JP2005098833A - Displacement meter and displacement measuring method - Google Patents

Displacement meter and displacement measuring method Download PDF

Info

Publication number
JP2005098833A
JP2005098833A JP2003332826A JP2003332826A JP2005098833A JP 2005098833 A JP2005098833 A JP 2005098833A JP 2003332826 A JP2003332826 A JP 2003332826A JP 2003332826 A JP2003332826 A JP 2003332826A JP 2005098833 A JP2005098833 A JP 2005098833A
Authority
JP
Japan
Prior art keywords
objective lens
light
unit
amount
received light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003332826A
Other languages
Japanese (ja)
Other versions
JP4216679B2 (en
Inventor
Yuuji Akishiba
雄二 秋柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2003332826A priority Critical patent/JP4216679B2/en
Publication of JP2005098833A publication Critical patent/JP2005098833A/en
Application granted granted Critical
Publication of JP4216679B2 publication Critical patent/JP4216679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement meter for stably measuring a measured object regardless of its surface state, and a displacement measuring method. <P>SOLUTION: The displacement meter is provided with an objective lens scanning part 52 for moving the objective lens 15 in a plane orthogonal to the optical axis direction, an objective lens movement detecting part 53 for detecting positions to which the objective lens 15 is moved in the orthogonal plane by the objective lens scanning part 52, a memory 72 for a peak of the quantity of a received light which obtains and stores position information of the objective lens 15 at a plurality of measurement points included in a measured region detected by the objective lens movement detecting part 53 and designated by a measured region designating part 51, the local maximal value of the quantity of the received light received by a light receiving part at a plurality of the measurement points and an oscillation position in a position detecting part, and a processor 73 for processing the quantity of the received light which accumulates the quantity of the received light stored in the memory 72 and calculating a displacement on the basis of the accumulated quantity of the received light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば金属、樹脂、ガラス、セラミック、紙等の被測定物の表面に光を投射して、被測定物の表面の変位を測定する変位計及び変位測定方法に関する。   The present invention relates to a displacement meter and a displacement measuring method for measuring the displacement of the surface of the object to be measured by projecting light onto the surface of the object to be measured such as metal, resin, glass, ceramic, paper, and the like.

従来、金属や樹脂等の被測定物の表面の変位を測定する装置には、例えば合焦点検出型非接触変位計が利用されている。また、本発明者らは特許文献1に示す変位計を先に開発した。特許文献1に係る変位計を構成例を図1に示す。この図に示す変位計は、レーザパワー制御部11で駆動されるレーザダイオード12の出射光は、ビームスプリッタ13と、コリメートレンズ14と対物レンズ15とを順次通過して、被測定物16に投射されるよう構成されている。被測定物16からの反射光は対物レンズ15と、コリメートレンズ14とを通ってビームスプリッタ13で反射し、ピンホール17aを形成している光絞り部17のピンホール17aを通ってホトダイオード18へ入射する。ホトダイオード18で光電変換した信号は増幅器19へ入力され、その出力信号Xは演算部20へ入力される。   Conventionally, for example, an in-focus detection type non-contact displacement meter is used as an apparatus for measuring the displacement of the surface of an object to be measured such as metal or resin. Moreover, the present inventors developed the displacement meter shown in patent document 1 previously. A configuration example of the displacement meter according to Patent Document 1 is shown in FIG. In the displacement meter shown in this figure, the light emitted from the laser diode 12 driven by the laser power control unit 11 sequentially passes through the beam splitter 13, the collimator lens 14, and the objective lens 15, and is projected onto the object 16 to be measured. It is configured to be. The reflected light from the object to be measured 16 passes through the objective lens 15 and the collimating lens 14 and is reflected by the beam splitter 13, and passes through the pinhole 17 a of the optical aperture portion 17 forming the pinhole 17 a to the photodiode 18. Incident. The signal photoelectrically converted by the photodiode 18 is input to the amplifier 19, and the output signal X is input to the arithmetic unit 20.

U字状をした音叉21の一側長寸部の先端には対物レンズ15の周縁部分が取付けられる。対物レンズ15は、音叉21の振動により、レーザダイオード12の出射光の光軸方向に所定振幅で振動される。音叉21の一側長寸部の先端側の側方には、例えば磁気、光又は静電容量を利用したセンサからなる、位置検出部たる音叉振幅検出部22が配設され、音叉21の振幅、つまり対物レンズ15の位置を検出可能としている。音叉振幅検出部22が検出した検出振幅信号は増幅器23へ入力され、その出力信号Yは演算部20へ入力される。音叉21の他側長寸部の先端側の側方には、音叉21を振動させるためのソレノイド24が配設されている。ソレノイド24には音叉振幅制御部25からの制御電流が供給され、音叉振幅制御部25には増幅器23の出力信号が与えられて音叉21の振幅を一定になすべく制御される。   A peripheral portion of the objective lens 15 is attached to the tip of one long portion of the U-shaped tuning fork 21. The objective lens 15 is vibrated with a predetermined amplitude in the optical axis direction of the light emitted from the laser diode 12 by the vibration of the tuning fork 21. A tuning fork amplitude detection unit 22 serving as a position detection unit, which includes a sensor using, for example, magnetism, light, or capacitance, is disposed on the side of the long side of one side of the tuning fork 21. That is, the position of the objective lens 15 can be detected. The detected amplitude signal detected by the tuning fork amplitude detector 22 is input to the amplifier 23, and the output signal Y is input to the calculator 20. A solenoid 24 for vibrating the tuning fork 21 is disposed on the side of the leading end side of the other long portion of the tuning fork 21. The solenoid 24 is supplied with a control current from the tuning fork amplitude control unit 25, and the tuning fork amplitude control unit 25 is supplied with an output signal of the amplifier 23 to control the tuning fork 21 to have a constant amplitude.

以下、この変位計の動作を説明する。音叉振幅制御部25からソレノイド24に制御電流を供給すると、ソレノイド24により制御電流に応じた磁界が発生する。この発生磁界により音叉21が所定振幅で振動し、対物レンズ15を、それを通る光の光軸方向へ振動させる。音叉振幅検出部22は音叉21の振幅、即ち対物レンズ15の振幅を検出し、対物レンズ15の振幅たる正弦波信号を出力する。この正弦波信号を、増幅器23で増幅し、増幅器23から出力される出力信号Yを演算部20へ入力させる。   Hereinafter, the operation of the displacement meter will be described. When a control current is supplied from the tuning fork amplitude controller 25 to the solenoid 24, a magnetic field corresponding to the control current is generated by the solenoid 24. This generated magnetic field causes the tuning fork 21 to vibrate with a predetermined amplitude, causing the objective lens 15 to vibrate in the direction of the optical axis of the light passing therethrough. The tuning fork amplitude detector 22 detects the amplitude of the tuning fork 21, that is, the amplitude of the objective lens 15, and outputs a sine wave signal as the amplitude of the objective lens 15. The sine wave signal is amplified by the amplifier 23, and the output signal Y output from the amplifier 23 is input to the arithmetic unit 20.

一方、レーザパワー制御部11からレーザダイオード12に駆動電流を供給すると、レーザダイオード12はレーザ光を出射する。この出射光はビームスプリッタ13、コリメートレンズ14及び対物レンズ15を通って被測定物16へ投射される。被測定物16で反射した反射光は対物レンズ15とコリメートレンズ14を通ってビームスプリッタ13で反射して光絞り部17側へ投射され、ピンホール17aを透過した光のみがホトダイオード18へ入射する。そのため、ホトダイオード18には、被測定物16で生じた潜り光及びレーザダイオード12で発生した迷光による反射光はピンホール17aで遮られてピンホール17aを通らず、ホトダイオード18には、被測定物16に生じた合焦点の光のみが入射することになる。   On the other hand, when a drive current is supplied from the laser power control unit 11 to the laser diode 12, the laser diode 12 emits laser light. The emitted light passes through the beam splitter 13, the collimating lens 14, and the objective lens 15 and is projected onto the object 16 to be measured. The reflected light reflected by the DUT 16 passes through the objective lens 15 and the collimating lens 14 and is reflected by the beam splitter 13 and projected to the optical diaphragm 17 side, and only the light transmitted through the pinhole 17a is incident on the photodiode 18. . For this reason, in the photodiode 18, the diverging light generated by the object 16 to be measured and the reflected light due to the stray light generated by the laser diode 12 are blocked by the pinhole 17a and do not pass through the pinhole 17a. Only the in-focus light generated in 16 enters.

この際、対物レンズ15が振動させられているために、対物レンズ15と被測定物16との距離は変化している。所定の距離において、被測定物16に投射した光の合焦点が被測定物16に生じると、ホトダイオード18の受光出力は瞬時に最大となり、この受光出力に応じた信号が増幅器19へ入力され、増幅器19から出力信号Xが出力され演算部20へ入力される。この受光量が最大となる位置、すなわち被測定物16に投射した光の合焦点が被測定物16上で得られる対物レンズ15の位置を捉えることで、被測定物16の表面の変位を測定することによって、変位を高精度に測定できる。また光絞り部を用いているので、被測定物16で生じる潜り光や迷光による反射光が生じていても、変位の測定値に誤差を生じ難い変位計とすることができる。   At this time, since the objective lens 15 is vibrated, the distance between the objective lens 15 and the DUT 16 changes. When the focal point of the light projected onto the object 16 to be measured is generated at the object 16 at a predetermined distance, the light receiving output of the photodiode 18 is instantaneously maximized, and a signal corresponding to this light receiving output is input to the amplifier 19. An output signal X is output from the amplifier 19 and input to the arithmetic unit 20. By measuring the position where the amount of received light is maximum, that is, the position of the objective lens 15 obtained on the measured object 16 by the focal point of the light projected on the measured object 16, the displacement of the surface of the measured object 16 is measured. By doing so, the displacement can be measured with high accuracy. Further, since the optical diaphragm is used, even if the reflected light due to the submerged light or stray light generated in the object to be measured 16 is generated, it is possible to provide a displacement meter that hardly causes an error in the measured value of displacement.

しかしながら、この変位計では被測定物に投光する光のスポットサイズが小さいため、被測定物の表面状態によっては測定不可能となることが生じるという問題があった。例えば図2に示すように、被測定物16の表面に凹部や穴がある等して、光が正常に反射され難い領域が存在するような場合には、変位計から被測定物に投光された光が変位計に正しく反射されなくなり、測定ができなくなる。また被測定物の表面にスポットサイズのオーダで細かな凹凸があるような場合は、少しでも測定位置が変動したり被測定物が動くと光量が大きく変動するため、正確な計測が困難になるという問題もあった。   However, since the spot size of the light projected on the object to be measured is small in this displacement meter, there is a problem that measurement may become impossible depending on the surface state of the object to be measured. For example, as shown in FIG. 2, when there is a region where light is not normally reflected due to a concave portion or a hole on the surface of the object 16 to be measured, light is projected from the displacement meter to the object to be measured. The measured light is not correctly reflected by the displacement meter, and measurement cannot be performed. Also, if the surface of the object to be measured has fine irregularities on the order of the spot size, the measurement position will change even slightly, and the amount of light will change greatly if the object to be measured moves, making accurate measurement difficult. There was also a problem.

このような問題を解決するため、本発明者は測定点を線状に移動させることで、変位を測定不可能な点が存在しても、その前後の測定可能な点の変位を用いて補完する方法を開発した(特許文献2)。この方法では、測定点を線状に移動させながらホトダイオードの受光量をモニタし、受光量がピークを示す位置での変位を演算して、さらに各位置での変位を平均することで、測定不可能な点が含まれていても変位を得ることができる。   In order to solve such a problem, the present inventor moves the measurement point in a linear manner, and even if there is a point where the displacement cannot be measured, it is supplemented by using the displacement of the measurable point before and after the point. (Patent Document 2). In this method, the amount of light received by the photodiode is monitored while moving the measurement point linearly, the displacement at the position where the amount of received light reaches a peak is calculated, and the displacement at each position is averaged. The displacement can be obtained even if possible points are included.

しかしながら、測定不可能な点が連続する場合は、前後の点から変位を補完することが困難となる。例えば、図2(c)に示すように凹凸が連続する表面形状の変位を測定しようとすると、測定不可能な部位が多数存在するため、近傍の点を使って補完することが困難となる。また、変位が測定可能な点のみを抽出して、各点での変位を平均しようとしても、測定可能な点のサンプル数が少なかったり、各点で求められた変位の精度にばらつきがあり、誤差の多いデータが含まるおそれもあるため、精度の高い変位測定は期待できない。特に変位計においては、一般にホトダイオードで検出された光量の値が大きいほど精度の高い変位が計測でき、逆に光量が小さいほど精度が低下する傾向にある。いいかえると、光量のピーク値をもって変位を演算する場合、そのピークの絶対値が大きいほどデータの信憑性が高く、ピークが低いほど信憑性も低いということができる。しかしながら、図2(c)に示すような不規則な表面形状では、確率的に光量の低いデータが多く含まれることになるため、測定の精度が悪くなる。このため、単にピークが検出された変位を加算して平均を求めたのでは、各データの信憑性が考慮されず、演算された変位の信頼性が期待できない。   However, when consecutive points that cannot be measured are consecutive, it is difficult to supplement the displacement from the front and rear points. For example, as shown in FIG. 2C, when trying to measure the displacement of a surface shape with continuous irregularities, since there are a number of sites that cannot be measured, it is difficult to complement using nearby points. In addition, if only points where the displacement can be measured are extracted and the displacement at each point is averaged, the number of samples of the points that can be measured is small, or the accuracy of the displacement obtained at each point varies. Since there is a possibility that data with a lot of errors may be included, highly accurate displacement measurement cannot be expected. Particularly in a displacement meter, in general, the larger the amount of light detected by a photodiode, the more accurate displacement can be measured, and conversely, the smaller the amount of light, the lower the accuracy. In other words, when the displacement is calculated with the peak value of the light amount, the greater the absolute value of the peak, the higher the reliability of the data, and the lower the peak, the lower the reliability. However, an irregular surface shape as shown in FIG. 2 (c) contains a lot of data with a low light quantity stochastically, resulting in poor measurement accuracy. For this reason, if the average obtained by simply adding the displacements at which the peaks are detected is not considered, the reliability of each data is not considered, and the reliability of the calculated displacement cannot be expected.

一方で、別の問題として被測定物の表面に反射率の異なる部位が存在する場合、正確な変位測定が困難になるという問題もあった。例えば被測定物の表面に反射率の高い部位と低い部位が混在している場合、反射率の低い部位に条件を合わせて測定すると、反射率が高い部位での測定値に誤差が発生する。逆に反射率の高い部位に合わせて条件を設定すると、反射率が低い部位を測定できない問題があった。
特許3300803号 特願2003−079122号
On the other hand, as another problem, there is a problem that accurate displacement measurement becomes difficult when there are portions having different reflectivities on the surface of the object to be measured. For example, when a part with a high reflectance and a part with a low reflectance are mixed on the surface of the object to be measured, an error occurs in a measurement value at a part with a high reflectance when measurement is performed in accordance with a condition with a part with a low reflectance. Conversely, when conditions are set in accordance with a part having a high reflectance, there is a problem that a part having a low reflectance cannot be measured.
Patent 3300803 Japanese Patent Application No. 2003-079122

このように、従来の変位計では被測定物によっては適切な変位測定を行えないという問題があった。本発明は、このような問題を解決するためになされたものであり、本発明の主な目的は、被測定物の表面状態によらず安定した精度の高い変位計測が可能な変位計および変位測定方法を提供することにある。   As described above, the conventional displacement meter has a problem that appropriate displacement measurement cannot be performed depending on the object to be measured. The present invention has been made to solve such problems, and the main object of the present invention is to provide a displacement meter and a displacement capable of stable and accurate displacement measurement regardless of the surface state of the object to be measured. It is to provide a measurement method.

上記の目的を達成するために、本発明の請求項1に記載される変位計は、被測定物16に投射する光を発生させる発光部と、前記発光部から出射された光を受けて、被測定物16に投射する対物レンズ15と、前記対物レンズ15を、所定の振幅で第1の方向に沿って振動させる加振部と、第1の方向に前記対物レンズ15が移動された位置を検出する位置検出部と、被測定物16からの反射光が通過する光絞り部と、前記光絞り部を通過した光を受光する受光部と、前記対物レンズ15を第1の方向と直交する第2の方向に沿って移動させる対物レンズ走査部52と、前記対物レンズ走査部52により対物レンズ15を第2の方向に沿って所定の移動量で移動させる際、被測定物16上の複数の測定ポイントにおいてそれぞれ前記受光部で受光した受光量の極大値と、このとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部72と、前記受光量ピークメモリ部72で記憶された受光量の極大値を、前記対物レンズ15の第1の方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部73とを備える。   In order to achieve the above object, a displacement meter according to claim 1 of the present invention receives a light emitting unit that generates light to be projected onto the measurement object 16, and light emitted from the light emitting unit. An objective lens 15 that projects onto the measurement object 16, a vibration unit that vibrates the objective lens 15 along a first direction with a predetermined amplitude, and a position where the objective lens 15 is moved in the first direction. A position detection unit that detects light, a light diaphragm unit through which reflected light from the object to be measured 16 passes, a light receiving unit that receives light that has passed through the light diaphragm unit, and the objective lens 15 orthogonal to the first direction. The objective lens scanning unit 52 that moves along the second direction, and the objective lens scanning unit 52 moves the objective lens 15 along the second direction by a predetermined amount of movement. At each of a plurality of measurement points, The received light amount peak memory unit 72 that stores the maximum value of the received light amount and the vibration position detected by the position detection unit at this time, and the received light amount maximum stored in the received light amount peak memory unit 72 A light reception data processing unit 73 that integrates the values for each vibration position in the first direction of the objective lens 15 and calculates a displacement based on the integrated light reception amount is provided.

また、請求項2の変位計は、被測定物16に投射する光を発生させる発光部と、前記発光部から出射された光を受けて、被測定物16に投射する対物レンズ15と、前記対物レンズ15を、所定の振幅で対物レンズ15を通過する光の光軸の方向に沿って振動させる加振部と、光軸方向に前記対物レンズ15が移動された位置を検出する位置検出部と、被測定物16からの反射光が通過する光絞り部と、前記光絞り部を通過した光を受光する受光部と、被測定物16上で測定対象となる領域を指定する測定領域指定部51と、前記対物レンズ15を光軸方向と直交する平面に沿って移動させる対物レンズ走査部52と、前記対物レンズ走査部52により対物レンズ15を光軸方向と直交する平面に沿って所定の移動量で移動させる際、被測定物16上の複数の測定ポイントにおいてそれぞれ前記受光部で受光した受光量の極大値と、このとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部72と、前記受光量ピークメモリ部72で記憶された受光量の極大値を、前記対物レンズ15の光軸方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部73とを備える。   Further, the displacement meter of claim 2 includes a light emitting unit that generates light to be projected onto the measurement object 16, an objective lens 15 that receives the light emitted from the light emission unit and projects the light onto the measurement object 16, and the A vibration unit that vibrates the objective lens 15 along a direction of an optical axis of light passing through the objective lens 15 with a predetermined amplitude, and a position detection unit that detects a position where the objective lens 15 is moved in the optical axis direction. And an optical aperture section through which reflected light from the object to be measured 16 passes, a light receiving section for receiving the light that has passed through the optical aperture section, and a measurement area designation for designating an area to be measured on the object to be measured 16 51, an objective lens scanning unit 52 for moving the objective lens 15 along a plane orthogonal to the optical axis direction, and the objective lens scanning unit 52 by the objective lens scanning unit 52 along the plane orthogonal to the optical axis direction. Measured when moving with the amount of movement A received light amount peak memory unit 72 that stores the maximum value of the received light amount received by the light receiving unit at a plurality of measurement points on the image 16 and the vibration position detected by the position detecting unit at this time; A light reception data processing unit 73 that integrates the maximum value of the received light amount stored in the amount peak memory unit 72 for each vibration position in the optical axis direction of the objective lens 15 and calculates a displacement based on the integrated received light amount; Is provided.

