JP5061049B2 - Fine shape measuring device - Google Patents

Fine shape measuring device Download PDF

Info

Publication number
JP5061049B2
JP5061049B2 JP2008175757A JP2008175757A JP5061049B2 JP 5061049 B2 JP5061049 B2 JP 5061049B2 JP 2008175757 A JP2008175757 A JP 2008175757A JP 2008175757 A JP2008175757 A JP 2008175757A JP 5061049 B2 JP5061049 B2 JP 5061049B2
Authority
JP
Japan
Prior art keywords
probe
displacement
cantilever
measured
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008175757A
Other languages
Japanese (ja)
Other versions
JP2010014591A (en
Inventor
聡 古賀
義将 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2008175757A priority Critical patent/JP5061049B2/en
Publication of JP2010014591A publication Critical patent/JP2010014591A/en
Application granted granted Critical
Publication of JP5061049B2 publication Critical patent/JP5061049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は微細形状測定装置、特には使用する探針と被測定面との間の原子間力の測定手段の改良に関する。   The present invention relates to a fine shape measuring apparatus, and more particularly to improvement of an atomic force measuring means between a probe to be used and a surface to be measured.

従来から被測定面の微細な形状を測定するために走査型プローブ顕微鏡などの形状測定装置が使用されており、その走査型プローブ顕微鏡の中に原子間力顕微鏡がある。原子間力顕微鏡は被測定面とカンチレバーの自由端部の下面に設けられた探針との間に働く原子間力を検出し、その原子間力が一定となるようにカンチレバーの固定端部を上下させながら探針で被測定面を走査することによって、被測定面の凹凸形状を測定するものである。そして被測定面の凹凸形状に伴う探針の変位量の検出には高感度である光てこ方式を採用したものが多い(例えば特許文献1を参照)。   Conventionally, a shape measuring device such as a scanning probe microscope has been used to measure the fine shape of the surface to be measured, and an atomic force microscope is one of the scanning probe microscopes. The atomic force microscope detects the atomic force acting between the surface to be measured and the probe provided on the lower surface of the free end of the cantilever, and the fixed end of the cantilever is fixed so that the atomic force is constant. By scanning the surface to be measured with the probe while moving up and down, the uneven shape of the surface to be measured is measured. In many cases, a high-sensitivity optical lever method is used to detect the displacement of the probe due to the uneven shape of the surface to be measured (see, for example, Patent Document 1).

図1は光てこ方式の原子間力顕微鏡10によって被測定面Sの凹凸形状を測定する方法を示す図である。すなわち、可撓性カンチレバー4の自由端部の下面に設けた探針2の先端が被測定面Sに接触しており、カンチレバー4における探針2の背面側には上方のレーザ光源6からレーザ光7が照射されて、その反射光を例えば四分割のフォト・ディテクタ8で受光するようにしたものであり、カンチレバー4の撓み量から原子間力を検出するものである。   FIG. 1 is a view showing a method for measuring the uneven shape of the surface S to be measured by an optical lever type atomic force microscope 10. That is, the tip of the probe 2 provided on the lower surface of the free end portion of the flexible cantilever 4 is in contact with the surface S to be measured, and the laser beam from the upper laser light source 6 is applied to the back side of the probe 2 in the cantilever 4. The light 7 is irradiated, and the reflected light is received by, for example, a four-divided photo detector 8. The atomic force is detected from the amount of bending of the cantilever 4.

測定に際しては、被測定面SをX軸方向へ移動させながら探針2で被測定面Sを走査する。例えば、被測定面Sを一点鎖線位置から実線位置へ移動させた時の探針2の位置、カンチレバー4の撓み角度の違いによって、レーザ光7の反射角度が異なり、フォト・ディテクタ8におけるレーザ光7の受光位置が異なるが、カンチレバー4の撓みが一定となるようにカンチレバー4の根元を図1において上下に移動させ、その上下の移動量を変位センサで測定することによって、探針2の走査に伴う被測定面Sの高さの変化を測定することができる。   In measurement, the measurement surface S is scanned with the probe 2 while moving the measurement surface S in the X-axis direction. For example, the reflection angle of the laser beam 7 differs depending on the position of the probe 2 and the deflection angle of the cantilever 4 when the measured surface S is moved from the one-dot chain line position to the solid line position, and the laser beam in the photo detector 8 is different. Although the light receiving position of 7 is different, the probe 2 is scanned by moving the root of the cantilever 4 up and down in FIG. 1 so that the bending of the cantilever 4 is constant and measuring the amount of movement up and down with a displacement sensor. It is possible to measure the change in the height of the surface S to be measured accompanying the above.

上記のほか、カンチレバー4を共振周波数近辺の周波数で振動させ、振動する探針2を被測定面Sに接近させて走査し、探針2と被測定面Sとの間に働く原子間力の変化によって生ずる探針2の振動状態の変化を光てこ方式によって検出し、原子間力が一定となるようにカンチレバー4を上下させて、被測定面Sの凹凸を測定することもできる。上記何れの場合も、探針2の振動による上下方向の変位量を検知するためのセンサと、カンチレバー4の上下動の変位量を検知するためのセンサとの2個の変位センサを要する。   In addition to the above, the cantilever 4 is vibrated at a frequency in the vicinity of the resonance frequency, the vibrating probe 2 is scanned close to the measured surface S, and the atomic force acting between the probe 2 and the measured surface S is measured. The change in the vibration state of the probe 2 caused by the change can be detected by the optical lever method, and the cantilever 4 can be moved up and down so that the atomic force is constant, thereby measuring the unevenness of the measurement surface S. In any of the above cases, two displacement sensors, that is, a sensor for detecting the amount of vertical displacement caused by the vibration of the probe 2 and a sensor for detecting the amount of vertical displacement of the cantilever 4 are required.

