特徴とする請求項1〜4のいずれかに記載のDC−DC電源装置の製造方法。   The electromagnetic shielding plate is a sheet or non-woven fabric composed of a conductive layer made of foil, wire, or woven metal, and an insulating layer made of a resin or metal oxide in which the conductive layer is insulated. 5. The method of manufacturing a DC-DC power supply device according to claim 1, wherein an average thickness of the layers is 170 μm or less, and an average thickness on one side of the insulating layer is 50 μm or less. 前記電子部品を、電磁波遮蔽効果を有する導体を挟んだ厚さが270μm以下のプリプレグを介して上下に積み重ねて配置したことを特徴とする請求項1〜5のいずれかに記載のDC−DC電源装置の製造方法。   The DC-DC power supply according to any one of claims 1 to 5, wherein the electronic component is arranged by being stacked up and down via a prepreg having a thickness of 270 µm or less with a conductor having an electromagnetic wave shielding effect interposed therebetween. Device manufacturing method.
JP2003334960A 2003-09-26 2003-09-26 Method for manufacturing direct-current to direct-current power unit Pending JP2005101417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334960A JP2005101417A (en) 2003-09-26 2003-09-26 Method for manufacturing direct-current to direct-current power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334960A JP2005101417A (en) 2003-09-26 2003-09-26 Method for manufacturing direct-current to direct-current power unit

Publications (1)

Publication Number Publication Date
JP2005101417A true JP2005101417A (en) 2005-04-14

Family

ID=34462483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334960A Pending JP2005101417A (en) 2003-09-26 2003-09-26 Method for manufacturing direct-current to direct-current power unit

Country Status (1)

Country Link
JP (1) JP2005101417A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124373A (en) * 2009-12-10 2011-06-23 Shinko Electric Ind Co Ltd Component with built-in inductor
KR101175831B1 (en) 2006-06-29 2012-08-24 인텔 코포레이션 Integrated inductor
JP2017060404A (en) * 2017-01-05 2017-03-23 ローム株式会社 Power supply circuit
CN109600982A (en) * 2019-01-24 2019-04-09 华域视觉科技(上海)有限公司 Shadow shield method and PCB layout structure suitable for DC-DC driving
KR102016500B1 (en) * 2018-04-02 2019-09-02 삼성전기주식회사 Coil Component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175831B1 (en) 2006-06-29 2012-08-24 인텔 코포레이션 Integrated inductor
JP2011124373A (en) * 2009-12-10 2011-06-23 Shinko Electric Ind Co Ltd Component with built-in inductor
JP2017060404A (en) * 2017-01-05 2017-03-23 ローム株式会社 Power supply circuit
KR102016500B1 (en) * 2018-04-02 2019-09-02 삼성전기주식회사 Coil Component
US11437183B2 (en) 2018-04-02 2022-09-06 Samsung Electro-Mechanics Co., Ltd. Coil component
CN109600982A (en) * 2019-01-24 2019-04-09 华域视觉科技(上海)有限公司 Shadow shield method and PCB layout structure suitable for DC-DC driving
CN109600982B (en) * 2019-01-24 2024-02-13 华域视觉科技(上海)有限公司 Local shielding method suitable for DC-DC driving and PCB layout structure

Similar Documents

Publication Publication Date Title
US11552020B2 (en) Semiconductor composite device and package board used therein
CN106205954B (en) Inductor and forming method thereof
US9257217B2 (en) Inductor element, method for manufacturing inductor element, and wiring board
CN100382309C (en) Molecule component
US8294546B2 (en) Method for manufacturing module with planar coil, and module with planar coil
KR101165116B1 (en) Miniature circuitry and inductive componets and methods for manufacturing same
US9232656B2 (en) Wiring board and method for manufacturing the same
TWI234172B (en) Inductance element, laminated electronic component, laminated electronic component module and method for producing these element, component and module
US7868728B2 (en) Inductor and electric power supply using it
US20030049885A1 (en) Semiconductor package, method of manufacturing the same, and semiconductor device
US9307645B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP2015088753A (en) Coil component and manufacturing method of the same, coil component built-in substrate, and voltage adjustment module including the substrate
JP2010212652A (en) Wiring board and method for manufacturing the same
CN213277740U (en) Inductance assembly
JP2008171965A (en) Microminiature power converter
JP2016225611A (en) Chip inductor
JP2008066672A (en) Substrate incorporating thin magnetic component, and switching power supply module employing it
JP2004319875A (en) Inductor built-in multilayer substrate and method for manufacturing the same
JP2005101417A (en) Method for manufacturing direct-current to direct-current power unit
JP4065125B2 (en) Component built-in module and manufacturing method thereof
KR20180116604A (en) Inductor and manufacturing method of the same
JP2004194377A (en) Dc power unit and its manufacturing method
JP2011019083A (en) Electronic composite component
JP2012186270A (en) Manufacturing method of semiconductor package
JP7268988B2 (en) Electronic component and method for manufacturing electronic component