さらに、請求項3の変位計は、請求項1または2に記載の変位計であって、前記受光データ処理部73が、前記受光部で受光された受光量の極大値に基づいて、前記対物レンズ15の振動位置における受光量の変化を示す受光波形を作成し、作成された受光波形を積算して変位を求めている。   Further, the displacement meter according to claim 3 is the displacement meter according to claim 1 or 2, wherein the light reception data processing unit 73 is based on the maximum value of the amount of received light received by the light receiving unit. A light reception waveform indicating a change in the amount of received light at the vibration position of the lens 15 is created, and the displacement is obtained by integrating the created light reception waveforms.

さらにまた、請求項4の変位計は、請求項3に記載の変位計であって、前記受光データ処理部73が、積算された受光波形に基づいて変位を演算する際、受光波形の重心を求めて変位を算出している。   Furthermore, the displacement meter according to claim 4 is the displacement meter according to claim 3, wherein when the light reception data processing unit 73 calculates the displacement based on the integrated light reception waveform, the center of gravity of the light reception waveform is calculated. The displacement is calculated.

さらにまた、請求項5の変位計は、請求項3または4に記載の変位計であって、前記受光データ処理部73で作成される受光波形が、受光量の極大値を高さとする三角波である。   Furthermore, the displacement meter according to claim 5 is the displacement meter according to claim 3 or 4, wherein the light reception waveform generated by the light reception data processing unit 73 is a triangular wave having a maximum value of the amount of received light. is there.

さらにまた、請求項6の変位計は、請求項3または4に記載の変位計であって、前記受光データ処理部73で作成される受光波形が、受光量の極大値を高さとする正規分布波形である。   Furthermore, the displacement meter according to claim 6 is the displacement meter according to claim 3 or 4, wherein the light reception waveform generated by the light reception data processing unit 73 has a normal distribution in which the maximum value of the light reception amount is a height. It is a waveform.

さらにまた、請求項7の変位計は、被測定物16に投射する光を発生させる発光部と、前記発光部から出射された光を受けて、被測定物16に投射する対物レンズ15と、前記対物レンズ15を、所定の振幅で対物レンズ15を通過する光の光軸の方向に沿って振動させる加振部と、光軸方向に前記対物レンズ15が移動された位置を検出する位置検出部と、被測定物16からの反射光が通過する光絞り部と、前記光絞り部を通過した光を受光する受光部と、前記受光部で受光した受光量をA/D変換するためのA/D変換部75と、前記対物レンズ15を光軸方向と直交する平面に沿って移動させる対物レンズ走査部52と、前記対物レンズ走査部52により直交平面上で前記対物レンズ15が移動された位置を検出する対物レンズ移動検出部53と、前記対物レンズ走査部52により対物レンズ15を光軸方向と直交する平面に沿って所定の移動量で移動させる際、前記対物レンズ移動検出部53によって検出される、複数の測定ポイントにおける対物レンズ15の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量を所定の前記対物レンズ15の振動位置毎に前記A/D変換部75でA/D変換した値と、これに対応する前記位置検出部での振動位置とを関連付けて記憶する受光量ピークメモリ部72と、前記受光量ピークメモリ部72で記憶された受光量を、前記対物レンズ15の光軸方向における振動位置毎に積算して前記対物レンズ15の振動位置における受光量の変化を示す受光波形を作成し、作成された受光波形に基づいて変位を演算する受光データ処理部73とを備える。
ことを特徴とする変位計。
Furthermore, the displacement meter according to claim 7 includes a light emitting unit that generates light to be projected onto the measurement object 16, an objective lens 15 that receives the light emitted from the light emission unit and projects the light onto the measurement object 16, and A vibration unit that vibrates the objective lens 15 along a direction of an optical axis of light passing through the objective lens 15 with a predetermined amplitude, and a position detection that detects a position where the objective lens 15 is moved in the optical axis direction. A light-reducing unit through which reflected light from the object to be measured 16 passes, a light-receiving unit that receives light that has passed through the light-reducing unit, and an amount of light received by the light-receiving unit for A / D conversion The A / D conversion unit 75, the objective lens scanning unit 52 that moves the objective lens 15 along a plane orthogonal to the optical axis direction, and the objective lens 15 is moved on the orthogonal plane by the objective lens scanning unit 52. Objective lens movement detection A plurality of measurement points detected by the objective lens movement detection unit 53 when the objective lens 15 is moved by a predetermined amount of movement along a plane orthogonal to the optical axis direction by the unit 53 and the objective lens scanning unit 52. The position information of the objective lens 15 at the position, and the value obtained by A / D converting the received light amount received by the light receiving unit at the plurality of measurement points by the A / D conversion unit 75 for each predetermined vibration position of the objective lens 15 The received light amount peak memory unit 72 that stores the associated vibration position in the position detecting unit in association with the received light amount stored in the received light amount peak memory unit 72 in the optical axis direction of the objective lens 15. Is generated for each vibration position, and a light reception waveform indicating a change in the amount of light received at the vibration position of the objective lens 15 is generated, and a displacement is calculated based on the generated light reception waveform. And a data processing unit 73.
Displacement meter characterized by that.

さらにまた、請求項8の変位計は、被測定物16に投射する光を発生させる発光部と、前記発光部から出射された光を受けて、被測定物16に投射する対物レンズ15と、前記対物レンズ15を、所定の振幅で対物レンズ15を通過する光の光軸の方向に沿って振動させる加振部と、光軸方向に前記対物レンズ15が移動された位置を検出する位置検出部と、被測定物16からの反射光が通過する光絞り部と、前記光絞り部を通過した光を受光する受光部と、前記対物レンズ15を光軸方向と直交する平面に沿って移動させる対物レンズ走査部52と、前記対物レンズ走査部52により直交平面上で前記対物レンズ15が移動された位置を検出する対物レンズ移動検出部53と、前記対物レンズ走査部52により対物レンズ15を光軸方向と直交する平面に沿って所定の移動量で移動させる際、前記対物レンズ移動検出部53によって検出される、複数の測定ポイントにおける対物レンズ15の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量の極大値およびこのとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部72と、前記受光量ピークメモリ部72で記憶された各受光量のデータに対し、その近傍に位置する複数の受光量データから受光量の平均値を演算して受光量閾値を設定し、前記受光量閾値を超える受光量データに基づいて変位を演算する受光データ処理部73とを備える。   Furthermore, the displacement meter according to claim 8 includes a light emitting unit that generates light to be projected onto the measurement target 16, an objective lens 15 that receives the light emitted from the light emission unit and projects the light onto the measurement target 16, and A vibration unit that vibrates the objective lens 15 along a direction of an optical axis of light passing through the objective lens 15 with a predetermined amplitude, and a position detection that detects a position where the objective lens 15 is moved in the optical axis direction. An optical diaphragm section through which reflected light from the object to be measured 16 passes, a light receiving section that receives light that has passed through the optical diaphragm section, and the objective lens 15 is moved along a plane orthogonal to the optical axis direction. An objective lens scanning unit 52, an objective lens movement detecting unit 53 for detecting a position where the objective lens 15 is moved on an orthogonal plane by the objective lens scanning unit 52, and an objective lens 15 by the objective lens scanning unit 52. With optical axis direction When the object lens 15 is moved along the intersecting plane by a predetermined amount of movement, the position information of the objective lens 15 at the plurality of measurement points detected by the object lens movement detection unit 53 and the light receiving unit at the plurality of measurement points. The received light amount peak memory unit 72 that stores the maximum value of the received light amount and the vibration position detected by the position detector at this time, and the data of each received light amount stored in the received light amount peak memory unit 72 On the other hand, an average value of received light amount is calculated from a plurality of received light amount data located in the vicinity thereof, a received light amount threshold value is set, and a received light data processing unit that calculates a displacement based on the received light amount data exceeding the received light amount threshold value 73.

さらにまた、請求項9の変位計は、被測定物16に投射する光を発生させる発光部と、前記発光部から出射された光を受けて、被測定物16に投射する対物レンズ15と、前記対物レンズ15を、所定の振幅で対物レンズ15を通過する光の光軸の方向に沿って振動させる加振部と、光軸方向に前記対物レンズ15が移動された位置を検出する位置検出部と、被測定物16からの反射光が通過する光絞り部と、前記光絞り部を通過した光を受光する受光部と、被測定物を上面に載置したまま光軸方向と直交する平面に沿って移動可能なステージ76と、直交平面上で前記ステージ76が移動された位置を検出するステージ移動検出部78と、前記ステージ移動検出部78により前記ステージ76を直交平面に沿って所定の移動量で移動させる際、前記ステージ移動検出部78によって検出される、複数の測定ポイントにおける対物レンズ15の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量の極大値およびこのとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部72と、前記受光量ピークメモリ部72で記憶された受光量の極大値を、前記対物レンズ15の光軸方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部73とを備える。   Furthermore, the displacement meter according to claim 9 includes a light emitting unit that generates light to be projected onto the measurement object 16, an objective lens 15 that receives the light emitted from the light emission unit and projects the light onto the measurement object 16, and A vibration unit that vibrates the objective lens 15 along a direction of an optical axis of light passing through the objective lens 15 with a predetermined amplitude, and a position detection that detects a position where the objective lens 15 is moved in the optical axis direction. , A light diaphragm part through which reflected light from the object to be measured 16 passes, a light receiving part for receiving light that has passed through the light diaphragm part, and a direction orthogonal to the optical axis direction while the object to be measured is placed on the upper surface A stage 76 that can move along a plane, a stage movement detector 78 that detects a position where the stage 76 has moved on an orthogonal plane, and a stage movement detector 78 that moves the stage 76 along an orthogonal plane. Move by the amount of movement The position information of the objective lens 15 at a plurality of measurement points detected by the stage movement detector 78, the maximum value of the amount of light received by the light receiver at the plurality of measurement points, and the position detector at this time The received light amount peak memory unit 72 that stores the detected vibration position in association with each other, and the received light amount maximum value stored in the received light amount peak memory unit 72 for each vibration position in the optical axis direction of the objective lens 15. And a received light data processing unit 73 that calculates the displacement based on the integrated received light amount.

さらにまた、請求項10の変位計は、請求項1から9のいずれかに記載の変位計であって、前記加振部が音叉21を使用しており、前記位置検出部が音叉21の振幅を検出する音叉振幅検出部22である。   Furthermore, the displacement meter according to claim 10 is the displacement meter according to any one of claims 1 to 9, wherein the excitation unit uses the tuning fork 21, and the position detection unit uses the amplitude of the tuning fork 21. The tuning fork amplitude detection unit 22 detects.

また、請求項11に記載の変位測定方法は、振動される対物レンズ15を介して発光部から被測定物16へ投射した光を反射させ、反射光の内光絞り部を通過した光を受光する受光部で検出して、被測定物16の表面の変位を測定する方法である。この方法は、被測定物16上の測定対象となる領域内の複数の測定ポイントで、被測定物16へ投射される光を通過させる対物レンズ15を、加振部で光の光軸方向へ振動させながら受光部で受光量を測定しつつ、受光量がピークを示す時点での受光量と、この時点での振動された対物レンズ15の位置とを関連付けて受光量ピークメモリ部72に保持するステップと、前記受光量ピークメモリ部72で記憶された受光量の極大値を、前記対物レンズ15の振動方向における位置毎に積算し、積算された受光量に基づいて変位を演算するステップとを備える。   In the displacement measuring method according to claim 11, the light projected from the light emitting unit to the object to be measured 16 is reflected via the oscillating objective lens 15, and the light passing through the inner light aperture unit of the reflected light is received. In this method, the displacement of the surface of the object 16 to be measured is measured by detecting the light receiving unit. In this method, the objective lens 15 that allows light projected to the measurement object 16 to pass through at a plurality of measurement points in the region to be measured on the measurement object 16 is moved in the optical axis direction of the light by the excitation unit. While the light receiving unit measures the received light amount while vibrating, the received light amount at the time when the received light amount reaches a peak and the position of the objective lens 15 that has been vibrated at this time are associated and held in the received light amount peak memory unit 72. A step of integrating the maximum value of the received light amount stored in the received light amount peak memory unit 72 for each position in the vibration direction of the objective lens 15, and calculating a displacement based on the integrated received light amount; Is provided.

本発明の変位計および変位測定方法によれば、被測定物の表面状態によらず安定した精度の高い変位測定が実現される。それは、本発明の変位計および変位測定方法が、複数部位での変位を測定してその平均値を用いるのでなく、各測定位置で検出された受光量のピーク値に基づいて対物レンズの位置を求める処理を行っているからである。受光量が得られた段階で直ちに変位を求めず、複数部位での受光量を一旦積算して平均変位を求める方法では、ピークの大きさに応じた重み付けが行われるため、精度の高いデータが反映された形で変位を算出することができる。さらに、受光量のピーク値から受光量の波形を復元する方法では、ピーク値が最大の精度の高いデータに基づいて元波形を復元するため精度が良く、また近似波形を生成することで実際に受光量を逐次A/D変換して波形を測定する必要がないため、複雑な演算処理を排除して簡易な処理で安価に実現できる。以上のように、受光量を積算することにより精度の高いデータを重視した演算結果が得られ、被測定物に段差や凹凸があったり、反射率の異なる部位が含まれている等、被測定物の表面状態が悪く測定不能な部位を含む場合であっても、精度良く信頼性の高い変位測定が実現される。   According to the displacement meter and the displacement measuring method of the present invention, stable and highly accurate displacement measurement is realized regardless of the surface state of the object to be measured. The displacement meter and displacement measuring method of the present invention does not measure the displacement at a plurality of sites and use the average value, but instead determines the position of the objective lens based on the peak value of the received light amount detected at each measurement position. This is because the requested processing is performed. In the method in which the displacement is not obtained immediately after the amount of received light is obtained, and the average displacement is obtained by once integrating the amounts of received light at a plurality of sites, weighting is performed according to the size of the peak. The displacement can be calculated in the reflected form. Furthermore, in the method of restoring the received light amount waveform from the received light amount peak value, the original waveform is restored based on highly accurate data with the maximum peak value, and the accuracy is high. Since it is not necessary to measure the waveform by sequentially A / D converting the amount of received light, complicated calculation processing can be eliminated and simple processing can be realized at low cost. As described above, by calculating the amount of light received, a calculation result that emphasizes highly accurate data is obtained, and the object to be measured includes steps or irregularities or parts with different reflectivities. Even when the surface state of the object is bad and includes a portion that cannot be measured, accurate and reliable displacement measurement is realized.

また本発明によれば、被測定物の表面に反射率の異なる部位が含まれていても、精度良く変位を測定できる。それは、受光量の低いデータを排除するための閾値を、被測定物の反射率に応じて動的に変化させているからである。特に、対象となる部位の近傍の受光量に応じて閾値を設定することにより、反射率の高い部位、低い部位ではそれぞれに応じた受光量の閾値が設定され、これによって適切な閾値が選択されて精度の高いデータのみを抽出でき、結果として精度の高い変位測定が得られる。   Further, according to the present invention, even when a part having a different reflectance is included on the surface of the object to be measured, the displacement can be measured with high accuracy. This is because the threshold value for eliminating data with a low light reception amount is dynamically changed according to the reflectance of the object to be measured. In particular, by setting a threshold value according to the amount of light received in the vicinity of the target region, a threshold value for the amount of received light is set for each of the regions with high and low reflectivity, thereby selecting an appropriate threshold value. Thus, only highly accurate data can be extracted, and as a result, highly accurate displacement measurement can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための変位計および変位測定方法を例示するものであって、本発明は変位計および変位測定方法を以下のものに特定しない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment shown below exemplifies a displacement meter and a displacement measuring method for embodying the technical idea of the present invention, and the present invention specifies the displacement meter and the displacement measuring method as follows. do not do.

さらに、本明細書は、特許請求の範囲を理解し易いように、実施の形態に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Further, in this specification, in order to facilitate understanding of the claims, the numbers corresponding to the members shown in the embodiments are referred to as “claim column” and “means for solving the problems”. It is added to the members shown in the column. However, the members shown in the claims are not limited to the members in the embodiments. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

本発明において変位計とは、被測定物の表面の変位を測定する変位計であって、被測定物の高さや深さ、厚さ、高度差、段差、傾斜や角度等を測定する装置に限られず、高さや傾斜等の測定結果に基づいて表面形状等を測定可能な装置も包含する意味で使用する。同様に変位測定方法においても、これら被測定物の高さや深さ、厚さ、高度差、段差、傾斜や角度等を測定する方法に限られず、これらの測定結果に基づいて表面形状等を測定する方法も包含する意味で使用する。さらに本明細書においてピークとは極大値を意味する。   In the present invention, the displacement meter is a displacement meter that measures the displacement of the surface of the object to be measured, and is a device that measures the height, depth, thickness, height difference, step, inclination, angle, etc. of the object to be measured. It is not limited, and is used in the meaning of including a device capable of measuring a surface shape and the like based on measurement results such as height and inclination. Similarly, the displacement measurement method is not limited to the method of measuring the height, depth, thickness, altitude difference, step, inclination, angle, etc. of these objects to be measured, and the surface shape and the like are measured based on these measurement results. It is used in the meaning which includes the method to do. Further, in this specification, the peak means a maximum value.

[実施の形態1]
図3に、本発明の実施の形態1に係る変位計の構成図を示す。この図に示す変位計は、発光部としてレーザダイオード12と、レーザダイオード12から出射される光を平行光に変換するコリメートレンズ14と、対物レンズ15と、対物レンズ15を保持する音叉21と、光軸方向に音叉21を振動させるための加振部であるソレノイド24と、ソレノイド24で振動される音叉21の位置を検出する位置検出部である音叉振幅検出部22を備える。またこの変位計は、被測定物16からの反射光が通過する光絞り部17にピンホール17aを形成している。さらに光絞り部17のピンホール17aの位置には、受光部としてホトダイオード18が設けられる。
[Embodiment 1]
FIG. 3 shows a configuration diagram of the displacement meter according to the first embodiment of the present invention. The displacement meter shown in this figure includes a laser diode 12 as a light emitting unit, a collimating lens 14 that converts light emitted from the laser diode 12 into parallel light, an objective lens 15, and a tuning fork 21 that holds the objective lens 15, A solenoid 24 that is a vibration unit for vibrating the tuning fork 21 in the optical axis direction and a tuning fork amplitude detection unit 22 that is a position detection unit that detects the position of the tuning fork 21 that is vibrated by the solenoid 24 are provided. In addition, this displacement meter has a pinhole 17a formed in an optical aperture portion 17 through which reflected light from the object to be measured 16 passes. Further, at the position of the pinhole 17a of the optical diaphragm 17, a photodiode 18 is provided as a light receiving part.