これに対し本願発明者らは1個の変位センサによって、探針の上下方向の変位量と、カンチレバーの上下動の変位量との両者を検出し得る形状測定装置を提案している(特許文献2を参照)。図2はその形状測定装置20の構成を示す図である。すなわち、形状測定装置20は、探針12、カンチレバー14、探針12を振動させる微小振動発生手段16、カンチレバー14を上下させるカンチレバー位置制御手段17、探針12の変位センサ21を備えており、被測定面Sを有する測定対象24はXYステージ30上に載置される。   In contrast, the inventors of the present application have proposed a shape measuring device that can detect both the amount of vertical displacement of the probe and the amount of vertical displacement of the cantilever with a single displacement sensor (Patent Literature). 2). FIG. 2 is a diagram showing the configuration of the shape measuring apparatus 20. That is, the shape measuring device 20 includes a probe 12, a cantilever 14, a minute vibration generating means 16 that vibrates the probe 12, a cantilever position control means 17 that moves the cantilever 14 up and down, and a displacement sensor 21 of the probe 12. The measurement object 24 having the measurement surface S is placed on the XY stage 30.

微小振動発生手段16はカンチレバー14を片持ちしており、被測定面Sの凹凸形状を測定する際の測定データのサンプリング周波数よりも高い周波数、通常はカンチレバー14の共振周波数近辺の周波数でカンチレバー14を振動させて探針12を上下方向に振動させる。走査手段18はXYステージ30をX方向へ水平に移動させて探針12を被測定面S上で走査させ、次いでXYステージ30をY方向へ一定の間隔をあけて移動し、同様な走査を繰り返す。すなわち、走査によって、カンチレバー14の自由端部に設けられた探針12は上下方向に微小に振動されながら被測定面Sの凹凸に応じて上下方向に変位する。そして、カンチレバー位置制御手段17は、被測定面Sと探針12との間の原子間力が許容範囲内で一定になるように、微小振動発生手段16の位置を上下させることによってカンチレバー14の位置を上下させる。   The micro-vibration generating means 16 has a cantilever 14 that is cantilevered. The cantilever 14 has a frequency higher than the sampling frequency of measurement data when measuring the uneven shape of the surface S to be measured, usually at a frequency near the resonance frequency of the cantilever 14. Is vibrated to vibrate the probe 12 in the vertical direction. The scanning means 18 moves the XY stage 30 horizontally in the X direction to cause the probe 12 to scan on the surface S to be measured, and then moves the XY stage 30 at a certain interval in the Y direction to perform similar scanning. repeat. That is, by scanning, the probe 12 provided at the free end of the cantilever 14 is displaced in the vertical direction according to the unevenness of the measurement surface S while being slightly vibrated in the vertical direction. Then, the cantilever position control means 17 raises and lowers the position of the minute vibration generating means 16 so that the atomic force between the measured surface S and the probe 12 becomes constant within an allowable range. Move the position up and down.

変位センサ21はレーザ干渉計による変位計であり、レーザ光源34とビーム・スプリッタ36はXYステージ30と独立して設置されている。干渉系を構成する他の構成部材である参照面(参照鏡)38はXYステージ30上に設けられており、XYステージ30と共に移動する。レーザ光源34からの可干渉性のレーザ光50はカンチレバー14における探針12の背面位置に向けて照射される。   The displacement sensor 21 is a displacement meter using a laser interferometer, and the laser light source 34 and the beam splitter 36 are installed independently of the XY stage 30. A reference surface (reference mirror) 38, which is another constituent member constituting the interference system, is provided on the XY stage 30 and moves together with the XY stage 30. The coherent laser beam 50 from the laser light source 34 is irradiated toward the back surface position of the probe 12 in the cantilever 14.

レーザ光50はビーム・スプリッタ36を透過して参照面(参照鏡)38に至るが、入射したレーザ光50の一部は参照面38で直上へ反射されて参照光52となる。残りのレーザ光50は参照面36およびコリメート・レンズ40を透過し、カンチレバー14に至って直上へ反射され測定光54となる。そして参照光52と測定光54との干渉信号56はビーム・スプリッタ36のハーフミラーで反射されて探針変位信号出力回路42へ送られ、探針変位信号出力回路42は探針変位信号26を信号処理回路22Cへ入力する。   The laser light 50 passes through the beam splitter 36 and reaches the reference surface (reference mirror) 38, but a part of the incident laser light 50 is reflected directly above the reference surface 38 to become reference light 52. The remaining laser light 50 passes through the reference surface 36 and the collimating lens 40, reaches the cantilever 14, and is reflected immediately above to become measurement light 54. The interference signal 56 between the reference beam 52 and the measuring beam 54 is reflected by the half mirror of the beam splitter 36 and sent to the probe displacement signal output circuit 42. The probe displacement signal output circuit 42 outputs the probe displacement signal 26. Input to the signal processing circuit 22C.

信号処理回路22Cは探針変位信号26中の高周波成分から被測定面Sと探針12との間の原子間力に対応する探針振動の振幅を取得する。そして、信号処理回路22Cは探針振動の振幅を許容範囲内で一定に保つように、振動振幅をカンチレバー位置制御手段17へフィードバックする。また信号処理回路22Cは、探針変位信号26中の低周波成分から被測定面Sの凹凸形状を取得する。   The signal processing circuit 22 </ b> C obtains the amplitude of the probe vibration corresponding to the atomic force between the measurement surface S and the probe 12 from the high frequency component in the probe displacement signal 26. The signal processing circuit 22C feeds back the vibration amplitude to the cantilever position control means 17 so as to keep the probe vibration amplitude constant within an allowable range. The signal processing circuit 22 </ b> C acquires the uneven shape of the measurement surface S from the low frequency component in the probe displacement signal 26.