レーザパワー制御部11で駆動されるレーザダイオード12の出射光は、ビームスプリッタ13と、コリメートレンズ14と対物レンズ15とを順次通過して、被測定物16に投射される。被測定物16からの反射光は、対物レンズ15と、コリメートレンズ14とを通ってハーフミラーを構成するビームスプリッタ13で反射され、光絞り部17のピンホール17aを通ってホトダイオード18へ入射する。   The light emitted from the laser diode 12 driven by the laser power control unit 11 sequentially passes through the beam splitter 13, the collimator lens 14, and the objective lens 15, and is projected onto the object to be measured 16. The reflected light from the object to be measured 16 passes through the objective lens 15 and the collimating lens 14, is reflected by the beam splitter 13 constituting the half mirror, and enters the photodiode 18 through the pinhole 17 a of the optical diaphragm 17. .

ホトダイオード18で光電変換した信号は、増幅器19へ入力され、その出力信号Xは演算部20へ入力される。U字状に形成された音叉21の一側長寸部の先端には、対物レンズ15の周縁部分が取付けられている。対物レンズ15は、音叉21の振動により、レーザダイオード12の出射光の光軸方向に所定の振幅で振動される。音叉21の一側長寸部の先端側の側方には、位置検出部として音叉振幅検出部22が配設されている。音叉振幅検出部22は、例えば磁気、光又は静電容量を利用したセンサが利用でき、音叉21の振幅位置を検出することで、音叉21に接続された対物レンズ15の位置を検出する。なお位置検出部は、このように音叉の振幅を検出する他、音叉に連結されて振動される対物レンズの位置を直接検出する構成としても良い。   The signal photoelectrically converted by the photodiode 18 is input to the amplifier 19, and the output signal X is input to the arithmetic unit 20. A peripheral portion of the objective lens 15 is attached to the tip of one side long portion of the tuning fork 21 formed in a U shape. The objective lens 15 is vibrated with a predetermined amplitude in the optical axis direction of the light emitted from the laser diode 12 by the vibration of the tuning fork 21. A tuning fork amplitude detection unit 22 is disposed as a position detection unit on the side of the tip side of the long side of the tuning fork 21. The tuning fork amplitude detection unit 22 can use, for example, a sensor using magnetism, light, or capacitance, and detects the position of the objective lens 15 connected to the tuning fork 21 by detecting the amplitude position of the tuning fork 21. In addition to detecting the tuning fork amplitude in this way, the position detection unit may be configured to directly detect the position of the objective lens connected to the tuning fork and vibrated.

音叉振幅検出部22が検出した検出振幅信号は増幅器23へ入力され、その出力信号Yは演算部20へ入力される。音叉21の他側長寸部の先端側の側方には、音叉21を振動させるためのソレノイド24が配設されている。   The detected amplitude signal detected by the tuning fork amplitude detector 22 is input to the amplifier 23, and the output signal Y is input to the calculator 20. A solenoid 24 for vibrating the tuning fork 21 is disposed on the side of the leading end side of the other long portion of the tuning fork 21.

ソレノイド24は、音叉振幅制御部25から供給される制御電流によって駆動される。音叉振幅制御部25には、増幅器23の出力信号が与えられ、音叉21の振幅を一定になすように制御されるよう構成される。なお音叉21は、例えば800Hz、振幅が±0.3mmで振動するものが利用できる。演算部20で演算されて出力される変位信号は、距離変換部50へ入力される。   The solenoid 24 is driven by a control current supplied from the tuning fork amplitude control unit 25. The tuning fork amplitude controller 25 is configured to be supplied with the output signal of the amplifier 23 and to be controlled so as to make the amplitude of the tuning fork 21 constant. As the tuning fork 21, for example, one that vibrates at 800 Hz and an amplitude of ± 0.3 mm can be used. The displacement signal calculated and output by the calculation unit 20 is input to the distance conversion unit 50.

この変位計は、ホトダイオード18で受光した受光量が最大となる時点での対物レンズ15の位置を音叉振幅検出部22で検出し、これに基づいて被測定物16での光の反射点、すなわち表面の変位を、変位演算部である演算部20および距離変換部50で演算する。   In this displacement meter, the position of the objective lens 15 at the time when the amount of light received by the photodiode 18 becomes maximum is detected by the tuning fork amplitude detection unit 22, and based on this, the reflection point of light on the object 16 to be measured, that is, The displacement of the surface is calculated by the calculation unit 20 and the distance conversion unit 50 which are displacement calculation units.

次にこのように構成した変位計の動作を説明する。音叉振幅制御部25からソレノイド24に電流を供給すると、ソレノイド24により磁界が発生する。この発生磁界により音叉21が所定振幅で振動し、対物レンズ15を、それを通る光の光軸方向へ振動させる。音叉振幅検出部22は音叉21の振幅、即ち対物レンズ15の振幅を検出し、対物レンズ15の振幅たる正弦波信号を出力する。この正弦波信号を、増幅器23で増幅し、増幅器23から出力される出力信号Yを演算部20へ入力させる。   Next, the operation of the displacement meter configured as described above will be described. When a current is supplied from the tuning fork amplitude controller 25 to the solenoid 24, a magnetic field is generated by the solenoid 24. This generated magnetic field causes the tuning fork 21 to vibrate with a predetermined amplitude, causing the objective lens 15 to vibrate in the direction of the optical axis of the light passing therethrough. The tuning fork amplitude detector 22 detects the amplitude of the tuning fork 21, that is, the amplitude of the objective lens 15, and outputs a sine wave signal as the amplitude of the objective lens 15. The sine wave signal is amplified by the amplifier 23, and the output signal Y output from the amplifier 23 is input to the arithmetic unit 20.

一方、レーザパワー制御部11からレーザダイオード12に駆動電流を供給すると、レーザダイオード12はレーザ光を出射する。この出射光はビームスプリッタ13、コリメートレンズ14及び対物レンズ15を通って被測定物16へ投射される。被測定物16で反射した反射光は対物レンズ15とコリメートレンズ14を通ってビームスプリッタ13で反射して光絞り部17側へ投射され、ピンホール17aを透過した光のみがホトダイオード18へ入射する。そのため、ホトダイオード18には、被測定物16で生じた潜り光及びレーザダイオード12で発生した迷光による反射光はピンホール17aで遮られてピンホール17aを通らずホトダイオード18には、被測定物16に生じた合焦点の光のみが入射することになる。   On the other hand, when a drive current is supplied from the laser power control unit 11 to the laser diode 12, the laser diode 12 emits laser light. The emitted light passes through the beam splitter 13, the collimating lens 14, and the objective lens 15 and is projected onto the object 16 to be measured. The reflected light reflected by the DUT 16 passes through the objective lens 15 and the collimating lens 14 and is reflected by the beam splitter 13 and projected to the optical diaphragm 17 side, and only the light transmitted through the pinhole 17a is incident on the photodiode 18. . Therefore, the latent light generated by the object to be measured 16 and the reflected light caused by the stray light generated by the laser diode 12 are blocked by the pinhole 17a and do not pass through the pinhole 17a. Only the in-focus light generated in the light enters.

ところで、対物レンズ15が振動させられているために、対物レンズ15と被測定物16との距離が変化し、所定距離に達した時点で、被測定物16に投射した光の合焦点が被測定物16に生じると、ホトダイオード18の受光出力は瞬時に最大となり、この受光出力に応じた信号が増幅器19へ入力され、増幅器19から出力信号Xが出力され演算部20へ入力される。演算部20は出力信号Xの極大値を検出することで、被測定物16に投射した光の合焦点が生じた時点を正確に検出することができる。演算部20は出力信号Xが極大値となる時点での出力信号Yのレベル、即ち対物レンズ15の振幅をサンプリングし、変位信号Sとして出力する。そしてサンプリングした変位信号Sを距離変換部50へ入力して、変位信号Sを、変位信号Sに応じた距離に変換して、被測定物16の表面の変位を測定する。   By the way, since the objective lens 15 is vibrated, the distance between the objective lens 15 and the object to be measured 16 changes, and when the distance reaches a predetermined distance, the focal point of the light projected on the object to be measured 16 is changed. When it occurs in the measurement object 16, the light reception output of the photodiode 18 is instantaneously maximized, and a signal corresponding to this light reception output is input to the amplifier 19, and the output signal X is output from the amplifier 19 and input to the arithmetic unit 20. The arithmetic unit 20 can accurately detect the point in time when the focal point of the light projected on the DUT 16 is generated by detecting the maximum value of the output signal X. The arithmetic unit 20 samples the level of the output signal Y at the time when the output signal X reaches the maximum value, that is, the amplitude of the objective lens 15, and outputs it as a displacement signal S. Then, the sampled displacement signal S is input to the distance conversion unit 50, and the displacement signal S is converted into a distance corresponding to the displacement signal S, and the displacement of the surface of the DUT 16 is measured.

なお、この例では対物レンズ15の変位を、音叉振幅検出部22の出力する正弦波信号をサンプルホールドすることで直接的に求めている。ただ、対物レンズ15の変位を取得する方法はこの方法に限られない。例えば、特許文献1である特許3300803号に開示されるように、音叉振幅検出部22の出力する信号が、振幅と位相が既知である正弦波信号であることを利用して、被測定物16の合焦点の生じた時点の位相または位相差から間接的に対物レンズ15の変位を取得する方法も利用できる。   In this example, the displacement of the objective lens 15 is directly obtained by sample-holding the sine wave signal output from the tuning fork amplitude detector 22. However, the method for acquiring the displacement of the objective lens 15 is not limited to this method. For example, as disclosed in Japanese Patent No. 3300803, which is Patent Document 1, the signal output from the tuning fork amplitude detection unit 22 is a sine wave signal having a known amplitude and phase. A method of indirectly acquiring the displacement of the objective lens 15 from the phase or phase difference at the time when the in-focus point occurs can also be used.

また、加振部の他の実施形態として、図4に示すように、対物レンズ15のみならずコリメートレンズ14も音叉21に接続してもよい。図4の例では、音叉21の一側長寸部の先端に対物レンズ15の周縁部分を取付け、他側長寸部の先端に対物レンズ15と同一光軸上に配置したコリメートレンズ14の周縁部分を取付けている。そして対物レンズ15及びコリメートレンズ14を共に振動可能なように構成している。このようにすると音叉21の一側長寸部と他側長寸部との重量を平衡させ得て、音叉21を効率良く振らせることができる。さらに音叉21の一側長寸部の外側面及び他側長寸部の外側面夫々に圧電素子を固着し、この圧電素子に電圧を印加することで音叉21を振動させることができる。   As another embodiment of the vibration unit, not only the objective lens 15 but also the collimating lens 14 may be connected to the tuning fork 21 as shown in FIG. In the example of FIG. 4, the peripheral portion of the objective lens 15 is attached to the tip of one long portion of the tuning fork 21 and the periphery of the collimator lens 14 disposed on the same optical axis as the objective lens 15 at the tip of the other long portion. The part is installed. The objective lens 15 and the collimating lens 14 are both configured to be able to vibrate. If it does in this way, the weight of one side long part and other side long part of tuning fork 21 can be balanced, and tuning fork 21 can be shaken efficiently. Furthermore, the tuning fork 21 can be vibrated by fixing a piezoelectric element to each of the outer surface of the long side of the tuning fork 21 and the outer surface of the long side of the other side and applying a voltage to the piezoelectric element.

このような、被測定物16上の任意の一点における変位の演算方法は、例えば上記特許文献1に記載した方法や、その他の既知の方法又は将来開発される方法が適宜利用でき、詳細な説明は割愛する。   As such a method for calculating the displacement at an arbitrary point on the object 16 to be measured, for example, the method described in Patent Document 1 above, other known methods, or a method developed in the future can be used as appropriate. Will be omitted.

[測定領域]
以上のようにして変位計は、指定された測定ポイントにおける変位量を測定する。さらに変位計は、測定ポイントを複数指定可能である。具体的には、測定領域指定部51によって測定対象となる測定領域を指定する。測定領域は、円弧や直線等の線状で指定する。測定領域指定部51による指定方法は、例えば線分の始点と終点を指定する方法、自由曲線を直接指定する方法等が適宜利用できる。また指定された測定領域の直線や曲線において、測定ポイントの間隔である走査ステップも指定できる。あるいは、測定したい複数の位置を測定ポイントとしてユーザが直接指定しても良い。または、ユーザが指定した位置に基づいて変位計が測定領域を自動的に設定する方法としてもよい。例えば、指定された位置を基準として、測定ポイントの間隔も所定値に設定される。
[Measurement area]
As described above, the displacement meter measures the displacement amount at the designated measurement point. Furthermore, the displacement meter can designate a plurality of measurement points. Specifically, the measurement area to be measured is designated by the measurement area designation unit 51. The measurement area is designated by a line such as an arc or a straight line. As a designation method by the measurement region designation unit 51, for example, a method for designating a start point and an end point of a line segment, a method for directly designating a free curve, and the like can be appropriately used. Further, it is possible to designate a scanning step which is an interval between measurement points in a straight line or a curve of the designated measurement region. Alternatively, the user may directly specify a plurality of positions to be measured as measurement points. Alternatively, the displacement meter may automatically set the measurement area based on the position designated by the user. For example, with the designated position as a reference, the interval between measurement points is also set to a predetermined value.

このようにして設定された測定領域内で、変位計は複数の測定ポイントにてそれぞれ変位量を測定する。そして測定された複数位置の変位量に基づいて、被測定物16の表面状態を知ることができる。例えば、測定領域における凹凸形状等を表示するプロファイル、傾き、最大高さ、最小高さ、平均高さ、高低差、厚み等を演算し、必要に応じて表示する。   Within the measurement region set in this way, the displacement meter measures the amount of displacement at each of a plurality of measurement points. Based on the measured displacement amounts at a plurality of positions, the surface state of the measurement object 16 can be known. For example, a profile for displaying the concavo-convex shape in the measurement region, inclination, maximum height, minimum height, average height, height difference, thickness, and the like are calculated and displayed as necessary.

もちろん、対物レンズ走査部52を停止させて任意の一点のみの変位量を測定する使用も可能であることはいうまでもない。   Of course, it is needless to say that the objective lens scanning unit 52 can be stopped and the displacement amount of only one arbitrary point can be measured.

[対物レンズ走査部52]
測定ポイントの移動は、対物レンズ15を移動させることによって行われる。対物レンズ15は、光の光軸と直交する方向に移動され、図5において水平方向に移動される。発光部から対物レンズ15に入光される光は、介在するコリメートレンズ14によって平行光とされている。その結果、図5に示すように平行光と直交する方向に移動させても、光軸方向の焦点距離は不変で被測定物16上にて焦点を結ぶことができるので、変位測定が可能となる。対物レンズ15が移動されても、平行光を受けられるように、好ましくは対物レンズ15の大きさはコリメートレンズ14よりもレンズ面の直径を小さくし、かつ対物レンズ15の移動可能範囲がコリメートレンズ14の直径に収まるように設定する。
[Objective lens scanning unit 52]
The measurement point is moved by moving the objective lens 15. The objective lens 15 is moved in a direction orthogonal to the optical axis of the light, and is moved in the horizontal direction in FIG. Light incident on the objective lens 15 from the light emitting portion is converted into parallel light by the intervening collimator lens 14. As a result, even if it is moved in the direction orthogonal to the parallel light as shown in FIG. 5, the focal length in the optical axis direction is unchanged and the focal point can be focused on the object 16 to be measured, so that displacement measurement is possible. Become. The size of the objective lens 15 is preferably made smaller than the diameter of the collimating lens 14 so that parallel light can be received even if the objective lens 15 is moved, and the movable range of the objective lens 15 is the collimating lens. It is set to fit within a diameter of 14.

対物レンズ15は対物レンズ走査部52によって移動される。図3に示す変位計は、対物レンズ走査部52としてサーボモータ52Aと、対物レンズ走査部52により対物レンズ15が移動された位置を検出する対物レンズ移動検出部53として、サーボモータ52Aの回転角を検出する回転角センサ53Aを備える。サーボモータ52Aは、加振部を構成する音叉21を保持する音叉ホルダ56に設けられた回転軸54を介して、加振部を回転自在に連結している。回転軸54は、加振部に連結された対物レンズ15が光軸と直交する平面に沿って移動させるように位置決めされる。図3においては、回転軸54は音叉ホルダ56の後端に貫通されて、音叉21を水平面内で回転させ、コリメートレンズ14からの平行光を対物レンズ15が垂直に受けられるように構成している。サーボモータ52Aの回転は、サーボモータ52Aに接続された走査位置制御部57によって制御される。走査位置制御部57は、演算処理部58から出力される走査位置制御信号に基づいてサーボモータ52Aの回転を制御する。   The objective lens 15 is moved by the objective lens scanning unit 52. The displacement meter shown in FIG. 3 includes a servo motor 52A as the objective lens scanning unit 52, and a rotation angle of the servo motor 52A as the objective lens movement detection unit 53 that detects the position where the objective lens 15 is moved by the objective lens scanning unit 52. Is provided with a rotation angle sensor 53A. The servo motor 52 </ b> A rotatably couples the excitation unit via a rotation shaft 54 provided on a tuning fork holder 56 that holds the tuning fork 21 that constitutes the excitation unit. The rotation shaft 54 is positioned so that the objective lens 15 connected to the excitation unit moves along a plane orthogonal to the optical axis. In FIG. 3, the rotation shaft 54 is passed through the rear end of the tuning fork holder 56 to rotate the tuning fork 21 in a horizontal plane so that the parallel light from the collimating lens 14 can be received vertically by the objective lens 15. Yes. The rotation of the servo motor 52A is controlled by a scanning position control unit 57 connected to the servo motor 52A. The scanning position control unit 57 controls the rotation of the servo motor 52A based on the scanning position control signal output from the arithmetic processing unit 58.

[対物レンズ移動検出部53]
またサーボモータ52Aの回転軸54には、対物レンズ移動検出部53として回転角センサ53Aが取り付けられ、回転角センサ53Aによって対物レンズ15の位置が検出される。回転角センサ53Aは対物レンズ移動位置信号を走査位置制御部57に送出し、走査位置制御部57は対物レンズ移動位置信号と走査位置制御信号に基づいて対物レンズ15の位置を正確に制御できる。また、走査位置制御部57は対物レンズ15の位置情報を演算部20に報告する。これによって、変位計は測定位置を把握しながら走査することができる。演算部50は対物レンズ15の位置情報を受けて、測定ポイント毎の変位量を距離変換部50で演算し、演算結果を演算処理部58に出力する。演算処理部58はメモリ部59を備えてなり、各測定ポイントにおける変位量を保持する。そして所定の演算処理を行い、その結果を必要に応じて出力する。例えばディスプレイに表示させる、プリンタに印刷する、記憶媒体に保存する、あるいはその他の処理のために外部機器に送出される。出力部66は、これらの処理に応じてディスプレイ等の表示部、プリンタ等の印刷部、ストレージデバイス等の媒体記録部、コンピュータ等の外部機器等が利用できる。なお演算部50と演算処理部58は、システムLSI等のICで構成でき、これらを同一の回路で構成することもできる。
[Objective Lens Movement Detection Unit 53]
A rotation angle sensor 53A is attached to the rotation shaft 54 of the servo motor 52A as the objective lens movement detection unit 53, and the position of the objective lens 15 is detected by the rotation angle sensor 53A. The rotation angle sensor 53A sends an objective lens movement position signal to the scanning position control unit 57, and the scanning position control unit 57 can accurately control the position of the objective lens 15 based on the objective lens movement position signal and the scanning position control signal. Further, the scanning position control unit 57 reports the position information of the objective lens 15 to the calculation unit 20. Thereby, the displacement meter can scan while grasping the measurement position. The calculation unit 50 receives the position information of the objective lens 15, calculates the displacement amount for each measurement point by the distance conversion unit 50, and outputs the calculation result to the calculation processing unit 58. The arithmetic processing unit 58 includes a memory unit 59 and holds a displacement amount at each measurement point. Then, predetermined calculation processing is performed, and the result is output as necessary. For example, it is displayed on a display, printed on a printer, stored in a storage medium, or sent to an external device for other processing. The output unit 66 can use a display unit such as a display, a printing unit such as a printer, a medium recording unit such as a storage device, an external device such as a computer, or the like according to these processes. Note that the calculation unit 50 and the calculation processing unit 58 can be configured by an IC such as a system LSI, and these can also be configured by the same circuit.

[測定領域指定部51]
図3に示す変位計は、ユーザが所望の測定領域を指定するための測定領域指定部51を備える。測定領域は、測定を行う領域を線で指定する。測定領域指定部51は、例えばコンソールやキーボード、マウス、タッチパネル等の入力手段が適宜利用できる。測定領域指定部51は変位計に備え付ける他、脱着自在な部材として有線、無線で変位計本体と接続される。あるいは、変位計に接続されたコンピュータに接続される入力デバイスを利用しても良い。
[Measurement area designating part 51]
The displacement meter shown in FIG. 3 includes a measurement area designating unit 51 for the user to designate a desired measurement area. The measurement area designates an area to be measured with a line. For the measurement region designating part 51, input means such as a console, a keyboard, a mouse, and a touch panel can be used as appropriate. In addition to being provided in the displacement meter, the measurement region designating part 51 is connected to the displacement meter body by wire or wireless as a detachable member. Alternatively, an input device connected to a computer connected to the displacement meter may be used.

測定領域指定部51は演算処理部58に接続されている。ユーザが測定領域指定部51から測定領域を指示することで、この情報に基づいて演算処理部58は音叉位置制御信号、走査位置制御信号をそれぞれ音叉振幅制御部25、走査位置制御部57に出力し、これらを制御する。図6は、走査位置制御信号の概要を示す。測定領域は、対物レンズ15を移動させる範囲である走査幅、移動の中心位置である走査中心、対物レンズ15を周期的に移動させる場合の走査周期、一回当たりの移動量である走査ステップ等で決定される。ユーザは、例えば走査ステップと走査幅を指定すると、対物レンズ15は指定された走査ステップで段階的に移動され、走査幅分移動すると折り返して反対方向に移動し、周期的に移動することで被対象物の表面を走査する。また、指定を簡単にするためにユーザが被測定物上で任意の一点を指定すると、この点を走査中心として、予め設定された走査幅、走査ステップで走査領域を自動的に設定することもできる。あるいはまた、対物レンズ15を周期的に走査させる方法に限られず、ユーザが指定した任意の経路に沿って移動させたり、任意の点での変位を測定するよう、このような経路や点を指定するよう構成しても良い。   The measurement area designating unit 51 is connected to the arithmetic processing unit 58. When the user designates the measurement region from the measurement region specifying unit 51, the arithmetic processing unit 58 outputs the tuning fork position control signal and the scanning position control signal to the tuning fork amplitude control unit 25 and the scanning position control unit 57, respectively, based on this information. And control these. FIG. 6 shows an outline of the scanning position control signal. The measurement area includes a scanning width that is a range in which the objective lens 15 is moved, a scanning center that is a movement center position, a scanning cycle when the objective lens 15 is periodically moved, a scanning step that is a movement amount per time, and the like. Determined by For example, when the user designates a scanning step and a scanning width, the objective lens 15 is moved stepwise at the designated scanning step, and when the user moves by the scanning width, the objective lens 15 turns back and moves in the opposite direction, and periodically moves to move the objective lens 15. Scan the surface of the object. In addition, when the user designates an arbitrary point on the object to be measured in order to simplify the designation, the scanning area may be automatically set with the scanning width and the scanning step set in advance with this point as the scanning center. it can. Alternatively, the method is not limited to the method in which the objective lens 15 is periodically scanned, and such a path or point is specified so that the objective lens 15 is moved along an arbitrary path specified by the user or the displacement at an arbitrary point is measured. You may comprise so that it may carry out.

走査に要する時間または走査速度は、主に走査ステップと走査幅によって決定される。走査ステップを大きくとり、走査幅を狭くする程、走査速度は速くなる。一方、走査ステップを小さくとる程、走査精度は向上し、より微細な変位測定が可能となる。よって、測定領域やそのパラメータは、速度と精度のバランスに応じて所望の値に設定される。   The time or scanning speed required for scanning is mainly determined by the scanning step and the scanning width. The larger the scanning step and the narrower the scanning width, the faster the scanning speed. On the other hand, the smaller the scanning step, the higher the scanning accuracy and the finer displacement measurement becomes possible. Therefore, the measurement region and its parameters are set to desired values according to the balance between speed and accuracy.

一方、図6に示すように、走査位置制御信号と並行して、音叉位置信号が演算処理部58から音叉振幅制御部25に対して送出されている。よって対物レンズ15を光軸と垂直な面に沿って移動させる間にも、加振部によって対物レンズ15は光軸の方向に振動されており、上述したように受光部の極大値を検出することで変位を演算している。好ましくは、一の走査ステップ毎に対物レンズ15を加振部で光軸方向に一周期以上振幅させて、各ステップ毎に変位を測定できるようにする。このために、走査位置制御信号と音叉位置検出信号は演算処理部58で同期させて出力する。   On the other hand, as shown in FIG. 6, in parallel with the scanning position control signal, the tuning fork position signal is sent from the arithmetic processing unit 58 to the tuning fork amplitude control unit 25. Therefore, while the objective lens 15 is moved along a plane perpendicular to the optical axis, the objective lens 15 is vibrated in the direction of the optical axis by the vibration unit, and the maximum value of the light receiving unit is detected as described above. The displacement is calculated. Preferably, the objective lens 15 is amplified by one or more periods in the optical axis direction by the vibration unit for each scanning step so that the displacement can be measured for each step. For this purpose, the scanning position control signal and the tuning fork position detection signal are output by the arithmetic processing unit 58 in synchronization.

[変位測定手順]
次に、上記の変位計を使って所定範囲の変位を測定する手法を説明する。変位計は、図7に示すように、音叉を使用して対物レンズを加振することにより、図7の上下方向に対物レンズの位置を変更することができる。光軸方向への対物レンズの移動(振動)は、位置検出部である音叉振幅検出部22で振動位置として検出される。また一方で、対物レンズ走査部により音叉を水平面内に揺動させることで、対物レンズを図7の横方向に動かして測定ポイントを移動させる。このようにして、各々の測定ポイントにおいて対物レンズの振動位置を移動させながら、受光部で受光量を測定する。
[Displacement measurement procedure]
Next, a method of measuring a predetermined range of displacement using the above displacement meter will be described. As shown in FIG. 7, the displacement meter can change the position of the objective lens in the vertical direction of FIG. 7 by vibrating the objective lens using a tuning fork. The movement (vibration) of the objective lens in the optical axis direction is detected as a vibration position by the tuning fork amplitude detection unit 22 which is a position detection unit. On the other hand, the measurement point is moved by moving the tuning lens in the horizontal direction in FIG. 7 by swinging the tuning fork in the horizontal plane by the objective lens scanning unit. In this way, the amount of received light is measured by the light receiving unit while moving the vibration position of the objective lens at each measurement point.

振動位置によって受光量が変化する状態を図8に示す。図において、横軸の受光量が最大となる縦軸の対物レンズの振動位置が、焦点が合った位置(焦点距離)である。したがって、受光量が最大となる振動位置を取得することで、変位を算出できる。図7に示すように、焦点の近傍では対物レンズの振動位置に応じて受光量が大きく変化する。図において破線で示す波形は理想的な受光量を示しているが、実際の波形は実線のように複数のピークを持つ波形となる。これは、被測定物の表面が粗面であったり異物が付着している等の理由で、対物レンズの振動範囲内で受光量の極値が複数測定されるためである。   FIG. 8 shows a state in which the amount of received light changes depending on the vibration position. In the figure, the vibration position of the objective lens on the vertical axis that maximizes the amount of received light on the horizontal axis is the position (focal length) in focus. Therefore, the displacement can be calculated by obtaining the vibration position where the amount of received light is maximized. As shown in FIG. 7, in the vicinity of the focal point, the amount of received light varies greatly according to the vibration position of the objective lens. In the figure, the waveform indicated by the broken line indicates the ideal amount of received light, but the actual waveform is a waveform having a plurality of peaks as indicated by the solid line. This is because a plurality of extreme values of the amount of received light are measured within the vibration range of the objective lens because the surface of the object to be measured is rough or foreign matter is attached.

このようにして測定された受光量に基づいて、各測定ポイントにおいて各々振動位置を決定、これらを平均することで平均変位を求めることができる。図9は、平均変位を求める所定領域に含まれるn個の測定ポイントP、P、P、・・・Pn−1において、それぞれ測定された受光量のピークを示している。一般に、測定の精度は受光量の大きさに依存し、受光量が高いほど精度の高い測定ができる一方、受光量が低いと精度が悪くなる。このため、各測定ポイントP、P、P、・・・Pn−1において、受光量のピークが最大となる振動位置Y、Y、Y、・・・Yn−1を抽出し、これらの平均をとることで所定領域の振動位置とする。この例では、(Y+Y+Y+・・・+Yn−1)/nを平均振動位置とし、この位置に対物レンズがあるとき合焦点が得られると仮定して平均変位を求める。 Based on the amount of light received thus measured, the vibration position is determined at each measurement point, and the average displacement can be obtained by averaging these positions. FIG. 9 shows the peaks of the received light amounts respectively measured at n measurement points P 0 , P 1 , P 2 ,... P n−1 included in the predetermined area for obtaining the average displacement. In general, the accuracy of measurement depends on the amount of received light, and the higher the amount of received light, the higher the accuracy of the measurement, while the lower the amount of received light, the worse the accuracy. Thus, each measurement point P 0, P 1, P 2 , in ··· P n-1, the vibration position Y 0 the peak amount of received light becomes maximum, Y 1, Y 2, ··· Y n-1 Is extracted, and the average of these values is taken as the vibration position of the predetermined region. In this example, (Y 0 + Y 1 + Y 2 +... + Y n-1 ) / n is defined as an average vibration position, and the average displacement is obtained on the assumption that a focal point is obtained when the objective lens is present at this position.

しかしながら、この方法では測定精度に関わる受光量の大きさが反映されていない。例えば、図9において測定ポイントPでは低い受光量しか得られておらず、このポイントにおける測定精度は低いと思われるにも拘わらず、平均変位の演算においては他の測定ポイントと同じ位置付けで扱われている。これでは、精度の高いデータと低いデータが区別されず、同じ重み付けのまま単純な平均として処理されるため、演算結果の信頼性も低くなり、精度の高い変位測定ができない。 However, this method does not reflect the amount of received light related to measurement accuracy. For example, only not been obtained in the measurement points P 1 low amount of light received 9, the measurement accuracy in this point despite seems low, in the calculation of the average displacement in the same status as the other measurement points handling It has been broken. In this case, data with high accuracy and data with low accuracy are not distinguished, and are processed as a simple average with the same weighting. Therefore, the reliability of the calculation result is low, and high-precision displacement measurement cannot be performed.

そこで本実施の形態においては、受光量の大小を考慮し、測定精度に関与する受光量のピークで重み付けすることにより、受光量の大きい精度の高いデータを重視した演算としてより正確な変位を得ている。この手法の原理を、図10に基づいて説明する。   Therefore, in this embodiment, taking into account the magnitude of the amount of received light, weighting is applied with the peak of the amount of received light that is related to the measurement accuracy, thereby obtaining a more accurate displacement as an operation that emphasizes highly accurate data with a large amount of received light. ing. The principle of this method will be described with reference to FIG.

図10も図9と同じく、n個の測定ポイントP、P、P、・・・Pn−1において、それぞれ測定された受光量のピークを示している。各測定ポイントで測定された受光量はピーク値のみであり、実際には図8で示すような波形で受光量が生じている。そこで、受光量のピーク値に基づいて、元の受光量の波形を近似的に復元する。波形の復元には、図11に示す手法が利用できる。図11(a)は、受光量のピークを高さとする三角波で受光量の波形を近似する方法を示す。三角波による復元波形は簡単かつ安価に生成でき、精度的にも他の方法と比べて遜色のない結果が得られたので好ましい。また、図11(b)は、ピークを中心とする正規分布の波形で受光量の波形を近似する方法を示している。この近似波形は高い精度が期待できる。また、これらに限られず正弦波やその他の基本波形で近似する方法や、後述する図20で示すように受光量の実測値で波形を構築する手法も適宜採用できる。なお近似波形の裾の広がりは、図7の縦方向に示した音叉による対物レンズの加振に相当するため、変位計の光学系の設定や仕様に応じて適切な値に決定される。例えばレーザのスポット径が狭い場合は裾が狭くピークの高い波形となり、スポット径が広い場合はブロードでピークの低い波形となる。 FIG. 10 also shows the peaks of the received light amounts measured at n measurement points P 0 , P 1 , P 2 ,... P n−1 , as in FIG. The amount of received light measured at each measurement point is only a peak value, and actually the amount of received light is generated with a waveform as shown in FIG. Therefore, the original waveform of the received light amount is approximately restored based on the peak value of the received light amount. The technique shown in FIG. 11 can be used to restore the waveform. FIG. 11A shows a method of approximating the received light amount waveform with a triangular wave whose height is the peak of the received light amount. The restored waveform by the triangular wave can be generated easily and inexpensively, and the result is inferior to other methods in terms of accuracy, which is preferable. FIG. 11B shows a method of approximating the received light amount waveform with a normal distribution waveform centered on the peak. This approximate waveform can be expected to have high accuracy. Further, the present invention is not limited thereto, and a method of approximating with a sine wave or other basic waveform, or a method of constructing a waveform with an actual measurement value of received light as shown in FIG. Note that the broadening of the skirt of the approximate waveform corresponds to the vibration of the objective lens by the tuning fork shown in the vertical direction in FIG. 7, and is therefore determined to be an appropriate value according to the settings and specifications of the optical system of the displacement meter. For example, when the laser spot diameter is narrow, the waveform is narrow and the peak is high, and when the spot diameter is wide, the waveform is broad and the peak is low.

さらに、ここで使用する受光量のピークは、所定の閾値をもって取捨選択することもできる。例えば、ピークが所定の閾値以下の場合は、以後の演算からそのデータを排除することで、精度の悪いデータを演算に算入しないことによる精度の向上が図られる。閾値の設定の詳細については後述する。   Furthermore, the peak of the received light amount used here can be selected with a predetermined threshold. For example, when the peak is equal to or lower than a predetermined threshold, the accuracy is improved by excluding the data with poor accuracy from the subsequent calculation by excluding the data. Details of the threshold setting will be described later.

以上のようにして、各測定ポイントにおいて得られたピーク値に基づき、受光量の近似波形を生成する。そして、図10に示すように得られた受光量の波形をすべての測定ポイントについて積算する。積算は、振動位置に基づいて受光量波形を重ね合わせるようにして行う。さらに、積算された波形から重心を求めて、この重心に相当する位置を振動位置として変位を演算する。この方法によれば、単に測定ポイント中の最大ピークを得た振動位置を機械的に抽出する方法に比して、測定精度に拘わる受光量の大きさで重み付けがなされ、また極大値以外のピーク値も演算に組み込まれて考慮されるので、より精度の高い振動位置の演算が行われ、その結果得られる変位測定も同様に高精度となる。特に、各測定ポイントにおいて受光量を測定した段階で直ちに振動位置を特定せず、すべての測定ポイントで受光量を積算した上で最終的な振動位置を求めている。この方法は、特別なハードウェアを追加することなく、既存の設備で実現できるため、実装が簡単で安価に実現でき、現行の変位計にも適用できる。一般に変位計の測定精度を向上させるには、光学系を高精度なものとするなど、コストがかかることが多いが、本実施の形態は既存の設備のままで、安価に精度を向上できるという優れた利点を有する。   As described above, an approximate waveform of the amount of received light is generated based on the peak value obtained at each measurement point. Then, as shown in FIG. 10, the obtained received light amount waveform is integrated for all measurement points. The integration is performed by superimposing the received light amount waveforms based on the vibration position. Further, the center of gravity is obtained from the integrated waveform, and the displacement is calculated using the position corresponding to the center of gravity as the vibration position. According to this method, compared to a method in which the vibration position at which the maximum peak in the measurement point is obtained is mechanically extracted, weighting is performed by the amount of received light related to measurement accuracy, and peaks other than the maximum value are also measured. Since the value is also incorporated into the calculation and considered, the vibration position is calculated with higher accuracy, and the resulting displacement measurement is also highly accurate. In particular, the vibration position is not immediately specified at the stage of measuring the amount of received light at each measurement point, and the final vibration position is obtained after integrating the amount of received light at all measurement points. Since this method can be realized with existing equipment without adding special hardware, it can be easily implemented at low cost, and can be applied to an existing displacement meter. In general, in order to improve the measurement accuracy of a displacement meter, it is often costly, such as making the optical system highly accurate, but this embodiment can improve accuracy at low cost with existing equipment. Has excellent advantages.

以上のように、上記の方法によって各測定ポイントの変位測定や所定領域での平均変位を精度良く求めることができ、またこれを利用して表面プロファイルや傾きなども求めることができる。例えば測定領域における凹凸形状等を表示するプロファイル、傾き、最大高さ、最小高さ、平均高さ、高低差、厚み等を演算により求め、必要に応じて表示部の画面などに数値やイメージなどで出力する。   As described above, the displacement measurement at each measurement point and the average displacement in a predetermined region can be obtained with high accuracy by the above method, and the surface profile, inclination, etc. can be obtained using this. For example, profiles for displaying uneven shapes in the measurement area, inclination, maximum height, minimum height, average height, height difference, thickness, etc. are obtained by calculation, and numerical values and images are displayed on the screen of the display unit as necessary. To output.