上記の形状測定装置20によって得られる探針変位信号26を図3に示した。図3Aの左図は被測定面Sの凹凸形状であり、図3Aの右図は探針12によって被測定面Sを走査した時に得られる探針変位信号26である。その走査は、例えば圧電素子からなる微振動発生手段16によってカンチレバー14を上下に微小に振動させながら、探針12を被測定面Sの近傍まで近づけ、両方の間に働く原子間力(=距離)を一定に保ちながら被測定面Sを探針12で走査する。すなわち、探針変位信号針26は探針12の微小な変位を示すと同時に、被測定面Sの凹凸形状に応じた変位を示す。   A probe displacement signal 26 obtained by the shape measuring apparatus 20 is shown in FIG. The left diagram in FIG. 3A shows the uneven shape of the measurement surface S, and the right diagram in FIG. 3A shows the probe displacement signal 26 obtained when the measurement surface S is scanned by the probe 12. The scanning is performed by, for example, bringing the probe 12 close to the vicinity of the surface S to be measured while causing the cantilever 14 to slightly vibrate up and down by the fine vibration generating means 16 made of, for example, a piezoelectric element. ) Is kept constant, and the measurement surface S is scanned with the probe 12. That is, the probe displacement signal needle 26 indicates a minute displacement of the probe 12 and at the same time a displacement corresponding to the uneven shape of the measurement surface S.

カンチレバー14は、その固定端部を保持する微小振動発生手段16によってカンチレバー14の共振周波数に近い周波数で振動されて探針12を上下に振動させているので、図3Bに示すように、探針変位信号針26を信号処理して、探針12の微小振動に基づく高周波成分66と、被測定面Sの凹凸形状に基づく低周波成分68とに分離することができる。   Since the cantilever 14 is vibrated at a frequency close to the resonance frequency of the cantilever 14 by the minute vibration generating means 16 that holds the fixed end thereof, the probe 12 is caused to vibrate up and down, as shown in FIG. 3B. The displacement signal needle 26 can be signal-processed and separated into a high-frequency component 66 based on minute vibrations of the probe 12 and a low-frequency component 68 based on the uneven shape of the measurement surface S.

そして、図3Cに示すように、探針変位信号26中の高周波成分66の振幅Laは探針12を被測定面Sに近接させるにつれて減少する。従って、その振幅Laがある一定の値La’となるように、探針12と被測定面Sとの距離ないしは接触力を制御することによって、原子間力を一定に保つことができる。そして、図4は探針変位信号26を図3Bに示した高周波成分66と低周波成分68とに分離するために信号処理回路22Cにおける信号処理手段を示す。   As shown in FIG. 3C, the amplitude La of the high frequency component 66 in the probe displacement signal 26 decreases as the probe 12 is brought closer to the surface S to be measured. Therefore, the atomic force can be kept constant by controlling the distance or contact force between the probe 12 and the measured surface S so that the amplitude La becomes a certain value La ′. FIG. 4 shows signal processing means in the signal processing circuit 22C for separating the probe displacement signal 26 into the high frequency component 66 and the low frequency component 68 shown in FIG. 3B.

図4に示すように、信号処理回路22Cは探針変位信号出力回路42から出力される探針変位信号26を二つに分割し、一方はハイパスフィルタ72を通して高周波成分66を抽出し、その高周波成分66が入力される振幅検出回路76によって探針振動の振幅を取得している。そして探針振動の振幅はカンチレバー位置制御手段17へフィードバックされてカンチレバー14の位置を上下させる。   As shown in FIG. 4, the signal processing circuit 22C divides the probe displacement signal 26 output from the probe displacement signal output circuit 42 into two, one of which extracts a high frequency component 66 through a high pass filter 72, The amplitude of the probe vibration is acquired by the amplitude detection circuit 76 to which the component 66 is input. The amplitude of the probe vibration is fed back to the cantilever position control means 17 to raise and lower the position of the cantilever 14.

分割された他方はローパスフィルタ74を通し、得られる低周波成分68は形状算出手段80へ入力されて被測定面Sの凹凸形状が算出される。   The other divided portion passes through a low-pass filter 74, and the obtained low-frequency component 68 is input to the shape calculating means 80, and the uneven shape of the measured surface S is calculated.

特開2002−181687号公報JP 2002-181687 A 特願2007−188070号Japanese Patent Application No. 2007-188070

しかるに、レーザ干渉計21によって探針の変位を測定する場合、レーザ干渉計21から出力される信号は干渉縞の強度情報であり、通常は変位の方向を特定するために、図5に示すように、90度の位相差を持った二相正弦波として出力される。この二相正弦波を内挿回路に挿入して二相方形波とし、例えばその二相方形波の立ち上がりと立下りのエッジをカウンタで計数することによりデジタルの変位情報に変換することができる。   However, when the displacement of the probe is measured by the laser interferometer 21, the signal output from the laser interferometer 21 is the interference fringe intensity information, and normally, as shown in FIG. Are output as a two-phase sine wave having a phase difference of 90 degrees. This two-phase sine wave is inserted into an interpolation circuit to form a two-phase square wave. For example, the rising and falling edges of the two-phase square wave are counted by a counter, and can be converted into digital displacement information.

従って、図2、図4に示した探針変位信号出力回路42から信号処理回路22Cへ入力される探針変位信号26は通常はデジタル信号であり、その探針変位信号26を探針12の振動成分と被測定面Sの凹凸成分によるカンチレバー14の上下動成分とに分離するにはデジタル信号処理を必要とするが、カンチレバー14の共振周波数は数百kHz程度であるから、その信号処理には高度な高速デジタル信号処理技術が必要となり、開発に多大のコストがかかるという問題がある。   Accordingly, the probe displacement signal 26 input to the signal processing circuit 22C from the probe displacement signal output circuit 42 shown in FIGS. 2 and 4 is usually a digital signal, and the probe displacement signal 26 is transmitted to the probe 12 as shown in FIG. Digital signal processing is required to separate the vibration component and the vertical movement component of the cantilever 14 due to the concavo-convex component of the surface S to be measured, but since the resonance frequency of the cantilever 14 is about several hundred kHz, Requires a high-speed digital signal processing technique, and there is a problem that development costs a lot.