[測定フローチャート]
次に、実際に変位を測定する具体的な手順をフローチャートに基づいて説明する。ここでは、変位計で被測定物の表面を線状に走査してプロファイルを測定する際に、図12に示すように測定領域の線分を1〜10の10個の所定領域に分け、各所定領域においてP〜Pの9個の測定ポイントにおいて変位の測定を行う。ここで、1〜10に分割された所定領域の一区間が、変位やプロファイル測定の分解能となる。所定領域の一区間の大きさは、分解能と処理時間に応じて調整される。
[Measurement flow chart]
Next, a specific procedure for actually measuring the displacement will be described based on a flowchart. Here, when measuring the profile by linearly scanning the surface of the object to be measured with a displacement meter, the line segment of the measurement region is divided into 10 predetermined regions 1 to 10 as shown in FIG. The displacement is measured at nine measurement points P 1 to P 9 in a predetermined region. Here, one section of the predetermined area divided into 1 to 10 is the resolution of displacement and profile measurement. The size of one section of the predetermined area is adjusted according to the resolution and processing time.

以下、複数の測定データから変位を求める方法として、図13、図14に示す方法をそれぞれ説明する。まず図13に示す方法は、本発明の他の実施の形態2に係る変位測定方法として、所定領域の内で受光量が最大となるときの測定値を、この所定領域での測定値とする方法である。例えば、所定領域内で測定ポイントを移動させながら受光量を測定する際に、測定ポイントP、P、P、P、Pで図15に示すような受光量のピークが得られたとする。この内、最も受光量のピークが大きい測定ポイントを選択し(図15の例では測定ポイントP)、これを測定値として変位の演算に用いる。上述の通り、受光量の大きいデータほど精度が高いので、極大値をもって測定値とすることで精度を確保しつつ、処理を簡素化した高速な変位測定が実現できる。 Hereinafter, the methods shown in FIGS. 13 and 14 will be described as methods for obtaining displacement from a plurality of measurement data. First, the method shown in FIG. 13 is a displacement measurement method according to another embodiment 2 of the present invention, in which a measurement value when the amount of received light is maximum in a predetermined area is a measurement value in this predetermined area. Is the method. For example, when the amount of received light is measured while moving the measurement point within a predetermined area, the peak of the amount of received light as shown in FIG. 15 is obtained at the measurement points P 0 , P 1 , P 2 , P 3 , P 4 . Suppose. Among these, the measurement point with the largest peak of the amount of received light is selected (measurement point P 3 in the example of FIG. 15), and this is used as a measurement value for the calculation of displacement. As described above, since the data having a larger amount of received light has higher accuracy, it is possible to realize high-speed displacement measurement with simplified processing while ensuring accuracy by using the maximum value as the measurement value.

[所定領域内の受光量極大値を利用]
図13に示す方法では、まず観測位置にスポットを移動させ(ステップS13−1)、その位置での受光量を測定し、測定された受光量と振動位置とを受光量ピークメモリ部72に保持する(ステップS13−2)。そしてステップS13−3で該所定領域の測定ポイントP〜Pにおける測定が完了したか否かを判定し、未だの場合はステップS13−1に戻って上記ループを繰り返し、完了した場合はステップS13−4に進む。ステップS13−4では、P〜Pの測定ポイントの内、受光量が最大となる測定ポイントを選択する。選択された測定ポイントでの受光量を該所定領域の振動位置とし、変位を演算する。そしてステップS13−5で、1〜10すべての所定領域の測定を完了したか否かを判定し、未だの場合はステップS13−1に戻って上記ループを繰り返し、完了した場合は処理を終了する。この方法では、最も高い受光量を得たデータを代表データとして変位の演算に採用すると共に、他のデータを破棄する。この方法は複雑な演算処理が不要であり、簡易な処理として高速かつ低負荷で演算でき、安価に実現できるという利点がある。図10で説明した方法との違いは、各測定ポイントで得た振動位置を平均するのでなく、測定ポイントの内で最も受光量の高いデータを代表データとして扱うことである。受光量が最大となるデータは精度が高いので、ある程度の精度が期待できる。
[Use the maximum received light amount within the specified area]
In the method shown in FIG. 13, the spot is first moved to the observation position (step S13-1), the amount of received light at that position is measured, and the measured amount of received light and the vibration position are held in the received light amount peak memory unit 72. (Step S13-2). Step If and determines whether the measurement at the measurement points P 1 to P 9 of the predetermined area is completed in step S13-3, in the case of still repeatedly the loop returns to step S13-1, completing Proceed to S13-4. In step S13-4, among the measurement points P 1 to P 9, selects the measurement point where the light receiving amount is maximized. The amount of light received at the selected measurement point is set as the vibration position of the predetermined area, and the displacement is calculated. In step S13-5, it is determined whether or not measurement of all the predetermined areas 1 to 10 has been completed. If not, the process returns to step S13-1 to repeat the above loop, and if completed, the process ends. . In this method, the data obtained with the highest received light amount is adopted as representative data for the displacement calculation, and other data is discarded. This method does not require complicated arithmetic processing, and has an advantage that it can be performed at a high speed and with a low load as a simple processing and can be realized at low cost. The difference from the method described with reference to FIG. 10 is that the vibration position obtained at each measurement point is not averaged, but the data with the highest received light amount among the measurement points is handled as representative data. Since the data with the maximum amount of received light has high accuracy, a certain level of accuracy can be expected.

図13の手順を実現する変位計のブロック図を図16に示す。この図に示す変位計は、受光部118と、音叉位置検出器22と、受光量検出部70と、ピーク検出部71と、対物レンズ移動検出部53と、受光量ピークメモリ部72と、受光データ処理部73と、受光データメモリ部74と、出力部66とを備える。受光部118は図3などに示すようにホトダイオードなどで構成され、発光部からの反射光の内ビームスプリッタで反射されて光絞り部を通過する光を受光する。受光部118で受光される反射光は、受光量検出部70で受光量を検出される。また、ピーク検出部71はリアルタイムに変化する受光量の波形がピークとなる状態を検出する。ピーク検出部71がピークを検出すると、このとき受光量検出部70で検出された受光量が受光量ピークメモリ部72に保持される。このようにピーク検出部71は、受光量を保持するタイミングのトリガとなる。なお図16で示す受光量検出部70と、ピーク検出部71と、受光量ピークメモリ部72とは、図3において演算部20に相当する。これらの部材も所定のゲートアレイ(FPGA、ASIC)等のハードウエアやソフトウエア、あるいはこれらの混在により実現できる。   FIG. 16 shows a block diagram of a displacement meter that realizes the procedure of FIG. The displacement meter shown in this figure includes a light receiving unit 118, a tuning fork position detector 22, a received light amount detecting unit 70, a peak detecting unit 71, an objective lens movement detecting unit 53, a received light amount peak memory unit 72, and a received light amount. A data processing unit 73, a received light data memory unit 74, and an output unit 66 are provided. As shown in FIG. 3 and the like, the light receiving unit 118 is configured by a photodiode or the like, and receives the light reflected by the inner beam splitter of the reflected light from the light emitting unit and passing through the optical aperture unit. The amount of received light detected by the light receiving unit 118 is detected by the received light amount detecting unit 70. Further, the peak detector 71 detects a state in which the waveform of the received light amount that changes in real time reaches a peak. When the peak detector 71 detects a peak, the received light amount detected by the received light amount detector 70 at this time is held in the received light amount peak memory unit 72. As described above, the peak detector 71 serves as a trigger for timing to hold the amount of received light. Note that the received light amount detection unit 70, the peak detection unit 71, and the received light amount peak memory unit 72 illustrated in FIG. 16 correspond to the calculation unit 20 in FIG. These members can also be realized by hardware or software such as a predetermined gate array (FPGA, ASIC), or a mixture thereof.

また音叉振幅検出部22は、同様にピーク検出部71をトリガとして、受光量がピークとなった時点での音叉の位置を検出し、この情報を受光量ピークメモリ部72に保持する。このようにして、受光量がピークとなる時点でのピーク量および音叉の位置(振動位置)が受光量ピークメモリ部72に保持され、図15に示すように各測定ポイントで複数のピークに関する情報が保持される。   Similarly, the tuning fork amplitude detection unit 22 uses the peak detection unit 71 as a trigger to detect the position of the tuning fork when the light reception amount reaches a peak, and holds this information in the light reception amount peak memory unit 72. In this way, the peak amount and the tuning fork position (vibration position) at the time when the received light amount reaches the peak are held in the received light amount peak memory unit 72, and information on a plurality of peaks at each measurement point as shown in FIG. Is retained.

一方、対物レンズ移動検出部53は音叉に接続された対物レンズの加振部によるスキャン位置を検出し、測定ポイントの座標等、位置情報を検出する。そして、受光量ピークメモリ部72および対物レンズ移動検出部53と接続された受光データ処理部73は、保持されたピークの内で受光量が最大のピークを抽出し、この測定ポイントのデータを所定領域の測定値として選択する。選択されたデータに基づき変位が演算され、出力部66から出力される。   On the other hand, the objective lens movement detection unit 53 detects the scan position by the vibration unit of the objective lens connected to the tuning fork, and detects position information such as the coordinates of the measurement point. Then, the received light amount data processing unit 73 connected to the received light amount peak memory unit 72 and the objective lens movement detecting unit 53 extracts the peak with the largest received light amount from the held peaks, and the data of this measurement point is determined in advance. Select as an area measurement. The displacement is calculated based on the selected data and output from the output unit 66.

[所定領域内の受光量を積算]
一方図14に示す方法は、図10で説明した方法であり、所定領域の区間内で受光量を積算することにより変位を演算する。図14のステップS14−1〜ステップS14−3は図13と同様である。ステップS14−4では、所定領域のP〜Pの測定ポイントに対し、受光量を積算する。受光量の積算は、受光量ピークメモリ部72で記憶された受光量の極大値およびこのときの対物レンズの振動位置のデータから、振動位置を基準に受光量を足し合わせていき、一の受光波形を得るものである。さらに続くステップS14−5では、積算された受光波形から、重心位置を算出してこの位置に基づき変位を演算する。波形から重心を求める手順は、既存のアルゴリズムが適宜利用できる。さらにステップS14−6ですべての所定領域について測定が完了するまで上記ループを繰り返す。この方法では、すべての測定ポイントにおいて得たデータを使って、受光量の大きさで重み付けを行うため、単一のデータのみを用いて他を破棄する図13の方法と比較して、より精度の高い変位測定が期待できる。反面、処理が図13よりも複雑化するため、処理時間が長くかかり処理が重くなる。
[Integrate the amount of light received within the specified area]
On the other hand, the method shown in FIG. 14 is the method described with reference to FIG. 10, and the displacement is calculated by integrating the amount of received light within a predetermined area. Steps S14-1 to S14-3 in FIG. 14 are the same as those in FIG. In step S14-4, The measurement points P 1 to P 9 of a predetermined area, integrates the received light amount. The total received light amount is obtained by adding the received light amount based on the vibration position based on the maximum value of the received light amount stored in the received light amount peak memory unit 72 and the vibration position data of the objective lens at this time. A waveform is obtained. In the subsequent step S14-5, the center of gravity position is calculated from the integrated received light waveform, and the displacement is calculated based on this position. An existing algorithm can be used as appropriate for obtaining the center of gravity from the waveform. Further, the above loop is repeated until the measurement is completed for all the predetermined areas in step S14-6. In this method, data obtained at all measurement points is used to perform weighting according to the magnitude of the amount of received light, and therefore, more accurate than the method of FIG. 13 in which only a single data is used and the others are discarded. High displacement measurement can be expected. On the other hand, since the processing is more complicated than that in FIG. 13, the processing time is long and the processing becomes heavy.

[受光量の元波形を再現]
具体的には、図14の方法はさらに図17や図18の方法で実現できる。図17の方法は、上述した図10と同様の方法であり、対物レンズを加振する音叉を振動させ、受光量がピークとなる音叉の位置すなわち振動位置と、そのときの受光量を保持し、このデータに基づいて受光量の波形を再現して受光量を積算する方法である。具体的には、図17のステップS17−1において、P〜Pの各測定ポイントにおいて音叉を全幅移動させながら、受光量がピークとなる音叉の位置およびそのときの受光量を検出し保持する。さらに、同じくステップS17−2において、受光量ピークメモリ部72から所定領域における受光量の極大値と音叉の位置を選択する。そして選択された最大データに基づいて受光量の近似波形を生成すると共に、近似波形を用いて受光量の積算を行う。ここでは近似波形生成用のメモリ領域に近似波形を再現すると共に、生成された近似波形を受光量積算用のメモリ領域に順次加算していく。これによって、すべての測定ポイントで得られたピーク位置に基づく近似波形がすべて積算されて、積算波形データを得ることができ、この積算波形の重心を振動位置として変位を演算する。
[Reproduce the original waveform of received light amount]
Specifically, the method of FIG. 14 can be further realized by the methods of FIGS. The method shown in FIG. 17 is the same method as that shown in FIG. This is a method of accumulating the received light amount by reproducing the waveform of the received light amount based on this data. More specifically, in step S17-1 in FIG. 17, while moving the full width of the tuning fork at each measurement point P 1 to P 9, and detects the received light amount of the position and the time that the tuning fork received light amount reaches a peak hold To do. Further, in step S17-2, the maximum value of the received light amount and the position of the tuning fork in the predetermined region are selected from the received light amount peak memory unit 72. Then, an approximate waveform of the received light amount is generated based on the selected maximum data, and the received light amount is integrated using the approximate waveform. Here, the approximate waveform is reproduced in the approximate waveform generation memory area, and the generated approximate waveform is sequentially added to the received light amount integration memory area. Thereby, all approximate waveforms based on the peak positions obtained at all measurement points are integrated to obtain integrated waveform data, and the displacement is calculated using the center of gravity of the integrated waveform as the vibration position.

図17の手順を実現する変位計は、図16のブロック図と同様の構成が利用できる。図13の手順と同様に、ピーク検出部71をトリガとして受光量がピークを示す振動位置及び受光量の情報を、音叉振幅検出部22および受光量検出部70がそれぞれ検出して、受光量ピークメモリ部72に保持する。さらに、受光データ処理部73は受光量積算を行うため、受光量ピークメモリ部72で保持されるデータを読み出して受光データメモリ部74で順次積算していく。これにより受光データメモリ部74内で受光量の積算波形が生成されて、図10のように積算波形から重心を求めることにより振動位置が決定される。後は図13で説明したのと同様に、振動位置から変位を演算して出力部66で出力される。なお図16において受光データ処理部73と受光データメモリ部74は、図3において演算処理部58およびメモリ部59にそれぞれ相当する。   The displacement meter that realizes the procedure of FIG. 17 can use the same configuration as the block diagram of FIG. Similar to the procedure of FIG. 13, the tuning fork amplitude detection unit 22 and the received light amount detection unit 70 detect the vibration position and the received light amount information at which the received light amount reaches the peak using the peak detection unit 71 as a trigger, respectively. It is held in the memory unit 72. Further, since the received light data processing unit 73 performs the received light amount integration, the data stored in the received light amount peak memory unit 72 is read and sequentially integrated in the received light data memory unit 74. As a result, an integrated waveform of the received light amount is generated in the received light data memory unit 74, and the vibration position is determined by obtaining the center of gravity from the integrated waveform as shown in FIG. After that, as described with reference to FIG. 13, the displacement is calculated from the vibration position and output from the output unit 66. In FIG. 16, the light reception data processing unit 73 and the light reception data memory unit 74 correspond to the arithmetic processing unit 58 and the memory unit 59 in FIG.

この方法では、後述する手法のように実際に測定したピーク値を積算して波形を得るのでなく、最も高い測定ピーク値に基づいて波形を作成するものであるが、予測データを使用するにも関わらず実際の評価を行うと精度的には後述の手法と同等の結果を得ている。また受光量を一々A/D変換する必要がなく、処理が比較的容易で高速、低負荷で実現できるという利点が得られる。   In this method, the waveform is created based on the highest measured peak value instead of accumulating the actually measured peak values as in the method described later, but the predicted data is also used. Regardless, the actual evaluation yields results that are equivalent to the method described below in terms of accuracy. Further, there is no need to A / D convert the received light amount one by one, and there is an advantage that the processing is relatively easy and can be realized at high speed and low load.

[受光量の実測値をA/D変換]
一方、図18の方法は、対物レンズを加振する音叉を振動させる間、受光量を常時測定して受光量積算する方法である。すなわち、図17の方法のように近似波形を利用せず、実際に測定した受光量に基づいて受光量積算を行う。具体的には、P〜Pの各測定ポイントにおいて、図18のステップS18−1に示すように音叉が一定量移動する度に受光量を測定し、受光量データをA/D変換して光量積算用のメモリ領域に順次積算し(ステップS18−2)、音叉の移動範囲にわたって上記工程を繰り返す(ステップS18−3)。この方法では、受光量のピークに基づく近似でなく、実際の受光量を測定しているため、より正確な変位測定が期待できる。反面、リアルタイムで受光量を測定するために処理速度の高い高分解能のA/D変換器が必要となり、回路が複雑となるため処理が重くなり、実現コストがかかる。
[A / D conversion of measured value of received light amount]
On the other hand, the method of FIG. 18 is a method of constantly measuring the amount of received light and integrating the amount of received light while vibrating the tuning fork for vibrating the objective lens. That is, the received light amount integration is performed based on the actually measured received light amount without using the approximate waveform as in the method of FIG. Specifically, at each measurement point of P 1 to P 9 , the received light amount is measured every time the tuning fork moves by a certain amount as shown in step S 18-1 in FIG. 18, and the received light amount data is A / D converted. Then, the light is accumulated sequentially in the memory area for light quantity accumulation (step S18-2), and the above process is repeated over the moving range of the tuning fork (step S18-3). In this method, since the actual received light amount is measured, not the approximation based on the peak of the received light amount, more accurate displacement measurement can be expected. On the other hand, in order to measure the amount of received light in real time, a high-resolution A / D converter with a high processing speed is required, which complicates the circuit and increases the processing cost.

図18の手順を実現する変位計のブロック図を図19に示す。この図に示す変位計は、音叉振幅検出部22と、A/D変換部75と、対物レンズ移動検出部53と、受光データ処理部73と出力部66とを備える。この変位計では、受光量のピークを保持せず、検出したすべての値を積算する。具体的には、受光部118で受光された反射光を、A/D変換部75によりデジタル信号に変換して受光データ処理部73に送出すると共に、このときの音叉の振幅変位および対物レンズのスキャン位置を、それぞれ音叉振幅検出部22および対物レンズ移動検出部53で検出して、受光データ処理部73に送出する。受光データ処理部73は、順次測定された受光量のデジタル値をメモリ部66に積算していき、受光量が積算された積算波形を取得する。A/D変換器でA/D変換された受光量が積算されると、図20に示すような階段状の波形を示す。そして図16と同様に、得られた積算波形から重心を求めることにより振動位置が決定される。   FIG. 19 shows a block diagram of a displacement meter that realizes the procedure of FIG. The displacement meter shown in this figure includes a tuning fork amplitude detector 22, an A / D converter 75, an objective lens movement detector 53, a received light data processor 73, and an output unit 66. This displacement meter does not hold the peak of the received light amount, but integrates all detected values. Specifically, the reflected light received by the light receiving unit 118 is converted into a digital signal by the A / D conversion unit 75 and sent to the received light data processing unit 73. At this time, the amplitude displacement of the tuning fork and the objective lens The scan position is detected by the tuning fork amplitude detection unit 22 and the objective lens movement detection unit 53, respectively, and sent to the received light data processing unit 73. The received light data processing unit 73 integrates the digital value of the received light amount sequentially measured in the memory unit 66, and acquires an integrated waveform in which the received light amount is integrated. When the received light amount that has been A / D converted by the A / D converter is integrated, a stepped waveform as shown in FIG. 20 is obtained. Similarly to FIG. 16, the vibration position is determined by obtaining the center of gravity from the obtained integrated waveform.