上記のほか、カウンタから出力される変位情報をD/Aコンバータでアナログ変換し、以降の信号処理を一般的なアナログ回路で行うことも考えられる。その場合には、形状測定装置の測定範囲はD/Aコンバータの分解能によって制限される。通常ではカウンタは24bitあるいはそれ以上の分解能を有するものが容易に入手可能であるに対し、図2の形状測定装置20に対応が可能な高速サンプリングタイプのD/Aコンバータの分解能は16bit程度である。従って、このD/A変換する方法では測定範囲が著しく狭くなってしまうという問題がある。   In addition to the above, it is conceivable that the displacement information output from the counter is converted to analog by a D / A converter, and the subsequent signal processing is performed by a general analog circuit. In that case, the measurement range of the shape measuring apparatus is limited by the resolution of the D / A converter. Normally, a counter having a resolution of 24 bits or higher is readily available, whereas the resolution of a high-speed sampling type D / A converter capable of supporting the shape measuring apparatus 20 of FIG. 2 is about 16 bits. . Therefore, this D / A conversion method has a problem that the measurement range becomes extremely narrow.

本発明は上述の問題に鑑みてなされたものであり、その目的は、1つの変位センサによって探針振動の変位と、被測定面の凹凸形状に基づくカンチレバーの上下の変位との双方を検出することが可能な形状測定装置において、探針の変位情報を探針の振動成分と被測定面の凹凸成分とに分離するに際し、高度なデジタル処理を必要としない形状測定装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to detect both the displacement of the probe vibration and the vertical displacement of the cantilever based on the concavo-convex shape of the surface to be measured by a single displacement sensor. It is an object of the present invention to provide a shape measuring device that does not require advanced digital processing when separating displacement information of the probe into a vibration component of the probe and an uneven component of the surface to be measured. .

本発明の目的を達成するための請求項1に係る形状測定装置は、カンチレバーの自由端部の下面に設けられた探針と、カンチレバーを介し探針を上下に振動させる微振動発生手段と、カンチレバーを介し探針を被測定面上で走査させる走査手段と、探針と被測定面との間に働く原子間力を一定とするようにカンチレバーの固定端部を探針の走査方向と直角な方向に上下させるカンチレバー位置制御手段と、探針の変位センサであり探針変位信号を発生させるレーザ干渉計と、探針変位信号である二相正弦波を二つに分岐して、一方は探針変位信号中の探針の振動に対応する高周波成分と被測定面の凹凸形状に対応する低周波成分とを含んだ状態で信号処理して探針の変位情報を取得し、他方はローパスフィルタを通し高周波成分を取り除いた後に信号処理して探針変位信号中の被測定面の凹凸情報を取得し、探針の変位情報と被測定面の凹凸情報との差から探針の振動情報を抽出する信号処理手段と、を備えている形状測定装置である。 A shape measuring apparatus according to claim 1 for achieving the object of the present invention comprises a probe provided on the lower surface of the free end of the cantilever, and a fine vibration generating means for vibrating the probe up and down via the cantilever. A scanning means for scanning the probe on the surface to be measured via the cantilever, and a fixed end of the cantilever at a right angle to the scanning direction of the probe so that the atomic force acting between the probe and the surface to be measured is constant. A cantilever position control means that moves up and down in any direction, a laser interferometer that is a probe displacement sensor and generates a probe displacement signal, and a two-phase sine wave that is a probe displacement signal is branched into two, one of which is Probe displacement information is obtained by signal processing in a state that includes a high-frequency component corresponding to the vibration of the probe in the probe displacement signal and a low-frequency component corresponding to the uneven shape of the measured surface, and the other is a low-pass High frequency components were removed through a filter Signal processing means for acquiring the unevenness information of the measured surface in the probe displacement signal and extracting the vibration information of the probe from the difference between the displacement information of the probe and the unevenness information of the measured surface; Is a shape measuring device.

このような形状測定装置は、高周波成分と低周波成分とを含む探針変位情報から、被測定面の凹凸形状に対応する低周波成分を減算して得られる高周波成分から探針の振幅情報を取得するので、従来の形状測定装置のように探針変位信号を高周波成分と低周波成分に分離し、その高周波成分から探針の振動振幅を取得する場合に比して、分離のための高度な高速デジタル処理を必要とせず、装置コストを抑制し、測定コストを低減させる。   Such a shape measuring apparatus obtains the amplitude information of the probe from the high frequency component obtained by subtracting the low frequency component corresponding to the uneven shape of the measured surface from the probe displacement information including the high frequency component and the low frequency component. Since the probe displacement signal is separated into a high-frequency component and a low-frequency component and the vibration amplitude of the probe is obtained from the high-frequency component as in the conventional shape measurement device, the height for separation is high. High-speed digital processing is not required, apparatus cost is suppressed, and measurement cost is reduced.

また請求項2の形状測定装置は、請求項1に記載の測定装置において、信号処理手段により探針の変位情報と被測定面の凹凸情報との差から探針の振動情報を抽出するに際し、探針振動の振幅情報を取得するに必要な下位ビットのみを計算するように設定されている形状測定装置である。
このような形状測定装置は、探針の振動成分を抽出するに際して探針振動の振幅に対応する下位ビットのみを計算しても、測定範囲を犠牲にすることなく、探針の振幅を正確に求めることができる。
The shape measuring apparatus according to claim 2 is the measuring apparatus according to claim 1, wherein the vibration information of the probe is extracted from the difference between the displacement information of the probe and the unevenness information of the surface to be measured by the signal processing means. The shape measuring device is set to calculate only the lower bits necessary for obtaining the amplitude information of the probe vibration.
Such a shape measuring apparatus accurately calculates the amplitude of the probe without sacrificing the measurement range even if only the lower bits corresponding to the amplitude of the probe vibration are calculated when extracting the vibration component of the probe. Can be sought.