このように、各点での受光量を一旦測定した後、測定された受光量をA/D変換して積算し、その波形の重心から距離データを求める方法でも、受光量の大きいデータ程精度が高いことを反映して重み付けを行った振動位置が取得される。またこの方法では、受光量の予測によらず、実際の受光量を逐次測定した上で振動位置を求めるため、より精度の高い測定を行える。反面、高速、高分解能のA/D変換器が必要となるためコスト高となる。   In this way, after measuring the amount of light received at each point once, the measured amount of received light is A / D converted and integrated, and the distance data is obtained from the center of gravity of the waveform. The vibration position that is weighted to reflect that is high is acquired. Further, according to this method, since the vibration position is obtained after the actual received light amount is sequentially measured regardless of the prediction of the received light amount, more accurate measurement can be performed. On the other hand, since a high-speed, high-resolution A / D converter is required, the cost increases.

[可変閾値]
次に、本発明の実施の形態3として、受光量のピーク値の採択を判断する閾値を設定する手順について、図21〜図23に基づき説明する。この方法は、測定された受光量から変位を演算する際に、受光量の少ないデータ、すなわち精度の低いデータを排除することで、精度の向上を図るものである。
[Variable threshold]
Next, as a third embodiment of the present invention, a procedure for setting a threshold for determining acceptance of a peak value of received light amount will be described with reference to FIGS. In this method, when calculating the displacement from the measured amount of received light, the accuracy is improved by eliminating data with a small amount of received light, that is, data with low accuracy.

受光量の低いデータを排除する方法では、基準となる閾値の設定が問題となる。例えば、測定された受光量のすべてのデータから平均値を求め、この平均値に基づいて閾値を設定し、閾値以上のデータのみを利用する方法がある。しかしながらこの方法では、図21に示すような反射率の異なる部分が存在する被測定物を測定する場合に正確な測定が困難になるという問題があった。図21の被測定物で線状に設定された測定領域で観測された受光量を図22に示す。この図に示すように、反射率の高い部分では平均的に高い受光量が得られるのに対し、反射率の低い部分では低い受光量しか得られない。このため、閾値を高く設定すると反射率の低い領域での測定ができず、逆に閾値を低く設定すると反射率の高い領域でデータの選別が行われなくなり、閾値としての機能を果たさなくなる。このように、図22に破線で示すように閾値を全体の平均値など一定値としてデータの排除を行うと、精度の高い変位測定が得られなかった。   In the method of eliminating data with a low amount of received light, setting a reference threshold value becomes a problem. For example, there is a method in which an average value is obtained from all data of the measured amount of received light, a threshold is set based on this average value, and only data that is equal to or greater than the threshold is used. However, this method has a problem that accurate measurement becomes difficult when measuring an object to be measured in which portions having different reflectivities as shown in FIG. 21 are present. FIG. 22 shows the amount of received light observed in the measurement region set linearly with the DUT of FIG. As shown in this figure, an average high received light amount can be obtained in a portion with high reflectivity, whereas only a low received light amount can be obtained in a portion with low reflectivity. For this reason, if the threshold value is set high, measurement cannot be performed in a region with low reflectivity. Conversely, if the threshold value is set low, data selection is not performed in the region with high reflectivity, and the function as the threshold value is not performed. Thus, as shown by the broken line in FIG. 22, when the data is eliminated with the threshold value being a constant value such as the average value of the whole, a highly accurate displacement measurement cannot be obtained.

これに対して本実施の形態に係る方法では、受光量の閾値を一定に固定せず、ピーク値に応じて可変としている。具体的には、判定対象となるピークを含む近傍のデータに基づいて判定している。例えば、判定対象のデータについて、そのデータ自体に加えて前後それぞれ2つのデータを抽出し、計5つのデータから平均値を求める。そして、この平均値を基準として閾値を設定して、これよりも低いデータを排除する。あるいは、被測定物の観測領域を分割して、分割された区分毎に平均値を求める方法でも良い。これらの方法であれば、反射率の異なる部位を混同した全体の受光量の平均でなく、特定の部位につき近傍の受光量を基準として閾値が設定される。このため、図22に実線で示すように反射率の高い部分では閾値が高くなり、反射率の低い領域では閾値も低くなり、反射率に応じて適切な閾値が設定されるので、データの採択が適切に行われて、反射率の分布に依らず精度の高い変位測定が実現できる。   On the other hand, in the method according to the present embodiment, the threshold for the amount of received light is not fixed, but is variable according to the peak value. Specifically, the determination is based on data in the vicinity including the peak to be determined. For example, for the data to be determined, in addition to the data itself, two data before and after are extracted, and an average value is obtained from a total of five data. Then, a threshold is set on the basis of this average value, and data lower than this is excluded. Alternatively, a method may be used in which the observation area of the object to be measured is divided and an average value is obtained for each divided section. With these methods, the threshold value is set based on the amount of received light in the vicinity of a specific part, not the average of the total amount of received light confused with parts having different reflectivities. For this reason, as shown by the solid line in FIG. 22, the threshold is high in the portion with high reflectivity, the threshold is also low in the region with low reflectivity, and an appropriate threshold is set according to the reflectivity. Is appropriately performed, and accurate displacement measurement can be realized regardless of the reflectance distribution.

上記の手順を、図23のフローチャートに基づいて説明する。ここでは、受光量を測定しながら閾値を演算し、演算された閾値に基づいて測定データの採択を判定している。ただ、予めすべての測定ポイントで受光量を測定した後、閾値を設定してデータの採択を判別することもできる。また閾値は、複数のピーク値を含む所定の区間内でピーク値の平均値を演算し、この値を基準に閾値を設定している。   The above procedure will be described based on the flowchart of FIG. Here, the threshold is calculated while measuring the amount of received light, and the adoption of the measurement data is determined based on the calculated threshold. However, after measuring the amount of light received at all measurement points in advance, it is also possible to set a threshold value and determine the adoption of data. In addition, the threshold value is calculated based on an average value of peak values within a predetermined section including a plurality of peak values, and the threshold value is set based on this value.

まずステップS23−1で装置を初期化した後、測定ポイントを所定の位置に移動させる(ステップS23−2)そして移動した位置で受光量のピーク値を測定すると共に、測定された受光量のピーク値とそのときの振動位置を受光量ピークメモリ部72に保持する(ステップS23−3)。そしてステップS23−4で、受光量の閾値を設定できるまでの測定が完了したかどうかを判定する。例えば、受光量の平均値を演算するためのサンプル数が揃ったかどうかを判定する。未だの場合はステップS23−2に戻って測定を繰り返し、閾値設定のため必要なデータが得られるまでループする。得られた場合はステップS23−5で閾値を設定する。例えば、所定の区間内で平均値を演算して閾値とすることで、区間内の50%のデータが有効とされる。あるいは、平均値よりも大きい閾値としてピークの大きなデータのみを抽出するよう設定したり、逆に平均値よりも低い閾値としてなるべく多くのデータを利用できるように設定できる。   First, after initializing the apparatus in step S23-1, the measurement point is moved to a predetermined position (step S23-2), and the peak value of the received light amount is measured at the moved position, and the peak of the measured received light amount is measured. The value and the vibration position at that time are held in the received light amount peak memory unit 72 (step S23-3). In step S23-4, it is determined whether or not the measurement is completed until the threshold for the amount of received light can be set. For example, it is determined whether or not the number of samples for calculating the average value of the amount of received light has been prepared. If not, the process returns to step S23-2 to repeat the measurement, and loops until necessary data is obtained for setting the threshold. If it is obtained, a threshold value is set in step S23-5. For example, by calculating an average value in a predetermined section and using it as a threshold value, 50% of the data in the section is validated. Alternatively, it is possible to set so that only data having a large peak is extracted as a threshold larger than the average value, or conversely, as much threshold data as possible can be used as a threshold lower than the average value.

以上のようにして閾値が決定されると、ステップS23−6に進み閾値を各ピーク値と比較し、データの排除と出力を行う。閾値よりも大きいピーク値のデータは、ステップS23−7を経て測定値を更新して出力し、閾値よりも低いピーク値のデータについてはステップS23−8を経て、測定値を更新せず、すなわちデータを破棄して出力する(ステップS23−9)。そしてステップS23−10で区間内のすべてのデータが出力されたか否かを判定し、未だの場合はステップS23−6に戻って閾値による判別を繰り返す。すべてのデータが出力された場合はステップS23−11に進み、すべての所定領域で測定が完了したか否かを判定し、未だの場合はステップS23−2に戻って上記ループを繰り返し、測定が完了した場合は処理を終了する。   When the threshold value is determined as described above, the process proceeds to step S23-6, the threshold value is compared with each peak value, and data is excluded and output. The peak value data larger than the threshold value is output by updating the measurement value through step S23-7, and the peak value data lower than the threshold value is not updated through step S23-8. The data is discarded and output (step S23-9). In step S23-10, it is determined whether or not all the data in the section has been output. If not, the process returns to step S23-6 and the determination based on the threshold is repeated. If all the data has been output, the process proceeds to step S23-11 to determine whether or not the measurement has been completed in all the predetermined areas. If not yet, the process returns to step S23-2 and the above loop is repeated. If completed, the process is terminated.

図23の手順では、手動で閾値を設定することなく自動的に適切な閾値を設定することができ、簡単かつ正確な変位測定が実現される。特に受光量の低いピーク値のデータを、前後のデータを参照して効果的に排除できるので、正確な判別が行われ、測定精度の向上に寄与する。   In the procedure of FIG. 23, an appropriate threshold value can be automatically set without manually setting the threshold value, and simple and accurate displacement measurement is realized. In particular, since the peak value data with a low amount of received light can be effectively excluded with reference to the preceding and subsequent data, accurate discrimination is performed, which contributes to improvement in measurement accuracy.

なお受光量閾値を設定する手法は、上記のように受光量の平均値から求める他、近傍に位置する複数の受光データから受光量の最大値と最小値を抽出して平均しても良いし、あるいは移動平均で求めても良い。   In addition to obtaining from the average value of the received light amount as described above, the method for setting the received light amount threshold value may extract and average the maximum value and the minimum value of the received light amount from a plurality of light reception data located in the vicinity. Alternatively, it may be obtained by a moving average.

このようにして、変位計は複数の測定ポイントにて受光量をそれぞれ測定し、測定された複数位置の受光量に基づいて正確な変位を演算でき、被測定物の表面状態を知ることができる。また上記の構成においては、発光部から発する光の光軸を移動させず、対物レンズ側を移動させることによって、被測定物表面の測定ポイントの走査を実現している。このため、発光部の光軸を走査させるための複雑な機構を設ける必要が無く、走査機構を極めて安価に構成できるという優れた特長が実現される。   In this way, the displacement meter measures the amount of received light at each of a plurality of measurement points, can calculate an accurate displacement based on the measured amounts of received light at a plurality of positions, and can know the surface state of the object to be measured. . In the above configuration, the scanning of the measurement point on the surface of the object to be measured is realized by moving the objective lens side without moving the optical axis of the light emitted from the light emitting unit. For this reason, it is not necessary to provide a complicated mechanism for scanning the optical axis of the light emitting unit, and an excellent feature that the scanning mechanism can be configured at a very low cost is realized.

また、このようにして測定領域内のプロファイルを正確に測定できるので、2次元、3次元領域での高さや高低差、段差、幅、角度等も精度良く測定可能となる。特に、連続的に複数位置での測定を行って、その結果を統計的に確認できる構成とすることで、一々測定ポイントを指定する手間を省き、さらに平均や極大値、最小値、傾き演算といった処理も容易に実現でき、極めて使い勝手の良い環境が実現される。   In addition, since the profile in the measurement region can be accurately measured in this way, the height, height difference, step, width, angle, etc. in the two-dimensional and three-dimensional regions can be measured with high accuracy. In particular, it is possible to perform measurement at multiple positions continuously and make it possible to check the results statistically, eliminating the need to specify measurement points one by one, and further, averaging, maximum value, minimum value, slope calculation, etc. Processing can be easily realized, and an extremely convenient environment is realized.

以上の方法は、変位を求める際の演算手法のみ変更することで、変位測定の精度を改善できる。したがって特別なハードウェア的な改良を要せず、既存の変位計のハードウェアを利用して、演算処理のアルゴリズムのみの変更で適用でき、安価に実装できるという利点も得られる。   The above method can improve the accuracy of displacement measurement by changing only the calculation method for obtaining the displacement. Therefore, there is an advantage that it does not require any special hardware improvement, can be applied by changing only the algorithm of the arithmetic processing using the hardware of the existing displacement meter, and can be implemented at low cost.

[実施の形態4]
以上の図3に示す構成では、対物レンズ走査部52としてサーボモータ52Aを使用したが、対物レンズ走査部はこれに限られない。本発明の他の実施の形態として、実施の形態4に係る変位計を、図24に示す。図24に示す変位計は、図3とほぼ同じ構成であるが、対物レンズ走査部52としてボイスコイル52Bとボイスコイル用磁石52Cを利用した回転機構を採用し、また対物レンズ移動検出部53としてホール素子53Bとホール素子用磁石53Cを利用している。
[Embodiment 4]
In the configuration shown in FIG. 3, the servo motor 52A is used as the objective lens scanning unit 52, but the objective lens scanning unit is not limited to this. As another embodiment of the present invention, a displacement meter according to Embodiment 4 is shown in FIG. The displacement meter shown in FIG. 24 has substantially the same configuration as that shown in FIG. 3, but employs a rotation mechanism using a voice coil 52B and a voice coil magnet 52C as the objective lens scanning unit 52, and serves as the objective lens movement detection unit 53. A hall element 53B and a hall element magnet 53C are used.

ボイスコイル用磁石52Cは、回転軸54を保持して静止状態で固定され、断面コ字状の開口部60を備える回転軸保持部55の、開口部内面に固定される。一方ボイスコイル52Bは、音叉ホルダ56の上面に突出して、開口部60に挿入された状態でボイスコイル52B磁石と対抗するように音叉ホルダ56に固定される。この変位計は、走査位置制御部57によってボイスコイル52Bに流れる電流を調整し、この電流と交叉する磁界の相互作用に基づいてボイスコイル用磁石52Cとの間で駆動力を発生させ、回転軸54を中心に対物レンズ15を回転させる。   The voice coil magnet 52C is fixed in a stationary state while holding the rotating shaft 54, and is fixed to the inner surface of the opening portion of the rotating shaft holding portion 55 having the opening portion 60 having a U-shaped cross section. On the other hand, the voice coil 52B protrudes from the upper surface of the tuning fork holder 56 and is fixed to the tuning fork holder 56 so as to oppose the voice coil 52B magnet while being inserted into the opening 60. The displacement meter adjusts the current flowing through the voice coil 52B by the scanning position control unit 57, generates a driving force with the voice coil magnet 52C based on the interaction of the magnetic field intersecting with the current, and rotates the rotating shaft. The objective lens 15 is rotated around 54.

また対物レンズ15の移動位置は、ホール素子53Bとホール素子用磁石53Cによって検出される。図24の例では、音叉ホルダ56にホール素子用磁石53Cを固定し、このホール素子用磁石53Cと対抗する位置に静止するホール素子53Bを設けている。ホール素子53Bは、GaAsやInSbのホール効果を利用して磁界強度を検出する素子である。ホール素子53Bはホール素子用磁石53Cとの距離に応じた磁界強度を検出して、音叉ホルダ56の回転角または回転距離を対物レンズ移動位置信号として走査位置制御部57に出力する。   The moving position of the objective lens 15 is detected by the Hall element 53B and the Hall element magnet 53C. In the example of FIG. 24, the hall element magnet 53C is fixed to the tuning fork holder 56, and the hall element 53B is provided at a position facing the hall element magnet 53C. The Hall element 53B is an element that detects the magnetic field intensity using the Hall effect of GaAs or InSb. The hall element 53B detects the magnetic field intensity according to the distance from the hall element magnet 53C, and outputs the rotation angle or the rotation distance of the tuning fork holder 56 to the scanning position controller 57 as an objective lens movement position signal.

さらに、対物レンズ15の移動方式は、図25、図26に示すような方法も利用できる。これらの図は、対物レンズ15の固定状態を示す平面図である。図25では対物レンズ15を板バネ61に固定しており、板バネ61を振動させることによって水平面内に移動させている。板バネ61は、図示しない加振部によって加振される。この構成は極めて安価に構成することができる。   Furthermore, as a method for moving the objective lens 15, the methods shown in FIGS. 25 and 26 can be used. These drawings are plan views showing a fixed state of the objective lens 15. In FIG. 25, the objective lens 15 is fixed to the leaf spring 61, and is moved in the horizontal plane by vibrating the leaf spring 61. The leaf spring 61 is vibrated by a vibration unit (not shown). This configuration can be configured very inexpensively.

なお、上述した対物レンズの移動方式においては、いずれもその軌跡が円弧状となる。この場合、円弧の半径を大きくすることによって、軌跡を円弧状から直線上に近付けることができる。   In any of the above-described objective lens movement methods, the locus is an arc. In this case, the locus can be made closer to a straight line from the arc shape by increasing the radius of the arc.

また図26においては、対物レンズ15を直線上に移動させるために摺動可能なリニアガイド62を利用している。リニアガイド62はガイドレールに沿って直線上に摺動可能である。よってリニアガイド62に固定された対物レンズ15は、確実に直線移動される。これらの図に示す方式においても対物レンズ移動検出部を適宜設けることが可能であることはいうまでもない。   In FIG. 26, a slidable linear guide 62 is used to move the objective lens 15 on a straight line. The linear guide 62 can slide on a straight line along the guide rail. Therefore, the objective lens 15 fixed to the linear guide 62 is surely linearly moved. Needless to say, the objective lens movement detector can be provided as appropriate in the systems shown in these drawings.