本発明の形状測定装置によれば、1つの変位センサによって探針振動の変位と被測定面の凹凸形状に基づいて上下させるカンチレバーの変位とを検出する形状測定装置において、探針振動の変位に対応する高周波成分とカンチレバーの変位に対応する低周波波成分とを含む探針変位情報から低周波成分を減算して探針振動の高周波成分を抽出するので、高度なデジタル信号処理回路を必要とせず、また測定範囲を犠牲にすることなく探針振動の振幅を測定することができ、測定コストを大幅に低減することができる。   According to the shape measuring apparatus of the present invention, in the shape measuring apparatus that detects the displacement of the probe vibration and the displacement of the cantilever that moves up and down based on the uneven shape of the surface to be measured by one displacement sensor, The high-frequency component of the probe vibration is extracted by subtracting the low-frequency component from the probe displacement information including the corresponding high-frequency component and the low-frequency wave component corresponding to the displacement of the cantilever. Therefore, an advanced digital signal processing circuit is required. In addition, the amplitude of the probe vibration can be measured without sacrificing the measurement range, and the measurement cost can be greatly reduced.

本発明の形状測定装置を構成する探針は、カンチレバーの自由端部の下面に設けられ、カンチレバーを介して微小振動発生手段により上下に振動されながら、同じくカンチレバーを介して走査手段により被測定面上を走査される。なお、微小振動発生手段は一般的には圧電体によるものが使用され、カンチレバーの共振周波数近辺で振動される。その走査時において、凹凸形状を有する被測定面と探針との間の距離ないしは接触力が一定となるように、カンチレバーはその固定端部をカンチレバー位置制御手段によって走査方向と直角な上下の方向に移動される。   The probe constituting the shape measuring apparatus of the present invention is provided on the lower surface of the free end of the cantilever, and while being vibrated up and down by the minute vibration generating means via the cantilever, the surface to be measured is also scanned by the scanning means via the cantilever. Scanned up. Note that the micro-vibration generating means is generally a piezoelectric body and vibrates in the vicinity of the cantilever resonance frequency. At the time of scanning, the cantilever has a fixed end portion in the vertical direction perpendicular to the scanning direction by the cantilever position control means so that the distance or contact force between the measurement surface having a concavo-convex shape and the probe is constant. Moved to.

上記のように、探針は受ける振動によって変位すると共に、カンチレバーの上下動によって変位するが、その探針の変位は変位センサとしてのマイケルソン干渉方式のレーザ干渉計によって観測される。レーザ干渉計のレーザ光源とビーム・スプリッタは被測定面を有する測定対象が載置されるXYステージとは独立して設置され、参照鏡はXYステージ上に設置されること、そして、レーザ光の中で参照鏡において直上へ反射される参照光と、参照鏡およびコリメート・レンズを透過しカンチレバーに至って直上へ反射される測定光との干渉信号が探針変位信号出力回路へ送られ、その探針変位信号出力回路から探針変位信号が信号処理回路へ入力される。これらのことは図2に示した特許文献2の形状測定装置と同様である。従って、以降における本発明の形状測定装置の説明には図2を援用する。   As described above, the probe is displaced by the vibration received and is displaced by the vertical movement of the cantilever. The displacement of the probe is observed by a Michelson interferometer laser interferometer as a displacement sensor. The laser light source and the beam splitter of the laser interferometer are installed independently of the XY stage on which the measurement target having the measurement surface is placed, the reference mirror is installed on the XY stage, and the laser beam Among them, an interference signal between the reference light reflected directly above the reference mirror and the measurement light transmitted through the reference mirror and the collimating lens and reflected directly above the cantilever is sent to the probe displacement signal output circuit. A probe displacement signal is input from the needle displacement signal output circuit to the signal processing circuit. These are the same as the shape measuring apparatus of Patent Document 2 shown in FIG. Therefore, FIG. 2 is used for the following description of the shape measuring apparatus of the present invention.

本発明の形状測定装置が特許文献2の形状測定装置と異なるところは、信号処理回路における信号処理手段にある。すなわち、本発明の形状測定装置における信号処理手段は、高周波成分と低周波成分とを含む探針変位信号をアナログ信号のまま二つに分岐し、分岐された一方の探針変位信号である二相正弦波が入力される第1内挿回路と、第1内挿回路から出力される二相方形波をカウントして、高周波成分と低周波成分とからなる探針の変位情報を出力する第1カウンタと、分岐された他方の探針変位信号を通過させるローパスフィルタと、ローパスフィルタを通過して高周波成分がカットされた探針変位信号が入力される第2内挿回路と、第2内挿回路から出力される二相方形波をカウントして、被測定面の凹凸情報を出力する第2カウンタと、上記高周波成分と低周波成分とからなる探針の変位情報と低周波の被測定面の凹凸情報とが入力されて、探針の振動情報を出力する減算回路と、からなる。   The shape measuring apparatus of the present invention is different from the shape measuring apparatus of Patent Document 2 in the signal processing means in the signal processing circuit. That is, the signal processing means in the shape measuring apparatus of the present invention branches the probe displacement signal containing the high frequency component and the low frequency component into two as analog signals, and is one of the branched probe displacement signals. A first interpolation circuit to which a phase sine wave is input and a two-phase square wave output from the first interpolation circuit are counted, and displacement information of the probe composed of a high frequency component and a low frequency component is output. 1 counter, a low-pass filter that allows the other branched probe displacement signal to pass through, a second interpolation circuit that receives a probe displacement signal that has passed through the low-pass filter and has a high-frequency component cut, and a second internal circuit A second counter that counts the two-phase square wave output from the insertion circuit and outputs the unevenness information of the surface to be measured, the displacement information of the probe comprising the high frequency component and the low frequency component, and the low frequency measured Surface unevenness information is input, A subtracting circuit for outputting a vibration information of the needle, made of.

そして、減算回路からの探針振動の振幅情報は振幅検出回路へ入力され、振幅検出回路から出力される探針振動の振幅はカンチレバー位置制御手段へ入力され、カンチレバー位置制御手段は入力される振幅の変化に応じてカンチレバーを上下させることにより、探針と被測定面との間の距離ないしは接触力、すなわち原子間力を一定とするように制御する。   The amplitude information of the probe vibration from the subtraction circuit is input to the amplitude detection circuit, the amplitude of the probe vibration output from the amplitude detection circuit is input to the cantilever position control means, and the amplitude that is input to the cantilever position control means By moving the cantilever up and down according to the change in the distance, the distance or contact force between the probe and the surface to be measured, that is, the atomic force is controlled to be constant.

図6は原子間力に基づいて被測定面Sの凹凸形状を測定する本発明の形状測定装置80において、カンチレバー位置制御手段17へ入力する探針12の振動振幅を検出するための信号処理回路22Aにおける信号処理手段を示す図であり、図4に示した信号処理回路22Cにおける信号処理手段に替わるものである。図2を援用して、レーザ干渉計である変位センサ21からの干渉信号56は探針変位信号出力回路42から探針12の振動による高周波成分と被測定面Sの凹凸による低周波成分とからなる二相正弦波を出力させる。本発明の形状測定装置80においては、図6に示すように、その二相正弦波は2つに分岐され、分岐された一方はそのまま第1内挿回路81に入力され、第1内挿回路81から二相方形波Iが出力される。また分岐された他方は、探針12の振動による高周波成分を除くためにローパスフィルタ85を通した後に、第2内挿回路86へ入力され、第2内挿回路86からは二相方形波IIが出力される。   FIG. 6 shows a signal processing circuit for detecting the vibration amplitude of the probe 12 input to the cantilever position control means 17 in the shape measuring apparatus 80 of the present invention for measuring the uneven shape of the surface S to be measured based on the atomic force. It is a figure which shows the signal processing means in 22A, and replaces the signal processing means in the signal processing circuit 22C shown in FIG. With reference to FIG. 2, the interference signal 56 from the displacement sensor 21, which is a laser interferometer, is obtained from a high frequency component due to the vibration of the probe 12 from the probe displacement signal output circuit 42 and a low frequency component due to the unevenness of the surface S to be measured. To output a two-phase sine wave. In the shape measuring apparatus 80 of the present invention, as shown in FIG. 6, the two-phase sine wave is branched into two, and one of the branched waves is directly input to the first interpolation circuit 81, and the first interpolation circuit A two-phase square wave I is output from 81. The other branched part is input to the second interpolation circuit 86 after passing through the low-pass filter 85 in order to remove the high-frequency component due to the vibration of the probe 12, and the two-phase square wave II is input from the second interpolation circuit 86. Is output.

上記の二相方形波Iは第1カウンタ83へ入力されて探針12の振動による高周波成分と被測定面Sの凹凸による低周波成分とからなる探針の変位情報(変位情報I)84が得られる。また二相方形波IIは第2カウンタ88へ入力されて低周波成分である被測定面Sの凹凸情報(変位情報II)89が得られる。そして、探針の変位情報84と被測定面Sの凹凸情報89とを例えば汎用ロジックICなどを組み合わせた減算回路90へ入力することにより、探針12の振動情報91が得られる。その振動情報91を振幅検出回路92(例えばD/Aコンバータでアナログ信号に変換し、広く使用されている全波整流回路などを用いて振動振幅の変化を検出するような回路)によって探針振動の振幅を取得することができる。そして、その振動振幅をカンチレバー位置制御手段17へフィードバックして、探針12と被測定面Sとの間の距離ないしは接触力を一定に保ちながら被測定面Sを探針12で走査することができる。   The above-described two-phase square wave I is input to the first counter 83 and probe displacement information (displacement information I) 84 composed of a high-frequency component due to the vibration of the probe 12 and a low-frequency component due to the unevenness of the measured surface S is obtained. can get. In addition, the two-phase square wave II is input to the second counter 88, and unevenness information (displacement information II) 89 of the measurement surface S, which is a low frequency component, is obtained. Then, the vibration information 91 of the probe 12 is obtained by inputting the displacement information 84 of the probe and the unevenness information 89 of the measurement surface S to a subtracting circuit 90 combined with a general-purpose logic IC, for example. The vibration information 91 is converted into an analog signal by an amplitude detection circuit 92 (for example, a circuit that detects a change in vibration amplitude using a widely used full-wave rectifier circuit or the like), and probe vibrations. Can be obtained. Then, the vibration amplitude is fed back to the cantilever position control means 17 so that the surface to be measured S is scanned with the probe 12 while keeping the distance or contact force between the probe 12 and the surface to be measured S constant. it can.

以上に述べたように、本発明の形状測定装置80によれば高度な高速デジタル信号処理回路を構築しなくとも、探針の変位情報を探針振動による高周波成分と、被測定面Sの凹凸による低周波成分とに容易に分離することができる。   As described above, according to the shape measuring apparatus 80 of the present invention, the displacement information of the probe can be obtained from the high-frequency component due to the probe vibration and the unevenness of the measured surface S without constructing an advanced high-speed digital signal processing circuit. Can be easily separated into low frequency components.