[実施の形態5]
さらにまた、本発明の実施の形態5として、撮像モニタ63を備える例を図27に示す。この図に示す変位計は、図3とほぼ同様の構成に加えて、発光部の光路に備えられた第2ビームスプリッタ64を構成する第2ハーフミラーと、第2ハーフミラーからの反射光の光路上に備えられた撮像用受光部65としてCCDカメラ等のイメージセンサと、CCDカメラに接続された撮像モニタ63とを備える。撮像モニタ63はCCDカメラで検出された受光信号に基づいて被測定物16を表示する。この撮像モニタ63は、対物レンズ15の移動時に常時被測定物16を表示し続けるのでなく、特定のタイミングでのみ撮像を行うことで、ピントのあった鮮明な画像を表示させることができる。撮像モニタ63で表示する画像を撮像するタイミングは、対物レンズ15の焦点が合った時点で、かつCCDカメラが撮像モニタ63で表示する画像を撮像するタイミングは、振動して移動する対物レンズ15の走査幅の内所定の走査位置、好ましくは走査中心であって、かつ対物レンズ15の合焦点の時点である。これによって、対物レンズ15の走査位置が時々刻々と変化していても、撮像モニタ63上では所定の走査位置における静止状態の画像が表示される。また合焦点のタイミングは、上述した方法と同様に受光部の光量が最大となった時点とする。必要に応じて照明装置を設け、このタイミングに連動させてフラッシュを照射させても良い。これによって、焦点の合うタイミングを確実にかつ瞬時に捕捉でき、特別な機構を要せず極めて高性能なオートフォーカス機能が実現される。撮像モニタ63は、このようにして撮像された画像のみを表示させ、新たな撮像が行われるタイミングで画像表示を更新させてもよい。これによって、撮像モニタ63には常にきれいな画像のみを表示させることができる。あるいは、走査幅や走査ステップにも依存するが、一周期の走査速度が撮像モニタ63の更新速度(テレビレートでは60Hz程度)よりも遅い場合には、フレームメモリを設けることでちらつきの少ない画像が表示できる。フレームメモリは、1フレームすなわち1画面分の画像データを記憶するメモリである。撮像された画像データを保持して、同一の画像データを繰り返し表示させることで、倍速表示にも対応可能な高品質な表示が可能となる。なお、この例では撮像モニタを出力部と別に表示しているが、撮像モニタは出力部の一例である表示部と兼用しても良い。
[Embodiment 5]
Furthermore, as a fifth embodiment of the present invention, an example provided with an imaging monitor 63 is shown in FIG. The displacement meter shown in this figure has substantially the same configuration as that in FIG. 3, in addition to the second half mirror constituting the second beam splitter 64 provided in the optical path of the light emitting unit, and the reflected light from the second half mirror. An image sensor such as a CCD camera and an imaging monitor 63 connected to the CCD camera are provided as the imaging light receiving unit 65 provided on the optical path. The imaging monitor 63 displays the device under test 16 based on the light reception signal detected by the CCD camera. The imaging monitor 63 does not always display the device under test 16 when the objective lens 15 is moved, but can display a focused and clear image by performing imaging only at a specific timing. The timing for capturing an image to be displayed on the imaging monitor 63 is when the objective lens 15 is in focus, and the timing at which the CCD camera captures an image to be displayed on the imaging monitor 63 is that of the objective lens 15 that vibrates and moves. It is a predetermined scanning position within the scanning width, preferably the scanning center, and the time when the objective lens 15 is focused. As a result, even if the scanning position of the objective lens 15 changes every moment, an image in a stationary state at a predetermined scanning position is displayed on the imaging monitor 63. Further, the focal point timing is set to the time point when the light quantity of the light receiving unit becomes the maximum as in the above-described method. A lighting device may be provided as necessary, and the flash may be irradiated in conjunction with this timing. As a result, the in-focus timing can be reliably and instantaneously captured, and an extremely high-performance autofocus function is realized without requiring a special mechanism. The imaging monitor 63 may display only the image captured in this way, and update the image display at a timing when a new imaging is performed. As a result, only a clear image can be displayed on the imaging monitor 63 at all times. Or, depending on the scanning width and scanning step, if the scanning speed of one cycle is slower than the update speed of the imaging monitor 63 (about 60 Hz at the television rate), an image with little flicker can be obtained by providing a frame memory. Can be displayed. The frame memory is a memory that stores image data for one frame, that is, one screen. By holding the captured image data and displaying the same image data repeatedly, a high-quality display that can support double-speed display becomes possible. In this example, the imaging monitor is displayed separately from the output unit, but the imaging monitor may also be used as a display unit that is an example of the output unit.

[実施の形態6]
以上の例では、対物レンズ走査部で対物レンズを移動させることにより、異なる測定ポイントでの受光量を検出して被測定物の変位を測定している。ただ、対物レンズを固定したまま被測定物側を移動させることでも、複数の測定ポイントにおける受光量及び変位測定ができる。図28に、本発明の実施の形態6として被測定物を載置するステージ76を移動させる機構を備えた変位計を示す。なお、図28において図3等と同じ符号を付した部材は上記実施例と同じ構成であり、詳細な説明は省略する。
[Embodiment 6]
In the above example, the amount of light received at different measurement points is detected by moving the objective lens in the objective lens scanning unit, and the displacement of the object to be measured is measured. However, the amount of received light and displacement at a plurality of measurement points can also be measured by moving the object to be measured while the objective lens is fixed. FIG. 28 shows a displacement meter provided with a mechanism for moving a stage 76 on which an object to be measured is placed as a sixth embodiment of the present invention. In FIG. 28, members denoted by the same reference numerals as those in FIG. 3 and the like have the same configuration as in the above embodiment, and detailed description thereof is omitted.

この図に示す変位計は、対物レンズを水平面内で移動させる対物レンズ走査部に替えて、被測定物16を載置するステージ76と、ステージ76を水平面内で移動させるためのステージ移動部としてステッピングモータ77を備える。ステッピングモータ77は走査位置制御部57により制御される。ステッピングモータ77で移動されたステージ76の位置はステージ移動検出部78で検出されて、走査位置制御部57に送られる。これによってレーザ光が焦点を結ぶ振動位置を固定したまま被測定物16側を水平面内でX−Y方向に移動させることにより、相対的に測定ポイントを変更することができる。   The displacement meter shown in this figure is replaced with an objective lens scanning unit that moves the objective lens in the horizontal plane, and a stage 76 for placing the object to be measured 16 and a stage moving unit for moving the stage 76 in the horizontal plane. A stepping motor 77 is provided. The stepping motor 77 is controlled by the scanning position control unit 57. The position of the stage 76 moved by the stepping motor 77 is detected by the stage movement detector 78 and sent to the scanning position controller 57. Accordingly, the measurement point can be relatively changed by moving the object to be measured 16 side in the XY direction in the horizontal plane while fixing the vibration position where the laser beam is focused.

なお、測定ポイントを変更する構成は上記の例に限られず、例えば対物レンズとステージを共に移動可能とする構成や、対物レンズを通過する光軸を偏光させて被測定物上を走査する構成等も利用できる。   Note that the configuration for changing the measurement point is not limited to the above example. For example, the configuration in which both the objective lens and the stage can be moved, the configuration in which the optical axis passing through the objective lens is polarized and the surface to be measured is scanned, etc. Can also be used.

本発明の変位計および変位測定方法は、共焦点の原理を利用して金属や樹脂等の表面の変位や高度差、傾き、プロファイルなどを測定、表示するシステムに利用でき、同様の測定原理を用いて被測定物の厚みを測定する厚み計にも適用できる。   The displacement meter and the displacement measuring method of the present invention can be used in a system for measuring and displaying the displacement, altitude difference, inclination, profile, etc. of the surface of metal or resin using the principle of confocal, and the same measurement principle is used. It can also be applied to a thickness meter that measures the thickness of an object to be measured.

従来の変位計の一例を示す模式的構成図である。It is a typical block diagram which shows an example of the conventional displacement meter. 被測定物の表面形状によって変位測定が困難となる状態を示す概略図である。It is the schematic which shows the state where displacement measurement becomes difficult by the surface shape of a to-be-measured object. 本発明の実施の形態1に係る変位計を示す模式的構成図である。It is a typical block diagram which shows the displacement meter which concerns on Embodiment 1 of this invention. 加振部の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of a vibration part. 対物レンズに入光する光の状態を示す模式図である。It is a schematic diagram which shows the state of the light which enters into an objective lens. 走査位置制御信号の概要を示すグラフである。It is a graph which shows the outline | summary of a scanning position control signal. 振動位置および測定ポイントを変更する様子を説明する概念図である。It is a conceptual diagram explaining a mode that a vibration position and a measurement point are changed. 振動位置によって受光量が変化する状態を示すグラフである。It is a graph which shows the state from which the light reception amount changes with a vibration position. 各測定ポイントにおいて測定された受光量のピークを示すグラフである。It is a graph which shows the peak of the received light amount measured in each measurement point. 各測定ポイントにおいて測定された受光量のピークから受光量の波形を復元して積算する状態を示すグラフである。It is a graph which shows the state which decompress | restores and integrates the waveform of received light amount from the peak of received light amount measured in each measurement point. 元の受光量の波形を近似的に復元する例を示すグラフである。It is a graph which shows the example which restores | restores the waveform of the original received light amount approximately. 被測定物の表面を線状に走査して測定する際の所定領域および測定ポイントの設定を示す概念図である。It is a conceptual diagram which shows the setting of the predetermined area | region and measurement point at the time of measuring by scanning the surface of a to-be-measured object linearly. 本発明の実施の形態2に係る変位測定方法として、所定領域で受光量が最大となるときの測定値を、この所定領域での測定値とする方法を示すフローチャートである。It is a flowchart which shows the method as a displacement measuring method which concerns on Embodiment 2 of this invention which makes the measured value when the light reception amount becomes the maximum in a predetermined area | region as a measured value in this predetermined area | region. 本発明の一実施の形態に係る変位測定方法として、所定領域で受光量を積算することにより変位を演算する方法を示すフローチャートである。It is a flowchart which shows the method of calculating a displacement by integrating | accumulating the received light quantity in a predetermined area | region as a displacement measuring method which concerns on one embodiment of this invention. 複数の測定ポイントで得られた受光量のピークから、極大値を含む測定ポイントを選択する状態を示すグラフである。It is a graph which shows the state which selects the measurement point containing local maximum from the peak of the light reception amount obtained at the several measurement point. 図13の手順を実現する変位計のブロック図である。It is a block diagram of the displacement meter which implement | achieves the procedure of FIG. 図14の方法を実現する一例を示すフローチャートである。It is a flowchart which shows an example which implement | achieves the method of FIG. 図14の方法を実現する他の例を示すフローチャートである。It is a flowchart which shows the other example which implement | achieves the method of FIG. 図18の手順を実現する変位計のブロック図である。It is a block diagram of the displacement meter which implement | achieves the procedure of FIG. 受光量をA/D変換した波形を示すグラフである。It is a graph which shows the waveform which A / D converted the light-receiving amount. 反射率の異なる被測定物の表面に測定領域を設定する状態を示す平面図である。It is a top view which shows the state which sets a measurement area | region on the surface of the to-be-measured object from which a reflectance differs. 図21の被測定物で観測された受光量を示すグラフである。It is a graph which shows the light reception amount observed with the to-be-measured object of FIG. 本発明の実施の形態3に係る変位測定方法として、特定の受光量ピークから閾値を演算して測定データの採択を判定する方法を示すフローチャートである。It is a flowchart which shows the method as a displacement measuring method which concerns on Embodiment 3 of this invention which calculates a threshold value from a specific light reception amount peak, and determines adoption of measurement data. 本発明の実施の形態4に係る変位計を示す模式的構成図である。It is a typical block diagram which shows the displacement meter which concerns on Embodiment 4 of this invention. 対物レンズ走査部の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the objective lens scanning part. 対物レンズ走査部のさらに他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the objective lens scanning part. 本発明の実施の形態5に係る変位計を示す模式的構成図である。It is a typical block diagram which shows the displacement meter which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る変位計を示す模式構成図である。It is a schematic block diagram which shows the displacement meter which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

11・・・レーザパワー制御部
12・・・レーザダイオード
13・・・ビームスプリッタ
14・・・コリメートレンズ
15・・・対物レンズ
16・・・被測定物
17・・・光絞り部
17a・・・ピンホール
18・・・ホトダイオード
118・・・受光部
19・・・増幅器
20・・・演算部
21・・・音叉
22・・・音叉振幅検出部
23・・・増幅器
24・・・ソレノイド
25・・・音叉振幅制御部
50・・・距離変換部
51・・・測定領域指定部
52・・・対物レンズ走査部
52A・・・サーボモータ
52B・・・ボイスコイル
52C・・・ボイスコイル用磁石
53・・・対物レンズ移動検出部
53A・・・回転角センサ
53B・・・ホール素子
53C・・・ホール素子用磁石
54・・・回転軸
55・・・回転軸保持部
56・・・音叉ホルダ
57・・・走査位置制御部
58・・・演算処理部
59・・・メモリ部
60・・・開口部
61・・・板バネ
62・・・リニアガイド
63・・・撮像モニタ
64・・・第2ビームスプリッタ
65・・・撮像用受光部
66・・・出力部
70・・・受光量検出部
71・・・ピーク検出部
72・・・受光量ピークメモリ部
73・・・受光データ処理部
74・・・受光データメモリ部
75・・・A/D変換部
76・・・ステージ
77・・・ステッピングモータ
78・・・ステージ移動検出部
DESCRIPTION OF SYMBOLS 11 ... Laser power control part 12 ... Laser diode 13 ... Beam splitter 14 ... Collimating lens 15 ... Objective lens 16 ... Object to be measured 17 ... Optical aperture part 17a ... Pinhole 18 ... Photodiode 118 ... Light receiving part 19 ... Amplifier 20 ... Calculation part 21 ... Tuning fork 22 ... Tuning fork amplitude detection part 23 ... Amplifier 24 ... Solenoid 25 ... Tuning fork amplitude control unit 50 ... distance conversion unit 51 ... measurement region designation unit 52 ... objective lens scanning unit 52A ... servo motor 52B ... voice coil 52C ... voice coil magnet 53 ..Object lens movement detection unit 53A ... Rotation angle sensor 53B ... Hall element 53C ... Hall element magnet 54 ... Rotation shaft 55 ... Rotation shaft holder 56 Tuning fork holder 57... Scanning position control unit 58 .. arithmetic processing unit 59... Memory unit 60 .. opening 61 .. leaf spring 62 .. linear guide 63. ..Second beam splitter 65 ... Light receiving unit for imaging 66 ... Output unit 70 ... Light receiving amount detecting unit 71 ... Peak detecting unit 72 ... Light receiving amount peak memory unit 73 ... Light receiving data Processing unit 74: Light reception data memory unit 75 ... A / D conversion unit 76 ... Stage 77 ... Stepping motor 78 ... Stage movement detection unit

Claims (11)