また、このような形状測定装置においては測定範囲を広く取るために、カウンタには例えば24bit程度、あるいはそれ以上の高い分解能を有するものを使用することが多いが、探針12の振幅は大きくても数十nmであるから、探針の変位情報84と被測定面Sの凹凸情報89との差を取って振幅情報91を得るに際して、第1カウンタ83および第2カウンタ88から出力される全ての桁を計算する必要はなく、探針振動の振幅に対応することができる範囲の下位ビットを適宜選択して計算してもよい。そのことによって減算回路90における桁数を減らして演算を簡略化することができる。   In such a shape measuring apparatus, in order to take a wide measurement range, a counter having a high resolution of, for example, about 24 bits or more is often used, but the amplitude of the probe 12 is large. Since the amplitude information 91 is obtained by taking the difference between the probe displacement information 84 and the unevenness information 89 of the surface S to be measured, all the outputs from the first counter 83 and the second counter 88 are It is not necessary to calculate the digit of, and the lower bit in a range that can correspond to the amplitude of the probe vibration may be appropriately selected and calculated. As a result, the number of digits in the subtraction circuit 90 can be reduced to simplify the calculation.

本発明の形状測定装置は、原子間力顕微鏡、走査型トンネル顕微鏡をはじめとする各種の走査型プローブ顕微鏡に利用することが可能である。   The shape measuring apparatus of the present invention can be used for various scanning probe microscopes including an atomic force microscope and a scanning tunneling microscope.

原子間力顕微鏡の光てこ方式による被測定面の凹凸の測定方法を示す図である。It is a figure which shows the measuring method of the unevenness | corrugation of the to-be-measured surface by the optical lever system of an atomic force microscope. 1個の変位センサによって探針振動の変位量と、被測定面の凹凸によるカンチレバーの変位量とを検出する従来の形状測定装置の構成を示す図である。It is a figure which shows the structure of the conventional shape measuring apparatus which detects the displacement amount of a probe vibration and the displacement amount of the cantilever by the unevenness | corrugation of a to-be-measured surface by one displacement sensor. 図3Aは従来の形状測定装置の1個の変位センサにおける変位データであり、図3Bはその変位データを探針振動による高周波成分と被測定面の凹凸による低周波成分とに分離した状態を示し、図3Cは探針と被測定面との間の距離ないしは接触力を制御して上記探針振動の振幅を一定の値にする場合を示す。FIG. 3A shows displacement data in one displacement sensor of a conventional shape measuring apparatus, and FIG. 3B shows a state in which the displacement data is separated into a high-frequency component due to probe vibration and a low-frequency component due to irregularities on the surface to be measured. FIG. 3C shows a case where the distance between the probe and the surface to be measured or the contact force is controlled to set the amplitude of the probe vibration to a constant value. 上記の探針振動による高周波成分と被測定面の凹凸による低周波成分とに分離する信号回路の構成を示す図である。It is a figure which shows the structure of the signal circuit isolate | separated into the high frequency component by said probe vibration, and the low frequency component by the unevenness | corrugation of a to-be-measured surface. 変位センサである光干渉計によるアナログ信号をデジタル化しカウントして変位情報を得る一般的な方法を示す。A general method for obtaining displacement information by digitizing and counting analog signals from an optical interferometer as a displacement sensor will be described. 本発明の形状測定装置において探針振動の振幅を検出する信号処理手段を示す図である。It is a figure which shows the signal processing means which detects the amplitude of a probe vibration in the shape measuring apparatus of this invention.

符号の説明Explanation of symbols

12・・・探針、 14・・・カンチレバー、
16・・・微小振動発生手段、 17・・・カンチレバー位置制御手段、
18・・・走査手段、 20・・・従来の形状測定装置、
21・・・変位センサ(レーザ干渉計)、 22A・・本発明の装置の信号処理回路、
22C・・従来の装置の信号処理回路、 24・・・測定対象、
26・・・探針変位信号、 30・・・XYステージ、
34・・・レーザ光源、 36・・・ビーム・スプリッタ、
38・・・参照面(参照鏡)、 40・・・コリメート・レンズ、
42・・・探針変位信号出力回路、 50・・・レーザ光、
52・・・参照光、 54・・・測定光、
56・・・干渉信号、 66・・・高周波成分、
68・・・低周波成分、 80・・・本発明の形状測定装置、
81・・・第1内挿回路、 83・・・第1カウンタ、
84・・・探針の変位情報、 85・・・ローパスフィルタ、
86・・・第2内挿回路、 88・・・第2カウンタ、
89・・・被測定面の凹凸情報、 90・・・減算回路、
91・・・探針の振動情報、 92・・・振幅検出回路、
S・・・被測定面、
12 ... probe, 14 ... cantilever,
16 ... micro vibration generating means, 17 ... cantilever position control means,
18 ... scanning means, 20 ... conventional shape measuring device,
21 ... Displacement sensor (laser interferometer), 22A... Signal processing circuit of the device of the present invention,
22C ··· signal processing circuit of conventional device, 24 · · · measurement object,
26 ... probe displacement signal, 30 ... XY stage,
34 ... laser light source, 36 ... beam splitter,
38 ... reference surface (reference mirror), 40 ... collimating lens,
42 ... probe displacement signal output circuit, 50 ... laser beam,
52 ... Reference light, 54 ... Measurement light,
56 ... interference signal, 66 ... high frequency component,
68 ... low frequency component, 80 ... shape measuring apparatus of the present invention,
81: first interpolation circuit, 83: first counter,
84 ... displacement information of the probe, 85 ... low-pass filter,
86 ... second interpolation circuit, 88 ... second counter,
89... Unevenness information of measured surface, 90.
91: Probe vibration information, 92: Amplitude detection circuit,
S: surface to be measured,

Claims (2)

カンチレバーの自由端部の下面に設けられた探針と、
前記カンチレバーを介し前記探針を上下に振動させる微振動発生手段と、
前記カンチレバーを介し前記探針を被測定面上で走査させる走査手段と、
前記探針と前記被測定面との間に働く原子間力を一定とするように前記カンチレバーの固定端部を前記探針の走査方向と直角な方向に上下させるカンチレバー位置制御手段と、
前記探針の変位センサであり探針変位信号を発生させるレーザ干渉計と、
前記探針変位信号である二相正弦波を二つに分岐して、一方は前記探針変位信号中の探針の振動に対応する高周波成分と前記被測定面の凹凸形状に対応する低周波成分とを含んだ状態で信号処理して探針の変位情報を取得し、他方はローパスフィルタを通し前記高周波成分を取り除いた後に信号処理して前記探針変位信号中の被測定面の凹凸情報を取得し、前記探針の変位情報と前記被測定面の凹凸情報との差から前記探針の振動情報を抽出する信号処理手段と、を備えていることを特徴とする形状測定装置。
A probe provided on the lower surface of the free end of the cantilever;
Fine vibration generating means for vibrating the probe up and down via the cantilever;
Scanning means for scanning the probe on the surface to be measured via the cantilever;
A cantilever position control means for moving the fixed end of the cantilever up and down in a direction perpendicular to the scanning direction of the probe so as to make the atomic force acting between the probe and the surface to be measured constant,
A laser interferometer that is a displacement sensor of the probe and generates a probe displacement signal;
The two-phase sine wave which is the probe displacement signal is branched into two, one of which is a high frequency component corresponding to the vibration of the probe in the probe displacement signal and a low frequency corresponding to the uneven shape of the surface to be measured. The probe displacement information is obtained by performing signal processing in a state including the components, and the other is subjected to signal processing after removing the high-frequency component through a low-pass filter to perform unevenness information on the surface to be measured in the probe displacement signal. And a signal processing means for extracting the vibration information of the probe from the difference between the displacement information of the probe and the unevenness information of the surface to be measured.
請求項1に記載の形状測定装置において、
前記信号処理手段により、前記探針の変位情報と前記被測定面の凹凸情報との差から前記探針の振動情報を抽出するに際し、前記探針振動の振幅情報を取得するに必要な下位ビットのみを計算するように設定されていることを特徴とする形状測定装置。
In the shape measuring apparatus according to claim 1,
Lower-order bits required to acquire amplitude information of the probe vibration when extracting the vibration information of the probe from the difference between the displacement information of the probe and the unevenness information of the measured surface by the signal processing means A shape measuring apparatus, which is set to calculate only.
JP2008175757A 2008-07-04 2008-07-04 Fine shape measuring device Active JP5061049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175757A JP5061049B2 (en) 2008-07-04 2008-07-04 Fine shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008175757A JP5061049B2 (en) 2008-07-04 2008-07-04 Fine shape measuring device

Publications (2)

Publication Number Publication Date
JP2010014591A JP2010014591A (en) 2010-01-21
JP5061049B2 true JP5061049B2 (en) 2012-10-31

Family

ID=41700831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175757A Active JP5061049B2 (en) 2008-07-04 2008-07-04 Fine shape measuring device

Country Status (1)

Country Link
JP (1) JP5061049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2367016A4 (en) * 2008-12-10 2014-03-05 Univ Kyoto Method for processing output of scanning type probe microscope, and scanning type probe microscope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267471A (en) * 1992-04-30 1993-12-07 Ibm Corporation Double cantilever sensor for atomic force microscope
JPH06288759A (en) * 1993-03-30 1994-10-18 Olympus Optical Co Ltd Scanning probe microscope
JPH0743144A (en) * 1993-08-02 1995-02-10 Olympus Optical Co Ltd Three-dimensional contour measurement device
JPH08166392A (en) * 1994-12-15 1996-06-25 Olympus Optical Co Ltd Scanning probe microscope
JP4510277B2 (en) * 2000-12-15 2010-07-21 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP5183989B2 (en) * 2007-07-19 2013-04-17 株式会社ミツトヨ Shape measuring device

Also Published As

Publication number Publication date
JP2010014591A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP5183989B2 (en) Shape measuring device
CN109030624B (en) Defect detection method and defect detection device
CN109416346B (en) Defect inspection apparatus and method
JP2012511715A5 (en)
CN102272610A (en) Dynamic probe detection system
WO2005103610A1 (en) Small displacement measuring method and instrument
CN108917913B (en) Microstructure modal analysis acoustic excitation frequency domain optical coherence tomography detection device and method
WO2007072706A1 (en) Scan type probe microscope
CN108917895B (en) Cantilever Liang Motai frequency-based mass weighing device and method
JP4714651B2 (en) Scanning probe microscope
CN107219379B (en) Multi-frequency scanning probe acoustic microscope system and implementation method thereof
JP4501000B2 (en) Laser interference displacement measuring method and laser interference displacement measuring apparatus
JP6555712B2 (en) Plane vibration measuring apparatus and plane vibration measuring method
JP5061049B2 (en) Fine shape measuring device
JP5768231B2 (en) MEMS measurement method
Sandoz et al. In-plane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern
TWI810184B (en) Scanning probe microscopy system for and method of mapping nanostructures on the surface of a sample
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
TWI403687B (en) Displacement measuring device and its measuring method
JP6386954B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2013181801A (en) Method for detecting three-dimensional vector by atomic force microscope and atomic force microscope for detecting force three-dimensional vector
JPH08248043A (en) Scanning proximity field optical microscope
JP3834229B2 (en) Vertex position measuring device using sinusoidal intensity distribution light
CN105486937A (en) Device for detecting piezoelectric constant d31 of piezoelectric ceramic
JPH0414283B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5061049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250