被測定物(16)に投射する光を発生させる発光部と、
前記発光部から出射された光を受けて、被測定物(16)に投射する対物レンズ(15)と、
前記対物レンズ(15)を、所定の振幅で第1の方向に沿って振動させる加振部と、
第1の方向に前記対物レンズ(15)が移動された位置を検出する位置検出部と、
被測定物(16)からの反射光が通過する光絞り部と、
前記光絞り部を通過した光を受光する受光部と、
前記対物レンズ(15)を第1の方向と直交する第2の方向に沿って移動させる対物レンズ走査部(52)と、
前記対物レンズ走査部(52)により対物レンズ(15)を第2の方向に沿って所定の移動量で移動させる際、被測定物(16)上の複数の測定ポイントにおいてそれぞれ前記受光部で受光した受光量の極大値と、このとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部(72)と、
前記受光量ピークメモリ部(72)で記憶された受光量の極大値を、前記対物レンズ(15)の第1の方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部(73)と、
を備えることを特徴とする変位計。
A light emitting unit for generating light to be projected onto the object to be measured (16);
An objective lens (15) that receives the light emitted from the light emitting unit and projects it onto the object to be measured (16),
A vibration unit for vibrating the objective lens (15) along a first direction with a predetermined amplitude;
A position detector for detecting the position where the objective lens (15) is moved in the first direction;
An optical aperture section through which reflected light from the object to be measured (16) passes;
A light receiving unit that receives light that has passed through the optical aperture unit;
An objective lens scanning section (52) for moving the objective lens (15) along a second direction orthogonal to the first direction;
When the objective lens (15) is moved along the second direction by a predetermined amount of movement by the objective lens scanning unit (52), the light receiving unit receives light at a plurality of measurement points on the object to be measured (16). The received light amount peak memory unit (72) for storing the maximum value of the received light amount and the vibration position detected by the position detection unit in association with each other,
The maximum value of the received light amount stored in the received light amount peak memory unit (72) is integrated for each vibration position in the first direction of the objective lens (15), and the displacement is calculated based on the integrated received light amount. Received light data processing unit (73),
A displacement meter comprising:
被測定物(16)に投射する光を発生させる発光部と、
前記発光部から出射された光を受けて、被測定物(16)に投射する対物レンズ(15)と、
前記対物レンズ(15)を、所定の振幅で対物レンズ(15)を通過する光の光軸の方向に沿って振動させる加振部と、
光軸方向に前記対物レンズ(15)が移動された位置を検出する位置検出部と、
被測定物(16)からの反射光が通過する光絞り部と、
前記光絞り部を通過した光を受光する受光部と、
被測定物(16)上で測定対象となる領域を指定する測定領域指定部(51)と、
前記対物レンズ(15)を光軸方向と直交する平面に沿って移動させる対物レンズ走査部(52)と、
前記対物レンズ走査部(52)により対物レンズ(15)を光軸方向と直交する平面に沿って所定の移動量で移動させる際、被測定物(16)上の複数の測定ポイントにおいてそれぞれ前記受光部で受光した受光量の極大値と、このとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部(72)と、
前記受光量ピークメモリ部(72)で記憶された受光量の極大値を、前記対物レンズ(15)の光軸方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部(73)と、
を備えることを特徴とする変位計。
A light emitting unit for generating light to be projected onto the object to be measured (16);
An objective lens (15) that receives the light emitted from the light emitting unit and projects it onto the object to be measured (16),
A vibration unit that vibrates the objective lens (15) along a direction of an optical axis of light passing through the objective lens (15) with a predetermined amplitude;
A position detector for detecting the position where the objective lens (15) is moved in the optical axis direction;
An optical aperture section through which reflected light from the object to be measured (16) passes;
A light receiving unit that receives light that has passed through the optical aperture unit;
A measurement region designating part (51) for designating a region to be measured on the device under test (16),
An objective lens scanning section (52) for moving the objective lens (15) along a plane orthogonal to the optical axis direction;
When the objective lens (15) is moved by a predetermined amount of movement along a plane orthogonal to the optical axis direction by the objective lens scanning unit (52), the light reception is performed at each of a plurality of measurement points on the object to be measured (16). Received light amount peak memory unit (72) for storing the maximum value of the received light amount received by the unit and the vibration position detected by the position detecting unit in association with each other,
The maximum value of the received light amount stored in the received light amount peak memory unit (72) is integrated for each vibration position in the optical axis direction of the objective lens (15), and the displacement is calculated based on the integrated received light amount. Received light data processing part (73),
A displacement meter comprising:
請求項1または2に記載の変位計であって、前記受光データ処理部(73)が、前記受光部で受光された受光量の極大値に基づいて、前記対物レンズ(15)の振動位置における受光量の変化を示す受光波形を作成し、作成された受光波形を積算して変位を求めることを特徴とする変位計。   3. The displacement meter according to claim 1, wherein the light reception data processing unit (73) is based on a maximum value of the amount of light received by the light reception unit at a vibration position of the objective lens (15). A displacement meter characterized in that a received light waveform indicating a change in received light amount is created, and the displacement is obtained by integrating the created received light waveform. 請求項3に記載の変位計であって、前記受光データ処理部(73)が、積算された受光波形に基づいて変位を演算する際、受光波形の重心を求めて変位を算出することを特徴とする変位計。   4. The displacement meter according to claim 3, wherein the light reception data processing unit (73) calculates the displacement by calculating the center of gravity of the received light waveform when calculating the displacement based on the integrated received light waveform. Displacement meter. 請求項3または4に記載の変位計であって、前記受光データ処理部(73)で作成される受光波形が、受光量の極大値を高さとする三角波であることを特徴とする変位計。   5. The displacement meter according to claim 3, wherein the light reception waveform created by the light reception data processing unit (73) is a triangular wave whose height is the maximum value of the amount of received light. 請求項3または4に記載の変位計であって、前記受光データ処理部(73)で作成される受光波形が、受光量の極大値を高さとする正規分布波形であることを特徴とする変位計。   5. The displacement meter according to claim 3, wherein the light reception waveform created by the light reception data processing unit (73) is a normal distribution waveform having a maximum value of the amount of received light. Total. 被測定物(16)に投射する光を発生させる発光部と、
前記発光部から出射された光を受けて、被測定物(16)に投射する対物レンズ(15)と、
前記対物レンズ(15)を、所定の振幅で対物レンズ(15)を通過する光の光軸の方向に沿って振動させる加振部と、
光軸方向に前記対物レンズ(15)が移動された位置を検出する位置検出部と、
被測定物(16)からの反射光が通過する光絞り部と、
前記光絞り部を通過した光を受光する受光部と、
前記受光部で受光した受光量をA/D変換するためのA/D変換部(75)と、
前記対物レンズ(15)を光軸方向と直交する平面に沿って移動させる対物レンズ走査部(52)と、
前記対物レンズ走査部(52)により直交平面上で前記対物レンズ(15)が移動された位置を検出する対物レンズ移動検出部(53)と、
前記対物レンズ走査部(52)により対物レンズ(15)を光軸方向と直交する平面に沿って所定の移動量で移動させる際、前記対物レンズ移動検出部(53)によって検出される、複数の測定ポイントにおける対物レンズ(15)の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量を所定の前記対物レンズ(15)の振動位置毎に前記A/D変換部(75)でA/D変換した値と、これに対応する前記位置検出部での振動位置とを関連付けて記憶する受光量ピークメモリ部(72)と、
前記受光量ピークメモリ部(72)で記憶された受光量を、前記対物レンズ(15)の光軸方向における振動位置毎に積算して前記対物レンズ(15)の振動位置における受光量の変化を示す受光波形を作成し、作成された受光波形に基づいて変位を演算する受光データ処理部(73)と、
を備えることを特徴とする変位計。
A light emitting unit for generating light to be projected onto the object to be measured (16);
An objective lens (15) that receives the light emitted from the light emitting unit and projects it onto the object to be measured (16),
A vibration unit that vibrates the objective lens (15) along a direction of an optical axis of light passing through the objective lens (15) with a predetermined amplitude;
A position detector for detecting the position where the objective lens (15) is moved in the optical axis direction;
An optical aperture section through which reflected light from the object to be measured (16) passes;
A light receiving unit that receives light that has passed through the optical aperture unit;
An A / D converter (75) for A / D converting the amount of light received by the light receiver;
An objective lens scanning section (52) for moving the objective lens (15) along a plane orthogonal to the optical axis direction;
An objective lens movement detector (53) for detecting a position where the objective lens (15) is moved on an orthogonal plane by the objective lens scanning unit (52);
When the objective lens (15) is moved by a predetermined amount of movement along a plane orthogonal to the optical axis direction by the objective lens scanning unit (52), a plurality of detection points detected by the objective lens movement detection unit (53) The position information of the objective lens (15) at the measurement point and the amount of light received by the light receiving unit at the plurality of measurement points are converted into the A / D conversion unit (75) for each predetermined vibration position of the objective lens (15). A received light amount peak memory unit (72) that stores the A / D-converted value in association with the vibration position in the position detection unit corresponding thereto,
The received light amount stored in the received light amount peak memory unit (72) is integrated for each vibration position in the optical axis direction of the objective lens (15) to change the received light amount at the vibration position of the objective lens (15). A light reception data processing unit (73) for calculating a displacement based on the generated light reception waveform,
A displacement meter comprising:
被測定物(16)に投射する光を発生させる発光部と、
前記発光部から出射された光を受けて、被測定物(16)に投射する対物レンズ(15)と、
前記対物レンズ(15)を、所定の振幅で対物レンズ(15)を通過する光の光軸の方向に沿って振動させる加振部と、
光軸方向に前記対物レンズ(15)が移動された位置を検出する位置検出部と、
被測定物(16)からの反射光が通過する光絞り部と、
前記光絞り部を通過した光を受光する受光部と、
前記対物レンズ(15)を光軸方向と直交する平面に沿って移動させる対物レンズ走査部(52)と、
前記対物レンズ走査部(52)により直交平面上で前記対物レンズ(15)が移動された位置を検出する対物レンズ移動検出部(53)と、
前記対物レンズ走査部(52)により対物レンズ(15)を光軸方向と直交する平面に沿って所定の移動量で移動させる際、前記対物レンズ移動検出部(53)によって検出される、複数の測定ポイントにおける対物レンズ(15)の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量の極大値およびこのとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部(72)と、
前記受光量ピークメモリ部(72)で記憶された各受光量のデータに対し、その近傍に位置する複数の受光量データから受光量の平均値を演算して受光量閾値を設定し、前記受光量閾値を超える受光量データに基づいて変位を演算する受光データ処理部(73)と、
を備えることを特徴とする変位計。
A light emitting unit for generating light to be projected onto the object to be measured (16);
An objective lens (15) that receives the light emitted from the light emitting unit and projects it onto the object to be measured (16),
A vibration unit that vibrates the objective lens (15) along a direction of an optical axis of light passing through the objective lens (15) with a predetermined amplitude;
A position detector for detecting the position where the objective lens (15) is moved in the optical axis direction;
An optical aperture section through which reflected light from the object to be measured (16) passes;
A light receiving unit that receives light that has passed through the optical aperture unit;
An objective lens scanning section (52) for moving the objective lens (15) along a plane orthogonal to the optical axis direction;
An objective lens movement detector (53) for detecting a position where the objective lens (15) is moved on an orthogonal plane by the objective lens scanning unit (52);
When the objective lens (15) is moved by a predetermined amount of movement along a plane orthogonal to the optical axis direction by the objective lens scanning unit (52), a plurality of detection points detected by the objective lens movement detection unit (53) Light reception that stores the positional information of the objective lens (15) at the measurement point, the maximum value of the amount of light received by the light receiving unit at the plurality of measurement points, and the vibration position detected by the position detection unit in association with each other. Amount peak memory part (72),
For each received light amount data stored in the received light amount peak memory section (72), an average value of the received light amount is calculated from a plurality of received light amount data located in the vicinity thereof, and a received light amount threshold value is set. A received light data processing unit (73) for calculating displacement based on received light amount data exceeding the amount threshold value;
A displacement meter comprising:
被測定物(16)に投射する光を発生させる発光部と、
前記発光部から出射された光を受けて、被測定物(16)に投射する対物レンズ(15)と、
前記対物レンズ(15)を、所定の振幅で対物レンズ(15)を通過する光の光軸の方向に沿って振動させる加振部と、
光軸方向に前記対物レンズ(15)が移動された位置を検出する位置検出部と、
被測定物(16)からの反射光が通過する光絞り部と、
前記光絞り部を通過した光を受光する受光部と、
被測定物を上面に載置したまま光軸方向と直交する平面に沿って移動可能なステージ(76)と、
直交平面上で前記ステージ(76)が移動された位置を検出するステージ移動検出部(78)と、
前記ステージ移動検出部(78)により前記ステージ(76)を直交平面に沿って所定の移動量で移動させる際、前記ステージ移動検出部(78)によって検出される、複数の測定ポイントにおける対物レンズ(15)の位置情報と、該複数の測定ポイントにおいて前記受光部で受光した受光量の極大値およびこのとき前記位置検出部で検出される振動位置とを関連付けて記憶する受光量ピークメモリ部(72)と、
前記受光量ピークメモリ部(72)で記憶された受光量の極大値を、前記対物レンズ(15)の光軸方向における振動位置毎に積算し、積算された受光量に基づいて変位を演算する受光データ処理部(73)と、
を備えることを特徴とする変位計。
A light emitting unit for generating light to be projected onto the object to be measured (16);
An objective lens (15) that receives the light emitted from the light emitting unit and projects it onto the object to be measured (16),
A vibration unit that vibrates the objective lens (15) along a direction of an optical axis of light passing through the objective lens (15) with a predetermined amplitude;
A position detector for detecting the position where the objective lens (15) is moved in the optical axis direction;
An optical aperture section through which reflected light from the object to be measured (16) passes;
A light receiving unit that receives light that has passed through the optical aperture unit;
A stage (76) capable of moving along a plane orthogonal to the optical axis direction while placing the object to be measured on the upper surface;
A stage movement detector (78) for detecting a position where the stage (76) is moved on an orthogonal plane; and
Objective lenses at a plurality of measurement points detected by the stage movement detection unit (78) when the stage movement detection unit (78) moves the stage (76) by a predetermined movement amount along an orthogonal plane ( 15) the received light amount peak memory unit (72) that stores the positional information in association with the maximum value of the received light amount received by the light receiving unit at the plurality of measurement points and the vibration position detected by the position detecting unit at this time. )When,
The maximum value of the received light amount stored in the received light amount peak memory unit (72) is integrated for each vibration position in the optical axis direction of the objective lens (15), and the displacement is calculated based on the integrated received light amount. Received light data processing part (73),
A displacement meter comprising:
請求項1から9のいずれかに記載の変位計であって、前記加振部が音叉(21)を使用しており、前記位置検出部が音叉(21)の振幅を検出する音叉振幅検出部(22)であることを特徴とする変位計。   The displacement meter according to any one of claims 1 to 9, wherein the excitation unit uses a tuning fork (21), and the position detection unit detects the amplitude of the tuning fork (21). (22) Displacement meter characterized by the above-mentioned. 振動される対物レンズ(15)を介して発光部から被測定物(16)へ投射した光を反射させ、反射光の内光絞り部を通過した光を受光する受光部で検出して、被測定物(16)の表面の変位を測定する方法であって、
被測定物(16)上の測定対象となる領域内の複数の測定ポイントで、被測定物(16)へ投射される光を通過させる対物レンズ(15)を、加振部で光の光軸方向へ振動させながら受光部で受光量を測定しつつ、受光量がピークを示す時点での受光量と、この時点での振動された対物レンズ(15)の位置とを関連付けて受光量ピークメモリ部(72)に保持するステップと、
前記受光量ピークメモリ部(72)で記憶された受光量の極大値を、前記対物レンズ(15)の振動方向における位置毎に積算し、積算された受光量に基づいて変位を演算するステップと、
を備えることを特徴とする変位測定方法。
The light projected from the light emitting unit to the object to be measured (16) is reflected through the oscillating objective lens (15), and the reflected light is detected by the light receiving unit that receives the light that has passed through the inner light diaphragm unit, and is detected. A method for measuring the displacement of the surface of the measurement object (16),
The objective lens (15) that passes the light projected to the object to be measured (16) at a plurality of measurement points in the region to be measured on the object to be measured (16) is connected to the optical axis of the light by the excitation unit. Measure the amount of light received at the light receiving unit while vibrating in the direction, and correlate the amount of received light at the point where the amount of received light reaches a peak with the position of the objective lens (15) that has been vibrated at this point in time. Part (72) to hold,
A step of integrating the maximum value of the received light amount stored in the received light amount peak memory unit (72) for each position in the vibration direction of the objective lens (15), and calculating a displacement based on the integrated received light amount; ,
A displacement measuring method comprising:
JP2003332826A 2003-09-25 2003-09-25 Displacement meter and displacement measurement method Expired - Fee Related JP4216679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332826A JP4216679B2 (en) 2003-09-25 2003-09-25 Displacement meter and displacement measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332826A JP4216679B2 (en) 2003-09-25 2003-09-25 Displacement meter and displacement measurement method

Publications (2)

Publication Number Publication Date
JP2005098833A true JP2005098833A (en) 2005-04-14
JP4216679B2 JP4216679B2 (en) 2009-01-28

Family

ID=34461022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332826A Expired - Fee Related JP4216679B2 (en) 2003-09-25 2003-09-25 Displacement meter and displacement measurement method

Country Status (1)

Country Link
JP (1) JP4216679B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205344A (en) * 2009-03-04 2010-09-16 Mitsutoyo Corp Focusing control device, non-contact measurement device and focusing servo control method
JP2012189546A (en) * 2011-03-14 2012-10-04 Omron Corp Displacement sensor
JP2015083978A (en) * 2009-06-17 2015-04-30 3シェイプ アー/エス Focus scanning apparatus
US9292925B2 (en) 2011-06-01 2016-03-22 Canon Kabushiki Kaisha Imaging system and control method thereof
US9329376B2 (en) 2011-06-22 2016-05-03 Canon Kabushiki Kaisha Imaging apparatus
JP2018087707A (en) * 2016-11-28 2018-06-07 アンリツ株式会社 End face inspection device and method for acquiring its focus image data
US10107998B2 (en) 2016-12-28 2018-10-23 Keyence Corporation Optical-scanning-height measuring device
JP2019002720A (en) * 2017-06-13 2019-01-10 株式会社キーエンス Confocal displacement meter
CN109855589A (en) * 2019-02-20 2019-06-07 华电电力科学研究院有限公司 Utilize the measuring instrument and measurement method of the chord change measurement vertical drift angle of steam-water pipe suspension and support sunpender
US10415956B2 (en) 2016-12-28 2019-09-17 Keyence Corporation Optical-scanning-height measuring device
US10739580B2 (en) 2016-12-28 2020-08-11 Keyence Corporation Optical-scanning-height measuring device
US11701208B2 (en) 2014-02-07 2023-07-18 3Shape A/S Detecting tooth shade

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205344A (en) * 2009-03-04 2010-09-16 Mitsutoyo Corp Focusing control device, non-contact measurement device and focusing servo control method
US10349041B2 (en) 2009-06-17 2019-07-09 3Shape A/S Focus scanning apparatus
US11368667B2 (en) 2009-06-17 2022-06-21 3Shape A/S Intraoral scanning apparatus
US10595010B2 (en) 2009-06-17 2020-03-17 3Shape A/S Focus scanning apparatus
US11671582B2 (en) 2009-06-17 2023-06-06 3Shape A/S Intraoral scanning apparatus
US11622102B2 (en) 2009-06-17 2023-04-04 3Shape A/S Intraoral scanning apparatus
US10097815B2 (en) 2009-06-17 2018-10-09 3Shape A/S Focus scanning apparatus
US11539937B2 (en) 2009-06-17 2022-12-27 3Shape A/S Intraoral scanning apparatus
US11051002B2 (en) 2009-06-17 2021-06-29 3Shape A/S Focus scanning apparatus
US11076146B1 (en) 2009-06-17 2021-07-27 3Shape A/S Focus scanning apparatus
US10326982B2 (en) 2009-06-17 2019-06-18 3Shape A/S Focus scanning apparatus
US10349042B1 (en) 2009-06-17 2019-07-09 3Shape A/S Focus scanning apparatus
JP2015083978A (en) * 2009-06-17 2015-04-30 3シェイプ アー/エス Focus scanning apparatus
US11831815B2 (en) 2009-06-17 2023-11-28 3Shape A/S Intraoral scanning apparatus
JP2012189546A (en) * 2011-03-14 2012-10-04 Omron Corp Displacement sensor
US9292925B2 (en) 2011-06-01 2016-03-22 Canon Kabushiki Kaisha Imaging system and control method thereof
US9329376B2 (en) 2011-06-22 2016-05-03 Canon Kabushiki Kaisha Imaging apparatus
US11701208B2 (en) 2014-02-07 2023-07-18 3Shape A/S Detecting tooth shade
US11707347B2 (en) 2014-02-07 2023-07-25 3Shape A/S Detecting tooth shade
US11723759B2 (en) 2014-02-07 2023-08-15 3Shape A/S Detecting tooth shade
JP2018087707A (en) * 2016-11-28 2018-06-07 アンリツ株式会社 End face inspection device and method for acquiring its focus image data
US10107998B2 (en) 2016-12-28 2018-10-23 Keyence Corporation Optical-scanning-height measuring device
US10739580B2 (en) 2016-12-28 2020-08-11 Keyence Corporation Optical-scanning-height measuring device
US10415956B2 (en) 2016-12-28 2019-09-17 Keyence Corporation Optical-scanning-height measuring device
JP2019002720A (en) * 2017-06-13 2019-01-10 株式会社キーエンス Confocal displacement meter
CN109855589A (en) * 2019-02-20 2019-06-07 华电电力科学研究院有限公司 Utilize the measuring instrument and measurement method of the chord change measurement vertical drift angle of steam-water pipe suspension and support sunpender
CN109855589B (en) * 2019-02-20 2023-09-19 华电电力科学研究院有限公司 Measuring instrument and measuring method for measuring vertical deflection angle of hanger rod of steam-water pipeline support by utilizing chord length change

Also Published As

Publication number Publication date
JP4216679B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4209709B2 (en) Displacement meter
JP5183989B2 (en) Shape measuring device
US9689667B2 (en) System, method and computer program for receiving a light beam
JP4216679B2 (en) Displacement meter and displacement measurement method
JP5341351B2 (en) Measuring apparatus and method based on basic principle of confocal microscope system
JP4863826B2 (en) Measuring apparatus and measuring method
JP2006010693A (en) Apparatus for optically measuring object, and method for measuring using the same
JP3942252B2 (en) 3D measuring device
JP4357361B2 (en) A micro height measurement device using low coherence interferometry
JP6853572B2 (en) Three-dimensional shape measurement method using a scanning white interference microscope
JP2001108601A (en) Scanning-type probe microscope
JP5342178B2 (en) Shape measuring apparatus and shape measuring method
JP6552039B2 (en) Scanning microscope and pixel data generation method
JP2016176784A (en) Surface shape measuring apparatus and surface shape measuring method
JP2006162523A (en) Speed-measuring apparatus and displacement measurement apparatus for periodically movable object
JPH07294250A (en) Displacement gauge
JP4659996B2 (en) Optical measuring device
JPH02198324A (en) Vibration detecting apparatus
JP5061049B2 (en) Fine shape measuring device
JP3437479B2 (en) Birefringence measurement device
Zhao et al. Improving the measuring accuracy of laser autocollimator used over long distance
JP2005315573A (en) Angle measuring instrument, angle adjuster, and optical measuring instrument
JP5876820B2 (en) Lens optical performance adjusting device and lens optical performance adjusting method
JPH06307848A (en) Probe displacement sensing device of microscope
JP2005147745A (en) Apparatus for measuring near-field scattered light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Ref document number: 4216679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees